EFFECT OF SIMULATED CRACKS ON LAP SPLICE STRENGTH OF REINFORCING BARS

By

Jiqiu Yuan Matthew O'Reilly Adolfo Matamoros David Darwin

Research supported by

FIRSTENERGY NUCLEAR OPERATING COMPANY (FENOC)

Structural Engineering and Engineering Materials SL Report 12-2

THE UNIVERSITY OF KANSAS CENTER FOR RESEARCH, INC. LAWRENCE, KANSAS June 2012

<u>Abstract</u>

The effect of preexisting cracks, oriented in the plane of and parallel to the reinforcing steel, on the strength of No. 11-bar lap splices was investigated by testing six beams – three with a splice length of 79 in. and three with a splice length of 120 in. One of the beams with a 79-in. splice was cast monolithically and loaded monotonically to failure. To simulate the cracks, the other five beams were cast with a cold joint at the mid-height of the reinforcing steel. Two beams (one with a 79-in. splice and one with a 120-in. splice) with a cold joint were loaded monotonically to failure. The other three beams were preloaded to develop horizontal cracks in the face of the cold joint, unloaded and then loaded to failure; those beams developed horizontal cracks with widths of 20, 30 and 35 mils (0.02, 0.03, 0.035 in.) during the first cycle of loading and just prior to unloading. The nominal concrete compressive strength was 5000 psi.

The methods described in this report provide a viable means of simulating a crack in the plane of flexural reinforcement. In the presence of a simulated crack in the plane of the reinforcing bars, the two specimens with lap-spliced No. 11 bars with a 79-in. splice length achieved bar stresses of 62 and 57 ksi. In the presence of a simulated crack in the plane of the reinforcing bars, the three specimens with lap-spliced No. 11 bars with a 120-in. splice length achieved bar stresses of 72, 67, and 69 ksi.

Personnel

The research described in this report was performed under the direction of David Darwin, Ph.D., P.E., Deane E. Ackers Distinguished Professor of Civil, Environmental, and Architectural Engineering and Director of the Structural Engineering Materials Laboratory and Adolfo Matamoros, Ph.D., Associate Professor of Civil, Environmental, and Architectural Engineering at the University of Kansas. Darwin and Matamoros are joined by post-doctoral researchers, Matthew O'Reilly and Jiqiu Yuan.

David Darwin has extensive experimental and analytical experience in the field of bond and development of reinforcement and has been involved in bond research for over 30 years. He is a member and past chair ACI Committee 408 on Bond and Development of Reinforcement and a member of ACI Subcommittee 318-B Reinforcement and Development (Structural Concrete Building Code). Darwin developed the ACI Committee 408 expression for development and splice lengths, which accurately covers straight reinforcing bars with yield strengths between 40 and 120 ksi and for concrete with compressive strengths ranging from 2,000 to 16,000 psi. Darwin also developed the ASTM A944 Beam-End Test, which is used to evaluate relative bond strength. In addition to Committee 408, Darwin is a member and past chair of ACI on Committee 224 on Cracking, as well as four other ACI technical committees.

Adolfo Matamoros has many years of experience in testing and analysis of reinforced concrete with special expertise in test instrumentation. He is the immediate past chair of ACI Committee 408 and a member of four other ACI technical committees.

Matthew O'Reilly and **Jiqiu Yuan** completed their Ph.D. degrees at the University of Kansas in 2011 and have been serving as senior researchers on a number of experimental projects since receiving their degrees.

Contents

Ał	ostract	t	iii
Pe	rsonn	el	iv
1	Ov	ervie	ew / Background 1
2	Re	searc	ch Program and Test Specimens 1
	2.1	Des	sign of test specimens
	2.2	Cor	ncrete
	2.3	Col	d joint construction and crack simulation4
	2.4	Tes	st methodology
	2.4	.1	Fabrication9
	2.4	.2	Casting 10
	2.4	.3	Curing 11
	2.4	.4	Test apparatus 11
	2.4	.5	Loading protocol
	2.4	.6	Calibration
	2.5	Tes	t Facilities 18
	2.6	Sec	tion Analysis
3	Tes	st Re	esults
	3.1	Ger	neral

3.2	Bea	ms 1, 2, and 3 with 79-in. splice length	4		
3.	.2.1	Concrete strength	4		
3.	.2.2	Beam 1 (monolithic concrete)	б		
3.	.2.3	Beam 2 (cold joint, monotonically-loaded)	2		
3.	.2.4	Beam 3 (cold joint, cycled)	7		
3.3	Bea	ms 4, 5, and 6 with 120-in. splice length	1		
3.	.3.1	Concrete strength	1		
3.	.3.2	Beam 4 (cold joint, monotonically-loaded)	2		
3.	.3.3	Beam 5 (cold joint, cycled)	7		
3.	.3.4	Beam 6 (cold joint, cycled)	3		
4 Sı	umma	ry and Conclusions	9		
Referen	nces:		1		
Appen	dix A:	Pilot Tests – Preliminary Study of the Effect of Simulated Cracks on Lap Splice	e		
Strengt	th of R	Reinforcing Bars using Beams with Single Splices	2		
Appen	dix B:	Reinforcing Steel Drawings	3		
Appen	dix C:	Detailed crack maps of Beams 1 – 6	7		
Appendix D: Reinforcing steel mill certification and deformation measurements 106					
Appendix E: Concrete Mixture Proportions					
Appen	Appendix F: Data recording forms 113				

Appendix G: Load cell and displacement transducer calibration	119
Appendix H: Training forms, Trip tickets, concrete properties, specimen dimensions, a	nd crack
recording during beam tests	131
Appendix I: Certificates of calibration for laboratory apparatus	198

1 Overview / Background

Past research on the strength of lapped bar splices in reinforced concrete has focused on investigating the performance of various lap splice configurations in monolithic members. The research program described in this report investigates the effect of preexisting cracks, oriented in the plane of and parallel to the reinforcing steel, on the strength of lapped bar splices. The research program was conducted in two phases, a pilot study investigating various methods to simulate the preexisting cracks that is described in Appendix A of this report, and a series of beam tests described in the main body of the report.

Beams in the main study had cold joints in the splice region, along the plane of the reinforcement, to facilitate the initiation of a crack prior to failure. Two No. 3-bar hoops (one on each side) crossing the plane of the cold joint, in the center of the specimen and on the exterior of the lap splices, were used to simulate the effects of the continuity of concrete in an actual structure.

The beams contained two spliced No. 11 bars with 79 or 120-in. long lap splices. Some of the beams were loaded until horizontal cracks had developed along the plane of the cold joint with a minimum width of 10 mils (0.01 in.); they were then unloaded and subsequently reloaded to failure. The remainder of the beams were loaded monotonically to failure.

2 <u>Research Program and Test Specimens</u>

2.1 Design of test specimens

A total of six beam-splice specimens were tested in the main study – three specimens with a splice length of 79 in. and three with a splice length of 120 in. For the three specimens with a 79-in. splice length, one was cast with monolithic concrete and the other two were cast with a cold joint in the plane of reinforcing steel. All three specimens with a 120 in. splice length were cast with a cold joint in the plane of reinforcing steel. All specimens with cold joints had two No. 3-bar hoops crossing the plane of the cold joint, outside the spliced bars, at the center of the specimen.

The beams were subjected to four-point loading to provide a constant moment (excluding dead load) in the middle portion of the member, where the splice was located, as shown in Figure 2.1.

The specimens were configured to have a constant moment in the splice region to eliminate the effect of shear forces on splice strength, and also to eliminate the need for shear reinforcement within the splice region. The spacing of the supports was chosen so that the distance from either end of the splice to the central pin and roller supports was equal to or greater than the effective depth of the beam. The span lengths were selected in increments of 3 ft based on the spacing of load points in the Structural Testing Laboratory of University of Kansas.

Moment

The reinforcement diagrams for the specimens in the study are shown in Appendix B. The top reinforcement layer of the beams consisted of two No. 11 reinforcing bars, which were spliced at the center of the beam, as shown in Figure 2.1. The No. 11 bars used in the specimens were from a single heat of reinforcement. The bottom layer of reinforcement, placed to maintain the integrity of the beam after failure of the splice and to facilitate placement of shear reinforcement in the constant shear regions, consisted of two Grade 60 No. 3 bars. Beam dimensions and effective depths are summarized in Table 2.1.

The specimens were proportioned to have two splices, each with a nominal side concrete cover of 3 in. to the outermost No. 11 bars and a top concrete cover of 3 in. Grade 60 No. 5 closed hoops spaced at 5 in. on center were placed in the constant shear region (Figure 2.1) of all six beams. Mill certifications for the No. 11, No. 5 and No. 3 bars are reported in Appendix D.

	Splice		Nominal Beam dimensions					
Specimen	length	Simulated crack	Support Spacing	Span, L	Width, b	Height, h	Effective Depth, d	Depth to A_{s} , d ,
	(in.)		(ft)	(ft)	(in.)	(in.)	(in.)	(in.)
B1	79	None (monolithic)	11	25	18	24	20.3	2.8
B2	79	Cold joint	11	25	18	24	20.3	2.8
B3	79	Cold joint	11	25	18	24	20.3	2.8
B4	120	Cold joint	14	28	18	24	20.3	2.8
B5	120	Cold joint	14	28	18	24	20.3	2.8
B6	120	Cold joint	14	28	18	24	20.3	2.8

Table 2.1 – Summary of design beam dimensions for beam-splice specimens

The deformation properties of the No. 11 bars are summarized in Table 2.2. The mean deformation height and spacing of the No. 11 bars meet the requirements of ASTM A615 and the relative rib area, 0.0685, is within the typical range for conventional reinforcement in U.S. practice (0.060 and 0.085) (ACI 408R-03).

		-0		
	Mean height*	Mean height**	Mean spacing	
Bar Size	(in.)	(in.)	(in.)	Relative rib area
No. 11	0.0811	0.0752	0.869	0.0685

Table 2.2 – Summary of design beam dimensions for beam-splice specimens

*Per ASTM A 615 **Per ACI 408R-03 and ACI 408.3R-09 for calculation of relative rib area

2.2 Concrete

The concrete used to fabricate the test specimens was supplied by a local ready mix plant. The concrete was non-air-entrained with Type I portland cement, 1½-in. nominal maximum-size crushed coarse aggregate, and a water-cement ratio of 0.42. A trial batch was prepared at the concrete laboratory of the University of Kansas prior to casting the first three beams. The aggregate gradation, mixture proportions, and concrete properties for the trial batch and each of the placements are presented in Appendix E. The dosage of high-range water reducer was adjusted on site when considered necessary to obtain adequate slump for placement.

2.3 Cold joint construction and crack simulation

The specimens with cold joints were cast using two placements, with a cold joint at the mid-height of the top layer of reinforcement, to ensure that a longitudinal crack would develop in the plane of the reinforcing steel before the beam failed. The cold joints spanned the entire length of the spliced region and extended approximately 6.5 ft outside of the spliced region (Figures B.2 and B.3 in Appendix B).

In the first placement, concrete was cast up to the center of the top layer of reinforcement (Figures 2.2, B.2 and B.3). After the concrete was placed, a roughened surface was created to simulate the roughness of a natural crack by introducing indentations in the concrete while it remained plastic (Figure 2.3). The exposed reinforcing steel was cleaned using sponges to facilitate adequate bond between the exposed bars and the concrete cast during the second casting stage. The specimens were moist cured for a day, and the remainder of the concrete was placed no later than 26 hours after the original placement. The concrete for the second placement had the same mixture proportions and was supplied by the same ready-mix plant as the first. Before the second placement, the concrete surface was cleaned using compressed air to remove debris and loose concrete, and maintained in a wet condition until the second placement started (Figures 2.4 and 2.5). After casting, the specimens were moist-cured until the compressive strength of the concrete from the first placement exceeded 3500 psi.

Some beams were loaded in two stages to ensure that the preexisting crack of minimum width had formed in the plane of the reinforcing steel. To do this, beams were loaded monotonically until the width of the horizontal cracks at the cold joint exceeded 10 mils (0.01 in.). After initial loading, the specimens were unloaded and subsequently reloaded monotonically to failure.

Figure 2.2 – Beam specimen after first stage of casting was completed.

Figure 2.3 – Roughening of the concrete surface at the cold joint. (a) roughening of the concrete surface while the concrete remains plastic. (b) roughened surface after concrete had set.

Figure 2.4 – Removal of loose concrete using compressed air.

Figure 2.5 – Wetting of concrete surface prior to concrete placement.

The flexural strength of the concrete (a measure of its tensile strength) was measured in accordance with ASTM C78. For each set of beams, two specimens were cast monolithically with concrete from below the cold joint and two were cast with a cold joint at midspan in the flexure specimen using concrete from both below and above the cold joint in the beam. For Beams 4, 5, and 6, two additional flexure beams were cast monolithically using the concrete from the second placement (above the cold joint). The specimens with the cold joint were cast so that half of the total length was filled with concrete from below the cold joint in the splice specimens; the concrete surface was then roughed (

Figure 2.6) following the same procedure used for the beam-splice specimens (Figure 2.3 to Figure 2.5). The second half of the "cold joint" flexure specimens was cast using concrete from above the cold joint in the splice specimens. A schematic of the flexure test is shown in Figure 2.6(c). The test results are summarized in Chapter 3 and indicate that the cold joint had significantly lower tensile strength than monolithically-cast concrete, and thus provided a good representation of a preexisting crack.

(a)

(b)

Figure 2.6 – Flexure beam specimens with cold joint. (a) A flexure beam specimen cast to half of its length. (b) Roughed concrete surface. (c) Schematic of flexure test (ASTM C78).

(c)

2.4 Test methodology

2.4.1 Fabrication

Formwork

The formwork was fabricated using plywood and dimension lumber with the tolerances specified in Table 2.. The interior of the forms was coated with a sealant, taped at the seams to prevent leakage, and covered with a thin layer of oil before casting. The dimensions of the formwork were measured and are recorded in Table F.1 (Appendix F).

	Width, in.	Height, in.	Beam Length			
			79-in. Splice	120-in. Splice		
			Specimens	Specimens		
Nominal	18	24	25 ft	28 ft		
Tolerance	± 1/2	±1/2	± 1 in.	± 1 in.		

 Table 2.3 – Form tolerances

Reinforcement

The steel reinforcement was fabricated to meet the dimensions specified in the drawings shown in Appendix B. In the splice test region, the bar spacing, concrete cover, location of simulated cracks, and splice length satisfied the tolerances specified in Table 2.. Outside of the splice test region, the bar spacing, concrete cover, and longitudinal bar location satisfied the intended tolerance of $\pm 1/2$ in. Inside the forms, the reinforcing steel was supported by chairs tied to the bottom of the hoops outside of the test region (splice region) and to the bottom layer of longitudinal reinforcing steel in the splice region. Spliced bars were supported by small-diameter threaded rods attached to both sides of the forms. The threaded rods were introduced with the objective of achieving the specified tolerance in the cover dimensions and preventing bowing of the forms at the top of the beams. Cover and reinforcement dimensions in the test region were measured and are recorded on Table F.2 (Appendix F).

	Concrete	Location of	Splice
	cover, in.	the centroid of	length,
		the	in.
		reinforcement,	
		in.	
Tolerance	$\pm 1/2$	$\pm 3/8$	± 1/2

Table 2.4 – Specified tolerances within the splice region

2.4.2 Casting

The properties of the plastic concrete were measured in accordance with the ASTM standards cited and are presented in Table F.3. The following properties were recorded:

- Unit Weight (ASTM C138)
- Slump (ASTM C143)
- Concrete Temperature (ASTM C 1064)

The concrete truck operator delivered a ticket with the batched mixture weights. The ticket was examined to verify that the mixture delivered had the specified proportions and that the concrete had arrived less than 45 min. after leaving the batching plant. No water was added to the concrete after the truck left the plant.

The beams were cast in two layers, beginning and ending at the ends of the beams. The bottom and top layers of concrete in the splice regions of all three beams were placed from the middle portion of the batch. The concrete was sampled at two points in the middle portion of the batch in accordance with ASTM C172, the first sample taken immediately after placing the first lift, and the second sample taken immediately after placing the second lift in the splice regions. After placing the second lift, excess concrete was removed from the formwork using a screed. The upper surfaces of the specimens were finished using hand floats.

The samples were consolidated prior to testing the plastic concrete (for slump, unit weight, and concrete temperature) and making the strength test specimens. Ten plastic and six steel 6×12 -in. cylinder molds were filled in accordance with ASTM C31, along with four flexural beam specimens cast in accordance with ASTM C78. Two of the flexural beam specimens were cast monolithically and two were cast with cold joints. Cylinders cast in plastic

molds were used for monitoring the strength of the concrete prior to testing the beam; the cylinders cast in steel molds were used to obtain the compressive strength on the day of test of each beam. All flexural beam specimens were tested on the day of test of the corresponding beam. Test beams and cylinders were labeled with an identifying mark.

For specimens with a cold joint, the concrete above the joint plane was placed no later than 26 hours after the initial placement. The concrete above the cold joint had the same mix proportions as the concrete below the cold joint and was supplied by the same ready-mix plant. The concrete slump, unit weight, and temperature were recorded. A minimum of five 6×12 -in. cylinders (two in plastic molds and three in steel molds) were prepared. The two cylinders cast using plastic forms were tested on the day of form removal when the concrete below the cold joint had achieved a compressive strength of 3,500 psi. The three cylinders cast using steel molds were used to determine the concrete compressive strength on the day the beams were tested.

2.4.3 Curing

Test cylinders and flexure beam specimens were stored and cured next to the beam-splice specimens and under similar conditions of temperature and humidity. The beams were covered with wet burlap immediately after finishing of the beam surface. The beams, flexure beams, and the 6×12 -in. cylinder specimens were moist-cured by keeping them covered with wet burlap and plastic until the measured compressive strength of the concrete exceeded 3500 psi. The plastic cylinder molds were sealed with plastic caps during the period in which the beams were wet cured.

The beam formwork and the molds were removed after the 3500 psi threshold was exceeded. After demolding and removal of the forms, the specimens were air-cured until the measured compressive strength reached 5000 \pm 500 psi.

2.4.4 Test apparatus

The beam-splice specimens were tested using a four-point loading configuration (Figure 2.1 and Figure 2.7). To facilitate inspection of the splice region during the test, the loads were applied in the downward direction (Figure 2.7) so that the main flexural reinforcement would be located at the top of the beam. The splice region was located between the two supports (Figure

2.7) in the central constant moment region of the beam. The final location of the supports was measured (to the nearest 1/8-in.) and is reported in Table F.4 (Appendix F). As-built external dimensions of each test beam were recorded using the same form. The maximum deviation from nominal dimensions in the test region was 1/2 in.

Figure 2.7 – Four-point loading configuration

Loads were applied at the ends of the specimen using two loading frames, as shown in Figure 2.7. Each loading frame consisted of two load rods attached to a loading beam that was placed above the specimen. Loading was imposed through dual-acting center-hole hydraulic rams attached to the lower surface of the reaction floor. At the start of the test, the lower end of the load rods passed through the reaction floor without applying load to the specimen other than the weight of the loading frame and the rods. A total of four rams were used, two for each loading frame. High-pressure hydraulic lines connected the rams to separate pressure and return manifolds, which were connected to the pressure and return lines of a single hydraulic pump. All hoses and other hydraulic hardware were inspected visually before testing began.

The beams were instrumented to measure displacement and load. As shown in Figure 2.8, the applied load was measured with load cells mounted on the load rods, and displacements were

recorded using displacement transducers and dial gages (for redundancy) at the center of the beam and at each of the two load points.

Within each specimen, 350-ohm ¹/₄-in. strain gages with attached leads were bonded to the spliced bars, approximately 2 in. outside the edges of the splice. One deformation in each bar was removed using low-heat grinding to provide a smooth surface to attach the strain gages. Strain gages were attached to the bars using epoxy cement and sealed following the recommended procedures by the manufacturer for submersion in concrete. The strain gages were placed so that the coating used to seal the strain gages covered only deformations outside of the splice region. The strain gages provided little useful data.

Figure 2.8 – Loading apparatus and instrumentation at each load point

2.4.5 Loading protocol

The double acting rams were fully retracted prior to the start of each test. With the loading rams in the fully retracted position, slack was taken out of the load rods by tightening the nuts until each load rod was nearly engaged with the fully retracted hydraulic jacks, but without applying any load. This procedure was adopted to prevent rotation of the loading beams and consequently maintain even loading across all four rods.

Before load was applied, all displacement transducers, load cells, and strain gages were zeroed and initial readings were recorded for each of the three dial gages. Data were recorded continuously by the data acquisition system with a sampling rate of approximately one sample per second. Recorded data was continuously appended to a data file to prevent any loss of data in case of system failure.

Load was applied using a single manually-controlled hydraulic pump. Loading was stopped at predetermined load levels to visually inspect the beam, mark visible cracks (identified based on the average value of the load applied at one end of the beam, as illustrated in Figure 2.9), measure crack widths using crack comparators, and to record strain and dial gage readings. The specimens were marked before each test to indicate the locations of the ends of the splice region, the beam centerline, the pin and roller (pedestal) supports, and the load apparatus. The markings, shown in Figure 2.10, were 'SR' to indicate the ends of the splice region, 'CL' for the centerline of the beam, and 'PS' for the center of the pedestal support. All longitudinal measurements were taken using the centerline of the beam as a reference point to eliminate any inconsistencies caused by small deviations from the nominal length in the specimens.

Figure 2.9 – Crack inspection and marking during test

(a)

(b)

Figure 2.10 – Beam marks: (a) End of splice region and centerline of the beam; (b) pedestal support centerline

The initial load increment was chosen to be smaller than one half of the calculated flexural cracking load to ensure that all instruments and the hydraulic system were operating properly. From this point forward, loading proceeded in increments of approximately 5 kips at each end of the beam. The final load step at which cracks were marked was approximately two-thirds of the estimated failure load. In some of the specimens, the loading protocol was such that the specimens were unloaded after the formation of a horizontal crack with a width of at least 10 mils in the splice region. After the specimen was fully unloaded, it was loaded to failure following the procedure specified above for monotonically-loaded specimens. The loading protocol used for each beam is presented in Table 2...

A log was maintained to record any meaningful observations during the test, such as load corresponding to flexural cracking, crack widths, file names, and gage readings. The logs are presented in Appendix H.

After failure, cracks were marked on the specimens with each identified using the preliminary value of the average maximum end load (this value typically deviated by a few percent from the recorded value).

The following data were recorded and continuously transferred to disk throughout each test:

- Force applied to each load rod
- Displacement at midspan and each load application point
- Strain in the reinforcing steel

Beam	Loading Protocol
1	 (1)Monotonically-increasing load up to an average end load of 40 kips in increments of 5 kips. At the end of the each increment, the beam was inspected for cracks and dial-gage displacement measurements were recorded. (2) Loading resumed with increasing displacement until failure.
2	 (1)Monotonically-increasing load up to an average end load of 25 kips in increments of 5 kips. At the end of the each increment, the beam was inspected for cracks and dial-gage displacement measurements were recorded. (2) Dial-gage measurements were recorded at an average end load of 30 kips. (3) Loading resumed with increasing displacement until failure.
3	 (1)Monotonically-increasing load up to an average end load of 30 kips in increments of 5 kips. At the end of the each increment, the beam was inspected for cracks and dial-gage displacement measurements were recorded. (2) The beam was fully unloaded and dial-gage displacement measurements were recorded. (3) The beam was loaded a second time up to an average end load of 35 kips in load increments of 5 kips. At the end of the each increment, dial-gage displacement measurements were recorded. (3) The beam was loaded a second time up to an average end load of 35 kips in load increments of 5 kips. At the end of the each increment, dial-gage displacement measurements were recorded. The beam was inspected for cracks at an average end load of 30 kips. (4) Loading resumed with increasing displacement until failure.
4	 (1)Monotonically-increasing load up to an average end load of 35 kips in increments of 5 kips. At the end of the each increment, the beam was inspected for cracks and dial-gage displacement measurements were recorded. (2) Loading resumed with increasing displacement until failure.
5	 (1)Monotonically-increasing load up to an average end load of 40 kips in increments of 5 kips. The beam was inspected for cracks and dial-gage displacement measurements were recorded at the end of each increment. (2) The beam was fully unloaded and dial-gage displacement measurements were recorded. (3) The beam was loaded a second time up to an average end load of 40 kips in increments of 5 kips. Dial-gage displacement measurements were recorded at the end of each increment. The beam was inspected for cracks at average end loads of 20, 30, 35 and 40 kips. (4) Loading resumed with increasing displacement until failure
6	 (1)Monotonically-increasing load up to an average end load of 40 kips in increments of 5 kips. The beam was inspected for cracks and dial-gage displacement measurements were recorded at the end of the each increment. (2) The beam was fully unloaded and dial-gage displacement measurements were recorded. (3) The beam was loaded a second time. The beam was inspected for cracks and dial-gage displacement measurements were recorded. (4) Loading resumed with increasing displacement until failure.

Table 2.5 – Detailed loading protocol for each beam

2.4.6 Calibration

Instruments used to measure force and displacement were calibrated following the procedure specified in this section. The applied load was measured using load cells. Displacement transducers (either linear variable differential transformers or string potentiometers depending on availability) were used to record the vertical beam deflections. Load cells and displacement transducers were calibrated using a digitally-controlled hydraulic test frame calibrated annually using NIST-traceable standards. Load cell and displacement transducers were calibrated below:

- 1) The sensor (load cell or displacement transducer) was connected to the dataacquisition system that was used in the test.
- 2) The sensor was securely mounted on the testing machine.
- 3) A series of known force or displacement increments were applied to the sensor. Calibrations were performed exceeding the displacement and load range expected during the tests. In the case of load cells, calibrations were performed between zero and 100 kips. In the case of displacement, calibrations were performed in a range between zero and 4 in.
- 4) Sensor output was recorded with the data-acquisition system at each known displacement or force increment.
- 5) A least-squares linear regression analysis was performed on force and displacement versus sensor output to determine the calibration constant.

The load cells and displacement transducers were calibrated before and after testing each three beams and the calibration results are reported in Appendix G. The calibration constant deviated with an average value of 0.28% for all sensors, ranging between 0 to 0.84%.

2.5 Test Facilities

The tests were performed in the Structural Testing Laboratory at the University of Kansas, a facility of the KU Structural Engineering and Materials Laboratory (SEML). The Laboratory has static and servo-hydraulic test equipment for the testing of steel, concrete, and composites. The structural testing bay has 4000 square feet of open laboratory area with a clear height of 30

ft for large-scale structural testing. Loads up to 100,000 lb can be applied on 3-ft centers over a 50 x 80 ft area. The laboratory houses a 600,000-lb universal testing machine for testing steel and concrete. A 450,000-lb MTS Structural Test System supported on a four-column test frame may be used for dynamic and cyclic testing of large scale structural components. 110,000-lb and 55,000-lb MTS Structural Test Systems are also used for cyclic and dynamic testing of full-scale structural components within the test bay. Actuators within the test bay are powered by two hydraulic pumps (total flow rate of 110 gpm), meeting the requirements for demanding cyclic test applications. High-speed Mars Labs, National Instruments (used in the current study), and Hewlett Packard data acquisition systems are available to monitor and record load, strain, and displacement. The structural testing laboratory includes an overhead 20-ton crane with access to the entire lab floor area. Over 500 beam-end tests and over 200 splice tests have been performed in the KU Structural Testing Lab since 1990.

Material tests were performed in the Concrete Laboratory, another SEML facility, which is equipped to run standard tests on cement, aggregates, and concrete. Equipment is available to test concrete aggregate for deleterious behavior, including alkali silica reactivity, and to measure aggregate properties as they affect mixture proportioning. Freeze-thaw equipment is available for running tests under both Procedures A and B of ASTM C666. A walk-in freezer is used for scaling tests. Concrete is cured under controlled temperature and humidity in the lab's curing room. Two hydraulic testing machines, with load capacities of 180 tons (400,000 lb), are used for concrete strength determination.

Certificates of calibration for the equipment used in this study, including for the test frame used to calibrate the sensors, are presented in Appendix I.

2.6 Section Analysis

Splice strength was evaluated based the calculated moment in the splice region at failure (ACI 408R-03). Loads, moments, and stresses for the beams were calculated using a twodimensional analysis in which loads and reactions were assumed to act along the longitudinal centerline of the beam. Reactions and moments were based on load cell readings and the weight of the loading assemblies. The self-weight of the beam was included in the calculations based on average beam dimensions and an assumed concrete density of 150 pcf. The test specimens were evaluated using cracked section theory assuming a linear strain distribution through the height of the cross-section. The beams were analyzed using an equivalent rectangular stress block and moment-curvature analyses for comparison. The moment-curvature relationship was derived using the nonlinear stress-strain relationship for concrete proposed by Hognestad (1951) and follows the procedure described by Nilson, Darwin, and Dolan (2010). Figure 2.11 shows the assumed stress distribution in the compression zone for the moment-curvature and the equivalent rectangular stress block analyses. Good agreement in the calculated bar stress at failure was typically noted between results obtained with the two methods.

Figure 2.11 – Assumed stress distribution in the compression zone used in moment-curvature and equivalent rectangular stress block analyses [after Nawy (2003)]

In calculating splice strength, the tensile stress in the steel f_s (ksi) was calculated as following the procedures used by ACI Committee 408 (2003):

$$f_s = E_s \times \varepsilon_s = 29000 \times \varepsilon_s \text{ for } f_s \le \text{ measured yield strength } f_v$$
(1)

For $\varepsilon_s > f_y/E_s$, $f_s = f_y$ for $\varepsilon_s \le \varepsilon_{sh}$, where $\varepsilon_{sh} = 0.0086$ for $f_y = 60$ ksi and 0.0035 for $f_y = 75$ ksi and above. There is no flat portion of the stress-strain curve for $f_y \ge 101.5$ ksi. The modulus of strain hardening $E_{sh} = 614$ ksi for $f_y = 60$ ksi, 713 ksi for $f_y = 75$ ksi, and 1212 ksi for $f_y \ge 90$ ksi. The values of ε_{sh} and E_{sh} for f_y between 60 and 90 ksi are obtained using linear interpolation.

The equivalent rectangular stress block used in the calculations was proposed by Whitney with the values of the parameter β_1 specified in ACI 318-11. The moment-curvature relationship was calculated using the concrete model proposed by Hognestad (1951).

$$f_{c} = \begin{cases} f_{c}'' \left[2 \left(\frac{\varepsilon_{c}}{\varepsilon_{0}} \right) - \left(\frac{\varepsilon_{c}}{\varepsilon_{0}} \right)^{2} \right] & \text{for} & \varepsilon_{c} \leq \varepsilon_{0} \\ f_{c}'' \left[0.15 \left(\frac{\varepsilon_{0} - \varepsilon_{c}}{\varepsilon_{cu} - \varepsilon_{0}} \right) - 1 \right] & \text{for} & \varepsilon_{c} \geq \varepsilon_{0} \end{cases}$$

$$(2)$$

$$f_c'' = 0.85 f_c'$$
 (3a)

$$\varepsilon_0 = \frac{1.7 f_c'}{E_c} \tag{3b}$$

$$\varepsilon_{cu} = 0.0038 \tag{3c}$$

$$E_c = 1.8 \times 10^6 + 460 f_c' \tag{3d}$$

where:

 f_c = concrete stress, psi

 f_c' = concrete compressive strength, psi

 f_c'' = peak concrete stress, psi

 ε_c = concrete strain

 ε_0 = concrete strain at peak stress

 ε_{cu} = ultimate concrete strain at crushing

 E_c = approximate concrete modulus of elasticity, psi

Tensile stresses carried by the concrete were neglected in both analyses.

The calculations using both equivalent rectangular stress block and moment-curvature analyses proceed as follows:

- 1. Select top face concrete strain ε_c in the inelastic range.
- 2. Assume the neutral axis depth, at distance *c* below the top face.
- 3. Assuming a linear variation in strain throughout the depth of the member, determine the tensile strain in the steel ε_s (equal to the tensile strain in the concrete at the level of the steel ε_{sc}).
- 4. Compute the stress in the reinforcing steel f_s in accordance with the defined stress-strain relationships (above). The tensile force in the steel $T = f_s \times A_s$ (see Figure 2.11).

- 5. Determine the compressive force *C*, which equals to 0.85 $f_c ba$ (Figure 2.11b) for the equivalent rectangular stress block method, or by numerically integrating the concrete stresses as defined by Eq. (2) and (3) for the moment curvature method.
- 6. If C = T, go to step 7. If not, adjust the neutral axis depth c in step 2 and repeats steps 3 5.
- 7. Using the internal lever arm *z* from the centroid of the concrete stress distribution to the tensile resultant, the calculated bending moment M = Cz = Tz.
- 8. If the calculated bending moment *M* equals the applied bending moment (from test), f_s equals the force in the reinforcing steel. If the calculated bending moment does not equal the applied bending moment, modify ε_c and *c* in steps 1 and 2, respectively, and repeat steps 3 7 until the calculated bending moment *M* equals the applied bending moment.

3 <u>Test Results</u>

3.1 General

The testing program consisted of six beam-splice specimens. Three of the specimens had a lap lap splice length of 79 in., and three had a lap splice length of 120 in. The measured loads and calculated bar stresses at failure are presented in

Table 3.1. In addition to failure loads, Table 3.1 includes measured material properties and bar cover dimensions. Bar stresses at failure listed in Table 3.1 include those calculated using the equivalent rectangular stress block and moment-curvature analysis. Measured specimen dimensions and other details of the beam tests are presented in Appendix H.

Moment-curvature analyses consistently produced calculated higher bar stresses than did the analysis using the equivalent rectangular stress block. This is to be expected because the parameters of the equivalent stress block were calibrated to reflect the characteristics of the compression zone when the peak strain in the concrete exceeds 0.003 and the concrete in the compression zone is well into the nonlinear range. Under these conditions, the depth of the compression zone is reduced, resulting in a slightly larger distance between the tension and compression resultants. With the exception of Beam 1, the splices failed prior to crushing of the concrete in the bottom surface of the beam, so it was to be expected that the equivalent rectangular stress block would slightly overestimate the distance between tension and compression resultants and consequently underestimate the stress in the reinforcing bars. The difference, on average, between the bar stresses at failure calculated by the two methods was 1.5 ksi for the six beams tested in this study, with moment-curvature analysis producing the greater value. All bar stress values discussed subsequently are those calculated using moment-curvature analysis, which is considered to be more accurate method for the reasons stated above.

Beam ID - Splice	Concrete	Concrete	Total load at	Calculated	Calculated bar stress at failure, ksi		
length	strength, psi	cover, in. ^a	splice failure, kips	splice failure, kip-ft	Equiv. stress block	Moment- curvature	Failure mode
1 – 79 in. (monolithic)		3/3/3	103	344	70	70	Flexural Failure [*]
2 – 79 in. (cold joint, loaded monotonically)	5330/ 4220 ⁺	3/3/3	85	292	59	62	Splice failure ^{**}
3 – 79 in. (cold joint, unloaded and reloaded)	4550	3.25/3.35/2.9	80	270	53	57	Splice failure**
4 – 120 in. (cold joint, loaded monotonically)		3/2.8/3.4	105	350	71	72	Splice failure and secondary flexural failure ^{***}
5 – 120 in. (cold joint, unloaded and reloaded)	5230/ 5490 ⁺	3.15/3/15/3.15	96	325	66	67	Splice failure and secondary flexural failure ^{***}
6 – 120 in. (cold joint, unloaded and reloaded)		3.15/3.15/2.9	100	338	69	69	Splice failure and secondary flexural failure ^{***}

Table 3.1 – Bar stresses at failure for beam-splice specimens

^a Top cover/north side cover/south side cover

⁺ Compressive strength of concrete below and above the cold joint.

* Test was stopped after reinforcing steel yielded, when crushing of the concrete in the compression zone was observed.

** Splice failed prior to yielding of the flexure reinforcement. *** Splice failed after yielding of the flexure reinforcement

3.2 Beams 1, 2, and 3 with 79-in. splice length

3.2.1 **Concrete strength**

The concrete strengths for Beams 1, 2 and 3 are summarized in Table 3.2. Beam 1 was cast monolithically, while Beams 2 and 3 were cast in two stages to accommodate the presence of a cold joint at the level of the flexure reinforcement. Beam 1 and the concrete below the cold joint for Beams 2 and 3 were placed on May 24, 2012 and the concrete above the cold joint was placed on May 25, 2012. The forms were removed on May 28, 2012, when the average concrete compressive strength for both placements exceeded 3500 psi. All three beams were tested on May 31, 2012. On that date the concrete from the first placement had an average compressive strength of 5330 psi, and the concrete from the second placement had an average compressive strength of 4330 psi (Table 3.2). The average split cylinder strength and the average modulus rupture were 435 and 570 psi for the concrete below the cold joint in accordance with ASTM C496 and ASTM C78, respectively. The tensile strength for the concrete above the cold joint was not recorded for the first three beams. The flexural beam specimens with cold joints were also tested and had an average modulus of rupture of 140 psi, significantly lower than that of specimens cast monolithically. The fact that the tensile strength of the flexural beam specimens indicates that the presence of a cold joint did in fact introduce a weak plane at the level of reinforcing steel. The proportions of the concrete mixture and the properties of the concrete for each placement are reported in Table E.2 of Appendix E.

	Concrete below cold joint	Concrete above cold joint
Average Compressive Strength when forms were removed	4010 ^a	3640 ^b
Average Compressive Strength at test date, psi	5330°	4330 ^d
Split Cylinder Strength (ASTM C496), psi	435 [°]	
Modulus of Rupture (ASTM C78), psi	570 ^c	
Modulus of Rupture for specimens with cold joint, psi	140 ^d	

Table 3.2 Concrete strengths for Beams 1, 2, and 3

^aTested at 4 days; ^btested at 3 days; ^ctested at 7 days; ^dtested at 6 days

A segment of the No. 11 bars used in the splice-beam specimens was tested in tension and the bar strains were recorded using a linear variable differential transformer (LVDT) used as the extensometer (gage length = 8.0 in.). The measured stress-strain curve for the No. 11 bar is shown in Figure 3.1. The yield stress calculated using the 0.2% offset method was 67 ksi and the measured elastic modulus was 28,990 ksi. The maximum measured steel stress was 105 ksi.

Figure 3.1 – Measured stress-strain curve for No. 11 bar

3.2.2 Beam 1 (monolithic concrete)

3.2.2.1 Beam 1 load-deflection curve

Beam 1 was cast monolithically with a splice length of 79 in. It was loaded monotonically to failure (the load protocol is presented in Table 2.). The load-deflection curve for Beam 1 is shown in Figure 3.2. The displacement shown in the figure was calculated by adding the average of the displacement at the two load points to the displacement at the beam centerline. The load shown in the figure corresponds to the total load applied to the beam (the sum of the two end loads). The load-deflection relationship shows that there was a significant reduction in the stiffness of the beam at a total load of approximately 20 kips, which coincided with the first observation of flexural cracks. Another significant reduction in flexural stiffness was observed at a total load of 94 kips and a total displacement of approximately 2.8 in. In this case the reduction in stiffness is attributed to the yielding of the flexural reinforcement. The calculated bar stress corresponding to the total load of 94 kips is 68 ksi based on moment-curvature analysis (
Table 3.1). The positive slope of the load-deflection relationship after a total load of 94 kips is attributed to the strain hardening of the reinforcing steel. Loading continued until a flexural failure occurred, which was accompanied by crushing of the concrete in the compression zone, near the supports, at a total load of 103 kips, corresponding to a bar stress of 70 ksi, and a total deflection of approximately 5 in. (Figure 3.3).

Figure 3.2 – Total load vs. total deflection for Beam 1 (cast monolithically) (Total load calculated as the summation of the two end loads and total deflection calculated defined by adding the average deflection at two ends and the deflection in the beam centerline).

Figure 3.3 – Flexural failure in the compression region for Beam 1. Numbers indicate maximum average end load when cracks marked.

3.2.2.2 Crack progression-Beam 1

Maximum measured crack width versus average end load for Beam 1 is shown in Figure 3.4; the crack map for Beam 1 is presented in Figure 3.5 (see figures in Appendix C for greater detail). The first flexural cracks formed near the east support at the end of the east splice region, at an average end load of 10 kips (total load of approximately 20 kips). The flexural cracks grew progressively wider and more numerous as the load increased. The first horizontal crack formed near the support at an average end load of 25 kips (Figure 3.6). Both longitudinal and flexural cracks continued to increase in width and number as the load increased. At the last crack marking prior to failure (average end load of 40 kips), the widest flexural crack had a width of 25 mils (0.025 in.) and the widest horizontal (bond) crack had a width of 18 mils (0.018 in.).

Figure 3.4 – Maximum crack width vs. average end load (one-half of total load) for Beam 1.

Figure 3.5 – Crack map for Beam 1. Numbers indicate maximum average end load when cracks marked. See Figure C.1 in Appendix C for greater detail.

Figure 3.6 – Beam 1, north side of east support with horizontal crack, 25 kip end load.

Failure occurred at an average end load of 51 kips (total load of 103 kips). The failure mode was yielding of the bars followed by crushing of the concrete near the supports (Figure 3.7). Both flexural and horizontal cracks were present near the splice region (Figure 3.8). At the

support (Figure 3.9), flexural cracks extended most of the depth of the beam; no horizontal cracks were present.

A detailed autopsy was not performed on Beam 1. Concrete was removed in selected regions to verify the concrete cover to the splice was within tolerances. Top cover was 3 in. to the outer bar in the splice and 3-1/4 in. to the inner bar in the splice for both splices.

Figure 3.7 – Beam 1, underside near support, failure.

Figure 3.8 – Beam 1, north side of west splice region, failure.

Figure 3.9 – Beam 1, south side of east support, failure.

Figure 3.10 – Beam 1, centerline, failure.

3.2.3 Beam 2 (cold joint, monotonically-loaded)

3.2.3.1 Beam 2 load-deflection curve

Beam 2 was cast with a cold joint in the plane of reinforcing steel. It was monotonically loaded loaded with a load increment of approximately 5 kips (average end load, the load protocol is presented in Table 2.). The load-deflection curve for Beam 2 is shown in Figure 3.11. The total displacement and total load shown in the figure were calculated in the same manner as for Beam 1. The total load corresponding to cracking was very similar to that of Beam 1, approximately 20 kips. The beam was loaded to a maximum total load of 85 kips, with a corresponding total displacement of 2.25 in. At this point the beam failed with a sudden splitting of the concrete along the cold joint. Wide horizontal cracks were observed in the plane of the cold joint within the splice region (Figure 3.12). The widest horizontal crack was measured to be ½ in. wide after failure. It is concluded that the beam failed due to failure of the splice at a total load of 85 kips. The calculated bar stress corresponding to the total load of 86 kips is 62 ksi based on moment-curvature analysis (

Table 3.1), above the minimum specified yield strength of 60 ksi for Grade 60 reinforcement but 5 ksi below the actual yield strength of 67 ksi.

Figure 3.11 – Total load vs. total deflection for Beam 2 (with a cold joint)

Figure 3.12 – Beam 2 (with a cold joint) failed with wide horizontal crack

3.2.3.2 Crack progression-Beam 2

Maximum measured crack width versus load for Beam 2 is shown in Figure 3.13; the crack map for Beam 2 is presented in Figure 3.14. The first flexural cracks formed near the supports and ends of both splice regions at an average end load of 15 kips (total load of 30 kips). Horizontal cracks first formed at an average end load of 20 kips at both ends of the splice region along the cold joint (Figure 3.15). Both longitudinal and flexural cracks continued to increase in width and number as the load increased, with horizontal cracks propagating along the cold joint. When the last cracks were marked prior to failure (conducted at an average end load of 30 kips), the widest flexural crack had a width of 20 mils (0.02 in.) and the widest horizontal crack had a width of 13 mils (0.013 in.).

Figure 3.13 – Maximum crack width vs. average end load for Beam 2.

Figure 3.14 – Crack map for Beam 2. Numbers indicate maximum average end load when cracks marked. See Figure C.2 in Appendix C for greater detail.

Figure 3.15 – Beam 2, northeast support with horizontal crack, 20 kip end load.

Failure occurred at an average end load of approximately 43 kips (total load of 85 kips). At failure, the concrete above the cold joint separated from the remainder of the beam (Figure 3.16). Near the splice region, a large flexural crack was also present (Figure 3.16). The

horizontal crack progressed approximately 12 in. past both ends of the splice region, and with the exception of near the centerline, continued along the cold joint. At the centerline, the crack split through the cover and around the single hoop present at the centerline (Figure 3.17), indicating the hoop was effective in preventing the crack from growing near the centerline. As shown in Figure 3.17, the region affected by the hoop was small.

Figure 3.16 – Beam 2, southwest splice region showing separation of concrete, 43 kip end load.

Figure 3.17 – Beam 2, centerline at failure.

3.2.4 Beam 3 (cold joint, cycled)

3.2.4.1 Beam 3 load-deflection curve

Beam 3 was cast in the same manner and at the same time as Beam 2, with a cold joint in the plane of reinforcing steel. Instead of loading the beams to failure monotonically, Beam 3 was first loaded to a total load of 60 kips, unloaded to zero, and then re-loaded monotonically to failure (the load protocol is presented in Table 2.). When the beam was first loaded to a total load of 60 kips (average end load of 30 kips), the average end load was increased in increments of approximately 5 kips. The specimen was inspected for cracks, which were marked at each load step. At a total load of 60 kips, the maximum horizontal crack width was 20 mils (0.02 in.). When the beam was loaded for the second time, it was loaded up to a total load of 60 kips without inspecting for cracks. The only visual measurement conducted during the second loading was the recording of dial gage readings at approximately 5-kip increments (average end load). The beam was inspected for cracks widened to a maximum width of 35 mils (0.035 in.)

The load-deflection curve for beam 3 is shown in Figure 3.1818. Overall, Beam 3 performed very similar to Beam 2, except for the peak load. The beam failed at a total load of 80 kips (compared with a total load of 85 kips for Beam 2), in the same manner as observed for Beam 2. A wide horizontal crack in the plane of the cold joint, within the splice region, was observed after failure (Figure 3.19), with the widest portion of the crack being 3/8-in. It is concluded that the beam failed due to a splice failure. The calculated bar stress corresponding to the total load of 80 kips is 57 ksi based on moment-curvature analysis (

Table 3.1).

Figure 3.18 – Total load vs. total deflection for Beam 3 (with a cold joint)

Figure 3.19 –Beam 3 failure with wide horizontal cracks along cold joint

3.2.4.2 Crack progression-Beam 3

Maximum measured crack width versus load for Beam 3 is shown in Figure 3.20; the crack map for Beam 3 is presented in Figure 3.21. As seen in both figures, the first flexural cracks formed near end of the east splice region at an average end load of 10 kips (total load of 20 kips). At an average end load of 15 kips, flexural cracks were present at both ends of the splice region and both supports. A horizontal crack first formed at an average end load of 15 kips

at the west end of the splice region along the cold joint, with additional horizontal cracks forming and reaching a 9-mil (0.009 in.) width at an average end load of 20 kips (Figure 3.22). At an average end load of 30 kips, a 40-mil (0.04-in.) width flexural crack and 20-mil width horizontal crack were recorded. At this point, the beam was unloaded. With zero load, the maximum flexural and horizontal crack widths decreased to 13 and 7 mils (0.013 and 0.007 in.), respectively. The load was reapplied, and at the last crack mapping (average end load of 30 kips), the widest flexural crack had a width of 55 mils (0.055 in.) and the widest horizontal crack had a width of 35 mils (0.035 in.), much wider than the cracks noted at the first loading to a 30-kip average end load.

Figure 3.20 – Maximum crack width vs. average end load for Beam 3.

Figure 3.18 – Beam 3, northwest splice region with horizontal crack, 20 kip end load.

Failure occurred at an average end load of 40 kips (total load of 80 kips), a slightly lower load than the monotonically loaded Beam 2 (total load of 85 kips). At failure, the concrete above the cold joint separated from the remainder of the beam, with the horizontal crack propagating along the cold joint in a region that was somewhat larger than the splice region except for a small region near the centerline, which was restrained by the No. 3-bar hoop (Figure 3.23). Large flexural cracks were also present near both ends of the splice region.

Figure 3.23 – Beam 3, splice region and centerline showing separation of concrete, 40 kip end load.

3.3 Beams 4, 5, and 6 with 120-in. splice length

3.3.1 Concrete strength

The concrete strengths for Beams 4, 5 and 6 are summarized in Table 3.3 3. The three beams were cast in two stages to accommodate the presence of a cold joint at the level of the flexural reinforcement. The concrete below the cold joint was placed on June 13, 2012, and the concrete above the cold joint was placed on June 14, 2012. The forms were removed on June 17, 2012 when the average concrete compressive strength for both placements exceeded 3500 psi. The beams were tested on June 20, 2012. On that date, the concrete from the first placement had an average compressive strength of 5230 psi, and the concrete from the second placement had an average compressive strength of 5490 psi (Table 3.3). The higher strength for the second placement was likely due to the slightly lower water-cement ratio of the concrete, as shown on the batch ticket (Appendix H). The average split cylinder strength and average modulus rupture were, respectively, 370 and 600 psi for the concrete below the cold joint and 470 and 700 psi for

the concrete above the cold joint. The flexural beam specimens with cold joints were also tested and had an average modulus of rupture of 274 psi, significantly below that of specimens cast monolithically. The proportions of the concrete mixture and the properties of the concrete for each placement are reported in Table E.2 of Appendix E.

	Concrete below cold joint	Concrete above cold joint
Average Compressive Strength when Forms were removed	4310 ^a	4520 ^b
Average Compressive Strength at test date, psi	5230°	5490 ^d
Split Cylinder Strength (ASTM C496), psi	370 ^c	470^{d}
Modulus of Rupture (ASTM C78), psi	600 ^c	700^{d}
Modulus of Rupture for specimens with cold joint, psi	274 ^d	

Table 3.3 – Concrete strengths for Beams 4, 5, and 6

^aTested at 4 days; ^btested at 3 days; ^ctested at 7 days; ^dtested at 6 days

The same reinforcing steel was used for Beams 4, 5, and 6 as for Beams 1, 2, and 3. The measured stress-strain curve for the No. 11 bar is shown in Figure 3.1.

3.3.2 Beam 4 (cold joint, monotonically-loaded)

3.3.2.1 Beam 4 load-deflection curve

Beam 4 was cast with a cold joint in the plane of reinforcing steel. It was subjected to monotonically-increasing load in increments of approximately 5 kips (average end load, the loading protocol is presented in Table 2.). The load-deflection curve for Beam 4 is shown in Figure 3.194. The total load and deflection were determined in the same manner as for Beams 1, 2 and 3. The flexural stiffness of the beam decreased once the total load exceeded 20 kips, coinciding with the formation of flexural cracks. A sharp decrease in the slope of the load-deflection of approximately 2.8 in. The stress at the end of the spliced bars for a total load of 94 kips was 68 ksi. The decrease in the slope of the load-deflection curve at a total load of 94 kips indicates that the reinforcing steel yielded. After yielding of the reinforcing steel, the total load continued to

increase but at a lower rate, which is attributed to the strain hardening of the reinforcing steel. The beam was loaded to a total load of 105 kips (and a displacement of 5.5 in.) and at that point failed with the sudden splitting of the concrete along the cold joint. Wide horizontal cracks in the plane of the cold joint were observed within the splice region. Wide flexural cracks were also observed near the support (Figure 3.205). It is concluded that the reinforcing steel yielded at a total load of approximately 94 kips and beam failed at a total load of 105 kips due to failure of the splice, the latter corresponding to a bar stress of 72 ksi (Table 3.1).

Figure 3.194 – Total load vs. total deflection for Beam 4 (with a cold joint)

Figure 3.20 – Beam 4 (with a cold joint) at failure

3.3.2.2 Crack progression-Beam 4

Maximum measured crack width versus load for Beam 4 is shown in Figure 3.26; the crack map for Beam 4 is presented in Figure 3.27. The first flexural cracks formed near end of the west support at an average end load of 10 kips (total load of 20 kips). At an average end load of 15 kips, flexural cracks were present at both ends of the splice region and both supports. Horizontal cracks first formed at an average end load of 20 kips, at the both ends of the splice region along the cold joint. Both longitudinal and flexural cracks continued to increase in width and number as the load increased, with horizontal cracks propagating along the cold joint. At the last load prior to failure at which cracks were marked (average end load of 35 kips), the widest flexural crack had a width of 30 mils and the widest horizontal crack had a width of 16 mils. At this point, the horizontal cracks extended along most of the length of the splice region (Figure 3.28), with some of the horizontal cracks that formed at earlier stages merging together.

Figure 3.21 – Maximum crack width vs. average end load for Beam 4.

Figure 3.27 – Crack map for Beam 4. Numbers indicate maximum average end load when cracks marked. See Figure C.4 in Appendix C for greater detail.

Figure 3.28 – Beam 4, south side of west splice region with horizontal cracks, 35-kip end load.

At failure, the concrete above the cold joint separated from the remainder of the beam, with the horizontal crack propagating along the cold joint between the pedestal supports except for a small region near the centerline that was restrained by the No. 3-bar hoop (Figure 3.29). Large flexural cracks were also present near both ends of the splice region (Figure 3.30).

Figure 3.29 – Beam 4, centerline showing separation of concrete, 52-kip end load.

Figure 3.30 – Beam 4, end of splice region at 52-kip end load.

3.3.3 Beam 5 (cold joint, cycled)

3.3.3.1 Beam 5 load-deflection curve

Beams 5 and 6 were cast in the same manner and at the same time as Beam 4, with a cold joint at the plane of reinforcing steel. Instead of monotonically loading the beams to failure, Beam 5 was first loaded to a total load of 80 kips, and subsequently unloaded to zero, and then re-loaded to failure (the load protocol is presented in Table 2.). When the beam was first loaded to a total load of 80 kips, the average end load was increased in increments of approximately 5 kips. The specimen was inspected for cracks and marked at each load step. Horizontal cracks on the plane of the cold joint within the splice region were observed when the beam was subjected to a total load of 80 kips. The maximum horizontal crack width at this load was 35 mils (0.035 in.). It should be noted that the beam was unloaded in a rapid manner and that one of the load cells had large fluctuations after that point (load cell C in Figure 3.221). Although there were clear problems with the load readings from load cell C for the remainder of this test, the rams were at all times subjected to uniform pressure, and load readings from the other 5 beam tests show that the load was evenly applied to the four different load rods at all times. Furthermore,

the load beam remained level and the displacement readings were similar at both ends of the beam, strong indicators that although the load cell readings were not accurate, the load was uniformly applied to the four load rods. Based on these observations, the total load was calculated based on the readings from load cells A and B. When the beam was loaded for the second time, it was loaded up to a total load of 80 kips at an increment of 5 kips (average end load). At the end of the each increment, dial-gage displacement measurements were recorded. The beam was inspected for cracks at total loads of 40, 60, 70, and 80 kips. When the beam was inspected for cracks were noticed. The maximum horizontal cracks width was still 35 mils (0.035 in.)

Figure 3.22 – Load cell readings for Beam 5

The load-deflection curve for Beam 5 is shown in Figure 3.32. Due to the problem documented for load cell C, the total load is calculated as twice the summation of load cells A and B, located at the West loading point. Overall, Beam 5 performed very similar to Beam 4. The slope of the load-deflection curve first decreased at a total load of 20 kips, which coincides with the first observation of flexural cracks. Another decrease in the slope of the load-deflection curve was observed at a total load 91 kips, with a corresponding total displacement of approximately 2.7 in, which is attributed to the yielding of the flexural reinforcement. The calculated bar stress corresponding to the total load of 91 kips is 66 ksi based on moment-curvature analysis. The positive slope of the load-deflection relationship after a total load of 91

kips is attributed to the strain hardening of the reinforcing steel. The beam was loaded to a total load of 96 kips, with a corresponding total displacement of 3.6 in., at which point the beam failed suddenly. Wide flexural cracks near the support and horizontal cracks in the plane of cold joint were observed within the splice region (Figure 3.2033). It is concluded that the reinforcing steel yielded at a total load of 91 kips and beam failed at a total load of 96 kips due to failure of the splice, the latter corresponding to a bar stress of 67 ksi (Table 3.1).

Figure 3.32 – Total load vs. total deflection for Beam 5 (with a cold joint)

Figure 3.33 – Beam 5 (with a cold joint) at failure

3.3.3.2 Crack progression-Beam 5

Maximum measured crack width versus load for Beam 5 is shown in Figure 3.34; the crack map for Beam 5 is presented in Figure 3.35. The first flexural and horizontal cracks formed at the supports at an average end load of 10 kips (total load of 20 kips). At an average end load of 15 kips, flexural and horizontal cracks were present at both ends of the splice region and both supports (Figure 3.36). At an average end load of 40 kips, a 45-mil width flexural crack and 35-mil width horizontal crack were recorded. At this point, the beam was unloaded. The load was reapplied, and at the last load prior to failure at which cracks were marked (average end load of 40 kips), the maximum width of the cracks had not increased from first loading (Figure 3.34). Although the crack width was approximately the same, several cracks had increased in length.

Figure 3.34 – Maximum crack width vs. average end load for Beam 5.

Figure 3.35 – Crack map for Beam 5. Numbers indicate maximum average end load when cracks marked. See Figure C.5 in Appendix C for greater detail.

Figure 3.36 – Beam 5, northeast splice region with horizontal crack, 15 kip end load.

Failure occurred at an average end load of 48 kips (total load of 96 kips), slightly lower than the failure load for Beam 4 (average end load of 52 kips, total load of 105 kips), which was

subjected to monotonically-increasing load up to failure. At failure of Beam 5, the concrete above the cold joint separated from the remainder of the beam, with the horizontal crack propagating along the cold joint throughout a region that was somewhat longer than the splice region. A small region near the centerline was restrained by the No. 3-bar hoop (Figure 3.37) and had a tighter horizontal crack and a failure surface that passed through the top of the beam in the vicinity of the hoop, as shown in Figure 3.35. As with the other beams, large flexural cracks were also present near both ends of the splice region (Figure 3.38).

Figure 3.37 – Beam 5, centerline showing separation of concrete, 48-kip end load.

Figure 3.38 – Beam 5, splice region, 48-kip end load.

3.3.4 Beam 6 (cold joint, cycled)

3.3.4.1 Beam 6 load-deflection curve

The configuration and loading protocol of Beam 6 were similar to those of Beam 5. The beams were cast using the same procedures and at the same time and were tested in the same manner, except that unloading was much slower for Beam 6 and the beam was inspected for cracks more often during the second loading. The testing protocol for Beam 6 is presented in Table 2.5.

The individual load cell readings are plotted versus total deflection in Figure 3.39. As shown in Figure 3.39, the readings for the four load cells were identical, which verifies the assumption in Section 3.3.3 that the load was evenly distributed on the four load rods.

Figure 3.39 – Individual load cell readings (Beam 6)

The total load versus total deflection for Beam 6 is plotted in Figure 3.0. Overall, Beam 6 performed very similar to Beam 5. Yielding of the flexural reinforcement was observed at a total load of 92 kips and a total displacement of 2.7 in., compared with 91 kips and 2.7 in. for Beam 5. The maximum horizontal crack width at the unloading point was 30 mils (0.03 in.), compared with 35 mils (0.035 in.) for Beam 5. Beam 6 also failed due to splice failure (Figure 3.41) at a total load of 100 kips, corresponding to a bar stress of 69 ksi, and a total deflection of 4.7 in. (versus 96 kips and 3.6 in. for Beam 5).

Figure 3.40 – Total load vs. total deflection for Beam 6 (with a cold joint)

Figure 3.41 – Beam 6 (with a cold joint) at failure

3.3.4.2 Crack progression-Beam 6

Maximum measured crack width versus load for Beam 6 is shown in Figure 3.42; the crack map for Beam 6 is presented in Figure 3.43. The first flexural cracks formed at the east splice region and support at an average end load of 10 kips. At an average end load of 25 kips, flexural and horizontal cracks were present at both ends of the splice region and both supports (Figure 3.44). At an average end load of 40 kips, a 35-mil (0.035 in.) wide flexural crack and 30-mil (0.03 in.) wide horizontal crack were recorded. At this point, the beam was unloaded. The load was reapplied, and at the last load prior to failure at which cracks were marked (average end load of 40 kips), the crack width had not increased with respect to first loading (Figure 3.42). Although the maximum crack widths remained the same, several cracks had increased in length.

Figure 3.42 – Maximum crack width vs. average end load for Beam 6.

Figure 3.43 – Crack map for Beam 6. Numbers indicate maximum average end load when cracks marked. See Figure C.6 in Appendix C for greater detail.

Figure 3.44 – Beam 6, splice region with horizontal crack, 25-kip end load.

Failure occurred at an average end load of 50 kips, slightly lower than for Beam 4 (average end load of 52 kips, total load of 105 kips), and higher than Beam 5 (average end load of 48 kips, total load of 96 kips). As observed in Beams 2 through 5, at failure occurred at the cold joint with the upper concrete separating from the remainder of the beam, with the horizontal crack propagating along the cold joint between the pedestal supports. As for Beam 5, a small region near the centerline was restrained by the No. 3-bar hoop (Figure 3.45) and had a tighter horizontal crack and a failure surface that passed through the top of the beam in the vicinity of the hoop, as shown in Figure 3.49. As in the case of the other beams, large flexural cracks were also present near both ends of the splice region (Figure 3.46).

Figure 3.45 – Beam 6, centerline showing separation of concrete, 50 kip end load.

Figure 3.46 – Beam 6, splice region, 50-kip end load.

4 <u>Summary and Conclusions</u>

The effect of preexisting cracks, oriented in the plane of and parallel to the reinforcing steel, on the strength of No. 11-bar lap splices was investigated by testing six beams – three with a splice length of 79 in. and three with a splice length of 120 in. One of the beams with a 79-in. splice was cast monolithically and loaded monotonically to failure. To simulate the cracks, the other five specimens were cast with a cold joint at the mid-height of the reinforcing steel. Two beams (one with a 79-in. splice and one with a 120-in. splice) were loaded monotonically to failure. The other three beams were pre-loaded to develop horizontal cracks in the face of the cold joint, unloaded and then loaded to failure; those beams developed horizontal cracks with widths of 20, 30 and 35 mils (0.02, 0.03, 0.035 in.) just prior to unloading. The test results are summarized below:

- 1. For the beam with a splice length of 79 in. and cast with monolithic concrete, the reinforcing steel yielded and the beam failed in flexure.
- For the beam with a splice length of 79 in., cast with a cold joint, and subjected to monotonically-increasing load to failure, splice failure took place at a bar stress of 62 ksi, about 8% below the bar yield strength of 67 ksi.
- 3. For the beam with a splice length of 79 in., cast with a cold joint and subjected to cyclic loading, horizontal cracks with a maximum width of 20 mils (0.02 in) developed prior to failure. Splice failure took place prior at a bar stress of 57 ksi, about 15% below the.bar yield strength.
- 4. For the beam with a splice length of 120 in., cast with a cold joint, and subjected to monotonically-increasing load, the reinforcing steel yielded prior to a splice failure, which occurred in the strain-hardening region of the stress-strain curve at a bar stress of 72 ksi.
- 5. For the two beams with a splice length of 120 in., cast with a cold joint, and subjected to cyclic loading, horizontal cracks with maximum widths of 30 and 35 mils (0.03 and 0.035 in.) developed prior to splice failure, which occurred at bar stresses of 67 and 69 ksi, respectively, values that equaled or exceeded the bar yield strength..

The following conclusions are based on the test results and analyses presented in this report.

- 1. The methods described in this report provide a viable means of simulating a crack in the plane of flexural reinforcement.
- The cyclically load beams incorporating a cold joint to simulate crack in the plane of the reinforcement exhibited slightly reduced lap splice capacity compared to the monotonically loaded beams.
- 3. In the presence of a simulated crack in the plane of the reinforcing bars, the lap-spliced No. 11 bars with a 79-in. splice length achieved bar stresses of 62 and 57 ksi.
- 4. In the presence of a simulated crack in the plane of the reinforcing bars, the lap-spliced No. 11 bars with a 120-in. splice length achieved bar stresses greater than or equal to the yield strength, 67 ksi.

References:

ACI Committee 318. (2011). *Building Code Requirements for Structural Concrete and Commentary* (ACI 318-11), American Concrete Institute, Farmington Hills, MI, 430 pp.

ACI Committee 408. (2003). Bond and Development of Reinforcement, *Bond and Development* of Straight Reinforcing Bars in Tension (ACI 408R-03), American Concrete Institute, Farmington Hills, MI, 49 pp.

ACI Committee 408. (2009). *Guide for Lap Splice and Development Length of High Relative Rib Area Reinforcing Bars in Tension and Commentary* (ACI 408.3R-09), American Concrete Institute, Farmington Hills, MI, 12 pp.

ASTM C31. (2010). *Standard Practice for Making and Curing Concrete Test Specimens in the Field* (ASTM 31/C31M-10), ASTM International, West Conshohocken, PA, 6 pp.

ASTM C78. (2010). Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading) (ASTM C78/C78M-10), ASTM International, West Conshohocken, PA, 4 pp.

ASTM C138 (2012). Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete (ASTM C138/C138M-12), ASTM International, West Conshohocken, PA, 4 pp.

ASTM C143. (2010). *Standard Test Method for Slump of Hydraulic-Cement Concrete* (ASTM C143/C143M-10a), ASTM International, West Conshohocken, PA, 4 pp.

ASTM C172. (2010). *Standard Practice for Sampling Freshly Mixed Concrete* (ASTM C172/C172M-10), ASTM International, West Conshohocken, PA, 3 pp.

ASTM C496. (2011). Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens (ASTM C496/C496M-11), ASTM International, West Conshohocken, PA, 5 pp.

ASTM C1064. (2011). Standard Test Method for Temperature of Freshly Mixed Hydraulic-Cement Concrete (ASTM C1064/C1064M-11), ASTM International, West Conshohocken, PA, 3 pp.

Nawy, Edward G. (2003). *Reinforced Concrete: A Fundamental Approach*, Fifth Edition, Pearson Education Inc., Upper Saddle River, NJ, 821 pp.

Nilson, A. H., Darwin, D., and Dolan, C. W., *Design of Concrete Structures*, 14th Ed., McGraw-Hill, New York, 2010, 795 pp.

Seliem, H. M., Hosny, A., Rizkalla, S., Zia, P., Briggs, M., Miller, S., Darwin, D., Browning, J., Glass, G. M., Hoyt, K., Donnelly, K., and Jirsa, J. O. (2009). "Bond Characteristics of High-Strength ASTM A1035 Steel Reinforcing Bars," *ACI Structural Journal*, Vol. 106, No. 4, July-Aug., pp. 530-539.
Appendix A: Pilot Tests – Preliminary Study of the Effect of Simulated Cracks on Lap Splice Strength of Reinforcing Bars using Beams with Single Splices

1. Introduction

This appendix presents the findings of a pilot study consisting of two lap splice beam tests that were performed to investigate how a test specimen with a preexisting crack parallel to the plane of the reinforcement could be developed and tested. The test program described in the body of this report was developed using lessons obtained in this pilot study.

The two beams were cast simultaneously and tested monotonically to failure seven days after casting. Because this project involves a larger number of physical simulations, the testing of these two beams is referenced throughout the report as Stage 1 of the project. Both beams had main flexural reinforcement consisting of three No. 11 bars, two of them continuous and one of them spliced at the center of the beam (Figure A.1). The splice lengths in the two beams were 33 in. and 79 in., respectively. All other dimensions and material properties were identical. The beam with a splice length of 33 in. will be referenced throughout this appendix as Beam A1 and the beam with a splice length of 79 in. will be referenced as Beam A2.

The two beams were instrumented with strain gages placed on all bars at the edge of the splice region (Figure A.2). Beam displacements and applied loads were monitored during the tests using displacement transducers and load cells.

The following sections present brief descriptions of the beams, the test process, and outline the major findings from the tests.

2. <u>Beam Casting</u>

Casting was performed in two separate stages. The first stage of the casting process consisted of placing concrete over the full depth of the beam at the end sections and up to the mid-height of the flexural reinforcement in the splice region (Figs. A.1 and A.3). The first concrete was placed on May 3, 2012. The concrete surface at the location of the cold joint was roughened and the beam was wet-cured for 24 hours (Figure A.4). Two layers of painters tape were placed adjacent to the bars to simulate the effects of a preexisting crack parallel to the plane of the flexural reinforcement (Figure A.5). Concrete was placed above the cold joint on May 4, and the beams were subsequently moist cured for 7 days.

Figure A.1 – Reinforcing steel drawing. (a) Beam A1 – specimen with a 33-in. splice length. (b) Beam A2 – specimen with a 79-in. splice length

Figure A.2 – Strain gages placed on bars at the edge of the splice region of Beam A2.

Figure A.3 – Beam A2 after first concrete placement was completed.

Figure A.4 – Beam A1 being moist cured after the first placement was completed.

Figure A.5 – Painters tape placed to simulate a preexisting crack at the plane of the reinforcement in Beam A2.

3. Test apparatus and loading protocol

The two beams were tested using a four-point loading configuration. To facilitate inspection of the splice region during the test, the loads were applied in the downward direction (Figure A.6) so that the main flexural reinforcement would be located at the top of the beam. The splice region was located between the two supports (Figure A.7), in the central constant moment region of the beam.

In addition to strain gages, the beams were instrumented to measure displacement and load. The four load rods used in the test were instrumented to record load, and displacements were recorded using displacement transducers and dial gages for redundancy. Three displacement transducers were used to monitor the displacement at the center of the beam and at each of the two load points (Figure A.6). Dial gages were mounted at a distance of 3 in. from the load points.

Loads were applied with four hydraulic rams connected to a manual pump through a distribution system with two separate manifolds. The manifold system allowed adjustments in the pressure of each ram separately and adjustment of the pressure in each pair of rams allowing for loading in tandem. The force in each of the four load rods (Figure A.6) was monitored throughout the test and the pressure in the rams was constantly adjusted to maintain the force in each of the rods approximately equal.

Figure A.6 – Test apparatus

Figure A.7(a) – Splice region of Beam A2 prior to loading

Figure A.7(b) – East support of Beam A2 prior to loading

The loading protocol consisted of monotonically-increasing load applied at both the ends of the beams. Loading was paused at increments in the total force of 10 kips (5-kip increments applied at each end of the beam) to monitor crack widths, mark crack locations, and record dial gage readings (Figure A.8). After all these quantities were recorded, loading resumed until the next increment was completed. Given the potential for brittle failure and the large amount of energy stored in the beam, crack location, crack width, and dial gage readings were not recorded after the total load exceeded 140 kips (forces at beam ends exceeded 70 kips). After this point, the load was increased steadily until the end of the test. Measurements from load and displacement sensors were recorded without interruption during the test.

Figure A.8 – Marking cracks during test

4. Material Properties

The beams were tested on May 10, 2012, seven days after initial casting. On the day of the test the compressive strength of the concrete was 5090 psi in the body of the beam and 5150 psi above the cold joint.

A segment of the No. 11 bars used in the beams was tested in tension. The stress-strain curve for the No. 11 bar is shown in Figure A.9. To avoid damage, the extensometer was

removed at approximately 3% elongation; force was recorded until failure. As shown in the figure, the No. 11 bar did not have a well-defined yield point. The yield stress calculated using the 0.2% offset method was 71 ksi, the proportional limit was approximately 67 ksi, and the measured elastic modulus was 27,666 ksi. The tensile strength of the steel was 108 ksi.

Figure A.9 – Measured stress-strain curve for the No. 11 bar used in the beams

5. Test Results

The load-deflection curves for Beams 1 (33-in. splice) and 2 (79-in. splice) are shown in Figures A.10 and A.11, respectively. The displacement shown in both figures was calculated by adding the average displacement at the two load points and the displacement at the center of the beam. The load shown in Figures A.10 and A.11 corresponds to the total load applied to the beam. Based on the shape of the load-deflection curves shown in Figures A.10 and A.11, it is concluded that a splice failure took place in Beam A1 and a flexural failure occurred in Beam A2.

For Beam A1 (33-in. splice length), the peak total load recorded was 140 kips, at a corresponding total displacement of 1.14 in. (Figure A.10). At a total load of 140 kips, the stress in the bars calculated using elastic cracked section theory was approximately 54 ksi. After the displacement exceeded 1.14 in., the total load dropped in a sudden manner to approximately 133

kips. If it is assumed that the tension force is carried in its entirety by the two continuous bars, a total force of 133 kips corresponds to a calculated bar stress equal to the yield stress of 71 ksi (based on linear elastic cracked section theory). These calculations indicate that splice failure occurred at a displacement of 1.14 in. and that the splice lost all its load carrying capacity in a sudden manner. The total load tended to increase again at displacements greater than 1.6 in., which is attributed to the effects of strain hardening in the two continuous bars.

The load-deflection curve for Beam A2, with a splice length of 79-in., is presented in Figure A.11. Loading was stopped when crushing of the concrete in the compression zone was observed in the constant moment region, in the areas adjacent to the two beam supports, at a total displacement of approximately 2.5 in. Unlike the curve for Beam A1, there was no sudden drop in load associated with failure of the splice. In the case of Beam A2, a sharp decrease in the slope of the load-deflection curve was observed at a total load of approximately 172 kips and total displacement of approximately 1.4 in. The stress in the three bars calculated based on momentcurvature analysis at this load is approximately 67 ksi (Table A.1), which corresponds to the observed proportional limit of the measured stress-strain relationship of the steel (Figure A.9). The calculated steel stress indicates that the sharp decrease in the slope of the load-deflection curve at 172 kips was caused by yielding of the reinforcing steel, not by failure of the splice. After yielding began, the total load continued to increase with increasing displacement, as the reinforcing steel strain hardened. The maximum load prior to flexural failure was approximately 186 kips, which corresponds to a bar stress of 72 ksi in all three bars (Table A.1). At a total load of 186 kips, horizontal splitting cracks on the beam top surface were observed (described in more detail below).

After the tests we completed, the beams were autopsied to determine the actual cover on the bars. For Beam A1, the top cover was 4 in., and side covers to the continuous bars were 3.5 (North) and 3.75 in. (South). For Beam A2, the top cover was 4 in., and side covers to the continuous bars were 3.5 in. (North and South). (These values are reflected in the bar stresses in the previous paragraph and summarized in Table A.1)

Figure A.10 – Total load vs. total deflection for Beam A1 (33-in. splice length)

Figure A.11 – Total load vs. added deflection for Beam A2 (79-in. splice length)

Loads, moments, and bar stresses for the beams were calculated assuming that loads and reactions acted along the longitudinal centerline of the beam. Reactions and moments were calculated based on load cell readings and the weight of the loading assemblies. The self-weight of the beam was included in the calculations based on average beam dimensions and an assumed concrete density of 150 pcf.

The calculated moment, bar stress at splice failure, and calculated bar stress using the splice strength equation developed by ACI Committee 408 (2003) are shown in Table A.1. It is important to note that the splice strength expression developed by Committee 408 was calibrated on the basis of beams without preexisting cracks in the plane of the flexural reinforcement, and for this reason are presented only as a reference. For Beam A1 (with a 33-in. long splice), the bar stress at splice failure calculated based on a moment-curvature analysis was approximately 54 ksi. The calculated splice strength using the expression developed by ACI Committee 408 (ACI 408R) was 70 ksi. For Beam A2 (with a 79-in. long splice), the calculated bar stress at flexural failure was approximately 72 ksi, while the calculated splice strength using the ACI 408 splice strength using the ACI 408 splice strength using the XI approximately 54 ksi.

Splice	Failure mode	Total load at	Calculated	Inferred bar stress at	Predicted bar stress
length		splice failure,	moment at splice	failure based on	(uncracked concrete-
		kips	failure, kip-ft	moment-curvature	ACI 408R)
				relationship, ksi	
33-in.	splice failure	140	355	54	70
79 in.	flexural	186	472	72	140
	failure				

Table A.1 – Bar stresses at splice failure

The strain in the No. 11 bars was measured using strain gages located 2 in. outside the splice region (Figure A.2). The relationships between measured strain and total load are shown in Figures A.12 and A.13 for beams 1 and 2, respectively.

As shown in Figure A.12, the strain in the spliced bars (East-center and West-center gages) of Beam A1 increased to a maximum of 1750 and 1700 microstrain, respectively, and then dropped in a sudden manner. The maximum strain in the spliced bar was recorded at a total load of approximately 130 kips and corresponds to a bar stress of approximately 50 ksi, which is very close to the failure value of 54 ksi inferred on the basis of moment-curvature analysis (Table A.1). Strain readings from the east-center gage on the spliced bar show that the strain

dropped from approximately 1700 to approximately 1300 microstrain at a total load of 130 kips, corresponding to a sudden reduction in capacity of approximately 25%. When the total load reached 140 kips, the strain in the east-center gage dropped suddenly to almost zero. Strain readings from the east continuous bar (East-Side 1) show a sudden increase from 2100 microstrain to more than 2500 microstrain at the failure total load of 140 kips. The strain gage readings indicate that failure of the splice led to a rapid decrease in the stress in the spliced bars, and that the tension force that was lost due to failure of the splice was transferred to the continuous bars, causing yielding of the continuous bars at a total force of 140 kips.

For Beam A2 (79-in. long splice), the recorded strains show a plateau (Figure A.13) due to exceeding the limiting strain allowed by the gain in the data acquisition system.

Figure A.12 – Measured strain in the reinforcing bars vs. total load for Beam A1 (33-in. splice length). (Note: The beam was oriented in an east-west direction; "center" identifies strain gages on the spliced bars and "side" means strain gauges on the continuous bars)

Figure A.13 – Measured strain in the reinforcing bars vs. total load for Beam A2 (79-in. splice length). (Note: The beam was oriented in an east-west direction; "center" identifies strain gages on the spliced bars and "side" means strain gauges on the continuous bars)

6. Beam crack patterns

Figures A.14 through A.18 are photographs taken after the conclusion of the two tests. For Beam A1 (33-in. splice length), splitting cracks were observed on the top surface between the vertical edges of the cold joint (Figures A.14 and A.15). The cracks were approximately ¹/₄ in. wide, as shown in Figure A.16. Splitting cracks above the splice were also noted in Beam A2 (79-in. splice length) (Figures A.17 and A.18), although they were much narrower than those observed in the Beam A1.

The crack patterns for both beams show that the side stirrups were effective in keeping the cover in place, even after failure of the splice for Beam A1. In the case of Beam A1, the cracks were wider, which is consistent with the sudden drop in bar force that occurred at splice failure. For Beam A2, the cracks were much narrower, and it is apparent that the splice was able to sustain the same bar force as the continuous bars at displacements large enough to cause flexural failure of the beam.

Figure A.14 – Splitting crack at the top of the splice region for Beam A1 (33-in. splice length).

Figure A.15 – Crack pattern in the splice region for Beam A1 (33-in. splice length).

Figure A.16 – Splitting crack at the top of the splice region of Beam A1 (33 in. splice length).

Figure A.17 – Splitting crack at the top of the splice region of Beam A2 (79 in. splice length).

Figure A.18 – Crack pattern in the splice region of Beam A2 (79-in. splice length)

Appendix B: Reinforcing Steel Drawings

Figure B. 1 – Reinforcing steel drawing for beams with 79 in. splice length - monolithic

Figure B.2 – Reinforcing steel drawing for beams with 79 in. splice length – with crack

Figure B.3 – Reinforcing steel drawing for beams with 120 in. splice length – with crack

Appendix C: Detailed crack maps of Beams 1 – 6

(a)

(b)

92

North Face

(c)

Figure C.1 – Crack map for Beam 1. Numbers indicate maximum average end load when cracks marked.

North Face

(c)

Figure C.2 – Crack map for Beam 2. Numbers indicate maximum average end load when cracks marked.

(a)

(c)

Figure C.3 – Crack map for Beam 3. Numbers indicate maximum average end load when cracks marked.

(a)

(b)

(c)

Figure C.4 – Crack map for Beam 4. Numbers indicate maximum average end load when cracks marked.

(c)

Figure C.5 – Crack map for Beam 5. Numbers indicate maximum average end load when cracks marked.

(c)

Figure C.6 – Crack map for Beam 6. Numbers indicate maximum average end load when cracks marked.

Appendix D: Reinforcing steel mill certification and deformation measurements

NUC	OR
NUCOR STI	EEL KANKAKEE, INC.

Mill Certification 1/3/2012 NUCOR STEEL KANKAKEE, INC. One Nucor Way Bourbonnais, IL 60914-422 (615) 937-3131 Fax: (815) 939-5599

Sold To:	AMBASSADOR STEEL CORP PO BOX 2340 KOKOMO, IN 46904-2340 (765) 453-2100 Fax: (765) 455-4225
	I am freat in a wear

Ship To:	AMBASSADOR STEEL CORP-EPOXY FOR EPOXY COATING ONLY KOKOMO. IN 00000 (765) 453-2100 Fax: (765) 453-7452
	Fax: (765) 453-7452

0.35% EA708: A70	1.0 06 CAF	8% RBON EC	0.015%	0.047%	0.24%	0.37%	0.30%	0.15%	0.082%	0.016%	6.002%	0.58%
С	M	In	Р	S	Si	Cu	NI	Cr	Мо	v	Съ	CEA706
elt Date: 12	2/22/20	011										
hereby certify in	het the m	uterial desp	ribed herein ha	is been menufach	ned in accordance	to with the specifi	ations and stand	anis listed above	and that it satisfies it	hose requireme	erits.	
Customer S	Spec							Cu	Customer Part # \$109			
Descrip	noile	A615M GR 420 (Gr60)							Load Number	K1-5107878		
Proc	duct	36/#11 Rebar 60' A615M Gr 420 (Gr60)							B.L. Number	K1-43616	35	
1	Size	36/#11 Rebar							Heat #	KN11106	088	
Gr	ade	ASTM A	4815/A815/	M-096 GR 60	(420) AASH	TO M31-07			Lot #	KN11106	08801	
Product Gr	roup	Rebar		_			-		Part Number	9000003	57204200	
Customer	P.O.	000010	00107878 Sales Order 280865.12		0000107878							

Bend OK

Weight Variation -002.9% %

Elongation: 14% in 8"(% in 203.3mm) Avg Deformation Height: 0.079in

ALL MANUFACTURING PROCESSES OF THE STEEL MATERIALS IN THIS PRODUCT, INCLUDING MELTING, HAVE OCCURRED WITHIN THE UNITED STATES ALL PRODUCTS PRODUCED ARE WELD FREE. MERCURY, IN ANY FORM, HAS NOT BEEN USED IN THE PRODUCTION OR TESTING OF THIS MATERIAL.

Curtis Glenn Division Metallurgist

Page 2 of 2

N6MG-10 January 1, 2012

Figure D1 – Mill certification of No. 11 bar

Mill	Cert	ifica	tion	Deta	ails													
Customer: Ambassador Steel Corporation					Date: 11/18/2011													
		Bill of Li	ading #:	435560-	NUK							Tag #	: KN111	1128344				
	Ch	ief Meta	allurgist	Curtis G	lenn							Mil	Nucor	Kankakee				
			Heat #:	KN1110	558901							Size	: 5					
			Product:	: 16MM(#	5) REBAR	R X 60-0	GR420(50)				Division	: Kansas	City, MC)			
			Grade:	60														
		Cor	nments:	8														
Chemic	al Prop	erties -	Wt.%															
Mn	Cu	C	N	Si	Cr	Mo	S	Р	٧	Nb	Pb	Sn	TI	N	Ca	A	B	Ceq
1.000	.390	.360	.250	.200	.130	.063	.050	.014	.009	.002	.000	.000	.000	.000	.000	.000	.000	.560
Carbon	Equiva	lent= 0).56															
Physica	l Prope	rties																
						Imp	erial =	psi										
				Tens	ile: 101,8	355	- 90 - 128 - 13											
				Yie	eld: 67,51	14												
		Elong	ation (in	1 8 inche	es): 14.62	2												
		Elong	ation (in	1 2 inche	s):													
				Rend To	oct: OK													
				Denu Te	St. OK													
The test	ting was	conduct	ed in acc	ordance	with the	requirer	nents of	this spe	cification.	All mel	ting and	manufac	turina p	rocesses				
were pe	rformed	in the U	Inited Sta	ates of Ar	merica.		11.11											

(De)

Curtis Glenn Chief Metallurgist

Figure D2 – Mill certification of No. 5 bar

Mill Certification Details

Customer: Ambassador Steel Corporation	Date: 2/16/2011
Bill of Lading #: 421874-NUK	Tag #: KN1111018783
Chief Metallurgist: Curtis Glenn	Mill: Nucor Kankakee
Heat #: KN1110073801	Size: 10/#3 Rebar
Product: Rebar ASTM A615/A615M-09b GR 60[420] AASHTO M31-07 10/#3 Rebar	Division: Kansas City, MO
Grade: A61560	
Comments:	

Chemical Properties - Wt.%

Carbon Equivalent= 0.56

Physical Properties

Imperial = psi

Tensile: 104,944

Yield: 68,917

Elongation (in 8 inches): 16.00

Elongation (in 2 inches):

Bend Test: OK

The testing was conducted in accordance with the requirements of this specification. All melting and manufacturing processes were performed in the United States of America.

Curtis Glenn Chief Metallurgist

Figure D3 – Mill certification of No. 3 bar

Appendix E: Concrete Mixture Proportions

Sieve Size	Percent Retained on Each Sieve					
Sample	Granite 1 ¹ / ₂ in.	Granite ³ / ₄ in.	Pea Gravel	Sand		
Specific Gravity	2.71	2.71	2.60	2.62		
Absorption, %	0.65	0.98	0. 93	0.86		
37.5-mm (1 ¹ / ₂ -in.)	0%	0%	0%	0%		
25-mm (1-in.)	19.0%	0%	0%	0%		
19-mm (¾-in.)	28.7%	4.5%	0%	0%		
12.5-mm (½-in.)	34.5%	38.7%	0%	0%		
9.5-mm (³ / ₈ -in.)	14.2%	30.6%	0%	0%		
4.75-mm (No. 4)	3.1%	24.5%	11.0%	1.7%		
2.36-mm (No. 8)	0%	0.9%	44.8%	7.8%		
1.18-mm (No. 16)	0%	0%	31.2%	16.9%		
0.60-mm (No. 30)	0%	0%	6.0%	27.7%		
0.30-mm (No. 50)	0%	0%	2.6%	36.4%		
0.15-mm (No. 100)	0%	0%	1.1%	8.5%		
0.075-mm (No. 200)	0%	0%	03%	0.9%		
Pan	0.5%	0.7%	2.9%	0.1%		

 Table E.1 – Aggregate gradations

	Trial Batch	Beam #1, 2, 3				Beam #1, 2, 3				
		Below cold joint		Above co	ld joint	Below co	ld joint	Above col	d joint	
		Design	Actual	Design	Actual	Design	Actual	Design	Actual	
w/c	0.42	0.42	0.43	0.42	0.43	0.42	0.42	0.42	0.41	
Cement content, lb/yd ³	588	588	592	588	580	588	587	588	590	
Water content, lb/yd ³	246	246	255	246	251	246	245	246	244	
Granite 1 ½ in., lb/yd ³	687	687	687	687	675	687	688	687	690	
Granite ³ / ₄ in., lb/yd ³	1050	1050	1050	1050	1060	1050	1055	1050	1055	
Pea Gravel, lb/yd ³	836	836	838	836	837	836	844	836	840	
Sand, lb/yd ³	720	720	718	720	724	720	739	720	730	
Water Reducer, (ADVA 140M), oz/yd ³	24	40*	55	50	50	60		60		
Batch Size, yd ³	0.04	9		1		10		2		
Slump, in.	3.5	2.2	5	2.25		3		2.75		
Unit Weight, lb/ft ³	152	15.	3	152		154	1	150		
Temperature, °F	81	82	2	76.4		82		86		
Compressive Strength, psi										
3 –Day strengths				3640+				4520^{+}		
4-Day Strengths	3915	401	0			431	\mathbf{O}^+			
6-Day Strengths	4310	4670		4330)++	468	0	5490 ⁺	+	
7-Day Strengths	4490	5330++				5230)++			
Modulus of										
Rupture		405	++			270	++	470+	+	
ASTM C/8		435				5/0		4/0		
(monolithic)		570	++			600	++	700^{+-}	F	
ASTM C96 (cold joint)		140	++			274++				

Table E.2 – Mixture proportions and concrete properties

* An extra 15 oz/yd³ of water reducer was added on the job site. * Tests were performed on the day when the forms were removed. ** Tests were performed on the day of beam-splice specimen testing.

Appendix F: Data recording forms

Table F.1 – Dimensions of formwork

Specimen ID:	Date:	
Measured by:	Checked by:	

	Width	Height	Length
Design	18 in.	24 in.	
Tolerance	$\pm \frac{1}{2}$ in.	$\pm \frac{1}{2}$ in.	± 1 in.
Measurement 1			
Measurement 2			
Measurement 3			
Measurement 4			
Measurement 5			
Measurement 6			
Measurement 7			
Measurement 8			
Measurement 9			

Specimen ID:	Date:	
Measured by:	Checked by:	

$\label{eq:Table F.2-Dimensions} Table \ F.2-Dimensions \ of reinforcing \ steel \ within \ in \ the \ test \ region$

		Side cover	Bottom to top of all-thread rod	Splice length
Design		3 in.		
Tolerance	-	$\pm \frac{1}{2}$ in.	$\pm \frac{1}{2}$ in.	$\pm \frac{1}{2}$ in.
	Measurement 1			
Splice 1	Measurement 2			
	Measurement 3			
Splice 2	Measurement 1			
	Measurement 2			
	Measurement 3			

Measured bar diameter:

Splice 1:_____

Splice 2:_____

Table F.3 – Plastic concrete testing and concrete compressive strength

Specimen ID:	Date:	
Measured by:	Checked by:	

Plastic concrete testing

Slump, in.	Unit weight, lb/ft ³	Concrete temperature, °F

Concrete compressive strength

Cylinder	Cast	Test	Age,	Dia.,	Area,	Load,	Strength,	Notes
ID	date	date	days	in.	in. ²	kips	psi	

Table F.4 – Test setup – span spacing

Specimen ID:	Date:	
Measured by:	Checked by:	

	Measurement	Measurement 2,	Measurement	Average, in.
	1, in.	in.	3, in.	
Pin centerline to roller				
centerline				
East end to east support				
East end to east splice end				
East end to beam				
centerline				
East end to west splice end				
East end to west support				
East end to west end				

Table F.5 – Dial gage readings

Specimen ID:	Date:	
Measured by:		

	Load, kips	Dial gage 1, in.	Dial gage 2, in.	Dial gage 3, in.
Reading 1				
Reading 2				
Reading 3				
Reading 4				
Reading 5				
Reading 6				
Reading 7				
Reading 8				
Reading 9				
Reading 10				
Reading 11				
Reading 12				
Reading 13				
Reading 14				
Reading 15				
Reading 16				
Reading 17				
Reading 18				
Reading 19				
Reading 20				

Appendix G: Load cell and displacement transducer calibration

The load cells and displacement transducers were calibrated before and after testing each three beams. A least-squares linear regression analysis was performed on force and displacement versus sensor output to determine the calibration constant. The calibration constant is presented in Tables G.1 and G.2 and the force and displacement versus sensor output are plotted in Figures G.2 to G.21.

1, 2, and 3								
	Load Cell A	Load Cell B	Load Cell C	Load Cell D	LVDT	String Pot 1	String Pot 2	note
Calibration #1, slope	17930	17729	17705	17651	-0.2011	-1.986	-1.966	before testing Beams #1,2,and 3
Calibration #2, slope	17796	17758	17731	17801	-0.2011	-1.985	-1.973	After testing Beams #1,2,and 3
Deviation, %	0.74	0.16	0.15	0.84	0	0.02	0.35	

 $\label{eq:constraint} \textbf{Table G.1} - \textbf{Load cells and displacement transducers calibration before and after testing Beams}$

Table G.2 – Load cells and displacement	transducers	calibration	before and	after testing	g Beams
	4. 5. and 6				

	Load Cell A	Load Cell B	Load Cell C	Load Cell D	LVDT	String Pot 1	String Pot 2	note
Calibration #1, slope	17930	17729	17705	17651	-0.2011	-1.986	-1.966	before testing Beams #4,5,and 6
Calibration #3, slope	17938	17745	17809	17703	-0.2017	-1.988	-1.970	After testing Beams #4,5,and 6
Deviation, %	0.04	0.09	0.59	0.29	0.30	0.1	0.2	

Load cell output, volts

Figure G.1 – Load cell 2-0 calibration #1

Figure G.2 – Load cell 2-0 calibration #2

Load Cen output, voits

Figure G.4 – Load cell 2-1 calibration #1

Figure G.6 – Load cell 2-1 calibration #3

Load cell output, volts

Figure G.8 – Load cell 2-2 calibration #2

Figure G.10 – Load cell 2-3 calibration #1

Figure G.11 – Load cell 2-3 calibration #2

Figure G.12 – Load cell 2-3 calibration #3

Figure G.14 – LVDT calibration #2

Figure G.16 – String pot 1 calibration #1

Figure G.18 – String pot 1 calibration #3

Figure G.20 – String pot 2 calibration #2

Figure G.21 – String pot 2 calibration #3

Appendix H: Training forms, Trip tickets, concrete properties, specimen dimensions, and crack recording during beam tests Training Form (#1, 2, and 3 beams)

This form is prepared to indicate those who will work on casting the above mentioned beams have received proper training and they are qualified for what they will work on.

Last Name	First Name	ACI qualified? (if yes, certification #)	signature	date	
Al-Khafaji	Ali	No	-4/2-	5/22/12	Τ
Eisenbarth	Brad			art	Τ
Fink	Dalen	No	Cales Truck	Sleelin	Τ
Guernsey	Edward	No	El Car	5/22/12	Τ
Hawk	Kaleb				Т
Lyon	Adam	Yes	the bar	5/22/12	Т
O'Reilly	Matt	98206010	much OReillen	UNMUS	T
Peckover	Jeff	Yes 0114621L	1 Ter	5122/12	Τ
Pendergrass	Ben	Yes	1 the	5/22/12	T
Routh	Jon	No	the last	5/22/12	Т
Schneider	Aaron				T
Searle	Nate	Yes	fat but	5/24/12	Т
Shrestha	Pankaj	NO	Stella	5/24/12	T
Sperry	Jayne	100	Counce Shurt	5/22/12	T
Williams	Eric		11-1-11		Т
Yuan	Jiqiu	Yes 0/082687		5/24/12	T
Zhen	Chen	Yes.	Mar-	05/22/2012	Т
Jeronimus	Robbie	Qu	Rald 0	Starlin	T
(Jocityn (Joci)			in and Company	712-41-	T
Hanser	Jacinyn (Jaci)	Νυ	2 Hart	5/22/12	Т
Bukety	Breat	No	hart live	21/42/50	1

University of Kansas CEAE Department 2150 Learned Hall 1530 W. 15th St. Lawrence, Kansas 66045-7609 Phone: 785.864.3885 Fax: 785.864.5631

CONCRETE MIX DESIGN

Contractor:	KU
Project:	Bond Test- Beam #1, 2, and 3
Source of Concrete:	Ready Mix Concrete
Date:	5/24/2012
Placement Type:	Conventional

Material / Source or Designation / Blend ¹	Qu	antity (SSD)	S.G.		Yield, ft ³
Type I/II Cement / Cement Producer / 100%		588 lb	3.20		2.94
Water		246 lb	1.00	3	3.94
MCM -1.5 in. / Granite 1.5" / 20.86%		687 lb	2.71		4.06
MCM -0.75 in. / Granite 0.75" / 31.89%		1050 lb	2.71		6.21
Pea Gravel / Pea Gravel / 25.39% VPsand / VP Sand / 21.86% Total Air, percent Air Entraining Agent / Air R Us		836 lb	2.60	5 4 0 0	5.15
		720 lb	2.62		4.40
		0			0.27
		fl oz (US)	1.01		0.00
Superplasticizer / Admixtures R Us	4	0 fl oz (US)	1.20		0.02
1 The blend percentage indicated (by weight) is listed separate	ely for cementitie	ous materials and	aggregates.		27.00
Total Water Content (including water in admixtures), Ib			247		
Water / Cementitious Material Ratio:		0.42			
Concrete Unit Weight, pcf			152.9		
Farget Slump, in. 5 in.					
e Content, percent 25.55%					
Workability Factor (WF)	Target:	35.0	Actual:	32.1	
Coarseness Factor (CF)	Target:	57.9	Actual:	63.0	
Prepared On:	5/16/12 2:20 PM				

Prepared By:

Cast on 5/24/12 Las

Jiqiu Yuan
MCM Mi	dwest Co	oncrete		-	4					1		
INICIAI Ma	terials	48		_	LAWRENCE (785) 843-1688 * TOLL FREE (888) 244-2082						_	
(785) 843-1688 •	FAX (785) 843-1783				"QU	ALITY	AND SEI	RVICE S	INCE 1927	7 7 7		
PLANT TIME DA	05/24/1	ACCOUNT	656		TRUCK	35	DRIVER	IRK U	ON NOR	R.M.S.O	at S0S1	1.6
UNIV OF KARS	is - civ	ц. а¢.			DELIVERY ADD 15TH DEC.	RESS 8 IC PARM	LEA NG S THE L	E. TO	LEARH MEST	IED HA SIDE	Lí.	
PURCHASE ORDER KAN1006.373	SALES ORDER		TAX 6.8	CREDIT	2		1.61	1			SLUMP 5.00	in
LOAD OTY. PRODUC 9000 11562	150	DESCRIPTION (HE) (OP)	MIZD.	TER		OR	DERED 9. EIM	9. (LIVERED (38)	UNIT PRICE	AMOUA	a
LOADED ARR	IVE JOB SITE	START DISCHA	AGE	FINSH DISCHA	URGIE	ARRVE PU	ANT	SUB TOTAL				
8:59	*			*				DISCOUNT TAX TOTAL PREVIOUS T GRAND TOT	otal Tal			
	Tois batch of cond of water, if addit	rete is mixed with onal water is desir	the proper ed, please	ADDITIONAL I		Ga	illons	W		*		
Jundan	3 million	and the	- Start	1 ² - 1 - 1 - 1 - 1		UNLOADIN	O TIME ALLO	WED 30 MIN	UTES PEO TO		There is	
CALTION: Freehy mast cemes, moral, po HMM exposed this alway promptly with water Yany amantitoxic mitmial cells into the app.	ut or concrete may claim	a skar kritalson. Al-out de	ett contett «Alex	e possible and	RECEIVED IN G	EXT OOD CON	RA CHARGE P	OR OVER 30	MINUTES		1	1
RUTChaser waives	all claims for	oersonal or p	roperty d	amage cau	ay X used by sell	lar's true	rk when d	alivani is	made hew	and street	curb line	
If not paid as agree	ed, this credit	agreement p court c	rovides fo osts, atto	or your pay irney fees a	ment of rea	asonable action ap	e costs of gency feet	collection	n, including	g, but not	limited to,	
* Truch Dr 61.35 777 Load Stree Pla 9.690 CVDS 120 Naturial Design 65 400.61 0 0 0 0 0 0 194965 58.8 15 194965 58.8 15 194955 10 95946 728 12 95946 728 12 9594 1859 48 19594 1859 1858 15 Reford 1843 1859 18 19594 1 835 15 Reford 1843 1897 16 510000 5.400 10 5	i Mexe 3 Code 62224 1 246.87 1	User User Rotu 18 20 18 30 18 50 18 50 18 7 18 7 18 7 18 7 18 7 18 7 18 7 18 7	r 200501 tched .08 82. .08 12 .08 12 .09 12 .09 12 .09 12 .00 02 .00 02 .00 12 .00 12	Diap T Section Oty X Nor 6.83 8.855 6.815 8.955 8.955 8.955 8.195 8.105	1 Oken t G X. hois 2.385 0.235 0.935 Ramal Bes 6 (L. / Lo	A Plaix I ture B B Costocol Gastiocol Gastiocol Frid Costocol Frid Frid Costocol Frid Costocol Frid Frid Frid Frid Frid Frid Frid Frid	Ticks 72058 Age Actual W 200.00 gl 18 gl 18 gl 2 gl 10 Waters	t ID Sieq U t	T 1 me 8 2 50 L 02 7 80 	Date SZZA ad ID 105	712 Wdr 33.4	a l
12 boute ou	loted	Us	3 14	15.								

University of Kansas CEAE Department 2150 Learned Hall 1530 W. 15th St. Lawrence, Kansas 66045-7609 Phone: 785.864.3885 Fax: 785.864.5631

CONCRETE MIX DESIGN

Contractor:	KU
Project:	Bond Test- Beam #1, 2, and 3
Source of Concrete:	Ready Mix Concrete
Date:	5/24/2012
Placement Type:	Conventional

Material / Source or Designation / Blend ¹	0	Quantity (SSD)	S.G.		Yield, ft ³
Type I/II Cement / Cement Producer / 100%		588 lb	3.20		2.94
Water		246 lb	1.00		3.94
MCM -1.5 in. / Granite 1.5" / 20.86%		687 lb	2.71		4.06
MCM -0.75 in. / Granite 0.75" / 31.89%		1050 lb	2.71		6.21
Pea Gravel / Pea Gravel / 25.39%		836 lb	2.60		5.15
VPsand / VP Sand / 21.86%		720 lb	2.62		4.40
Total Air, percent		0			0.27
Air Entraining Agent / Air R Us	(m)	O fl oz (US)	1.01		0.00
Superplasticizer / Admixtures R Us	(50)	fl oz (US)	1.20		0.02
1 The blend percentage indicated (by weight) is listed separate	ly for cement	itious materials and	aggregates.		27.00
Total Water Content (including water in admixtur	es), Ib		247		
Water / Cementitious Material Ratio:			0.42		
Concrete Unit Weight, pcf			152.9		
Target Slump, in.			5 in.		
Paste Content, percent			25.55%		
Workability Factor (WF)	Target:	35.0	Actual:	32.1	
Coarseness Factor (CF)	Target:	57.9	Actual:	63.0	
Prepared On:		5/1/	112 3:20 044		
		J +1	0/12 2.20 PIVI		

Prepared By:

Carry on 5/25/12 3 -2

Jiqiu Yuan

MOM	Mic	twest Co	ncrete							
INICIA	Ma	terials	nerete			LAWRENCE (785) 843-1688 • TOLL FREE (888) 244-2082				
3645 E. 234 (785) 843	1688 ·	FAX (785) 843-1783	6			"QUALI	TY AND SI	ERVICE SINCE 1927"		
PLANT TIME	DAT.	E	ACCOUNT			TRUCK	DRIVER		TICKET	
10	:11	05/25/12	UKP	64969	_	0124	10.000	ROMA WISDON		常國約1528
UNIN OF K	ansa	IS - CIVI	П. ЕНӨ.			DELVERY ADDRESS	TONA 8 TREATE	ARMED HALL E. TO LEARNE LOT DN WEST S	D HAALS	
PURCHASE ORDER		SALES ORDER		TAX	CREDIT				SL	UMP .
KANAA65373	0000000		DEEDBIOTON	68	1	1	0000000	00000000	ALL BRIDE	19.80 in
1.00	1562	200	(HE); DP)	(14120)	TER		1_08	1.80	NIT PRICE	AMOUNT
LOADED 9±55	ARP	SI YE JOB SITE :	KART LADE START DISCHA :	AD CHA	RGE Insh discha :	ROE ARRY	re plant :	SUB TOTAL DISCOUNT TAX TOTAL PREVIOUS TOTAL		
		This batch of conce	the is mixed with t	the proper			Gallons	GRAND TOTAL		
	amoun instruct	t of water, if addition time driver,	mal water is desire	ed, please	ADDITIONAL V	NATER		By		
		- remaining the second second			*	UNLO	ADING TIME AL	LOWED 30 MINUTES PER TRIP		— — — —
CAUTION Franky mask servers, 	nortu; po-	r or concrete may cause (ekin initiation. Avoid on	ect contact where (constant over	RECEIVED IN GOOD	CONDITION	FOR OVER 30 MINUTES		
Davida	K	POUT OF REACH OF C	SLOPEN	i buruhi mencia a	ander	ву Х				2.1
Purchaser w	aives	all claims for p	ersonal or p	roperty da	mage cau	sed by seller's	truck when	delivery is made beyon	d street o	ourb line.
if not paid a	s agree	ia, this credit i	agreement p court c	rovides for osts, attor	r your pay ney fees a	ment of reasor and/or collectio	nable costs (in agency fe	of collection, including, es.	but not li	mited to,
Truch	Des	LVIET	User	1	isp T	teket the	m. Tick	art ID Times	Date	4.5
Lond Size	19.1.	Codie	Retu	rnigd.	Rby	111	* fige	Serg Lecar	I I.D	10
L. OO L. L.Y.O. Ristorial Deal MITER 20 NIPM140 St LINESSE 22 UNFSOR S	100 100 100 100 100 100 100 100 100 100	Repti 8 26.15 8 58.89 9 508.8	red Ha GL 88 GL 56 LH 56	Actived 89 (9). 89 (0) 	5 937 -0,595 0,985 -1,365	× Maisture	Actual 25, 99	la 78596 gi		
VPSIAN NCC39-5 1 INEXT 469	75111	735 1059 .68		7朝18 7朝18 07618 -勝位子	8,633 1,985	8.145 A 8.955 A	2	g1		
Actual 1	then He	tches: 1	0.301 0.1	CON LU	0.17	Ramal 9:	Str.54	et.		
Sluppi N.06 In	10	Mater in Tro	dir B.B B.	As just	Baters 8.	EL / Loss	Trix Bater:	: R. W. GL / ETB	+ 10 Hd	Hat was fit
IS'CA	68	(did)			0.15/					
					1	Contraction of the				
				5/						
				And - C	USTOME	COPY - 2				

Form 3: Plastic concrete testing and concrete compressive strength

Specimen ID:	Ream #1,2,3	Date:	5/24/2012
Measured by:	Note Searle	Checked by:	Jayre

			Pl	astic conc	rete testi	ng			
N. States	Slump, i	n.	ENC DIE	Unit weig	ght, lb/ft ³	Cor	ncrete tempo	erature, °F	
2	. 14 "			153	16/ft		82°F		
			To To Concr	the weigh text weigh Volume ete compi	1: 7-8 1: 0-24 ressive sti	4 16 04 16 47 ft ² rength			
Cylinde r ID	Cast date	Test date	Age, days	Dia., in.	Area, in.2	Load, kips	Strength, psi	Notes	
5/4 #l	5/24	5/23	4	6.015	28.416	113,000	3980 -	VII ala	
1/4 11	3/04	5/23	4	6.025	28.51	115,000	4030 1	- dala	
\$1/5 #1	5/25	5/28	3	6.022	28.48	105,000	3690	2.211	
\$/25 # 2	5/25	5/28	3	6.015	28.42	102,000	3590	23640	
\$/2\$##3	5/04	5/2	6	6.225	28.5	131,000	4600	1177	
Y24 #4	5/24	5/3	6	6,02	28.46	134500	4730	>4610	
5/24#1	- 104	5/31	7	6.015	28.42	146500	5150		
ha #2	Yay	3h1	7	6.009	28,36	159500	5620	\$5330	
to # 3	3/14	YY	7	5,995	28.23	147000	5210 /		
s/23 #1	Shis	351	6	5.995	28.23	(33.000	4710		
小井工	the	5/31	6	5.997	28 25	126000	4460-	+4330	
Shall 7	Shs	1/5/	6	5.994	28.22	108000	3830/		

Form 3: Plastic concrete testing and concrete compressive strength

Specimen ID:	Bean #1, 2, 3 top layer	Date:	5/25/2
Measured by:	NATE SEARLE	Checked by:	Tayne

Plastic concrete testing Unit weight, lb/ft³ Concrete temperature, °F Slump, in. 52 2 145 76.40F Nt container= 7.9810 Wt. container + couc. = 40.7210 Vol. container = 0.2997 ft3 Concrete compressive strength Area, in.² Cylinde Cast Test Dia., Age, Load, Strength, Notes r ID date date days in. kips psi

University of Kansas Flexure Beam Tests

DATE: 5/31/2012

BEAM TESTS: Beams 1, 2, 3

Flexure Beam ID*	Date Made	Height** in.	Width** in.	Date Tested	Load lb.	Age*** Days	Modulus of Rupture psi.
Mono-1	5/24/2012	6.04	6.27	5/31/2012	7750	7	610
Mono-2	5/24/2012	6.06	6.16	5/31/2012	6600	7	525
					Avg. Mo	nolithic	570
CJ-1	5/24/2012	6.08	6.12	5/31/2012	1200	7	95
CJ-2	5/24/2012	6.06	6.08	5/31/2012	2250	7	180
					Avg. Co	d Joint	140

*Mono = monolithic concrete; CJ = cold joint at midspan

)

Measured at fracture plane *The cold joint specimens contain concrete that is 7 and 6 days of age

matt Matt O'Reilh

University of Kansas Split Cylinder Tests

DATE: 5/31/2012

BEAM TESTS: Beams 1, 2, 3

Cylinder	Date Made	Length in.	Diameter in.	Date Tested	Load kips	Age Days	Modulus of Rupture psi.
1	5/24/2012	12.19	6.04	5/31/2012	50.5	7	435
2	5/24/2012	12,15	5.97	5/31/2012	49.0	7	430
	1 1					Ava.	435

Notes: Concrete from 5/24 cast

Math OReilly Matt O'Reilly

Form 1: Dimensions of formwork

	Beam	廿]	
Specimen ID:	Mono - 79-1	Date:	05/2.4/12
Measured by:	Mart ORoilly	Checked by:	SEFF Peckover

	Width	Height	Length
Design	18 in.	24 in.	25 fg (300 in
Tolerance	± ½ in.	± ½ in.	± 1 in.
Measurement 1	1735	24	300 318"
Measurement 2	177/8	Ly	300 3/8-
Measurement 3	18"	24	3003/6"
Measurement 4	7 15/14	24	
Measurement 5	177/8	24	
Measurement 6	1734	2446	
Measurement 7	17 24	24	
Measurement 8	18	24	
Measurement 9	14 2	24	

Avg

)

17.75 24

144

Form 2: Dimensions of reinforcing steel within in the test region

	Bec	on #1	
Specimen ID:	Mond - 79-1	Date:	05/24/12
Measured by:	Matt Opeily	Checked by:	JEFF Peckover

		Side cover	Bottom to top of all-thread rod	Splice length	
	Design	3 in.		79	
	Tolerance	± ½ in.	± ½ in.	± ½ in.	
	Measurement 1	34	1.9318	100 1230	7
Splice 1	Measurement 2	22,0	19/4	TAIK	1
	Measurement 3	23/4	y3/7	10/2	1
	Measurement 1	932	9310	79/1	1
Splice 2	Measurement 2	715/14	195/11	1	
-burner	Measurement 3	33/8	193,8		1

Measured bar diameter:

Splice 1:_____

Splice 2:_____

)

)

Form 4: Test setup - span spacing

Specimen ID:	Bern)	Date:	5131/12
Measured by:	Mart Opeilly	Checked by:	BAT

	Measurement 1, in.	Measurement 2, in.	Measurement 3, in.	Average, in.
Pin centerline to roller centerline				
West end to West support	843,6	844	8448	84.1875
West end to West splice end	7105/2-	1103,4	1105/8	10.667
West end to beam centerline	1504	1503/8	1503/16	150.271
West end to East splice end	189518	1895/2	1895/2	189.625
West end to East support	216 14	210 14	216 5/18	216,270
West end to East end	300318	300 %	3103-8	300,396

146

Form 5: Dial gage readings

Specimen ID:	Beam	Eean #	Date:	05/31/12	
Measured by:	Marto	Oke; H			

- Alberton	Load, kips	Dial gage 1, in.	Dial gage 2, in.	Dial gage 3, in.
Reading 1	0	0.817	2695	1.427
Reading 2	6	0.846	2688	1,459
Reading 3	10	0.874	2.679	1503
Reading 4	15	0.991	2,652	1.628
Reading 5	20	[. 13]	2.623	1.860
Reading 6	25	1.253	2.597	1.992
Reading 7	30	1.374	2,570	2.115
Reading 8	35	1.501	2.541	2239
Reading 9	90	1.651	2.514	2.357
Reading 10				
Reading 11				
Reading 12				
Reading 13				
Reading 14				
Reading 15				
Reading 16				
Reading 17				
Reading 18				
Reading 19				
Reading 20				

)

)

10

	Form 1: Dimension	s of formwor #2	k
Specimen ID:	Solo 200 (J-72)	Date:	OSILWIL
Measured by:	Mata ORaillo	Checked by:	A Dez
	Ţ		0

The second second	Width	Height	Length
Design	18 in.	24 in.	25 A (300 in)
Tolerance	± ½ in.	± ½ in.	± 1 in.
Measurement I	171516	24	25 /4-
Measurement 2	18	20%	2514
Measurement 3	(8	203/16	263/18
Measurement 4	17 15/16	7.03/16	
Measurement 5	18	201/8	
Measurement 6	18	203/16	
Measurement 7	17176	2014	
Measurement 8	18	2018	
Measurement 9	18	24	

17.98

)

Form 2: Dimensions of reinforcing steel within in the test region

	Bean	# <	
Specimen ID:	5-2-79-1	Date:	05/21/12
Measured by:	Mat OROIN	Checked by:	AN M

		Side cover	Bottom to top of all-thread rod	Splice length
	Design	3 in.		
	Tolerance	± ½ in.	± ½ in.	± ½ in.
	Measurement 1	25/8	193/8	72
Splice 1	Measurement 2	3	93/8	(NA
	Measurement 3	3 3/8	1914	$\overline{\mathbf{v}}$
	Measurement 1	23/16	19-310	79 /10
Splice 2	Measurement 2	3416	19-116	
	Measurement 3	33/18	193/8	

Measured bar diameter:

Splice 1:_____

Splice 2:_____

	Form 4: Test se Beam Z Ron	tup – span spacin ₩∄刀	g	
Specimen ID:	ATTENT POR	Date:	5/31	
Measured by:	Mato Okerly	Checked by:	RA	

SH-	Measurement 1, in.	Measurement 2, in.	Measurement 3, in.	Average, in.
Pin centerline to roller centerline				
West end to West support	843/18	873/8	841/8-	84.229
West end to West splice end	110 2	1103~	110518	110,625
West end to beam centerline	150 3/18"	1503/5	150 14"	150,271
West end to East splice end	189 7/18	1893/1	189 518	189.646
West end to East support	216 18	216 /4 "	216~	216.125
West end to East end	300 m	3003/8	300 1/4~	300.292

)

	E	Form 5: Dial g	age readings #し	
Specimen II): Boan	n 2 Dew	Date:	5/31/12
Measured by	n Mat	OReilly		
	Load, kips	Dial gage 1, in.	Dial gage 2, in.	Dial gage 3, in
Reading	5	0.845	0.602	\searrow
Reading 2	0	0.819~	2.609~	0,952
Reading 3	5	0.843~	2.602"	0975~
Reading 4	10	0,882	2.592	1.013
Reading 5	15	0.897 0.99	7 2.566	1.926
Reading 6	20	1.129	2.534	1254
Reading 7	25	1.252	2.504	1.396
Reading 8	30	1.398	2.471	1.632
Reading 9				
Reading 10				
Reading 11				
Reading 12				
Reading 13				
Reading 14				
Reading 15				
Reading 16				
Reading 17				
Reading 18				
Reading 19				
Reading 20				

1 4

	Form 1: Dimensi	ons of formwor ∄ 3	k
Specimen ID:	5 aF792	Date:	05/24/12
Measured by:	May OReilly	Checked by:	JEFS Peckover

	Width	Height	Length
Design	18 in.	24 in.	28 fy (300 in)
Tolerance	± ½ in.	± ½ in.	± 1 in.
Measurement 1	18	24	300 14
Measurement 2	18	7.0%	300'4
Measurement 3	181/2	2018	3001/4
Measurement 4	73/4	20	
Measurement 5	734	20 1/8	
Measurement 6	17 1/16	203/16	
Measurement 7	17 13/16	2018	
Measurement 8	18	2018	
Measurement 9	8	Ly	

17.903

)

Form 2: Dimensions of reinforcing steel within in the test region

	Bear	n#3	
Specimen ID:	CJ-79-2	Date:	05/24/12
Measured by:	May OReilly	Checked by:	JEFF Peckover

		Side cover	Bottom to top of all-thread rod	Splice length
	Design	3 in.		79~
Star Star	Tolerance	± ½ in.	± ½ in.	± ½ in.
	Measurement 1	32/15	1922	79"
Splice 1	Measurement 2	33/2	(23)8	INNI
	Measurement 3	31/4"	(93/5"	000
	Measurement 1	7.5/2	23,0	7815/16
Splice 2	Measurement 2	27,000	19318	101
10.4000/00/00/	Measurement 3	31/4"	193/8	111

Measured bar diameter:

)

Splice 1:_____

Splice 2:

Form 4: Test setup - span spacing

	Zant	7	
Specimen ID:	Beam 3 Decen #	Date:	5/31/12
Measured by:	Matt Opeilly	Checked by:	AA

	Measurement 1, in.	Measurement 2, in.	Measurement 3, in.	Average, in.
Pin centerline to roller centerline				
West end to West support	84 1/6	843/10	843/16	84.146
West end to West splice end	111	111/10	110 13/16	10.292
West end to beam centerline	150 3/12	1503/18	1505/16	150.229
West end to East splice end	1895/8	189 13/15	1893/4	189,688
West end to East support	216 18	218 3/16,	218 5/10	216.28
West end to East end	300 1/4'	3003/8	300/4	30.292

)

154

Form 5: Dial gage readings

a i 10	Bar 3 Beam	#3	05,131/12	
Measured by:	Matt O Reilly	Date:		

	Load, kips	Dial gage 1, in.	Dial gage 2, in.	Dial gage 3, in.
Reading 1	0	0.916	2.681	0.813
Reading 2	5	0943	2.674	0.839
Reading 3	10	0.977	2665	0,876
Reading 4	15	1.090	2.639	0.996
Reading 5	20	1.236	2.605	1.124
Reading 6	25	1.390	2,573	1.260
Reading 7	30	1,534	2.543	1.402
Reading 8	U.	n load		
Reading 9	0	1.045	2.655	0.935
Reading 10	5	1.089	2.644	0,980
Reading 11	10	[.180	2.623	1.068
Reading 12	15	1268	2603	1. [5]
Reading 13	20	1.360	2.58	1.238
Reading 14	25	1.45	2.561	1.324
Reading 15	30	1.554	2.538	1.921
Reading 16	35	1.674	2.509	1.549
Reading 17				
Reading 18				
Reading 19				
Reading 20				

)

This form is prepared to indicate those who will work on testing the above mentioned beams have received proper training and they are qualified for what they will work on

TOT WINGL LITEY WILL	WOLK ON.			
Last Name	First Name	ACI qualified? (if yes, certification #)	signature	date
Al-Khafaji	Ali	No	Same Stand	5/31/12
Eisenbarth	Brad			
Fink	Dalen	No	Calan Brut	5/31/12
Guernsey	Edward	R.	AC	5/31/12
Hawk	Kaleh		6	
Lyon	Adam	YES	the by	5/31/2012
O'Reilly	Matt	Co.	That Ole, H.	G/31/12
Peckover	Jeff	Ves	alla	5/3//12
Pendergrass	Ben	1100	her	5/31/12
Schneider	Aaron	NO	An Schnert	5/31/12
Searle	Nate	Yes	that ful	5/31/12
Shrestha	Pankaj	NO	Pothe.	5/31/12
Sperry	Jayne			
Williams	Eric			
Yuan	Jiqiu	Yer	K	5/31/12
Zhen	Chen	Yes	the.	5/31/12
Steele	Jim			-
Nickolaus	Gary	Yes No mu 5/31/12	Son, Michalan	5/31/12
Kummer	Lou			
BARNARD	JAY		Che / Sau S	5-31-12
PARK	Richtho		adelya	Slarin
Fohnty	Brend		list how	21/12/5

0/r

Specimen :	Bean #1 (mond	Test Date:	5/31/12
Recorded by:	Jidiu Yuon		1.1

Load, kip	Note
5	
p	I mil SE SR / min SE PS
15	2 mil out both PSc 5 mil out New sphie require 7 mil NW PS. 5 mil SW PS
20	7 mil se PS 3 mil se sR 7 mil out NW SR 3 mil CL 9 mil sw PS 5 mil out SW PS
25	7 min aut SE PS 2min NW PS p min SE PS 3 min CL 13 mil aut WSR 13 min SW PS 2mil honizonial NE PS
30	16 mil owt w PS 3 mil on W PS 18 mil aut w SR 5 mil CL 9 mil SE SR 13 EPS 2 mil honizular at w SR

0/2

Load, kip	Note
35	13 mil out NW PS 13 mil aut Siv PS
	- quint CL Smit perizontal w sp. (provider 2)
	12 March to SK 15 March JE PS
40	20 mil SEPS 16 min NW PS
	16 mil SESR 9 mil CL
	2 mil WSR 2 mil brienter on the ESR
	13 min - on top WSR experd to 9 mil
51	1/8" SEPS 6mil SW PS
	4 mil out w SR 3/8" w SR
	1/8" heritalial sw SP 12 mil CL
	Kmin NW SR

Y

Specimen :	Bean +2	Test Date:	5/3/
Recorded by:	Tigua		

Load, kip	Note
5	the with distance and -
t lo	nothing
15	" mil Crack both at spert Smil at end of spice week
	delamination finding north ade This at west spice regi
	Khin and PC knil and and PU [mil at eat SP
-20	JUM ROAD PS / JUMA OUD EDUD PS / 1011M ULD EDUT SK
	Smal horizon tel Alwart SR Stind annak Part SK
	I mad her sould I word sk shill tast ps
	Priva W PS Jim out E SR
25	Le min and CW PS 22 mil SW PS 3 millard NWP
	p in paralal
	P~15 mily SW SR 16mil aut WS 52
	I mid jugide WSR 20 mit E SR
30	and this gogo reating
	test da j
42	horizontal could extending
11.7	Pal
+>	puil househad SW DC Va' hous I'd SWS
	KIM INTROPER JAP IN A TOTAL
(39/591)	

)))

Beam Test	Recording
Carle	pad)

	1	1/	1
1	J	1	4
			Į.

Specimen :	Bean #3 (ord) at	Test Date:	5/31/12
Recorded by:	Jia'u Yuan		

Load, kip	Note
5	
p	I mil NE SR
15	3 min NW PS 7mil aut NW SR 5mil NE SR 5mil NE PS herrorbil autsw SR
22	2 mil NW p5 9mil and SW PS 2mil horizontal NW SR
	9 mil Ionizatal Sw SR 9 mil NE PS
25	8 min horizontal NWSR over 2ft long 13 min SE PS 16min horizontal SW SR
	5 min horizontal NE SK 7 min Amizilian NE PS 3 min horizontal and SW PS

1

J.

Beam Test Recording

0/4

Specimen :	Beam #3	Test Date:	5/3/12
Recorded by:	Tiolin		

Load, kip	Note
70	(only check pointal of are width)
-	Quir have til ad blad PC
	2 ma princenes mig Nim PS
	I mut out NW PS
	10 mil at NE SR
	2 mil at su sk
	the mill of NW SR
	12 min and st sk
	Contex of spice up toricatal crack
	3 mil privatal and st sk
	print on the of which fileward !
-	17::
	Ind at testernet
	VAP SE SR
ungad	That al it
OKip	> 3 mil March martie
	12 men Lieghon with hards

Beam Test Recording

	- A
(T)	AL K
91	1

Specimen :	Bean #7	Test Date:	5/11/12
Recorded by:	Jialu		20.1.2

Load, kip	Note
Up ago.	dial gage reading only
Skip	dial gage geoder
2	~ ~ ~ ~ ~
15	
20	
-25	
30	Alcherk for Crock
	35 mil horizoital at NW SR
20	in New Grade aut sw ps and between ps + sp
	55 mil out NW SR (old code copard)
	Sin Adaption on the hopposition and NESR
	he horiterila crark of CL
32	did gage only

Y

 $\Phi/4$

Specimen :	Beam #3	Test Date:	5/11/2
Recorded by:	Jigh		
Load, kip		Note	
40 Kip	failing		
	76" Cil	Ch	- Fi
		sk pha	A GA
	0.5" OSE	SR	
	1/2" On the	e of ol	
	10 01 11	4 00	
	3/8" NW	SIS	
		10	
1			

γ.

This form is prepared to indicate those who will work on casting the above mentioned beams have received proper training and they are qualified for what they will work on

IN AGU TRUM INI	WOLK ON.				
Last Name	First Name	ACI qualified? (if yes, certification #)	signature	date	
Al-Khafaji	Ali				
Eisenbarth	Brad				
Fink	Dalen		~)		
Guernsey	Edward	No	a cue		1
Hawk	Kaleb	No	Jude Nert.		
Lyon	Adam	ZES	the love	5 6/7/12	
O'Reilly	Matt	400 01030586	marth Oberky	06/07/12	1
Peckover	Jeff	600	1 S	61214	T
Pendergrass	Ben	Yes	CH-	6/7/12	1
Routh	Jon		A.	1111	
Schneider	Aaron	NOPE	Acres Schneicher	6/7/17	T
Searle	Nate	Yes	the full	21/12	
Shrestha	Pankaj	No.	Alla.	6/1/12	T
Sperry	Jayne	Yes	County Junt	21/1/0	T
Williams	Eric		11911	4111 15	T
Yuan	Jiqiu		>		Т
Zhen	Chen	Yes.	Moran -		T
Samogic	Teac	Ne	Rac	6/2/10	Т
Homsen	Jour	No	Jeter .	V17/12	Т
ABENMOULUL	Lauvakate	NO	I went that Manmaches	LITIN	Т
			2 - States With States - States - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	- 1110	

University of Kansas CEAE Department 2150 Learned Hall 1530 W. 15th St. Lawrence, Kansas 66045-7609 Phone: 785.864.3885 Fax: 785.864.5631

CONCRETE MIX DESIGN

Contractor:	KU
Project:	Bond Test- Beam #4, 5, and 6
Source of Concrete:	Ready Mix Concrete
Date:	6/10/2012
Placement Type:	Conventional

Material / Source or Designation / Blend ¹	Qua	intity (SSD)	S.G.		Yield, ft ³
Type I/II Cement / Cement Producer / 100%		588 lb	3.20		2.94
Water		246 lb		3.94	
MCM -1.5 in. / Granite 1.5" / 20.86%		687 lb	2.71		4.06
MCM -0.75 in. / Granite 0.75" / 31.89%	3	1050 lb 2.71			6.21
Pea Gravel / Pea Gravel / 25.39%		836 lb	2.60		5.15
VPsand / VP Sand / 21.86%		720 lb	2.62		4.40
Total Air, percent		0			0.27
Air Entraining Agent / Air R Us	0	fl oz (US)	1.01		0.00
Superplasticizer / Admixtures R Us	60	fl oz (US)	1.20		0.02
1 The blend percentage indicated (by weight) is listed separate	ity for cementitiou	us materials and a	iggregates.		27.00
Total Water Content (including water in admixtur	es), lb		247		
Water / Cementitious Material Ratio:			0.42		
Concrete Unit Weight, pcf		152.9			
Target Slump, in.			5 in.		
Paste Content, percent		25.55%			
Workability Factor (WF)	Target:	35.0	Actual:	32.1	
Coarseness Factor (CF)	Target:	57.9	Actual:	63.0	
Prepared On:		5/16	/12 2:20 PM		
1187.8			NAMES AND AND ADDRESS		

Jiqiu Yuan

Prepared By:

Ľ.

	Mid	unst Co	ncroto	1.18						
MCM	Mate	erials	nerete			LAWREN	CE (785) 843-1688	• TOLL FREE (888) 244-208	12
3645 E 23rd (785) 643	15treet + L	awrence, KS 6504 X (785) 843-1783	6			"Q	UALIT	Y AND SI	ERVICE SINCE 1927"	
PLANT TIME	DATE	The States	ADCOUNT			TRUCK		ORIVER		TICKET
CUSTO NAME	27 06	5/13/12	UK24	6	-	DELIVERY A	DORESS	E P G	EN JOHES	2022120
UNIV OF KA	HISAS	- CIAL	L 12103.			15TH DR.	8 E PER	OMA 8 KING L	E. TO LEARNED OT ON WEST SID	HOLL
PURCHASE ORDER	4	SALES ORDER		TAX	CREDIT					SLUMP
LOAD OTY. P	RODUCT		DESCRIPTION	6.B		21		ORDERED	DELIVERED LINIT	A.00 In
10,00 1	56720	a Ki	C DURAE	LE				10,00	10,00	
LOADED	ABRIVE	JOB SITE	START DISCHA	AGE	FINISH DISCHA	AGE	ARRIVE	PLANT	SUB TOTAL	
7:16		: 1					:		DISCOUNT	
									TAX TOTAL	
									PREVIOUS TOTAL	
									GRAND TOTAL	a la state de la seconda de
	Th amount of	is ballon of conor of water. If additio	ele is mixed with t shall water is desire	the proper ed, please	ADDITIONAL ADDED ON J	MATER		Gallons		14-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
	enstruct to	ne driver.				-	-		ву	
						1.12	UNLOA	DING TIME AL	LOWED 30 MINUTES PER TRIP	
CAUTION. Presity typest cement, water exposed alon errors promptly if any semantitious material pets in	where a point of a state of the system of th	r ethnomis may cause interecteday and repai	Min measur. Avoid do	est somet whe I prompt medical	a possible and	RECEIVED	1 GOOD O	ONDITION		
Purchaser w	valves al	claims for p	oersonal or p	roperty d	lamage car	Ised by s	eller's t	ruck when	delivery is made heyood r	traat outb line
If not paid as	s agreed	I, this credit	agreement p	rovides fi	or your pay	ment of	reasona	able costs	of collection, including, bu	t not limited to
			court o	osts, atto	orney fees	and/or co	lection	agency fe	ies.	
Truck G131	Uriv 349	er i	User		Disp 1.	i ekoti	blixin	Titel: 7765	et ID Times Da	die Havna
Load Size	1567	Code	Reter	rited	Rty		Mix	Age	Seg Load I	0
Naterial Desig	III OLY	Regula	ed Bat	chied	\$ 941	: Noi	sture	Actual 4	lat	
ADUSCI 40 ER.	10 02	E 660.00	07 606. 1 R 19608	B) 02	8.805			Case (0)		
LAVERINGS UPSCHD 7 1959-1 B	.8 /28 1.8 36 1.8	7326	LB LB 73 LB 84	19 LB 99 LB 191 LB	0.845	1.783	A.H.	15		
REALS 16	50 1h	1 _HR	14 16	260 11b	11. Hz	8, 355	8			
Actual 5 Actual 5 Load Total: 4115 STempi 4.69 in	in Batch H 1h	a 5070 Mess I Design Aler in 1700	10 60 9.441 Hator 9.1 8.0 6	Concert. Addact	0, 155 0, 455 T Maters 0.1	Haistat Personal Pe	A Zrli sign 31 1000 J	izer) (7-0-03 (rim Materr	Actival 1857+5 gl s R.O 18.7 CVD	To Adds 59,5 g1
					CUSTOME	R COPY	2			
						and and a	2			

University of Kansas CEAE Department 2150 Learned Hall 1530 W. 15th St. Lawrence, Kansas 66045-7609 Phone: 785.864.3885 Fax: 785.864.5631

X

CONCRETE MIX DESIGN

Contractor:	KU
Project:	Bond Test- Beam #4, 5, and 6
Source of Concrete:	Ready Mix Concrete
Date:	6/14/2012
Placement Type:	Conventional

Material / Source or Designation / Blend ¹	Qua	ntity (SSD)	S.G.	Y	ield, ft ³
Type I/II Cement / Cement Producer / 100%		588 lb	3.20		2.94
Water		246 lb	1.00		3.94
MCM -1.5 in. / Granite 1.5" / 20.86%		687 lb	2.71		4.06
MCM -0.75 in. / Granite 0.75" / 31.89%		1050 lb	2.71		6.21
Pea Gravel / Pea Gravel / 25.39%		836 lb	2.60		5.15
VPsand / VP Sand / 21.86%		720 lb 2.62			4.40
Total Air, percent		0		0.27	
Air Entraining Agent / Air R Us	01	fl oz (US)	1.01		0.00
Superplasticizer / Admixtures R Us	60	fl oz (US)	1.20		0.02
1 The blend percentage indicated (by weight) is listed separately	for cementitiou	is materials and a	iggregates.		27.00
Total Water Content (including water in admixture	s), Ib		247		
Water / Cementitious Material Ratio:		0.42			
Concrete Unit Weight, pcf		152.9			
Target Slump, in.			5 in.		
Paste Content, percent			25.55%		
Workability Factor (WF)	Target:	35.0	Actual:	32.1	
Coarseness Factor (CF)	Target:	57.9	Actual:	63.0	
Prepared On:	/12 2:20 PM				

Prepared By:

Jiqiu Yuan

blb/yd' ice

	MCN	A Ma	terials	ncrete			LAWRENC	E (785)	843-1688 •	TOLL FREE (BI	88) 244-2082	K
	(785) 8	543-1688 • I	Lawrence, KIS 660 FAX (785) 843-1783	46			"QU	ALIT	Y AND SER	VICE SINCE	1927"	
	PLANT TIME	047	e 96714718	ACCOUNT UICE4	50		TRUCK	5	DRIVER E/IP	UCE WISI		NORET 20221-07
Image: State ranker	CUSTOMER NAME CINITIO OF P	เกษรณะ	5 - CIVI	L ENG.			DELVERY ADD 15TH DR	RESS 8 IN PIARI	LESER SUMA & E CENEG L.O	TO LEA TO LEA TON MES	ARHED H	iðt L
	PURCHASE DRDER		SALES ORDER		TAX	CREDIT						SLUMP
	LOAD OTY.	PRODUCT		DESCRIPTION	68				ADERED	DELIVERED	D UNIT P	RICE AMOUNT
	LOMPED Battig	Aller	ISH VE JOB SITE :	ORT LON STARTOSCHA	D CHAI	RIGIE RNISH DISCHA	AGE 1	ARRIVE I	PLANT	SUB TOTAL DISCOUNT		
	TAX TOTAL PREVIOUS TOTAL GRAND TOTAL											
<form><text><text><text><text></text></text></text></text></form>	0	attour	This betch of conc t of water. If addit t the driver.	rete is moved with ontail water is desir	the proper at, please	ADDITIONAL O			Gallons	v		
Image: Second	OUTON: FreeNy maps cam wate recorded skin areas prore 7 ary comentation, naterial per	err, monter, pro- Ry with search Lines Per nya, ro	A or concerns may cause the instructuoey and repo	a alter Hitabon, Avoid de Milledy will waler and ge	eci contast where I promot medical	a pensa bisa gent? Athanikan,		UNLOAD ED	DING TIME ALLO KTRA CHARGE PO INDITION	WED 30 MINUTES # DR OVER 30 MINUT	NER TRIP	→
Load Size Hix Code Returned Oty Hix Rige Seg Load ID 2.000 (TDS 156720) Material Besign Cty Begized Batched S. Var S Noistore Actual Mat WHER 24.58 G # 45.29 G 55.60 G 4.000 g 1970625 582.614 H 2105.81 CF 120.80 CF 4.005 1970625 582.614 H 2105.81 CF 120.80 CF 4.005 1970625 582.614 H 2105.91 CF 120.80 CF 4.005 1970625 582.614 H 2105.91 CF 120.80 CF 4.005 1970625 582.614 H 2007 120.80 CF 4.005 198074 H 4.00 H 2006 10 2008 H 4.005 198082 4.005 H 4.005 10 1309 10 4.005 198082 10 100 10 2008 H 4.005 10970625 10 H 4.107 10 1309 10 4.005 100706112 6133 10 Here in Fraces 0.002 60.005 10070612 100 120 10 1000 000 10 1000 10.000 0000 0	Purchaser If not paid	waives i as agree	all claims for ed, this credit	personal or p agreement p court c	roperty di rovides fo osts, atto	amage cau or your pay rney fees a	ised by sell ment of rea and/or colle	er's tr asona iction	uck when di ble costs of agency feet	elivery is made collection, inc i.	e beyond st luding, but me Diat	reet curb line. not limited to,
CUSTOMER COPY - 2	Consists Lipad Sire 2-100 Chr Neberial Des UNTER 2 DWML40 5 Lipade 5 Lipade 5 Lipade 5 DWML408 RCS-5 NCS-7 Rctual Load Fotal: 6 Simps 4.60 1	9639 P11 x 5 150 196 0by 4.60 0 4.60 0 4.60 0 5.60 10 5.60 100 5.60 100 100 100 1000000000000	Cracle 7220 # 45,22 # 129,08 # 1176,8 # 1466, # 1679 # 1679 # 1374 # 1374 test 1 Bestan kater in Tru	UNDER Restur- red Red B 45, 00 128, 141 1189 141 1	2 rywerd zhed 60 Q2 G 14 60 Q2 G 14 60 Q2 G 14 10 Q2 10 Q2 10 10 Q2 10 Q2 10 10 Q2 10 Q2 10 10 Q2 10 10 Q2 10 10 10 10 10 10 10 10 10 10 10 10 10	5022018 Oty 3 Var 4.655 6.885 6.885 6.485 6.485 6.485 6.445 1.446 1.446 1.445 0.455 0.455	A Hoist Löss B. 465 B. 165 B. 165 B. 165 B. 100 Dent O. / Loo	iix ore B B B B B B B B B B B B B B B B B B B	ACTUAL Not Octual Not Octual Not Octual Not Octual Not Statistical Not Statistical Notes	Ba Sug M Au Actual 4 B.8 IL 200	59 627 Load D 79576	14/12 * • Addr 145 gl

Form 3: Plastic concrete testing and concrete compressive strength

i but	
Measured by: NATE SEARCE Checked by: Jauple S	qual

Plastic	concrete	testing
1 lastic	concrete	testing

Slump, in.	Unit weight, lb/ft ³	Concrete temperature, °F
3 "	154,1	81.8 °F
	Why contract - 9:2000 9 7	4 lp

We concert container: 48.221b Volume of container: 22497 Concrete compressive strength

Cylinde r 1D	Cast date	Test date	Age, days	Dia., in.	Area, in. ²	Load, kips	Strength,	Notes
#plackid	1 6/13	6/n	4	6.21	28.47	124,500	4370	11710
Plashi#2	6/13	6/17	4	6.03	28.56	12/00	4240	130
Plait # 3	6/13	6/9	6	5.972	27.99	13500	4822 .	11 180
Dasti #4	6/3	6/19	6	6.09	29.3	13220	4530	4.60
tol HI	6/12	6/20	٦	6007	2833	146.500	STP0,	,
the Hz	6/13	610	7	5.999	2875	145000	5132	5230
ted#3	6/13	6/20		6218	28.43	153000	5300	

Form 3: Plastic concrete testing and concrete compressive strength

Specimen ID:	Bean #4.5.6 +	pp leyer	Date:	6/14/2012	
Measured by:	NATE SEARCE	1 (Checked by:	Jeff Peckover	

Plastic concrete testing

Slump, in.	Unit weight, lb/ft ³	Concrete temperature, °F		
2 3/4"	149.9	86.2		
	Wt. Conthiner = 9.74	1		

Vol. Container = 0.2497 Wt. Concrete + Container = 497.16 15

Cylinde r ID	Cast date	Test date	Age, days	Dia., in.	Area, in. ²	Load, kips	Strength, psi	Notes
plastic#1	6/14	6/17	3	6,026	28,52	121,500	426	Uton
plastic #2	6/14	6/17	3	6.027	28.53	136,500	478	
dout	4/64	6/20	6	6.008	78.74	1525	5382	
C. (M)	6/14	6po	6	6042	28.66	160000	55801	\$490
2004	6/14	6/27	(5,996	26,22	1555-0	5512	
STEELAI	14		0					

Concrete compressive strength

×

DATE: 6/20/2012

BEAM TESTS: Beams 4, 5, 6

Flexure Beam ID*	Date Made	Height** in.	Width** in.	Date Tested	Load lb.	Age*** Days	Modulus of Rupture psi.
Mono-W1	6/13/2012	6.03	6.35	6/20/2012	8650	7	674
Mono-W2	6/13/2012	5.89	6.27	6/20/2012	6350	7	525
				Avg. N	onolithi	c (Wed.)	600
Mono-R1	6/14/2012	6.07	6.28	6/20/2012	8500	6	661
Mono-R2	6/14/2012	6.085	6.25	6/20/2012	9500	6	739
				Avg. M	onolithio	: (Thur.)	700
CJ-1	6/13/2012	6.05	6.08	6/20/2012	3950	7	319
CJ-2	6/13/2012	6.05	6.14	6/20/2012	2850	7	228
	I				Avg. Co	ld Joint	274

*Mono = monolithic concrete; CJ = cold joint at midspan **Measured at fracture plane ***The cold joint specimens contain concrete that is 7 and 6 days of age

Matte OReilly Matt O'Reilly

DATE: 6/20/2012

BEAM TESTS: Beams 4, 5, 6

Cylinder	Date Made	Length in.	Diameter in.	Date Tested	Load kips	Age Days	Modulus of Rupture psi.
W1	6/13/2012	12 25	5.98	6/20/2012	37.5	7	326
W2	6/13/2012	12.03	5.98	6/20/2012	47.0	7	416
					A	vg. (Wed.)	370
R1	6/14/2012	12.15	5.99	6/20/2012	56.5	6	494
R2	6/14/2012	12.24	6.00	6/20/2012	51.0	6	442
	1 1				A	vg. (Thur.)	470

Matt OReilly Matt O'Reilly
Form 1: Dimensions of formwork

Specimen ID:	Beam y	Date:	06/12/12
Measured by:	Mor aboily	Checked by:	

	Width	Height	Length	
Design	18 in.	24 in.	336 "	
Tolerance	± ½ in.	± ½ in.	± 1 in.	
Measurement 1	1846	241/8	335 1/2	
Measurement 2	7718	24 /2.	335 5/8	
Measurement 3	18	203/16	335 5/8	
Measurement 4	18 1/16	2014		
Measurement 5	17 15/16	2010		
Measurement 6	18	20 4		
Measurement 7	1715/1	204		
Measurement 8	17 1/16	24		
Measurement 9	18	24		

)

Form 1: Dimensions of formwork

Specimen ID:	Beam 5	Date:	06/12/12
Measured by:	Motor Reilly	Checked by:	

	Width	Height	Length
Design	18 in.	24 in.	336''
Tolerance	± ½ in.	± ½ in.	± 1 in.
Measurement 1	10"	241/8	335 318
Measurement 2	18	2446	335 2
Measurement 3	18%	20%	333 3/8
Measurement 4	1738	204	
Measurement 5	177/8	2014	
Measurement 6	1896	203/10	
Measurement 7	173/10	20 /4	
Measurement 8	18	24	
Measurement 9	18 1/2	24%	

Form 1: Dimensions of formwork

Specimen ID:	Beam O	Date:	06/12/n
Measured by:	Moto OKetty	Checked by:	

	Width	Height	Length
Design	18 in.	24 in.	336
Tolerance	± ½ in.	± ½ in.	± 1 in.
Measurement 1	181/4	24	335 %
Measurement 2	(814	24	335 314
Measurement 3	17 15/16	203/16	3353/4
Measurement 4	8	204	
Measurement 5	1728	203,8	
Measurement 6	17'5/16	203/8	
Measurement 7	1818	205/16	
Measurement 8	818	24/10	
Measurement 9	18	29	

Form 2: Dimensions of reinforcing steel within in the test region

Specimen ID:	Beam y	Date:	06/12/12
Measured by:	Matt Roilly	Checked by:	

		Side cover	Bottom to top of all-thread rod	Splice length
	Design	3 in.		1200
	Tolerance	± ½ in.	± ½ in,	± ½ in.
	Measurement 1	23,0	193/0	120%
Splice 1	Measurement 2	234	193/2	B
	Measurement 3	23,4	193/1	
Splice 2	Measurement 1	324	193/6	12000
	Measurement 2	37,6	197/10	1 miles
	Measurement 3	33/0	19378	

Measured bar diameter:

)

Splice 1:_____

Splice 2:_____

Form 2: Dimensions of reinforcing steel within in the test region

Specimen ID:	Beam 5	Date:	06/12/12
Measured by:	Matt OReilly	Checked by:	

	and the second	Side cover	Bottom to top of all-thread rod	Splice length
	Design	3 in.		no-
	Tolerance	± ½ in.	± ½ in.	± ½ in.
BAL (22, 28)	Measurement 1	34	19370	120
Splice 1	Measurement 2	33/16	1.9%	
	Measurement 3	3	(93/0	
Splice 2	Measurement 1	2	23/0	120 1/18
	Measurement 2	340	25/16	19
	Measurement 3	3%	(9-5/1C	

Measured bar diameter:

)

Splice 1:_____

Splice 2:_____

Form 2: Dimensions of reinforcing steel within in the test region

Specimen ID:	Beam 8	Date:	06/12/12
Measured by:	Mato ORoilly	Checked by:	

		Side cover	Bottom to top of all-thread rod	Splice length
	Design	3 in.		120~
	Tolerance	± ½ in.	± ½ in.	± ½ in.
	Measurement 1	3716	19310	11915/14
Splice 1	Measurement 2	34	193,0	120
	Measurement 3	213/10	195/4	
Splice 2	Measurement 1	35/10	9370	12044
	Measurement 2	23/0	19378	
	Measurement 3	25/8	19318	

Measured bar diameter:

Splice 1:_____

Splice 2:_____

X

Form 4: Test setup - span spacing

Specimen ID:	Beam 4	Date:	05/20/12	
Measured by:	Maty Opoilly	Checked by:	NATE SEARLE	

	Measurement 1, in.	Measurement 2, in.	Measurement 3, in.	Average, in.
Pin centerline to roller centerline	Setto			
West end to West support	84 1/4	84 1/4	845/16	
West end to West splice end	108 4 ~	108 kg	108 5/16	
West end to beam centerline	168 4 -	18814"	168 5/16	
West end to East splice end	2283/10-	2285/16	228 4	
West end to East support	2523/10	25214	252 1/2	
West end to East end	336 1/2	336 12	336 52	

Form 4: Test setup - span spacing

X

Specimen ID:	Beam 5	Date:	05/20/12	
Measured by:	Magy Okeilly	Checked by:	NATE SEARLE	

	Measurement 1, in.	Measurement 2, in.	Measurement 3, in.	Average, in.
Pin centerline to roller centerline				
West end to West support	843/16	845/1	843,8	
West end to West splice end	108 3/16	1084	108 4	
West end to beam centerline	168 1/2	168 kg	1685/10	
West end to East splice end	2283/2	2281/4	228 1/4	
West end to East support	262/18	252 1/4	252 4	
West end to East end	336318	336 3/10	336 ly	

0

Form 4: Test setup - span spacing

Х

Specimen ID:	Beam 6	Date:	05/20/12	
Measured by:	Matt OREIL	Checked by:	NATE SEARLE	

	Measurement 1, in.	Measurement 2, in.	Measurement 3, in.	Average, in.
Pin centerline to roller centerline				
West end to West support	84318	843,8	843116	
West end to West splice end	108 144	1085/10	108 1/2	
West end to beam centerline	168 14	1685/16	7681/8	
West end to East splice end	228 5/16	2285/10	22818	
West end to East support	252 5/15	25214	252 1/2	
West end to East end	336 2	336 %/16	3353	

Form 5: Dial gage readings

Specimen ID:	Beam	4	Date:	05/20/12
Measured by:	Matt	Opaily		

	Load, kips	Dial gage 1, in.	Dial gage , in.	Dial gage K, in.
Reading 1	0	0,775	2.630	1.696
Reading 2	185	0.806	2.519	1.727
Reading 3	10	0.862	2602	1.773
Reading 4	16	0.994	2,572	1.896
Reading 5	20	1.957	2.514	2.051
Reading 6	25	1,296	2.476	2.186
Reading 7	30	1.442	2.428	2.3.31
Reading 8	38	1.602	2.383	2.487
Reading 9				
Reading 10				
Reading 11				
Reading 12				
Reading 13				
Reading 14				
Reading 15				
Reading 16				
Reading 17				
Reading 18				
Reading 19				
Reading 20				

Form 5: Dial gage readings

Specimen II	D: Poam	5	Date:	06/20/12
Measured b	y: Maga	OROily		
	Load, kips	Dial gage 1, in.	Dial gage 7, in.	Dial gage 3, in.
Reading 1	\bigcirc	0937	1.745	0995

	Load, kips	Dial gage 1, in.	Dial gage Z. in.	Dial gage 5, in.
Reading 1	0	0,937	1.945	0995
Reading 2	S	0.984	1.728	1043
Reading 3	10	1.020	1715	1087
Reading 4	16	1.160	1.684	1.201
Reading 5	20	1,304	1631	1.363
Reading 6	25	1.443	1.591	1.51
Reading 7	30	1.586	1.542	1.658
Reading 8	36	1.766	1.497	1.822
Reading 9	40	1.914	1:448	1.980
Reading 10	0	1.135	1.696	1181
Reading 11	5	1,224	1.666	1. 278
Reading 12	10'	1.317	1.687	376
Reading 13	15'	1410	1.09	1.468
Reading 14	20	1.513	1.580	.576
Reading 15	30	1.726	1509	1.7.88
Reading 16	35	1867	1,468	.933
Reading 17	40	1.037	1.418	2021
Reading 18	(m)			
Reading 19				
Reading 20				

(

×

Form 5: Dial gage readings

5

Specimen II): Beam	6	Date:	05/20/12
Measured by	y: Matt	OReilly		
	Load, kips	Dial gage 1, in.	Dial gage 1, in	Dial gage K, in.
Reading 1	0	0.818	2828	1334
Reading 2	5	0.850	2.816	1.368
Reading 3	10	0.390	2.801	1 423
Reading 4	[6	1.039	2.769-	- 1.569
Reading 5	20	1.167	2.717	1.694
Reading 6	25	1.300	2.681	1.836
Reading 7	30	1.438	2.636	1.982
Reading 8	35	1.615	2.586	2168
Reading 9	40	1.779	2.530	2.340
Reading 10	U'	1.015	2.777	1,638
Reading 11	10'	1.178	2.723	1,715
Reading 12	20'	1.385	2567	7,931
Reading 13	30'	1.598	2.599	1 51
Reading 14	35,	1.705	-25855	turck 2. 65
Reading 15	40'	1.826	2.516	2,394
Reading 16				
Reading 17				
Reading 18				
Reading 19				
Reading 20				

认

Training Form (#4, 5, and 6 beams testing)

This form is prepared to indicate those who will work on testing the above mentioned beams have received proper training and they are qualified for what they will work on.

Al-Khafaji Ali Etsenbarth Brad Etsenbarth Brad Fink Dalen Fink Dalen Kaleb NU C Hawk Kaleb Lyon Adam O'Reilly Matt Pockover Jeff Pendergrass Ben Schneider ND Searle Nate Searle Nate Searle Nate Strestha Pankaj Strestha Pankaj			
Eisenbarth Brad Fink Dalen Fink Dalen Guernsey Edward Adam $\mathcal{N} \mathcal{C}$ Hawk Kaleb Hawk Adam Lyon Adam O'Reilly Matt Vor 0109056 Peckover Jeff Pendergrass Ben Schneider ND Searle Nate Strestha Pankaj Strestha Pankaj			
FinkDalenDalenGuernseyEdwardNoHawkKalebNoHawkKalebNoLyonAdamNoLyonAdamNoO'ReillyMattYorO'ReillyMattYorO'ReillyMattYorO'ReillyMattYorPeckoverJeffYerPendergrassBenYerSchneiderNateNoSearleNateYerStresthaPankajNoStoerryJavneYer			
GuernseyEdwardNoHawkKalebNoHawkKalebNoLyonAdamNoLyonAdamYorO'ReillyMattYorO'ReillyMattYorO'ReillyMattYorO'ReillyMattYorO'ReillyMattYorO'ReillyMattYorPeckoverJeffYorPendergrassBenYersSchneiderNateYersStresthaPankajNibStrestvJavneYor	5		
Hawk Kaleb V.C Lyon Adam O'Reiliy Matt Vo. 010903.6 Peckover Jeff Yo. 010903.6 Peckover Jeff Yo. 010903.6 Pendergrass Ben Yo. 010903.6 Schneider Aaron ND Searle Nate Yo.S Shrestha Pankaj ND	No	Cal Cu	6/20/12
Lyon Adam Adam O'Reilly Matt Vor 0109056 Peckover Jeff Vor 0109056 Pendergrass Ben Yes Schneider Aaron NO Searle Nate Yes Shrestha Pankaj NIO Sperry Javne Vor S	No	publica build	4-26
O'ReillyMattYorO109068PeckoverJeffYerYerPendergrassBenYerYerSchneiderAaronNOSchneiderNateYerShresthaPankajNOSperryJavneYer			
Peckover Jeff Jeff Jeff Peckover Jeff Peckover Jeff Pendergrass Ben Yes Schneider Aaron NO Schneider Aaron NO Searle Nate Yes Shrestha Pankaj NO	01000380	Mark Oher Die	06 Non
Pendergrass Ben Yes Schneider Aaron NO Searle Nate Yes Shrestha Pankaj NO Sperry Javne Yes		6	
Schneider Aaron NO Searle Nate Yes Shrestha Pankaj NO Sperry Javne Yes	Yes	A	6/20/12
Searle Nate Yes Shrestha Pankaj NID Sperry Javne Yes	QN	Jour Selver	6/20/12
Shrestha Pankaj NO Sperrv Javne Yo,S	Yes	let and	6/20/12
Sperry Javne X0,S	DZ OZ	a Della	6/20/12
	Yes	(Burne anny	21/20/2
Williams Eric		D D D I	
Vuan Jiqiu AA	PAN .	R	N20/2
Zhen Chen Yes	Yes	the-	6120/12
Steele Jim '			
Nickolaus Gary			
Kummer Lou			
Josonimus Robbie no	ne l	Puld . h. m	6/20/12
Somectic 1946 NO	ND	KROF	6/20/2012
Love Eere No	ŝ	in any	4/20/2012
Schuler Joen NO	02 42	Par Juliules	2102/02/9
Kunshirk Lacis NO	N.O M.O	Section 1	6/20/12 1/2 2/

X

Specime	n :	#4	Test Date:	6/20/2	
Recorded	by:	Jiq' v			
Load, kip			Note		
5					
P	21	d bp W P	2		
K	21	in addition	de EPS		
1/	8 n	int art	E PS		
	8 1	in out	W-SR		
	9.1	il antid	, E SR		
	0.	1 2.4	WRG		
		n'il and	NY PS		
		1.01 0.W/	4 1		
20	2	mil Out	NW PS		
	13	nod wor	- 5 W PS		
	ŧ	h 1 ha		M SR P	(AOC
	7	In Inn	ISEN ON IN	W CR	Gate)
	~ ~	IN2 (19 21/	
	51	nd belie	cen NWCL on	J PS	
	-2	will ste s	SR		
	0	nid lower	SF SR+P	5	

2/4

Recorded by: Jight Load, Kip Note 25 16 mil 20 bit. NHS E PS 25 16 mil 20 bit. NHS E PS 18 mil bebren SE PS + SR 7 mil SE CL 8 mil bebren SE PS + SR 7 mil SE CL 8 mil bebren SE PS + SR 10 mil SE CL 8 mil bebren SE PS + SR 10 mil SE CL 8 mil SE CL 10 mil SE CL 2 mil ME CL 2 mil Ant SE SR 2 mil homet and SW PS 2 mil homet and SE SR 2 mil and SE SR 3 mil NE PS 2 mil an SE PS 2 mil an SE PS	Specimen :	44	Test Date:	6/201
Load, Kip 25 16 mil 2n Lar. NHS E PS 18 mil Lotron S E PS + SR 7 mil SE CL 8 mil between S E PS + SR 7 mil SE CL 8 mil NE CL 20 B honizated exacts 9 mil = 050 20 B honizated exacts 9 mil = 050 20 B honizated exacts 9 mil = 050 20 D honizated exacts 9 ps 20 D honizated exacts 9 ps 2 mil horizate exacts 9 ps 2 mil out SE SR 3 mil NE PS 2 mil en SE PS	Recorded by	r Jialu		//1/
Load, kip Note 25 16 min 2n Left. NHS E PS 18 min Lefteren S E PS + SR 7 min SE CL 8 hin NE CL 2 hin NE CL 2 hin NE CL 2 hin A NE CL 2 hin and sw ps 2 min homest and sw PS 2 min homest and sw PS 2 min A former and sw PS 2 min A former and sw PS 2 min and SE SR 3 min NE PS 2 min and SE PS 2 min and SE SR 2 min and SE SR 2 min A SE PS 2 min and SE SR 2 min A SE PS 2 min A SE		. P.		
25 16 mil 20 by NHS E PS 18 mil between S E PS + SR 7 mil SE CL 8 mil NE CL 20 mil → DEP 20 mil → DEP 20 mil → DEP 20 mil → DEP 20 mil → DEP 2 mil → DEPS 2 mil → DEPS	Load, kip		Note	
18 mil between SE PS+SR 7 mil SE CL 8 mil NE CL OPP provided exports 9 mil->750 2010 porcented - penil->750 2010 porcented - penil->750 16 mil and SW PS 2 mil horizont ant SW PS (250) 2 mil and SE SR (250) 7 mil and SE SR (250) 7 mil and SE SR (250) 2 mil and SE SR (250)	-25	16 min 25 bill	NHS E PS	
IS mill between SE PS + SK 7 mill SE CL 8 mill NE CL 00 R honizated expects 9 mill → 0500 00 R honizated 9 mill → 0500 00 R honizate 9 mil		10 11 11	5 5 DV	65
7 mit SE CL 2 mit SE CL 2 mit NE CL QOB honizated exacts 9 mit > 05D QOB honizated exacts 9 mit > 05D QOB honizated exacts 1 penil > 05D QOB honizated 1 penil > 05D QOB honizated 2 penil > 05D 2mit add sw ps 2mit add sw ps 2mit add sw ps 2mit add sw ps 2mit add se sk 2mit exat se sk 2mit exat se ps 2mit en se ps 2mit en se ps		18 mal beh	pelles SC PS	+ <u>SK</u>
2 hit NE CL 2 hit NE CL 2 hit NE CL 2 eB honizatel expects 9 mil → 250 2 mil and sw ps 2 mil and se sk 2 mil and se ps 2 mil and se sk 2 mil and se sk 2 mil and			1	
2 hA NE CL 20 P honizated exacts 9 mil→05P 20 P honizated exacts 9 mil→05P 16 mil ad sw ps 2 mil horizat art sw ps (25P) 2 mil and se sR (25P) 7 mil and se sR (25P) 2 mil on se ps (25P) 2 mil on se ps (25P)		I JUNG SE C	2	
2000 honizated exacts 9 mil → 050 2000 honizated - penil → 050 16 mil and sw ps 2 mil horizate ant sw ps (550) 2 mil horizate ant sw ps (550) 2 mil and se sR (250) 7 mil and se sR (250) 3 mil and se sR (250) 2 mil an se ps (250) 2 mil an se ps (250)		8 H.M. NE	cl	
2010 honorth upper 1md - 050 2010 honorth - penal-2050 16 mil and sw ps 2 mil honorth and sw ps (250) 2 mil and se sk (250) 7 mil and se sk (250) 7 mil and se sk (250) 2 mil and se sk (250)		6	1 Lau H A	1.478
200 honisitel - panil-2000 16 mil and sur ps 2 mil horizant out sur ps 2 mil horizant out sur ps 2 mil out se sk 2 mil out se sk 2 mil out se sk 2 mil out se ps 2 mil on se ps 2 mil out out out		COR PORT	ATON CARGE MI	mA → 2512
2 mil and sw ps 2 mil horizett aut sw ps 2 mil horizett aut sw ps 2 mil out se sR 2 mil out se ps 2 mil out se ps		6 hourist	J - Jan	1-7(25A
16 mit aid siv ps 2 mit homent aut siv ps (250) 2 mit - on Niv ps (250) 7 mit aut se sk (250) 7 mit aut se sk (250) 2 mit on se ps (250) 2 mit on se ps (250) 2 mit on se ps (250)		Cold must	ord period	
2 mil and se se 2 mil		the second	. b/	
2 mil horizant ant sur PS (250) 2 mil and SE SR (250) 3 mil and SE SR (250) 2 mil and SE SR (250) 2 mil and SE SR (250) 2 mil an SE PS (250) 2 mil an SE PS (250)		16 m/ MM	sm ks	
2 mil population suchs (250) 2 mil and se s.R. (250) 3 mil and se s.R. (250) 3 mil and se s.R. (250) 2 mil and se p.S. (250) 2 mil on se p.S. (250) 2 mil on se p.S. (250)		0 4 1 .	to put our DI	(Str.)
2 mil on Norps (250) 7 mil out se sR (250) 3 mil out se sR (250) 2 mil on se ps (250) 2 mil on se ps (250) 2 mil on se ps (250)		2m Pres	20 - 20 - 20 - F.)	- OF
7 mil aut se sk (250) 3 mil aut se sk (250) 2 mil an se ps (250) 2 mil an se ps (250)		711	on NWPS	-050-
7 mil out se sR (250) 3 mil out se sR (250) 2 mil on se ps (250)		A-1197-3		(2) 1
2 mil pre ps (250) 2 mil on se ps (250)		Tu'l at	Cr cD	(251)
2 mil Pr SE PS (250) 2 mil Pr SE PS (250)		L Dr.A SWA	NC 217	
2 mil on se ps (250)		SMA NE	PS	(251)
Zma en se ps (25G)		0.4		
The second second second		ZmA on	SE PS	(25G)
The ALE AND ALL AND ALL AND ALL ALL ALL ALL ALL ALL ALL ALL ALL AL		76 7 2 4 11	120	- 65 P

Specimen :	本存	Test Date:	
Recorded by:	Tigin		
	14		
Load, kip	amil	Note	PC
	7.00		
	1 Min Out	NESR	
	- 30 mil at	SE SR	
	1 D.d	NE CD L	1. Part
	Show In	NE K. MAH	2011/21
	and being	the out on pr	(20k)
	ZIMA ISING	00 /C Y2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	Smit hard	gaar ww. be	(5)
35	25 hin .	eg on the of	WPS
last		1 1 1 1 1	4
dial pode	1 north and	a jo prad sa (<u></u>
201	anite	92	
(arme)	Z SIM LON		
	Smil Lariz	at an NC	35N
	, Anna Daris		
	(703 17	P more to	eller -> 16mil
	6318	A margar as	3 10.1.1
	20 mint any	A NE DS	
	0 1		
	(A->13m	ni B	$\rightarrow 13 \text{ Im} 1$

Recorded by: Tigin Note Note 1 fail fleannal failure of secondary spherete 1 1/8" horizonta Sur sp. 1 1/8" horizonta Sur sp. 1/8" horizonta on the CL	Specimen :	书书	Test Date:		
Load, kip Note fail fleansel failure we seendary spherete 145" horizanter Swi spi 12 on top CL 18" horizanter on top CL	Recorded by:	Tigian			
Load, kip Note fail fleansel failure of secondary spherfs 1/8" horizonta Stri str 1/8" horizonta On the CL 1/8" horizontal On the CL		1			
5 fail fleannel failure of secondary spherete 1/8" horizanter SW STR 1/2 on top CL 1/8" horizantel on top CL	Load, kip		Note		
1 1/5" horizonter SW SP V2 on top CL 1/8" horizonter On top CL	(5) -	fail -le	and farme	of secondary Sp	ier fan
V2 on top CL V2 on top CL 1/8° horizontal on top CL	<u>U</u>	1	,t	0.	
V2 on bp CL 1/8" horizontal an bp CL		1/2' botwork	SW S	<u>r</u>	
V2 on top CL 1/8° herizontal an top CL	1	10 10.10			
1/8° hemionid on the CL		1/2 milan	01		
112" henionled on the CL		12 on pla	CL.		
		lla" hamin	a and		
		40 per van	an on af	- CL	

4/4

1/5 ×

Specimen :	#5	Test Date:	6/20/1
Recorded by:	- Jiqiu Juq		
Load, kip		Note	
7 kip			
le kip) mid at top	et w ps	
	2 mil prize	2n al NE	ps → (bA
	2 mil at	SE SP	
	I mil a tap	, A E PS	n,
151405	4 mil SE P	\$ NJ Þ(
	9 mil NW	sR	
	Smill easy of	10	
	2 mit prizelie	(od sw sR	WC
	Zpiel to riskl	othe sr	(150)
	des totals		*

Specimen	12	Test Date:	
Recorded I	by: Tiolia		
Load, kip		Note	
20	9 . i At	NW PS	
	(KR > 3m	1	
	i i	Care of a care and	
	20 ml at	SV SR	
	1		
	- CA ->>>	, pr./l	
	DOU'L CF	(12	
	230 March 6	ste	
3	mile 20A at	NW SR	
		1.2.7	
ok	AT	0.4	
-25	- 6 mit as	WPS	
		(E.)	
	(150) -> 5	243V	
	(153) >	Smil	
	× -	1 .	
	(50->	ma	
	- 5 hin at	(r.b)	
	mal vol	2013	
	25hil at	NW SR	

× 2/5

Specimen :	#5	Test Date:	
Recorded by:	Tale		

Load, kip	Note
70.	2 mil horizonta at SU PS - (3=F)
	Unit at NW DC
	Divi col lite 12
	75mil aut Sur Sk
	3mil Iprantal and sur ps (30A)
	O> Juint
	Zint and se sk
	13mil at CL
	2mJ aut SE CL - 3k
	35 min and SE SR Shirt Invitant on NWSR (32)
35	45 hor SEPS
	$(5) \rightarrow \text{Imit}$
	4 ml ax both WHE SR

3/5 ×

Specimen :	#K	Test Date:	
Recorded by:	Trajut		
Load kin	1	Note	
7K. Can't	$(B) \rightarrow -$	20 nA	
12	S. A.		
	2 min out	NE PS (SSN)	
	and him	N T NE DI (Sto)	_
	Tura llet	ingite the 12	_
	2 hol	- aut NW PC (OSP)-	
	6	h	
	$(U) \rightarrow$	> mar	
110	to L - 25	WDC	
410	2 3 Hour and		
	$(B) \rightarrow 3$	55 n/l	
		7 [*] /	
	W '	Souther	_
	16 mil ta	A A CL	-
	$0 \rightarrow 1$	8 mil	_
	Brin and	E SR	
	1		
	5 m h	mound as CL 40R	_
Unibool			-
			_
bool even	1 Skip dia	al gage realing	

(

4/5 ×

Specimen :	#2	Test Date:	
Recorded by:	Jigin		-
oad kin		Note	
10 april	~		
od kie	(L) extern	ded about 2m	
200 T			
relad	9		
30KP	()/ loten	ded 1 FX	
	Smithingh	Lax NERC	(70 9)
	JIM IPLOS	at cEbr	(71-)
	2mm iv	on selfs	(201)
1			
19pal	2 mix lipniz	sold out NEPr	- (SSV)-
35'	a, i have	ital mind SW SR	(ii'm)
relad	240.0/ .772		
40'	(b) white.	+- 25 mit	
	U was	P F2 MV	
46*	fail +	Alexand Paulier	
+V	1-		

×

Specimen :	#6	Test Date:	6/20/12
Recorded by:	Jigin		
oad kip		Note	
Ę			
		6	
	2m/ SES	K	
	2 mil NE	PS	
		10.45	
K	ton and	NW PS	
13	This 24	SE PS	
	11100	L Mar Di	
	And the	Pe UM KI	
	Jonil aut	A NW SR	
	701 01		
	2011 1	- KI (S)	
	2 m A M	en of NUL	
	4 mit out s	W PS	
20	to mit out	NW PS	
	12 - 1 - 2 -	Sw SR	
	D mu sul	> VV - 1	
	P mil ot	NW PS	
	Z mil of	NW SR	\cap
	and he	the international	ST SP (SOA)
	- MAC TEN	121151 VIVIA	DE 24 AN
	2 m/	. autsile	SESR (22B)

(

+

Specimen :	#6	Test Date:		
Recorded by:	Jigiu			
Load, kip		Note		
25	2 mil boy	intral out	SWSR	(55d)
	3 1101 0	WE PS		~
	2 mil horas	not NW SR	(258
	3 mil A Phil	ENE SR		25E)
	16mit aut	र हे		
		~		
30	J-1-5	of connected		
	20 mil a	at sw sR		
	CE Willen +	~ 1		
		prof		
	(B) ->	Smil		
	<u> </u>	I ME SR	- F	\mathcal{P}
	Zpwi wy	61 MC 1	(7.	0
	2 mil and	SW PS		<u></u>
	2 this out	NEPC	5	Ð

(

×

Specimen :	# 6	Test Date:	
Recorded by:	Tiain		
	5 115		
Load, kip		Note	
35	(c) and	and the stand	
1.7	Ser	De Struct	
		and the second	
	25 mil	ord NW PS	
	7.1.1		
	F IIW	ONT IN SK	
	2mit h	ortional inside sw	sk (357)
	$\widehat{\mathbb{D}} \rightarrow$	13 mil	
	(I)+(D)	connected	
	010	V	
		-connected 22	mil
	2mit ho	niato NE PS	(25 J)
	2mil a	t SWCL	(35 k)
		1 1 0 0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	ZmA Q	<u>y1 ~) (1</u>	(S)D
	3 mil a	n top of cl	
			OCM)
	1 mul h	m m stps	(SSIVX
			~

C

3 *

Specimen :	井方	Test Date:	
Recorded by:	Jigiu		
.oad, kip		Note	
40			
V.	$(A) \rightarrow ($	Zomil	
	1		(EN)
	2mil aut	NVJ SR	Pro
	1 . 1 .	2 10 1	1
	> Ihm	SW FS	- Cel
	(F)	7-1- V	
	0 7	22 m. q	
	7 Mal ad	the cold donat	(top file)
	2 1100 101	- upor cours 1 i i	(not twee)
	(Bit(12) y	nerged	
		2 11	d
	2 mil lon	Nocl	(4 P)-
	3.00	and el Ny DI	(60)
	* Inv \	- w. w 11. 1. 1. 2	(roy
	2 mil	and NWPS	(40R)
			U.
	Inst	and SEPT	(4)
		2 I 11 12	
	2 mil	VUN NEDS	140 V

Specimen		#6	Test Date:	
Recorded t	by:	Jigid		
		s die		
Load, kip			Note	
unhad				
report				
10				
repad	(Ma	manal	
20	1	NW	maria	
	((A) orto	tot Jay	
11		U	1.6.3	
reland			d Carro	
30'	2 mut to	g Terlet	inside 21 SK	- (3°u)
				~
	In A		SW SR	(351)
	1.1			
	Ing	-00	t s cl	(ew)
1 .				
repad				
35'				
9				
1				

Specimen :	せん	Test Date:	
Recorded by:	Tilling		
Load, kip		Note	
NP and			
1000	((1) 0~	tu où	
42	and the	enco z ch	
	rf)	11 *	
	4/	1 7-24	
here '	0.11		
50	tand		
	1		

6 '

Appendix I: Certificates of calibration for laboratory apparatus

Dial Gauge Verification:

Date Performed: 06/11/12

Operator: Matt Okeilly

Test Frame ID: 472961 (120 k Baldwin)

Test Frame Displacement Calibration Certificate #: 106072611122608

Verification Data Attached.

)

	ID:	DG1		
	Baldwin	Gauge	% variation FSE,	, %
	0	0	0.00%	0.00%
	0.0112	0.011	-1.79%	-0.01%
	0.0297	0.03	1.01%	0.01%
	0.083	0.083	0.00%	0.00%
	0.135	0.135	0.00%	0.00%
	0.1967	0.198	0.66%	0.04%
	0.2493	0.25	0.28%	0.02%
	0.2862	0.287	0.28%	0.03%
	0.357	0.358	0.28%	0.03%
	0.4605	0.462	0.33%	0.05%
	0.5175	0.518	0.10%	0.02%
	0.6457	0.647	0.20%	0.04%
	0.6918	0.694	0.32%	0.07%
	0.7805	0.783	0.32%	0.08%
	0.9192	0.923	0.41%	0.13%
	1.004	1.006	0.20%	0.07%
	1.0957	1.099	0.30%	0.11%
	1.1597	1.163	0.28%	0.11%
	1.266	1.27	0.32%	0.13%
	1.3772	1.383	0.42%	0.19%
	1.4377	1.442	0.30%	0.14%
ĵ.	1.5112	1.516	0.32%	0.16%
	1.4692	1.474	0.33%	0.16%
	1.3635	1.368	0.33%	0.15%
	1.2112	1.214	0.23%	0.09%
	1.1035	1.106	0.23%	0.08%
	1.0235	1.026	0.24%	0.08%
	0.9192	0.922	0.30%	0.09%
	0.8907	0.894	0.37%	0.11%
	0.751	0.754	0.40%	0.10%
	0.632	0.635	0.47%	0.10%
	0.6052	0.607	0.30%	0.06%
	0.4875	0.488	0.10%	0.02%
	0.4272	0.428	0.19%	0.03%
	0.3405	0.341	0.15%	0.02%
	0.2727	0.273	0.11%	0.01%
	0.2335	0.234	0.21%	0.02%
	0.1938	0.194	0.10%	0.01%
	0.1085	0.109	0.46%	0.02%
	0.0665	0.067	0.75%	0.02%
	0.003	0.003	0.00%	0.00%
		0		0.000

)

	ID:	DG2		
	Baldwin	Gauge	% variation FSE, %	
	0	0	0.00%	0
	0.0588	0.059	0.34%	6.67E-05
	0.124	0.125	0.81%	0.000333
	0.1777	0.178	0.17%	1E-04
	0.23	0.23	0.00%	0
	0.2758	0.276	0.07%	6.67E-05
	0.345	0.345	0.00%	0
	0.4225	0.423	0.12%	0.000167
	0.4763	0.477	0.15%	0.000233
	0.5515	0.552	0.09%	0.000167
	0.6145	0.615	0.08%	0.000167
	0.6935	0.694	0.07%	0.000167
	0.7685	0.769	0.07%	0.000167
	0.8333	0.834	0.08%	0.000233
	0.909	0.91	0.11%	0.000333
	0.972	0.974	0.21%	0.000667
	1.0815	1.083	0.14%	0.0005
	1.1677	1.169	0.11%	0.000433
	1.2542	1.256	0.14%	0.0006
	1.3695	1.372	0.18%	0.000833
	1.5152	1.519	0.25%	0.001267
	1.6037	1.607	0.21%	0.0011
)	1.7527	1.757	0.25%	0.001433
	1.869	1.874	0.27%	0.001667
	2.0067	2.012	0.26%	0.001767
	1.925	1.931	0.31%	0.002
	1.86	1.864	0.22%	0.001333
	1.7515	1.756	0.26%	0.0015
	1.6095	1.613	0.22%	0.001167
	1.4372	1.44	0.19%	0.000933
	1.3067	1.308	0.10%	0.000433
	1.2035	1.203	-0.04%	-0.000167
	1.1515	1.152	0.04%	0.000167
	1.0355	1.035	-0.05%	-0.000167
	0.9735	0.973	-0.05%	-0.000167
	0.847	0.846	-0.12%	-0.000333
	0.7417	0.74	-0.23%	-0.000567
	0.6967	0.695	-0.24%	-0.000567
	0.6237	0.623	-0.11%	-0.000233
	0.4523	0.452	-0.07%	-1E-04
	0.3235	0.322	-0.46%	-0.0005
	0.264	0.263	-0.38%	-0.000333
	0.1863	0.184	-1.23%	-0.000767
	0.09	0.089	-1.11%	-0.000333
)	0.0453	0.043	-5.08%	-0.000767
	0	-0.001		-0.000333

J

)

	Baldwin	Gauge	% variation	FSE, %
	ID:	DG3		
1	0	0	0.00%	0.00%
	0.0782	0.078	-0.26%	-0.01%
	0.1175	0.118	0.43%	0.02%
	0.2325	0.234	0.65%	0.05%
	0.308	0.309	0.32%	0.03%
	0.3782	0.378	-0.05%	-0.01%
	0.4402	0.441	0.18%	0.03%
	0.5158	0.517	0.23%	0.04%
	0.5745	0.576	0.26%	0.05%
	0.6572	0.659	0.27%	0.06%
	0.7325	0.735	0.34%	0.08%
	0.8157	0.818	0.28%	0.08%
	0.8872	0.891	0.43%	0.13%
	0.9955	0.999	0.35%	0.12%
	1.0535	1.056	0.24%	0.08%
	1.1202	1.125	0.43%	0.16%
	1.243	1.248	0.40%	0.17%
	1.3285	1.333	0.34%	0.15%
	1.387	1.392	0.36%	0.17%
	1.4647	1.469	0.29%	0.14%
	1.5482	1.555	0.44%	0.23%
- X	1.69	1.698	0.47%	0.27%
- 20	1.7618	1.767	0.30%	0.17%
	1.8705	1.88	0.51%	0.32%
	1.9405	1.954	0.70%	0.45%
	2.0117	2.024	0.61%	0.41%
	1.9177	1.929	0.59%	0.38%
	1.824	1.835	0.60%	0.37%
	1.6947	1.703	0.49%	0.28%
	1.5825	1.589	0.41%	0.22%
	1.5002	1.506	0.39%	0.19%
	1.4185	1.424	0.39%	0.18%
	1.3507	1.355	0.32%	0.14%
	1.1765	1.18	0.30%	0.12%
	1.07	1.07	0.00%	0.00%
	0.9405	0.94	-0.05%	-0.02%
	0.8242	0.823	-0.15%	-0.04%
	0.6757	0.674	-0.25%	-0.06%
	0.458	0.457	-0.22%	-0.03%
	0.316	0.314	-0.63%	-0.07%
	0.208	0.206	-0.96%	-0.07%
	0.1255	0.122	-2.79%	-0.12%
	0.0412	0.04	-2.91%	-0.04%
1	0	0		

J

Slump Cone Verification

Date: 6/13/2012

Measured by: Matt O'Reilly

	Measurements (in.)								
	1	2	3	Avg	ASTM Spec				
Diameter at:									
Base	7.96	7.94	8.04	7.98	8 ± 0.125				
Тор	3.91	4.01	3.96	3.96	4 ± 0.125				
Height	12,04	12.02	12,03	12.03	12 ± 0.125				

Unit Weight Container Verification

Date: 6/13/2012

428.1

Measured by: _____Matt O'Reilly

	Measurements (in.)						
	1	2	3	Avg			
Diameter	8.00	7.98	8.00	7.99			
Height	8.50	8.56	8.53	8.53			

Volume (in.³)

Volume (ft³)

0.2477 ASTM: Volume of container must exceed 95% of needed capacity

ISSUED BY : INSTRON CALIBRATION LABORATORY

DATE OF ISSUE: 26-Jul-2011

CERTIFICATE NUMBER: 106072611122608

1010000000000000

Page 1 of 3

Instron 825 University Avenue Norwood, MA 02082-2643 Telephone: (800) 473 - 7838 Fax: (781) 575 - 5755 Email: service_requests@instron.com

APPROVED SIGNATORY

John Weiss

Type of Calibration: Displacement Relevant Standard: astm e2309 Date of Calibration: 26-Jul-2011

Customer Requested Due Date: 26-Jul-2012

Customer	UNIVERSITY OF KANSAS	Machine		
	1032 LEARNED HALL	Serial No :	472961	
	LAWRENCE, KS 66045	Make : INSTRO		
		Model :	INSTRON 55R120BTE	
P.O. Number :	SQ00003644			
Contact :	JIM WEAVER			

Readout Verified

1. Digital Readout (in)

Certification Statement

This certifies that the displacements verified with machine indicator 1 (listed above) were verified by Instron in accordance with ASTM E2309-05 (Follow-the-Displacement Method) and Instron work instruction ICA-8-07.

The testing machine was verified on-site at customer location. Adjustments are noted in the comments section of this report with a reference to the "As Found" data.

The verification and equipment used conform to a controlled Quality Assurance program which meets the specifications outlined in ANSI/NCSL Z540-1, ISO 10012, ISO 9001:2000, and ISO/IEC 17025:2005. The Instron measurement equipment used for verification is traceable to NIST.

Summary of Results

Indicator 1- Digital Readout (in)

Verified Range (in)	Max Error (in)	Max Error (%)	Max Repeat Error (in)	Max Repeat Error (%)	System Class*	Resolution (in)	Resolution Class	ASTM Lower Limit (in)
1-5	-0.0130	-0.368	0.0027	0.147	A	.0001	A	1

*System Class is derived from assessment of the following: error, repeatability, resolution, and standard device classification.

The results indicated on this certificate and report relate only to the items verified. If there are methods or data included that are not covered by the NVLAP accreditation it will be identified in the comments. Any limitations of use as a result of this verification will be indicated in the comments. This report must not be used to claim product endorsement by NVLAP or the United States government. This report shall not be reproduced, except in full, without the approval of Instron.

CalproSDS version 3.3

ISSUED BY : INSTRON CALIBRATION LABORATORY

DATE OF ISSUE : 26-Jul-2011 CERTIFICATE NUMBER: 106072611122608

Page 2 of 3

Direction of Displacement : Ascending

Datapoint Summary - Indicator 1 - Digital Readout (in)

Suggested Value (in)	Run I Error (in)	Run I Error (%)	Run 2 Error (in)	Run 2 Error (%)	Run 3 Error (in)	Run 3 Error (%)	Repeat Error (in)	Uncertainty (in)*	Coverage Factor = k
1	-0.0036	-0.348	-0.0021	-0.201	-0.0031	-0.301	0.0015	0.0020	2.36
2	-0.0075	-0.368	-0.0062	-0.308	-0.0064	-0.313	0.0013	0.0019	2.26
3	-0.0094	-0.313	-0.0095	-0.311	-0.0085	-0.280	0.0010	0.0018	2.26
4	-0.0130	-0.321	-0.0113	-0.279	-0.0103	-0.255	0.0027	0.0036	2.78
5	-0.0101	-0.200	-0.0078	-0.154	-0.0089	-0.177	0.0023	0.0031	2.57

*The reported expanded uncertainty of measurement is based on a combined uncertainty multipled by a coverage factor k to provide a level of confidence of approximately 95 %.

Runs 1 and 2 are performed to comply with the requirements of ASTM E2309, run 3 is performed to calculate the uncertainty of measurement.

Data - Indicator 1 - Digital Readout (in)

Temperature at start of verification : \$1.8 °F

		Run 1	1200		Run 2			Run 3
Suggested Value	Applied	Indicated	Class	Applied	Indicated	Class	Applied	Indicated
1	1.0331	1.0295	A	1.0456	1.0435	А	1.0306	1.0275
2	2.0395	2.0320	A	2.0162	2.0100	A	2.0451	2.0387
3	3.0031	2.9937	A	3.0587	3.0492	A	3.0335	3.0250
4	4.0445	4.0315	A	4.0455	4.0342	A	4.0405	4.0302
5	5.0471	5.0370	A	5.0583	5.0505	A	5.0399	5.0310

For runs 1 and 2: the worst Resolution Class Is A and the worst Repeatability Class is A.

Temperature at end of verification : \$2.0 °F

Starting Point of crosshead : 10 in

Verification Equipment

Make/Model	Serial No.	Description	Cal Agency	Uncertainty of Calibration	Resolution	Cal Date	Due Date
Boeckeler DLG	6894	Linear Gage	A.A. JANSON	.000147 in	.0001 in	7-Dec-09	7-Dec-11
EXTECH 445580	956905	Thermometer	SYPRIS	5 °F	.1 °F	11-Sep-09	11-Sep-11
EXTECH 445580	956905	Thermometer	SYPRIS	5 °F	.1 °F	11-Sep-09	No.

CalproSDS version 3.3

ISSUED BY : INSTRON CALIBRATION LABORATORY

DATE OF ISSUE: 26-Jul-2011

CERTIFICATE NUMBER: 106072611122608

Page 3 of 3

Comments

Verified By:

John Weiss Senior Field Service Engineer

ISSUED BY: INSTRON CALIBRATION LABORATORY

DATE OF ISSUE: 26-Jul-11

CERTIFICATE NUMBER: 106072611103339

Instron 825 University Avenue Norwood, MA 02062-2643 Telephone: (800) 473-7838 Fax: (781) 575-5750 Email: service_requests@instron.com N Leb code 200301-0

Page 1 of 4 pages APPROVED SIGNATORY

John Weiss

Type of Calibration: Force Relevant Standard: ASTM E4-10 Date of Calibration: 26-Jul-11

Customer Requested Due Date: 26-Jul-12

Customer

Name:	UNIVERSITY OF KANSAS
Address:	1032 Learned Hall, 15th St.
	Lawrence, KS 66045
	WEAVERHJ@KU.EDU
P.O./Contract No .:	SQ00003644
Contact:	JIM WEAVER

Machine		Transducer				
Manufacturer:	BALDWIN TATE EMERY	Manufacturer:	BALDWIN TATE EMERY			
Serial Number:	472 961	Transducer ID:	472961			
System ID:	55R 120B TE4 7296 1	Capacity:	120000 lbf			
Range Type:	Single	Type:	Compression			

Classification

1. Digital Readout - PASSED

Certification Statement

This certifies that the forces verified with machine indicator(s) (listed above) that passed are WITHIN ± 1 % accuracy, 1 % repeatability, and zero return tolerance.

All machine indicators were verified on-site at customer location by Instron in accordance with ASTM E4. The certification is based on runs 1 and 2 only. A third run is taken to satisfy uncertainty requirements according to ISO 17025 specifications.

The verification and equipment used conform to a controlled Quality Assurance program which meets the specifications outlined in ANSI/NCSL Z540-1, ISO 10012, ISO 9001:2008 and ISO/IEC 17025:2005.

Method

The testing machine was verified in the 'as found' condition with no adjustments carried out.

The results indicated on this certificate and the following report relate only to the items verified . If there are methods or data included that are not covered by the NVLAP accreditation it will be identified in the comments. Any limitations of use as a result of this verification will be indicated in the comments. This report must not be used to claim product endowement by NVLAP or the United States government. This report shall not be reproduced except in full, without the approval of the issuing laboratory.

CERTIFICATE NUMBER: 106072611103339

NVLAP ACCREDITED CALIBRATION LABORATORY No. 200301-0

Page 2 of 4 pages

Summary of Results

Temperature at start of verification: 81.60 °F.

Indicator 1	Digital Readout (lbf)						
Range			ASTM E4	ASTM E4			ASTM E4
Full Scale	Tested Force Range		Max	Max Repeat	Zero	Resolution	Lower Limit
(%)	(lbf)	Mode	Error (%)	Error (%)	Return	(lbf)	(lbf)
100	-1192.4 to -119488.2	с	0.65	0.06	Pass	1	200

Temperature at end of verification: 81.80 °F.

Data Point Summ	ary - Indicator	I Digital Reado	ut (lbf)			
COMPRESSION						
1	Run 1	Run 2	Run 3	ASTM E4	Relative	Uncertainty of
	Error	Error	Error	Repeat Error	Uncertainty*	Measurement*
% of Range	(%)	(%)	(%)	(%)	(%)	(± lbf)
100% Range (Full S	cale: -1 19488.2 lb	ŋ				
1	0.64	0.62	0.61	0.02	0.14	1.670
2	0.64	0.65	0.65	0.01	0.13	3.172
4	0.59	0.59	0.64	0.00	0.14	6,441
7	0.57	0.51	0.42	0.06	0.17	14,460
10	0.55	0.50	0.42	0.05	0,17	19.943
20	0.52	0.50	0.41	0.02	0.16	39.173
40	0.53	0.49	0.47	0.04	0.15	73.077
70	0.46	0.44	0.45	0.02	0.15	124,601
100	0.38	0.34	0.36	0.04	0.15	179.947

* The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 93%.

Data - Indicator 1. - Digital Readout (lbf)

COMPRESSION

COMPRESSI						
	Run 1		Run	2	Run 3	
% of Range	Indicated (Ibf)	Applied (Ibf)	Indicated (1bf)	Applied (Ibf)	Indicated (Ibf)	Applied (Ibf)
100% Range (F	full Scale: -1 19488.2 lbf)				
0 Return	1	1	3	1	2	
1	-1200	-1192.4	-1200	-1192.6	-1200	-1192.75
2	-2400	-2384.8	-2400	-2384.5	-2400	-2384.6
4	-4800	-4772.05	-4800	-4771.95	-4800	-4769.4
7	-8400	-8352.6	-8400	-8357.4	-8400	-8364.6
10	-12000	-11934.6	-12000	-11940.6	-12000	-11950.2
20	-24000	-23875.8	-24000	-23881.2	-24000	-23901
40	-48000	-47748	-48000	-47763.6	-4800.0	-47777.4
70	-84000	-83613.6	-84000	-83635.2	-84000	-8362.5
100	-119900	-119450.4	-119900	 119488.2 	-1 1900.0	-118572.6

CERTIFICATE NUMBER: 106072611103339

NVLAP ACCREDITED CALIBRATION LABORATORY No. 200301-0

Page 3 of 4 pages

The Return to Zero tolerance is \pm the indicator resolution, 0.1% of the maximum force verified in the range, or 1% of the lowest force verified in the range, whichever is greater.

Graphical Data - Indicator 1. - Digital Readout (lbf)

Verification Equipment

Make/Model	Serial Number	Description	Calibration Agency	Capacity	Cal Date	Cal Due
Extech 445580	956905	temp. indicator	Sypris	NA	11-Sep-09	11-Sep-11
Interface 9840	67002	force indicator	Interface	NA	29-Nov-10	29-Nov-12
Strainsense 930709D	9307.09D	load cell	Instron	120000 lbf	11-Nov-10	11-Nov-11
Flintee 198862	1988.62	load cell	Instron	12000 lbf	21-May-10	21-May-12

Verification Equipment Usage

Range Full Scale (%)	Standard Serial Number	Mode	Percent(s) of Range	Lower Limit for Standard Class A / A1 (1bf)
100	930709D	c	7/1 0/20/40/70/1 00	5000 / 5000
100	198862	c	1/2/4	200 / 200

Instron standards are traceable to NIST.

The standard Class A lower limit is used for systems with an accuracy of +/- 10% and the standard Class A1 lower limit is used for systems with an accuracy of +/- 0.5%.

Standard forces have been temperature compensated as necessary.

Comments

NVLAP ACCREDITED CALIBRATION LABORATORY No. 200301-0

CERTIFICATE NUMBER: 106072611103339

Page 4 of 4 pages

Verified by: John Weiss Field Service Engineer

NOTE: Clause 20 of ASTM E4 states; It is recommended that testing machines be verified annually or more frequently if required. In no case shall the time interval between verifications exceed 18 months (except for machines in which long term test runs beyond the 18 month period). Testing machines shall be verified immediately after repairs that may in any way affect the operation of the weighing system or values displayed. Verification is required immediately after a testing machine is relocated and where there is a reason to doubt the accuracy of the force indicating system, regardless of the time interval since the last verification.

CERTIFICATE OF CALIBRATION ISSUED BY: INSTRON CALIBRATION LABORATORY DATE OF ISSUE: 26-Jul-11 CERTIFICATE NUMBER: 106072611132239 ode 200301-0 Instron Page 1 of 4 pages 825 University Avenue Norwood, MA 02062-2643 APPROVED SIGNATORY INSTRON Telephone: (800) 473-7838 Fax: (781) 575-5750 Email: service_requests@instron.com John Weiss Type of Calibration: Force Relevant Standard: ASTM E4-10 Date of Calibration: 26-Jul-11 Customer Requested Due Date: 26-Jul-12 Customer UNIVERSITY OF KANSAS Name: Address 1032 Learned Hall, 15th St. Lawrence, KS 66045 WEAVERHJ@KU.EDU SQ00003644 P.O./Contract No .: Contact: JIM WEAVER Machine Transducer Manufacturer: BALDWIN TATE EMERY Manufacturer: BALDWIN TATE EMERY Serial Number: 64865 64865 Transducer ID: System ID: 60BTE64865 Capacity: 60000 lbf Range Type: Single Type: Compression Classification 1. Dial Indicator - PASSED** **Certification Statement** This certifies that the forces verified with machine indicator(s) (listed above) that passed are WITHIN ± 1 % accuracy, 1 % repeatability, and zero return tolerance. All machine indicators were verified on-site at customer location by Instron in accordance with ASTM E4. The certification is based on runs 1 and 2 only. A third run is taken to satisfy uncertainty requirements according to ISO 17025 specifications.

The verification and equipment used conform to a controlled Quality Assurance program which meets the specifications outlined in ANSI/NCSL Z540-1, ISO 10012, ISO 9001:2008 and ISO/IEC 17025:2005.

** within ± .5% accuracy and .5% repeatability.

Method

The testing machine was verified in the 'as found' condition with no adjustments carried out.

Instron CalproCR Version 3.21

The results indicated on this certificate and the following report relate only to the items verified. If there are methods or data included that are not covered by the NVLAP accorditation its will be identified in the comments. Any limitations of use as a result of this verification will be indicated in the comments. This report must not be used to claim product endowsement by NVLAP or the United States government. This report shall not be reproduced accept in full, without the approval of the issuing laboratory.

CERTIFICATE NUMBER: 106072611132239

NVLAP ACCREDITED CALIBRATION LABORATORY No. 200301-0

Page 2 of 4 pages

Summary of Results

Temperature at start of verification: 82,50 °F.

Indicator 1 Dial Indicator (lbf)									
Range			AST M E4	ASTM E4			ASTM E4		
Full Scale	Tested Force Range		Max	Max Repeat	Zero	Resolution	Lower Limit		
(%)	(lbf)	Mode	Error (%)	Error (%)	Return	(bf)	(bf)		
100	-597.1 to -60010.8	с	0.49	0,44	Pass	25	50.00		

Temperature at end of verification: 82.50 °F.

Data Point Su	mmary - Indicator 1	Dial Indicator	r (lbf)			
COMPRESSIO:	N					
	Run I	Run 2	Run 3	ASTM E4	Relative	Uncertainty of
	Error	Error	Error	Repeat Error	Uncertainty*	Measurement*
% of Range	(%)	(%)	(%)	(%)	(%)	(± lbf)
100% Range (Fu	Il Scale: -60010.8 lbf)					
1	0.49	0.42	0.55	0.07	2,41	14.390
2	-0.30	0.14	-0.13	0.44	1.24	14.858
4	0,01	-0.21	-0.16	0.22	0.63	15.138
7	-0.11	-0.11	-0.13	0.00	0.37	15,474
10	0.02	0.10	0.04	0.08	0.29	17,211
20	+0.05	-0.20	-0.04	0.15	0.22	26,186
40	0.06	0.06	-0.02	0.00	0.17	40.546
70	0.07	0.04	-0.18	0.03	0.22	92,420
100	-0.02	-0.01	-0.01	0.01	0.15	90.613

* The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 93%.

Data - Indicator 1. - Dial Indicator (lbf)

COMPRESSION

CO. III ILLOUIL						
	Run 1		Run	2	Run 3	
% of Range	Indicated (Ibf)	Applied (Ibf)	Indicated (1bf)	Applied (Ibf)	Indicated (Ibf)	Applied (lbf)
100% Range (F	ull Scale: +60010.8 lbf)					
OReturn	0	1	0		0	
1	-600	-597.1	-600	-597.5	-600	-596.7
2	-1200	-1203.6	-1200	-1198.35	-1200	-1201.55
4	-2400	-2399.65	-2400	-2404.95	-2400	-2403.95
7	-4200	+4204,55	-4200	-4204.7	-4200	-4205.5
10	+600.0	-5998.8	-6000	-5994	-6000	-5997.6
20	-12000	-120.06	-12000	-12024	-12000	-12005.4
40	-24000	-23985	-24000	-23,986.2	-24000	-24004.8
70	-42000	+41969.4	-42000	-41984.4	-42000	-42073.8
100	-60000	-60010.8	-60000	-60008.4	-60000	-60006.6

Instron CalproCR Version 3.21

CERTIFICATE NUMBER: 106072611132239

N/LAP ACCREDITED CALIBRATION LABORATORY No. 200301-0

Page 3 of 4 pages

The Return to Zero tolerance is \pm the indicator resolution, 0.1 % of the maximum force verified in the range, or 1% of the lowest force verified in the range, whichever is greater.

Graphical Data - Indicator 1. - Dial Indicator (lbf)

Verification Equipment

Make/Model	Serial Number	Description	Calibration Agency	Capacity	Cal Date	Cal Due
Extech 445580	956905	temp. indicator	Sypris	NA	11-Sep-09	11-Sep-11
Interface 9840	67002	force in dicator	Interface	NA	29-Nov-10	29-Nov-12
Strainsense 930709D	9307 09D	load cell	Instron	120 000 lbf	11-Nov-10	11-Nov-11
Flintee 198862	1988 62	load cell	Instron	120 00 lbf	21-May-10	21-May-12

Verification Equipment Usage

Range Full Scale (%)	Standard Serial Number	Mode	Percent(s) of Range	Lower Limit for Standard Class A / Al (lbf)
100	930 709D	c	10/20/4/0/70/100	5000 / 5000
100	198 862	c	1/2/4/7	200 / 200

Instron standards are traceable to NIST.

The standard Class A lower limit is used for systems with an accuracy of +/-10% and the standard Class A1 lower limit is used for systems with an accuracy of +/-0.5%.

Standard forces have been temperature compensated as necessary.

Comments

NVLAP ACCREDITED CALIBRATION LABORATORY No. 200301-0

CERTIFICATE NUMBER: 106072611132239

Page 4 of 4 pages

Verified by: John Weiss Field Service Engineer

NOTE: Clause 20 of ASTM E4 states; It is recommended that testing machines be verified annually or more frequently if required. In no case shall the time interval between verifications exceed 18 months (except for machines in which long term test runs beyond the 18 month period). Testing machines shall be verified immediately after repairs that may in any way affect the operation of the weighing system or values displayed. Verification is required immediately after a testing machine is relocated and where there is a reason to doubt the accuracy of the force indicating system, regardless of the time interval since the last verification.

CERTIF		TE O	F CALIE	BRATI	ON			
ISSUED BY: IN	STRON	CALIBRA	TION LABORATO	ORY				1 8
DATE OF ISSUE	27.10	.11	CERTIFICATE NU	MBER: 10	6072611142228B		NV	7440
			0211110112110				040	J. J.
	11000	Instron					Lab cod	le: 200301-0
		825 Unive	rsity Avenue			F	Page 1 of 4	pages
INSTRO	DN'	Norwood, Telephone	MA 02062-2643		APE	PROVED SIGN	NATORY	
		Fax: (781)	575-5750	·		ustin		gitally signed by Justin Fry N: on=Justin Fry, o=US,
		Email: ser	vice_requests@i	nstron.com	0	uoui	• \ ₂	Instron eason: I am approving this
					F	rv	-	oument
Type of Calibra	tion:	Force			-	iy j	1 3	400'
Relevant Stand	ard:	ASTM	E4-10					
Date of Calibrat	ion:	26-Jul-	11		Cus	tomer Requ	ested Due	Date: 26-Jul-12
C								
Customer								
Name: Address:	103	IVERSITY (JF KANSAS					
Address.	Law	rence, KS 6	6045					
	WE	A VERHJ@	KU.EDU					
P.O./Contract No .:	SQC	00003644						
Contact:	JIM	WEAVER						
Machine					Transducer			
Manufacturer:	FORM	EY / SATEC	:		Manufacturer:	FORNEY / S	SATEC	
Serial Number:	69084				Transducer ID:	69084		
System ID: Ranna Type:	Single	EY / SATEC	-69084		Capacity: Turne:	Compression		
Range Type.	angle				rype.	Compression		
Classification								
1. Digital Readout	PASSE	D						
Certification Sta	tement							
This certifies that th	e forces	verified with	machine indicato	r(s) (listed ab	ove) that passed are	WITHIN ± 1%	6 accuracy, 1	1 %
repeatability, and ze	ero return	tolerance.						
All machine indicat	tors were	verified on-	site at customer lo	ation by Inst	ron in accordance w	ith ASTM E4.		
The certification is	based on	runs 1 and 2	only. A third run	is taken to sa	tisfy uncertainty req	uirements acco	rding to ISO	17025
The verification and	d equipm	entused con	form to a controlle	d Quality As	surance program wh	hich meets the s	pecifications	4
outlined in ANSI/N	CSL Z54	0•1, ISO 10	012, ISO 9001:200	8 and ISO/II	SC 17025:2005.			
Method								
The testing machine	e was ver	ified in the 's	is found condition	with no adju	stments carried out.			
-								

Instron CalproCR Version 3.21

The results idlexed on this certificate and the following report relate only to the items verified. If there are methods or dataincluded that are not covered by the NVLAP accredition it will be identified in the comments. Any limitations of use as a result of this verification will be indicated in the comments. This report must not be used to claimproduct endorsementby NVLAP or the United States government. This report shall not be reproduced, except in full, without the approval of the issuing laboratory.

CERTIFICATE NUMBER: 106072611142228B

Page 2 of 4 pages

NVLAP ACCREDITED CALIBRATION LABORATORY No. 200301-0

Summary of Results

Temperature at start of verification: 90.10 °F.

Indicator 1.	Digital Readout (lbf)						
Range			ASTM E4	ASTM E4			ASTM E4
Full Scale	Tested Force Range		Max	Max Repeat	Zero	Resolution	Lower Limit
(%)	(lbf)	Mode	Error (%)	Error (%)	Return	(lbf)	(lbf)
100	•5790.6 to •600312	С	•0.98	0.28	Pass	1	200

Temperature at end of verification: 90.80 °F.

Data Point Summary - Indicator 1. - Digital Readout (lbf) COMPRESSION ASTM E4 Run 1 Run 2 Run 3 Relative Uncertainty of Error Error Error Repeat Error Uncertainty* Measurement* % of Range $(\pm lbf)$ (%) (%) (%) (%) (%) 100% Range (Full Scale: +6003121bf) 0.98 •0,70 •0.73 0.23 13.838 1 0,28 2 0.58 0.73 0.63 0.15 0,17 20,454 4 0.95 0.93 0.96 0.02 0.15 35.652 0.65 0.64 0.67 0.01 0.13 53.830 10 76.558 0,30 0.31 0.30 0.01 0.13 20 0,24 •0.25 0.23 0.01 0.13 153.924 40 0,11 •0.12 •0.12 0.01 0.13 307.562 70 0.23 •0.23 0.23 0.00 0.13 534,640 100 -0.66 -0.68 -0.68 0.02 0.13 768.317

*The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95%.

Data - Indicator 1. - Digital Readout (lbf)

COMPRESSIO	DN .						
	Run 1		Run 2		Run 3		
	Indicated	Applied	Indicated	Applied	Indicated	Applied	
% of Range	(161)	(151)	(161)	(ibt)	(161)	(161)	
100% Range (I	Full Scale: -600312 lbf)						
0 Return	-3	1	-91	1	47		
1	•6000	-6059.4	-5750	-5790.6	-6000	•6044.4	
2	•11900	-11831.4	 11900 	-11813.4	 11900 	 11825.4 	
4	 23990 	23763.6	 23990 	 23767.8 	•24000	 23772 	
7	-42000	-41730	•42000	•41734	-42000	•41722	
10	•60000	-59812	•59990	-59812	•59990	 59808 	
20	-120000	-120286	 119900 	 120198 	120000	 120276 	
40	-240000	•240272	-240000	-240284	•240000	 240292 	
70	•420000	420974	•420000	-420980	420000	420974	
100	-596000	-599934	-596200	-600312	•596400	•600496	

CERTIFICATE NUMBER: 106072611142228B

NVLAP ACCREDITED CALIBRATION LABORATORY No. 200301-0

Page 3 of 4 pages

The Return to Zero tolerance is ± the indicator resolution, 0.1 % of the maximum force verified in the range, or 1% of the lowest force verified in the range, whichever is greater.

Graphical Data - Indicator 1. - Digital Readout (lbf)

Verification Equipment

Make/Model	Serial Number	Description	Calibration Agency	Capacity	Cal Date	Cal Due
Strainsense 3080402	3080402	load cell	Instron	6000001bf	30-Sep-10	30-Sep-11
Strainsense 930709D	930709D	load cell	Instron	1200001bf	11-Nov-10	11-Nov-11
Extech 445580	956905	temp. indicator	Sypris	NA	11-Sep-09	11-Sep-11
Interface 9840	67002	force indicator	Interface	NA	29-Nov-10	29•Nov•12

Verification	Verification Equipment Usage								
Range				Lower Limit for					
Full Scale	Standard			Standard Class					
(%)	Serial Number	Mode	Percent(s) of Range	A / A1 (lbf)					
100	3080402	С	7/10/20/40/70/100	20000 / 20500					
100	930709D	С	1/2/4	5000 / 5000					
100	930709D	C	1/2/4	30007 3000					

Instron standards are traceable to NIST.

The standard Class A lower limit is used for systems with an accuracy of +/- 1.0% and the standard Class A1 lower limit is used for systems with an accuracy of +/- 0.5%.

Standard forces have been temperature compensated as necessary.

Comments

This certificate replaces 106072611142228 to reflect the proper Machine Make/Serial Number.

NVLAP ACCREDITED CALIBRATION LABORATORY No. 200301-0

CERTIFICATE NUMBER: 106072611142228B

Page 4 of 4 pages

Verified by: John Weiss Field Service Engineer

NOTE: Clause 20 of ASTM E4 states; It is recommended that testing machines be verified annually or more frequently if required. In no case shall the time interval between verifications exceed 18 months (except for machines in which long term test runs beyond the 18 month period). Testing machines shall be verified immediately after repairs that may in any way affect the operation of the weighing system or values displayed. Verification is required immediately after a testing machine is relocated and where there is a reason to doubt the accuracy of the force indicating system, regardless of the time interval since the last verification.

CERTIF SSUED BY: IN DATE OF ISSUE	FICA		nvlag		
	DN'	Instron 825 University Avenue Narwood, MA 02062-2643 Telephone: (800) 473-7838 Fax: (781) 575-5750 Email: service_requests@instron.com	A	PPROVED SIG	Rage 1 of 5 pages NATORY
Type of Calibra	tion:	Force			
Relevant Stand	ard:	ASTM E4-10	_		
Date of Calibrat	tion:	27-Jul-11	Cu	istomer Requ	ested Due Date: 27-Jul-12
Customer					
Name: Address:	UN 103 Law WE	IVERSITY OF KANSAS 2 Learned Hall, 15th St. vrence, KS 6604.5 AVERHJ@KU.EDU			
Contact:	JIM	IWEAVER			
Machine			Transducer		
Manufacturer:	FORN	EY	Manufacturer:	FORNEY	
Serial Number:	76125		Transducer ID:	76125	
System ID:	QC-50	+106C76125	Capacity:	400000 lbf	
Range Type:	Multi		Type:	Compressio	n
Classification					
1. Dial Indicator - P	ASSED				
Certification Sta	atement				
This certifies that the	he forces	verified with machine indicator(s) (listed ab	ove) that passed a	re WITHIN ± 1.9	% accuracy, 1 %
repeatability, and z	ero returr	n tolerance.			
All machine indica	tors were	verified on-site at customer location by Inst	tron in accordance	with ASTM E4.	F
The certification is	based on	runs I and 2 only. A third run is taken to sa	tisfy uncertainty n	equirements acco	ording to ISO 17025
The verification an	d equipm	ent used conform to a controlled Quality As	surance program v	which meets the	specifications
outlined in ANSI/N	CSL Z5	40-1, ISO 10012, ISO 9001:2008 and ISO/IE	C 17025:2005.		

Method

The testing machine was verified in the 'as found' condition with no adjustments carried out.

Instron CalproCR Version 3.21

The results indicated on this certificate and the following report relate only to the items verified. If there are methods or data included that are not covered by the NVLA? accorditation itself be identified in the comments. Any limitations of use as a result of this verification will be indicated in the comments. This report must not be used to claim product endowement by NVLAP or the United States government. This report shall not be reproduced accept in full, without the approval of the issuing laboratory.

CERTIFICATE NUMBER: 106072711095017

N/LAP ACCREDITED CALIBRATION LABORATORY No. 200301-0

Page 2 of 5 pages

Summary of Results

Temperature at start of verification: 89.00 °F.

Indicator 1	Dial Indicator (lbf)						
Range			AST M E4	ASTM E4			ASTM E4
Full Scale	Tested Force Range		Max	Max Repeat	Zero	Resolution	Lower Limit
(%)	(lbf)	Mode	Error (%)	Error (%)	Return	(bf)	(lbf)
100	-80030 to -400030	с	-0.40	0.36	Pass	500	100000
7.5	-6004.8 to -30018	с	-0.32	0.30	Pass	37.5	7500

Temperature at end of verification: 90.10 °F.

Data Point Summary - Indicator 1. - Dial Indicator (lbf)

COMPRESSIO?	N					
	Run I	Run 2	Run 3	ASTM E4	Relative	Uncertainty of
	Error	Error	Error	Repeat Error	Uncertainty*	Measurement*
%of Range	(%)	(%)	(%)	(%)	(%)	(± lbf)
100% Range (Fu	Il Scale: -4 00030 lbf)					
20	-0.04	-0.40	-0.32	0.36	0.44	353.694
25	0.00	-0.34	0,25	0.34	0.47	465.158
40	-0.08	-0.35	-0.45	0.27	0.31	500.675
60	0.08	-0.08	-0.22	0.16	0.25	590.853
80	-0.34	-0.27	0.05	0.07	0,29	916.889
100	-0.01	-0.02	-0.02	0.01	0.15	583.669
7.5% Range (Ful	ll Scale: -30018 lbf)					
20	-0.08	-0.11	-0.06	0.03	0.39	23,480
30	-0,01	-0.09	-0,28	0.08	0.33	29,288
40	-0.02	-0.32	-0.30	0.30	0.30	36.558
60	-0.18	-0.15	-0.70	0.03	0.41	73,152
80	0.07	0.04	-0,41	0.03	0.36	85.527
100	0.02	-0.06	0.16	0.08	0,21	62.974

*The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 93%.

Data - Indicator 1. - Dial Indicator (lbf)

COMPRESSION						
1	Run 1		Run 2	1	Run 3	
% of Range	In dicated (Ibf)	Applied (lbf)	Indicated (1bf)	Applied (Ibf)	In dicated (Ibf)	Applied (Ibf)
100% Range (Full S	cale: -4 00030 lbf)					
OReturn	0	1	0		0	
20	-80000	-80030	-80000	-80322	-80000	-80256
25	-100000	-100002	-100000	-100346	-100000	-99754
40	-160000	-160132	-160000	-160556	-160000	-16073.0
60	-240000	-239820	-240000	-240192	-240000	-24054.0
80	-320000	-321086	-32,0000	-320856	-320000	-31983.0
100	-400000	-400030	-395000	-395064	-396000	-396068

CERTIFICATE NUMBER: 106072711095017

NVLAP ACCREDITED CALIBRATION LABORATORY No. 200301-0

Page 3 of 5 pages

Data - Indicator 1. - Dial Indicator (lbf)

COMPRESSION						
1	Run 1		Run 2		Run 3	
% of Range	Indicated (Ibf)	Applied (lbf)	Indicated (1bf)	Applied (Ibf)	Indicated (Ibf)	Applied (Ibf)
7.5% Range (Full Se	cale: -30018 lbf)					
OReturn	0	1	0	1	0	
20	-600.0	-6004.8	-6000	-6006.6	-6000	-6003.6
30	-900.0	-9001.2	-9000	-9008.4	-9000	•9025.2
40	-12000	-12002,4	-12000	-12039	-12000	-1203.6
60	-18000	-18032.4	-18000	-18027	-1800.0	-18127.2
80	-24000	-23983.8	-24000	-23 989.8	-24000	-24099.6
100	-30000	-29992.8	-30000	-30018	-3000.0	-29952.6

The Return to Zero tolerance is \pm the indicator resolution, 0.1 % of the maximum force verified in the range, or 1% of the lowest force verified in the range, whichever is greater.

Graphical Data - Indicator 1. - Dial Indicator (lbf)

^{100%} Range Compression 1.2 0.8 0.4 Run 1 Error (%) - 🗖 Run 2 • 0 1.00%* -1.00%* 0.4 * ASTM E4 Error Tolerance -0.8 -1.2 0 8 8 8 ₿ 8 ş Percent of Range

NVLAP ACCREDITED CALIBRATION LABORATORY No. 200301-0

CERTIFICATE NUMBER: 106072711095017

Page 4 of 5 pages

Verification Equipment

Make/Model	Serial Number	Description	Calibration Agency	Capacity	Cal Date	Cal Due
Extech 445580	956905	temp, indicator	Sypris	NA	11-Sep-09	11-Sep-11
Interface 9840	67002	force indicator	Interface	NA	29-Nov-10	29-Nov-12
Strainsense 3080402	3080402	load cell	Instron	600 000 lbf	30-Sep-10	30-Sep-11
Strainsense 930709D	930709D	load cell	Instron	120 000 lbf	11-Nov-10	11-Nov-11

Verification Equipment Usage								
Range				Lower Limit for				
Full Scale	Standard			Standard Class				
(%)	Serial Number	Mode	Percent(s) of Range	A/Al (lbf)				
100	3080402	с	20/25/40/60/80/100	20000 / 20 500				
7.5	930709D	с	20/30/40/60/80/100	5000 / 500 0				

Instron standards are traceable to NIST.

The standard Class A lower limit is used for systems with an accuracy of +/- 10% and the standard Class A1 lower limit is used for systems with an accuracy of +/- 0.3%.

Standard forces have been temperature compensated as necessary.

Comments

NVLAP ACCREDITED CALIBRATION LABORATORY No. 200301-0

CERTIFICATE NUMBER: 106072711095017

Page 5 of 5 pages

Verified by: John Weiss Field Service Engineer

NOTE: Clause 20 of ASTM E4 states; It is recommended that testing machines be verified annually or more frequently if required. In no case shall the time interval between verifications exceed 18 months (except for machines in which long term test runs beyond the 18 month period). Testing machines shall be verified immediately after repairs that may in any way affect the operation of the weighing system or values displayed. Verification is required immediately after a testing machine is relocated and where there is a reason to doubt the accuracy of the force indicating system, regardless of the time interval since the last verification.

CERTIN ISSUED BY: IN DATE OF ISSUE	FICA	ATE OF CALIBRA CALIBRATION LABORATORY	ATI R: 106	ON	14	[nvla	Ą
	DN.	Instron 825 University Avenue Norwood, MA 02082-2643 Telephone: (800) 473-7838 Fax: (781) 575-5750 Email: service_requests@instro	n.com		APPRO			eiss
Type of Calibra	tion:	Force						
Relevant Stand	ard:	ASTM E4-10						
Date of Calibrat	tion:	26-Jul-11			Custo	mer Request	ed Due Date:	26-Jul-12
Customer Name: Address:	UN 109	IVERSITY OF KANSAS 2 Learned Hall, 15th St.						
P.O./Contract No.: Contact:	WE SQ JIN	vrence, KS 6004-5 AVERHJ@KU.EDU 00003644 I WEAVER						
Machine				Transduce	r			
Manufacturer: Serial Number: System ID: Range Type:	FORN 82118 QC-40 Single	EY 0C82118		Manufacturer Transducer II Capacity: Type:	r: D:	FORNEY 82118 400000 Ibf Compression		
Classification 1. Dial Indicator - P	ASSED							
Certification Sta	atement							
This certifies that the repeatability, and zhall machine indicated and the repeatability of t	he forces ero return tors were	verified with machine indicator(s) (1 tolerance. verified on-site at customer location	listed abo a by Instr	ove) that passed	d are W	ITHIN±1% ac	curacy, 1 %	

The certification is based on runs 1 and 2 only. A third run is taken to satisfy uncertainty requirements according to ISO 17025 specifications.

The verification and equipment used conform to a controlled Quality Assurance program which meets the specifications outlined in ANSI/NCSL Z540-1, ISO 10012, ISO 9001:2008 and ISO/IEC 17025:2005.

Method

The testing machine was verified in the 'as found' condition with no adjustments carried out.

Instron CalproCR Version 3.21

The results indicated on this certificate and the following report relate only to the items verified. If there are methods or data included that are not covered by the NVLAP acceditation itself be identified in the comments. Any limitations of use as a result of this verification will be indicated in the comments. This report mast not be used to claim product endowement by NVLAP or the United States government. This report shall not be reproduced accept in full, without the approval of the issuing laboratory.

CERTIFICATE NUMBER: 106072611161214

NVLAP ACCREDITED CALIBRATION LABORATORY No. 200301-0

Page 2 of 4 pages

Summary of Results

Temperature at start of verification: 93.20 °F.

Indicator 1 I	Dial Indicator (lbf)						
Range			AST M E4	ASTM E4			ASTM E4
Full Scale	Tested Force Range		Max	Max Repeat	Zero	Resolution	Lower Limit
(%)	(lbf)	Mode	Error (%)	Error (%)	Return	(lbf)	(lbf)
100	-22454 to -377702	с	-0.72	0,40	Pass	250	500.00

Temperature at end of verification: 93.30 °F.

Data Point Summ	ary - Indicator i	I Dial Indicator	r (lbf)			
COMPRESSION						
- I	Run 1	Run 2	Run 3	ASTM E4	Relative	Uncertainty of
	Error	Error	Error	Repeat Error	Uncertainty*	Measurement*
% of Range	(%)	(%)	(%)	(%)	(%)	(± lbf)
100% Range (Full Se	ale: -377702 lbf)					
5	-0.20	0.20	0.50	0.40	0.77	172.963
10	0.17	-0.15	0.31	0.32	0.47	187.799
20	0.61	0.56	-0.17	0.05	0.55	438,541
35	0.26	0.40	0.47	0,14	0,21	285.929
50	0.08	-0.25	-0.50	0.33	0.37	733.637
75	-0.27	-0.06	0.06	0.21	0.24	708.625
100	-0.72	-0.53	-0.33	0.19	0.26	987.667

*The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 93%.

Data - Indicator 1. - Dial Indicator (lbf)

COMPRESSION Run 1 Run 2 Run 3 Applied Applied Applied (Ibf) Indicated Indicated Indicated % of Range (lbf) (lbf) (1bf) (lbf) (Ibf) 100% Range (Full Scale: -377702 lbf) 0Return 0 0 0 -22500 -22546 -22500 -22454 -22500 22388 5 -40000 -39934 -40000 40060 -40000 39878 10 20 35 -80000 -79516 -80000 -79554 -80000 -80134 -140000 -139638 -140000 139448 -140000 -139346 200000 50 -200000 -199834 -20 0000 -200510 -200998 75 300000 -300000 300798 -300000 -300174 -29982.2 376984 377702 -375000 100 -375000 -375000 -37623.0

The Return to Zero tolerance is \pm the indicator resolution, 0.1 % of the maximum force verified in the range, or 1% of the lowest force verified in the range, whichever is greater.

NVLAP ACCREDITED CALIBRATION LABORATORY No. 200301-0

CERTIFICATE NUMBER: 106072611161214

Page 3 of 4 pages

Graphical Data - Indicator 1. - Dial Indicator (lbf)

Verification Equipment

Make/Model	Serial Number	Description	Calibration Agency	Capacity	Cal Date	Cal Due
Extech 445580	956905	temp, indicator	Sypris	NA	11-Sep-09	11-Sep-11
Interface 9840	67002	force indicator	Interface	NA	29-Nov-10	29-Nov-12
Strainsense 3080402	3080402	load cell	Instron	600 000 15f	30-Sep-10	30-Sep-11

Verification	Verification Equipment Usage								
Range				Lower Limit for					
Full Scale	Standard			Standard Class					
(%)	Serial Number	Mode	Percent(s) of Range	A / A1 (1bf)					
100	308 0402	с	5/10/20/35/50/75/100	20000 / 20500					

Instron standards are traceable to NIST.

The standard Class A lower limit is used for systems with an accuracy of +/-10% and the standard Class A1 lower limit is used for systems with an accuracy of +/-0.5%.

Standard forces have been temperature compensated as necessary.

Comments

Verified by: John Weiss Field Service Engineer

NVLAP ACCREDITED CALIBRATION LABORATORY No. 200301-0

CERTIFICATE NUMBER: 106072611161214

Page 4 of 4 pages

NOTE: Clause 20 of ASTM E4 states; It is recommended that testing machines be verified annually or more frequently if required. In no case shall the time interval between verifications exceed 18 months (except for machines in which long term test runs beyond the 18 month period). Testing machines shall be verified immediately after repairs that may in any way affect the operation of the weighing system or values displayed. Verification is required immediately after a testing machine is relocated and where there is a reason to doubt the accuracy of the force indicating system, regardless of the time interval since the last verification.