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Abstract 
 
This study proposed a method for developing regional curves based solely on hydraulic 
modeling.  Regional curves relate bankfull channel geometry and discharge to drainage area and 
are typically used to design channel reaches in natural stream systems at locations where stream 
modifications are required.  Such modifications may result from the following projects - highway 
improvement, bank stabilization, flood control, etc.  There are simply situations where 
modifications must be made to reaches of natural streams in order to accommodate improved 
drainage structures or to address flooding, scour or erosion problems.   
 
Tributaries of the Marais des Cygne River in Johnson County, KS were used for this study.  The 
watershed for the region studied is predominantly rural and, thus, has many natural reaches.  
Moreover, detailed terrain data was available for the portion of the Marais des Cygne River 
considered in this study – with 1-ft contour interval data along the stream corridors.   
 
HEC-RAS modeling was used at eight sites or stream reaches within the area studied.  Each of 
the eight stream reaches were judged to be natural based of aerial photography.  A HEC-RAS 
model was developed for each site at a riffle location.  Each model used the downstream normal 
depth boundary condition and contained from 4 to 9 cross sections developed using HEC 
GeoRAS.  The bankfull elevation was estimated for every cross section based on the elevation 
where the flow appeared from the cross section plot to spill out into one or both of the 
overbanks.   
 
Trial and error was used for each model to determine the discharge (bankfull flow) that produced 
the minimum sum of squares of the differences between the computed water surface elevation 
and the assumed bankfull elevation for all modeled cross sections.  The bankfull flow channel 
geometry parameters were then determined for each cross section and average values were 
related to drainage basin area via regional curves.  The drainage basin areas used were from the 
recent Johnson County flood study of the Marais des Cygne River. 
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Local Applications of Fluvial Geomorphology 

 
 

1.  Introduction 
 
 Geomorphology is the classification and study of the natural processes that occur in 

rivers and streams.  Most stable streams meander slowly back and forth across the floodplain.  

Streams impacted by an urbanizing watershed change as rapidly as their watershed changes.  

Urbanization changes the rate and volume of runoff, the volume of sediment transported by the 

channel, and the water quality of runoff.  Urbanization can create downstream flooding 

problems, and rapid changes in the stream location, cross-section and profile (Bledsoe, 2002).   

In the past, engineers have addressed downstream flooding concerns created by increased 

peak runoff by storing excess runoff volume in detention ponds.  Engineers have been less 

successful at addressing the other consequences of watershed urbanization.  The use of concrete 

to “improve” the stream is an effective means of achieving stabilization, at least in a localized 

area.  Such improvements are expensive to maintain, and improving the headwaters of a stream 

often mean eventually improving downstream areas as well.  As improvements are carried 

downstream they become increasingly costly, requiring more materials and more design.  More 

than $2 billion has been invested in stream restoration since 1980 (Kondolf, Anderson, Lave, 

Pagano, Merenlender, and Bernhardt, 2007).  Once development in the watershed is complete 

and rapid changes to the stream’s location, cross-section, and profile are complete, stability may 

become less of a problem.  Non point source pollution is the next major concern, since the 

urbanized stream typically loses riparian vegetation that would otherwise improve the water 

quality and ecological viability of the stream.  Applying principals of fluvial geomorphology to a 

stream channel modification design is intended to stabilize the stream while bringing it closer to 

a pre-degradation condition. 



Amy Dietz 
Special Project 
Fall 2009 
 

 5

 Recently, local communities have taken steps to prevent degradation of urban streams.  

Stream setback ordinances are intended to eliminate floodplain development and prevent 

replacement of natural waterways with concrete.  If the stream is to be left unpaved and the 

watershed urbanizes, even a channel restored to a stable but dynamic equilibrium may still pose a 

threat to infrastructure (Shields, Copeland, Klingeman, Doyle, and Simon, 2003).     

 This paper will provide a comparison of the literature of the science of stream 

geomorphology, a discussion of local attempts to apply this science, a discussion on the 

introduction of bias in geomorphic stream data collection, and conclusions.   

2.  The Science of Fluvial Geomorphology: An Overview 

 Intermittent headwater streams exhibit different geomorphologic characteristics than 

permanent flow riverine systems.  Streams with limestone bedrock for a streambed and banks of 

silty clay exhibit different characteristics than streams with cobbled beds and sandy banks.  This 

is why every study of a stream’s geomorphology begins with a trip to the field.  The most 

common method of documenting the stream geology is by conducting a Wolman Pebble Count 

(Wolman, 1954).  Approximately one-hundred stream particles are measured in a random cross-

section of the stream.  Conducting pebble counts through both a pool and a riffle gives a more 

complete analysis of the stream geology.   

 The next step is to determine the bankfull elevation.  The bankfull elevation is used to 

determine a number of stream characteristics, including bankfull depth, bankfull velocity, 

entrenchment ratio and bankfull discharge.  The definition of bankfull discharge is the maximum 

discharge the channel can convey without overflowing into the floodplain (Copeland, McComas, 

Thorne, Soar, Jonas, and Fripp, 2001).  In stable streams, bankfull is the discharge at which 

channel maintenance is the most effective at "moving sediment, forming or removing bars, 

forming or changing bends and meanders, and generally doing work that results in the average 
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morphologic characteristics of channels" (Dunne and Leopold 1978).  Unless the stream is 

adjusting its morphology due to an urbanizing watershed, and then bankfull discharge and the 

effective discharge can be quite different (Shields, et al, 2003).  The determination of bankfull 

elevation can be somewhat subjective, especially if field indicators are the sole basis of the 

determination (Williams, 1978).  Regional curves developed to correlate drainage area to 

bankfull discharge can assist in bankfull determination in rapidly changing streams where field 

indicators are hard to find (Rosgen, 1998).  Very few regional curves have been developed, and 

none have been published for local streams.  The APWA standard suggests using the 50% storm 

as a rough upper estimate of bankfull.  Although using a recurrence interval is useful as a 

preliminary estimate of bankfull, some studies have shown that this approach produces poor 

estimates of bankfull (Williams, 1978, and Kondolf, 2001) and of the effective discharge 

(Pickup, 1978, and Doyle, Miller, Harbor, 1999).  One study found large discrepancies between 

the assumed relationship of bankfull discharge and effective discharge (Doyle, et. al, 1999).  The 

sensitivity of bankfull elevation choice in determining bankfull flow is addressed in later 

chapters. 

 Further data typically gathered during an assessment of a stream’s morphology include 

surveying the longitudinal profile, measuring the wavelength, sinuosity, and identification of 

features such as nickpoints, riffles, and pools. 

3.  Applying Principles of Geomorphology to Local Streams 

 The American Public Works Association, or APWA, has developed local standards for 

construction within natural streams.  Section 5600 of the standard establishes buffer zones along 

natural streams with greater than 40 acres of contributing drainage area.  If construction within 

the buffer zone can’t be avoided, Section 5605.4 requires that a stream assessment be conducted.  

The stream assessment requires a plot of the bankfull flow profile, with one cross-section taken 
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through each pool and riffle.  The depth and width of bankfull flow is also required for each 

section.  The bankfull flow and particle size is used to perform a critical shear stress analysis on 

the bed and bank materials.  Unfortunately, the standard allows an average particle size to be 

used rather than requiring that the particle sizes in the bed and the banks be analyzed separately.  

The bed material was deposited under different conditions than the bank material, and mixing the 

two does not lend itself toward an accurate geomorphic analysis (Kondolf, Lisle, Wolman, 

2003).   

The intent of the standard is to apply the science of geomorphology to inform a design 

engineer on how best to maintain stream stability in areas where impacts to a natural stream can’t 

be avoided.  It is also intended to document pre-development conditions by noting features like 

active scour or depositional areas, point bars, islands, and areas of bed elevation change (or 

headcutting) that appear to be actively migrating upstream.  The plan reviewer compares the 

proposed improvements with the natural or existing condition, and typically requires that 

changes to bankfull parameters be minimized to the greatest extent possible.  Although the intent 

of the standard is good, it oversimplifies the science of geomorphology by relying on an 

observer’s determination of bankfull elevations at just a few locations.  This introduces the 

potential for bias, as discussed in later sections.   

The standard suggests first field indicators and then return interval for determination of 

bankfull discharge.  There is some consensus that using field indicators can introduce bias or 

uncertainty in bankfull determination (Williams, 1978, Johnson and Heil, 1996).  Using a return 

interval to determine bankfull discharge is not recommended for channel restoration design, nor 

is the assumption that bankfull discharge and the channel forming (or effective) discharge are the 

same (Doyle, Shields, Boyd, Skidmore, Dominick, 2007).   Difficulty in obtaining regional 
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sediment discharge curves and calculating sediment discharge is one reason that the bankfull 

discharge is so often assumed to be equivalent to the effective discharge. 

Design of stream restoration projects is beyond the scope of the standard; and yet stream 

restoration is precisely the goal following an impact that would require a stream assessment.  

What is the purpose of a stream assessment at one particular site, if it is not compared to a stream 

restoration design?  If the purpose of a stream assessment is to establish the condition of the 

stream before construction, a few photographs and a topographical map would suffice.   

 Conducting a stream assessment on the headwaters of a stream (a little greater than 40 

acres of drainage area) poses a challenge to designers trying to comply with the standard.  Field 

indicators, already subject to observer bias, are even more difficult to find.  Regulatory agencies 

like the Federal Emergency Management Agency or the Army Corps of Engineers seldom 

extend jurisdiction so far upstream.  Headwaters are more likely to be impacted before 

construction begins, even in rural areas.  For example, livestock can damage the banks and 

vegetation beyond all recognition.  This is one reason why the APWA standard compares the 

bankfull determination to the 2 year return interval.  Very large rivers are also difficult to find 

reference sites for (Palmer, et. al., 2005).  Larger rivers, like the Missouri, are often channelized 

and/or dredged and ‘maintained’ for barge traffic. 

4.  Sensitivity or Bias in Bankfull Determination 
 

Section 5605.4 of the APWA standard requires that the geomorphic bank-full width, 

depth, and discharge be estimated using field indicators as detailed in Chapter 7 of the USDA’S 

Stream Channel Reference Sites: An Illustrated Guide to Field Technique (Harrelson, Rawlins, 

Potyondy, 1994).  Although the standard references Harrison, et al., as a guide to field 

techniques, the USDA’s document is largely based on Rosgen’s methods (Rosgen, 1994).  

Rosgen’s name is omitted from the APWA standard because numerous recent critics have noted 
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problems with using his methodology (Johnson, et al., 1996, Harmel, et al, 1999, Holt, et al., 

2004, Ball, et al., 2007, Simon, et al., 2007, and Roper, et al., 2008, and others).  Rogen’s 

methods imply that once a stable stream is correctly classified, it remains within that 

classification.  But stable streams can undergo cyclical changes in classification.  For example, 

several years without a major flood can allow riparian vegetation to stabilize gravel banks and 

promote a single-thread meandering channel.  A large flood can re-work that channel, stripping 

away vegetation and leaving a wide, braided gravel bed (Kondolf, 1998). 

The failure of the Uvas Creek restoration project is thought to be due to a misapplication 

or oversimplification of Rosgen’s methods.  All of the rock weirs placed in Uvas Creek were 

washed out after about three months (Kondolf, Smeltzer, Railsback, 2001).   

 

Figure 1:  Rock Weirs Placed during the Restoration of Uvas Creek  
(Photo credit, Kondolf, et. al, 2001) 
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Figure 2:  Restoration Efforts Washed Out of Uvas Creek   
(Photo credit, Kondolf, et. al, 2001).  
 

Problems with in-stream structures, such as rock weirs, cross-vanes, and J-hooks have 

been noted in other studies.  One study conducted in North Carolina found that 70% of the in-

stream structures were significantly damaged or destroyed by the first significant flood event 

(Kochel, 2005).  Kochel’s study also noted accelerated bank erosion near the in-stream controls.  

Another study found that 60% of instream habitat structures surveyed in southwest Oregon and 

southwest Washington were either damaged or destroyed by 2-10 year storm events (Nawa, 

Frissell, 1992). 

Like hydrology, geomorphology is not an exact science.  However, hydrology results are 

comparable to years of hydrologic data recorded by weather stations and stream gauge sites 

nationwide.  Regional curves and reference reach data for geomorphologic parameters are harder 

to find, the closest published results I could find were conducted by the USGS for Sugar Creek 

and its tributaries in Oklahoma.  Regional curves for predicting sediment transport are even rarer.  
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The choice of bankfull elevation is a particularly sensitive parameter because it affects the results 

obtained for the entrenchment ratio, width-to-depth ratio, and sinuosity.   

The Rosgen classification system is often used locally by designers to determine 

applicable reference reach data.  The entrenchment ratio, bankfull width-to-depth ratio, and 

sinuosity are used to determine the primary stream type (Rosgen, 1994, 1996).   The choice of 

bankfull elevation affects two of the three parameters, and was the principal discrepancy in 

determining stream classification amongst a study of several independent stream monitoring 

groups (Roper, Buffington, Archer, Moyer, Ward, 2008).  The classifications were not 

determined by the teams themselves, but from the measurements they provided.  It is possible 

that some of the individuals involved lacked training; but their data for other stream parameters 

was comparable.  Another issue could have been the number of measurements taken, from four 

to eleven.  Perhaps if more measurements were taken, it would be more clear when a mistake 

was made or a non-typical location chosen.  A separate study conducted by the USGS for the 

state of New York did just that, plotting a profile of the bankfull elevations and then plotting a 

best fit line through multiple surveyed bankfull stage field indicators (Mulvihill, Ernst, and 

Baldigo, 2005).  The study used HEC-RAS to determine bank-full discharge.  Multiple estimated 

discharges were put in the model for each cross-section, and the discharge at the water surface 

elevation that most closely matched the surveyed bankfull indicators was chosen.   Finally, the 

average discharge from all the cross-sections in the reach was calculated.  When choosing 

between bankfull indicators, the study used the indicator closest to the expected result of a 1.5 

year return interval. 

The all of the studies discussed above either presume or create a single-thread 

meandering channel.  Braided stream restoration is almost never discussed; multiple channels 

would almost certainly complicate bank-full elevation determination in the field.  Since braided 
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streams typically carry high sediment loads, bankfull elevation might change by a foot or more at 

the studied cross-section during evaluation.  The failure of restoration efforts at Cuneo Creek, a 

braided stream is one example.  It was ‘restored’ to a single-thread channel with symmetrical 

meanders, the amplitude and wavelength based on the consultants’ determination of bank-full 

elevation.  Six years later, a flood event approximately equivalent to a 30-year return interval, 

washed the project out, leaving almost no evidence of restoration (Kondolf, 2006).  Kondolf’s 

study points out that channels are almost always ‘restored’ to a single-thread meandering 

channel, even if there is no historical evidence to suggest that they ever had this configuration.   

He suggests that an unacknowledged cultural bias, and not science, may be the true driver for the 

choice of a stable single-thread, symmetrically meandering stream morphology.  Culturally, we 

may simply find it more aesthetically pleasing (Kondolf, 2006). 

5.  Reducing Bias in Bankfull Determination 

The following analysis was done to test an approximate method for determining regional 

curves for this watershed in regions that are close to natural.  To reduce bias or sensitivity to 

choice of bank-full elevation, several cross-sections were cut at each location and an average 

bankfull height was used to determine the bankfull flow, bankfull width, bankfull width-to-depth 

ratio, bankfull depth, and average bankfull velocity.  The following figure shows an aerial view 

of the watershed and the cross section locations.   
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Figure 3:  Cross Section Locations on the Tributary to the Marais Des Cygne River, 
Johnson County, Kansas (Not To Scale) 
 

 Tributaries of the Marais Des Cygne River within Johnson County, Kansas were chosen 

for analysis.  The selected reaches were in rural watersheds, with very few road crossings.  The 

drainage areas for each reach were based on sub-basin delineations created for a recent flood 

study conducted by Johnson County.  Using HEC-GeoRAS 3.1, several cross-sections were cut 

for each reach from a TIN (triangular irregular network) generated from 1-foot contour 

information.  These cross-sections were then imported into HEC-RAS 3.1.1 and a model was 

created.  The cross-sections were chosen away from meanders, across riffles, and along 
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representative stretches of each reach.  Guidance on selecting cross-sections was taken from the 

USDA’s Stream Channel Reference Sites: an Illustrated Guide to Field Technique, 1994.  An 

aerial view of cross-sections taken for Lower Bain Creek appears in the figure below.  

 

Figure 4:  Cross Section Locations for Bankfull Discharge on Lower Bain Creek 

Bank stations were placed at the bankfull location for each cross-section.  The bank 

station should be placed at the highest elevation the water surface can reach before spilling out in 

to the floodplain (Copeland, et al, 2001).  For the purpose of this exercise, it was necessary that 

the bankfull locations be at the same elevation on both stream banks.  This is another potential 

source of bias, if one bank is appreciably higher than the other (Gordon, McMahon, and 

Finlayson, 2002).  To answer this question, we have to refer back to the definition of bankfull 

flow and ask which bank is closest to the point of releasing water into the entire floodplain.   In 

the figure below, the right bank was chosen as the location of the bankfull elevation.   
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Figure 5:  Determination of Bankfull Elevation at River Station 7620.978 on Lower Bain 
Creek. 

The Manning’s ‘n’ values that appear in Figures 6-10 were based on values used in a 

recent flood study conducted by Johnson County and verified using aerial photography.   
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Figure 6:  Determination of Bankfull Elevation at River Station 7252.167 on Lower Bain 
Creek. 
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Figure 7:  Determination of Bankfull Elevation at River Station 6768.991 on Lower Bain 
Creek. 
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Figure 8:  Determination of Bankfull Elevation at River Station 6529.309 on Lower Bain 
Creek. 

0 50 100 150 200 250
954

956

958

960

962

964

River = Little Bull   Reach = Lower Bain Creek      RS = 6257.688

Station (ft)

E
le

va
tio

n 
(ft

)

Legend

WS PF 1

Ground

Bank Sta

.06 .035 .06

 
 

Figure 9:  Determination of Bankfull Elevation at River Station 6257.688 on Lower Bain 
Creek. 
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Figure 10:  Determination of Bankfull Elevation at River Station 5909.153 on Lower Bain 
Creek. 
 

The downstream reach boundary conditions were assumed to be normal depth using the 

channel slope as the slope input.  The analysis was conducted assuming a constant discharge for 

five to eight cross-sections at each location.     

In this analysis, several bankfull discharges were calculated simultaneously using a trial 

and error procedure that minimized the sum of the squares of the differences between the water 

surface elevation, shown in Column 3, and the bankfull elevations, shown in Column 2, for 

Lower Bain Creek.  See Table 1, on the following page. 
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Table 1: Bankfull Discharge Determination for Lower Bain Creek 

Column 1 Column 2 Column 3 Column 4 Column 5
Reach Station Bankfull Discharge Bankfull El. W.S. Delta Delta SQ

(ft) (cfs) (ft) (ft)
Lower Bain Cr 7620.978 1030 966.08 966.18 0.10 0.01
Lower Bain Cr 7252.167 1030 964.38 964.98 0.60 0.36
Lower Bain Cr 6768.991 1030 962.80 963.45 0.65 0.42
Lower Bain Cr 6529.309 1030 961.72 962.44 0.72 0.52
Lower Bain Cr 6257.688 1030 962.30 961.73 -0.57 0.32
Lower Bain Cr 5909.153 1030 961.36 960.45 -0.91 0.83  

The bankfull discharge shown in Column 1 in the table above minimizes the difference 

between the elevations shown in Column 2 and Column 3, and the difference is shown in 

Column 4.  In Column 5, the values from Column 4 are squared.  The sum of Column 5 was then 

compared to the sum of Column 5 for other bankfull discharges to determine which bankfull 

discharge most nearly matched the physical bankfull elevations shown on the cross-sections.  

The resulting bankfull discharge for each reach is the discharge that produced the best fit of the 

computed water surface elevations and the bankfull elevations.  The water surface elevations 

shown in Column 3 were computed with HEC-RAS.  The Manning’s ‘n’ values used were 

consistent with the channel and bank values determined during Johnson County’s floodplain 

modeling of each reach, and verified using aerial photographs.   

It’s clear that choosing just one of these cross-sections over another can change the 

resulting bankfull depth by as much as a foot.  If the cross-section chosen was taken through a 

particularly wide pool, then the resulting bankfull discharge will be significantly affected.  A 

return interval was calculated for the discharges at each location, varying from 1 to 2 years.  A 

recent flood study by Johnson County supplied 500, 100, 50, 25, 10, 5, and 2 year discharges for 

each reach.  These discharges were plotted versus return interval on a semi-log chart and an 

exponential equation was fit to the data.  The equation was then used to estimate the return 
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interval given the bankfull discharge.  Figure 11 shows such a plot for Little Bull Creek.  The 

bankfull discharge for Little Bull Creek was 890 cfs thus Tr = 0.982e0.000668(890) = 1.78 years. 

Tr = 0.982e0.000668 Q

R2 = 0.9996
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Figure 11: Discharge versus Return Interval from Johnson County Study for Little Bull 
Creek. 
 

In general, for smaller streams the return interval was closer to the 1 year event and for 

larger streams; the return interval was closer to the 2 year event.  A stream assessment per the 

APWA standard requires just one cross-section through each pool and riffle, and without 

reference reach information it’s difficult to know how representative these sections are.  Table 2 

summarizes the estimated bankfull discharge data for all the project locations. 

Table 2:  Bankfull Discharge and Return Interval for all Project Locations. 

Bankfull Drainage Return 
Approx. Discharge Area Interval

Reach Station (cfs) (ac) (yrs)

Upper Bain Cr 30657.9 45 218 1.01
LBb 854.776 570 550 1.44

LBNC3 4820.411 310 703 1.21
LBNC1 1849.463 310 1101 1.21

LBa 2536.393 360 1307 1.25
Spring Creek 4879.852 575 2957 1.44

Little Bull 5262.479 890 3379 1.78
Lower Bain Cr 7620.978 1030 4096 1.95  
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The resulting discharge, width, depth, velocity, and flow area were plotted verses 

contributing drainage area for each location, below.  The width, depth, velocity, and flow area, 

were obtained from the HEC-RAS output tables; and an average was calculated from all the 

cross-sections in each reach.   
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Figure 12:  Drainage Area vs. Bankfull Discharge 

 Figure 12 is sometimes referred to as a ‘regional curve,’ or ‘reference reach data.’  The 

idea is that the drainage area vs. bankfull discharge is comparable to other stable rural streams in 

the region with similar bed and bank geology.  If provided with detailed regional curves for a 

particular watershed, a plan reviewer could determine whether a stream assessment per APWA 

Section 5605.4 provided to him by an applicant was comparable to a larger data set.  It would be 

an oversimplification to assume that a stream in an urbanizing watershed would fit this data.  For 

example, in an incised channel, the bankfull discharge is far greater than the effective discharge 

(Doyle, et al, 2007).   
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Similarly, we cannot assume that if the post-project and pre-project bankfull parameters 

remain unchanged, the stream itself will not change post-construction or post-watershed 

development.  Wildcat Creek in Richmond, California is one example of a failed restoration 

project based on applied fluvial geomorphology.  The project fell victim to the watershed-wide 

effects of urbanization, sedimentation, and changes in hydrology (Holt, Battaglia, 2004).  Likely, 

these variables would have undermined a more traditional stabilization design as well.   It’s an 

oversimplification to assume that a river can be restored or stabilized by creating a desired 

physical form (Kondolf, 2006).  In contrast, the Carmel River at Schulte Road had suffered the 

loss of riparian vegetation due to the pumping of groundwater and subsequent drawdown of the 

water table.  The riparian vegetation was restored, and the channel was allowed to migrate across 

a narrowly defined historic floodplain (Kondolf, et al, 2007).  Once the processes of water and 

sediment supply were restored to the Carmel River, those processes created the stable fluvial 

forms (Kondolf 2000, Wohl et al. 2005, Kondolf et al. 2006). 

A detention basin can be used to reduce post-construction bankfull discharge to pre-

construction peak levels.  However, if a stream flows at bankfull discharge for a longer period of 

time due to a greater runoff volume, then more sediment may be eroded from the stream banks 

during a channel forming event (MacRae, 1997).  Furthermore, streams with sandy beds and 

banks are likely to become less stable if there is a significant long-term reduction in bed load due 

to the presence of a detention basin (Bledsoe, 2002). 
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Drainage Area vs Bankfull Width
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Figure 13:  Drainage Area vs. Bankfull Width 

As indicated in Figure 13, the bankfull width varies considerably as the stream gets 

larger.  This brings into question the utility of plan form ratios as required for stream analysis in 

APWA 5600.  The standard acknowledges that streams are variable, and ratios outside of the 

typical range do not necessarily indicate problems.  The ratios are intended to qualitatively 

evaluate bank stability, and not for use as a target for stream ‘rehabilitation.’ 
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Drainage Area vs Bankfull Width to Depth Ratio
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Figure 14:  Drainage Area vs. Bankfull Width to Depth Ratio 

The width-to-depth ratios shown above vary widely, considering that only one person 

was involved in determining bankfull elevation.  Using a numerical model, Simon et al. found 

equilibrium width-to-depth ratios varying by as much as 200% (Simon, Doyle, Kondolf, Shields, 

Rhoads, McPhillips, 2007.  Although changes in width are often treated as an indicator of bank 

and/or channel instability, if the width is considered continuously and compared to stream 

power, it can be correlated to the combination of slope and discharge (Doyle, et. al., 1999). 
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Drainage Area vs Bankfull Depth
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Figure 15:  Drainage Area vs. Bankfull Depth 

Drainage Area vs Flow Area
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Figure 16:  Drainage Area vs. Flow Area 
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Drainage Area vs Bankfull Velocity
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Figure 17:  Drainage Area vs. Bankfull Velocity 

6.  Conclusions 

Attempts at stream stabilization, either using ‘hard’ structural methods or ‘green’ 

geomophologically-based methods can be successful if a careful approach is chosen.  Failures 

are usually due to an expectation of the ‘tail to wag the dog,” or for the desired and constructed 

physical stream form to achieve stream stability, rather than allowing the discharge and sediment 

of the stream to create a stable physical form.  In an urban environment, there is often too little 

space to allow the stream to create a new natural and stable physical form.  Additionally, 

stakeholders may want to construct lakes and ponds or turn the stream into more of a water 

feature for aesthetic reasons.  In that case, there are few alternatives to simply creating a canal to 

address both stability and flooding concerns.   
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This study proposed an approximate method for developing regional curves for a 

watershed that has detailed terrain data.  In this case, 1-ft contour interval data was available for 

all the streams in the watershed.  Several undeveloped (natural) reaches were selected in the 

watershed.  Not only were these reaches undeveloped, but their contributing watersheds were 

also undeveloped.  Additionally, there were no upstream detention basins or other flood controls 

that would affect the hydrology of the streams.   A HEC-RAS model with several cross sections 

was developed for each reach.  The bankfull elevation was estimated at each cross section from 

the cross-section plots.  The bankfull discharge was then computed for each reach using a trial 

and error procedure that minimized the sum of the differences squared between the bankfull 

elevation and the computed water surface elevation for all of the cross sections in the reach.  In 

other words, the bankfull discharge for a reach is the discharge that produced the best fit of the 

computed water surface elevation and the bankfull elevation.  The regional curves were then 

developed by plotting the bankfull discharges verses the drainage areas and fitting a trend line to 

the data.  Curves were also developed for the width, with-to-depth ratio, depth, velocity, and 

flow area in the same manner.  Hopefully, the rise of available regional data can inform 

designers and managers for more effective natural stream restoration practices. 
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Upper Bain Creek 

 
 

Exhibit 1:  Aerial Photograph, Contours and Cross-section Locations for  
                             Upper Bain Creek. 
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LBb 
 

 
 

Exhibit 2:  Aerial Photograph, Contours and Cross-section Locations for  
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LBNC3 
 

 
 

 
Exhibit 3:  Aerial Photograph, Contours and Cross-section Locations for LBNC3. 
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LBNC1 
 

 
 

Exhibit 4:  Aerial Photograph, Contours and Cross-section Locations for LBNC1. 
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LBa 
 

 
 

 
Exhibit 5:  Aerial Photograph, Contours and Cross-section Locations for LBa. 
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Spring Creek 
 

 
 

Exhibit 6:  Aerial Photograph, Contours and Cross-section Locations for Spring Creek 
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Little Bull Creek 

 

 
 

Exhibit 7:  Aerial Photograph, Contours, and Cross-section Locations for Little Bull Creek. 
 
 



Amy Dietz 
Special Project 
Fall 2009 

 60

 

0 50 100 150 200 250
932

934

936

938

940

942

944

946

948

River = Little Bull   Reach = Little Bull      RS = 5262.479

Station (ft)

E
le

va
tio

n 
(ft

)

Legend

WS PF 1

Ground

Bank Sta

.06 .035 .06

 
 
 

0 50 100 150 200 250 300
932

934

936

938

940

942

944

946

948

950

River = Little Bull   Reach = Little Bull      RS = 4944.967

Station (ft)

E
le

va
tio

n 
(ft

)

Legend

WS PF 1

Ground

Bank Sta

.06 .035 .06

 
 



Amy Dietz 
Special Project 
Fall 2009 

 61

 
 

0 50 100 150 200 250 300 350
932

934

936

938

940

942

944

946

948

950

River = Little Bull   Reach = Little Bull      RS = 4731.325

Station (ft)

E
le

va
tio

n 
(ft

)

Legend

WS PF 1

Ground

Bank Sta

.06 .035 .06

 
 
 

0 100 200 300 400 500
932

934

936

938

940

942

944

946

948

River = Little Bull   Reach = Little Bull      RS = 4402.483

Station (ft)

E
le

va
tio

n 
(ft

)

Legend

WS PF 1

Ground

Bank Sta

.06 .035 .06

 



Amy Dietz 
Special Project 
Fall 2009 

 62

 

0 100 200 300 400 500
930

935

940

945

950

955

River = Little Bull   Reach = Little Bull      RS = 3907.464

Station (ft)

E
le

va
tio

n 
(ft

)

Legend

WS PF 1

Ground

Bank Sta

.06 .035 .06

 
 

0 100 200 300 400 500
932

934

936

938

940

942

944

946

948

950

River = Little Bull   Reach = Little Bull      RS = 3713.415

Station (ft)

E
le

va
tio

n 
(ft

)

Legend

WS PF 1

Ground

Bank Sta

.06 .035 .06

 
 
 



Amy Dietz 
Special Project 
Fall 2009 

 63

 

0 100 200 300 400 500 600
932

934

936

938

940

942

944

946

River = Little Bull   Reach = Little Bull      RS = 3462.681

Station (ft)

E
le

va
tio

n 
(ft

)

Legend

WS PF 1

Ground

Bank Sta

.06 .035 .06

 
 
 

0 100 200 300 400 500
932

934

936

938

940

942

944

River = Little Bull   Reach = Little Bull      RS = 3073.062

Station (ft)

E
le

va
tio

n 
(ft

)

Legend

WS PF 1

Ground

Bank Sta

.06 .035 .06

 
 



Amy Dietz 
Special Project 
Fall 2009 

 64

 

0 100 200 300 400 500
932

934

936

938

940

River = Little Bull   Reach = Little Bull      RS = 2932.920

Station (ft)

E
le

va
tio

n 
(ft

)

Legend

WS PF 1

Ground

Bank Sta

.06 .035 .06

 
 
 

 
 
 
 
 
 
 
 

 
 

 
 



Amy Dietz 
Special Project 
Fall 2009 

 65

 

Lower Bain Creek 
 

 
 

 
Exhibit 8: Aerial Photograph, Contours, and Cross-section Locations for Lower Bain Creek. 
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Appendix II – HEC-RAS Output Tables 
HEC-RAS  V.3.1.1   Output Table

Minimum Water Maximum
Bankfull Channel Surface Velocity Channel 

Reach River Sta Discharge Elevation Elevation Channel Flow Area Top Width Depth
(cfs) (ft) (ft) (ft/s) (sq ft) (ft) (ft)

Spring Creek 4879.852 575 930.33 935.81 4.24 135.54 29.49 5.48
Spring Creek 4304.129 575 928.56 934.45 3.5 164.42 37.63 5.89
Spring Creek 4158.111 575 928.56 934.3 3.43 167.96 34.77 5.74
Spring Creek 3966.921 575 928.62 934.11 3.47 166.95 44.63 5.49
Spring Creek 3643.555 575 927.61 933.73 3.64 157.89 36.34 6.12
Spring Creek 3441.749 575 927.61 933.26 4.85 128.04 38 5.65

Upper Bain Creek 30657.9 45 1047.38 1049.34 2.95 15.24 15.53 1.96
Upper Bain Creek 30383.77 45 1045.96 1048.3 2.65 19.37 32.7 2.34
Upper Bain Creek 30031.25 45 1044.15 1046.13 4.6 9.77 9.69 1.98
Upper Bain Creek 29763.98 45 1042.24 1044.7 2.63 17.1 15.23 2.46
Upper Bain Creek 29388.64 45 1041.11 1043.38 3.18 19.15 26.47 2.27

LBNC1 1849.463 310 964.26 968.16 3.2 96.96 34.47 3.9
LBNC1 1721.262 310 964.26 967.6 5.06 61.49 25.19 3.34
LBNC1 1191.644 310 962.4 965.97 5.51 56.3 20.66 3.57
LBNC1 1057.883 310 962.16 964.68 6.87 45.15 22.37 2.52
LBNC1 701.327 310 959.75 962.68 5.91 55.06 27.26 2.93
LBNC3 4820.411 310 1009.84 1014.37 2.78 111.52 50.29 4.53
LBNC3 4253.72 310 1008.04 1013.14 5.14 60.41 31.79 5.1
LBNC3 4152.549 310 1007.55 1012.29 6.4 50.37 35.49 4.73
LBNC3 4007.02 310 1007.09 1011.81 4.24 73.62 60.81 4.72
LBNC3 3687.201 310 1005.52 1010.47 5.47 79.66 49.52 4.95

LBb 854.776 570 1000.84 1008.68 8.01 72.36 32.47 7.84
LBb 498.883 570 1000.25 1006.49 7.86 72.49 23.49 6.24
LBb 330.268 570 1000.28 1006.13 4.7 123.75 57.82 5.85
LBb 204.42 570 1000.29 1005.69 4.91 116.79 56.88 5.4
LBa 2536.393 360 951.91 955.38 5.15 72.6 33.72 3.47
LBa 2168.776 360 951.14 954.44 3.57 100.9 40.92 3.3
LBa 1798.429 360 950.33 953.77 3.37 108.64 41.77 3.44
LBa 1478.166 360 949.77 953.33 3.11 115.93 37.07 3.56
LBa 1292.982 360 949.68 952.93 3.89 96.3 52.47 3.25
LBa 1123.037 360 949.68 951.43 7.4 48.67 28.98 1.75

Little Bull 5262.479 890 933.93 940.88 4.86 187.13 47.52 6.95
Little Bull 4944.967 890 933.41 940.9 2.16 412.88 70.22 7.49
Little Bull 4731.325 890 933.41 940.56 4.25 209.59 42.91 7.15
Little Bull 4402.483 890 933.41 939.88 5.03 176.8 36.83 6.47
Little Bull 3907.464 890 932.62 939.39 3.43 259.16 55.91 6.77
Little Bull 3713.415 890 932.62 939.17 3.54 256.15 78.79 6.55
Little Bull 3462.681 890 932.01 938.94 3.52 333.59 167.59 6.93
Little Bull 3073.062 890 932.01 938.59 3.71 292.19 193.18 6.58
Little Bull 2932.92 890 932.01 938.52 3.33 418.06 282.82 6.51

Lower Bain Creek 7620.978 1030 960.76 966.18 3.09 336.03 117.75 5.42
Lower Bain Creek 7252.167 1030 960.49 964.98 6.68 217.5 175.29 4.49
Lower Bain Creek 6768.991 1030 957.53 963.45 5.52 241.75 208.4 5.92
Lower Bain Creek 6529.309 1030 956.9 962.44 6.61 173.63 79.54 5.54
Lower Bain Creek 6257.688 1030 954.91 961.73 5.46 209.91 109.38 6.82
Lower Bain Creek 5909.153 1030 954.51 960.45 6.54 157.46 32.96 5.94  


