ARGYRODES: PHYLOGENY, SOCIALITY AND INTERSPECIFIC INTERACTIONS—A REPORT ON THE ARGYRODES SYMPOSIUM, BADPLAAS 2001

Author(s): Mary Whitehouse, Ingi Agnarsson, Tadashi Miyashita, Deborah Smith, Karen Cangialosi, Toshiya Masumoto, Daiqin Li, and Yann Henaut
Source: Journal of Arachnology, 30(2):238-245.
Published By: American Arachnological Society
URL: http://www.bioone.org/doi/full/10.1636/0161-8202%282002%29030%5B0238%3AAPSAII%5D2.0.CO%3B2
ARGYRODES: PHYLOGENY, SOCIALITY AND INTERSPECIFIC INTERACTIONS—A REPORT ON THE ARGYRODES SYMPOSIUM, BADPLAAS 2001

Mary Whitehouse: Mitrani Center, Jacob Blaustein Institute, Ben Gurion University, 84990 Israel and Department of Zoology and Entomology, The University of Queensland, Brisbane Qld 4072 Australia

Ingi Agnarsson: Department of Biological Sciences, George Washington University, 2023 G Street NW, Washington, D.C. 20052 USA

Tadashi Miyashita: Laboratory of Biological Sciences, School of Agriculture and Life Science, University of Tokyo, Tokyo 113-8657 Japan

Deborah Smith: Entomology Program, Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045-7534 USA

Karen Cangialosi: Biology Department, Keene State University, Keene, NH 03435-2001 USA

Toshiya Masumoto: Center for Ecological Research, Kyoto University Kamitanakami, Otsu, Shiga 520-2113 Japan

Daiqin Li: Department of Biological Sciences, National University of Singapore, 119260 Singapore

Yann Henaut: Laboratorio Ecológico de Artrópodos, El Colegio de la Frontera Sur, Tapachula, Chiapas, Mexico

ABSTRACT. Argyrodus Simon 1864 is a large, cosmopolitan theridiid genus whose members exhibit a wide range of foraging techniques which usually involve exploiting other spiders, either by using their webs, stealing their food, or preying on them directly. We held a symposium on this genus at the 15th International Congress of Arachnology, Badplaas, South Africa in order to obtain a clearer perspective on the relationship between the phylogeny of the genus and the different foraging techniques. We concluded that Argyrodus forms a monophyletic group within the Theridiidae, and that there are clear monophyletic clades within the genus (already identified as species groups) that appear to share behavioral characteristics. We found no clear indication that foraging behaviors such as kleptoparasitism (stealing food) evolved from araneophagy (eating spiders) or vice versa. However, it appears that species that specialize in either kleptoparasitism or araneophagy use additional techniques in comparison to species that readily use both foraging modes. During our examination of Argyrodus/host interactions we noted the importance of Nephila species as hosts of Argyrodus species around the world and the impact of Argyrodus on Nephila. We also noted the fluid nature of the relationship between Argyrodus and the spiders with which they interact. For example, an Argyrodus/host relationship can change to an Argyrodus/prey relationship, and the type of kleptoparasitic behavior employed by an Argyrodus can change when it changes host species. The importance of eating silk was also noted and identified as an area for further research. We concluded that more work involving international collaboration is needed to fully understand the phylogeny of the genus and the relationships between the different types of foraging behaviors.

The large (over 200 species) cosmopolitan spider genus Argyrodus has attracted interest worldwide because of the gregarious nature of many of its species and their unusual foraging techniques (which include invading webs to steal food from and to attack other spiders). In response to increasing international attention in this group we decided to hold a symposium on Argyrodus to consolidate our knowledge and obtain an overall perspective on the genus. Our
Figure 1.—Chart of the six recognized species groups of Argyrodes (from the Americas) indicating the current known foraging behaviors and the standard form of the male cephalothorax for each group. A tick indicates that a species from that group performs the foraging technique, a cross indicates that a species is known not to perform this behavior, and a question mark indicates that nothing is known about the foraging method in relation to the species group. A tick and a cross for the same foraging method indicates that some species in this group use the foraging method while other species do not.

Evolution.—Evolutionary relationships within the genus Argyrodes are poorly understood. Currently there are six recognized species groups (Exline & Levi 1962) within the genus: Argyrodes, Rhomphaea, Ariamnes, Cordillera, Cancellatus, and Trigonum. Because these names refer to species groups and currently not to genera, they are not in italics. It is confusing that “Argyrodes” refers to the whole genus and to a particular species group. In this text, when we refer to the genus Argyrodes we will use italics, but when we refer to the species group Argyrodes, we will use normal script. The evidence to date suggests that animals in the species groups may use similar methods of web invasion (Fig. 1). For example, all species so far studied in the Rhomphaea and Ariamnes species groups seem to specialize on araneophagy (Eberhard...
1979; Horton 1982; Whitehouse 1987). They tend to be free-living and solitary, and capture spiders by throwing a sticky silk line over the victim. Species from the Argyrodes species group are gregarious and seem to specialize on kleptoparasitism. They will even feed with the host to obtain food: *A. antipodianus* O.P. Cambridge 1880 (Whitehouse 1986, 1997; Grostal & Walter 1997); *A. elevatus* Taczanowski 1872 (Vollrath 1979, 1984); *A. argentatus* O.P. Cambridge 1880 (Robinson & Robinson 1973); *A. argyrodes* 1842 (Kullmann 1959). Species that have been studied from the Trigonum species group forage using both kleptoparasitism and araneophagy: *A. trignonum* Hentz 1850 (Cangialosi 1997; Larcher & Wise 1985; Suter, et al 1989) and *A. baboquivari* Exline & Levi 1962 (Larcher & Wise 1985). However, the araneophagy that *A. trignonum* (at least) uses is distinct from that of Rhomphaea and Ariamnes species. Cangialosi reported in the symposium that it does not throw silk in order to capture the spider, but kills the spider by biting it. The species group Cancellatus contains some members that will only glean insects and eat the host’s silk (*A. caudatus* Taczanowski 1874; Henaut & Ibarra-Nunez unpubl. data; Vollrath 1984) and other members that will also feed with the host (*A. globosus* Keyserling 1884: Henaut 2000) and others which will not feed with the host, but will steal food bundles (*A. ululans* O.P. Cambridge 1880: Cangialosi 1990a, b). Thus in the Cancellatus species group there is no consistency in the kleptoparasitic techniques used. No spiders from the Cordillera species group have been studied.

Four pathways have been proposed by which kleptoparasitism and free-living araneophagy may have evolved (Fig. 2). First, ecological pressures, rather than evolutionary history, may have dictated which behavior is expressed in each species so that there is no phylogenetic relationship between phylogeny and behavior (Model 1). Alternatively, araneophagy and kleptoparasitism may each have evolved once, in which case there are three possible models: Free-living araneophagy may have evolved from kleptoparasitism (Model 2). Smith Trail (1980) argued that the
kleptoparasitic skills of interpreting the host’s vibrations could preadapt Argyrodes for safely stalking and capturing the host itself. Alternatively, kleptoparasitism may have evolved from araneophagy (Model 3). Vollrath (1984) supported this model although he argued that Argyrodes would initially invade other spiders’ webs and chase out the owner, and then later adopt araneophagic behaviors that would preadapt them to kleptoparasitism. Finally, both kleptoparasitism and araneophagy may have evolved separately (Model 4). Whitehouse (1987) proposed this argument based on differences in the araneophagic techniques of species from the predominantly araneophagic (Rhomphaea and Ariamnes) and kleptoparasitic (Argyrodes) species groups.

The three phylogenetic studies presented at this symposium examined the relationship between these different species groups and their foraging techniques, in particular the relationship between species that are predominantly kleptoparasitic, and those that are predominantly araneophagic (Fig. 3). Agnarsson presented a phylogenetic tree of Argyrodes (largely from the Americas) within the context of the family Theridiidae, and used sequences from the genes CO1, 16S, 18S and 28S and morphological characters to construct the tree. Masumoto, working on Japanese species, constructed his tree using sequences from the gene CO1, while Whitehouse presented trees of Australian Argyrodes based on sequences from the genes CO1 and 16S (for more information see Agnarsson et al this journal, Masumoto unpubl. data, Whitehouse et al. unpubl. data).

Superficially, all three trees appear to support different models: Agnarsson’s tree seems to support model 1 (no evolutionary relationship between developing araneophagy and kleptoparasitism); Masumoto’s tree seems to support model 2 (araneophagy developed from kleptoparasitism) and Whitehouse’s tree seems to support model 3 (kleptoparasitism developed from araneophagy). However Bremer support for the lower nodes are not strong in any tree, and relationships between species could easily switch around. In addition the trees suggest that the basal species within the genus Argyrodes use both kleptoparasitic and araneophagic behaviors, even though they lack the more derived techniques of these foraging methods (such as the more derived kleptoparasitic behavior of “feeding with the host”, or the araneophagic behavior of “throwing a sticky thread over the prey”). The behavior of the basal species of both Agnarsson’s and Masumoto’s trees directly fit this model, while the behavior of the basal species in Whitehouse’s tree is not known, except that it occurs on a larger spider’s web. Consequently, the available evidence to date suggests that the araneophagic and kleptoparasitic foraging behaviors of Argyrodes species evolved concurrently, and latter species may have specialized, and/or refined these techniques.

In addition, all three trees support some general claims. For example, the trees of both Agnarsson and Whitehouse indicate that Argyrodes and Ariamnes are sister species groups, while all three trees suggest that the Rhomphaea species group is quite distinctive. This suggests that Rhomphaea and Ariamnes may have developed araneophagic foraging techniques independently of each other.

It is intriguing that Rhomphaea and Ariamnes may have developed araneophagy independently because the technique they both use to capture spiders (throwing silk) is distinctive from the technique used by the basal Argyrodes species (biting/lunging). At the symposium we debated whether the spider-catching behavior of Ariamnes and Rhomphaea was plesiomorphic or derived. Most symposium members (who have not seen Ariamnes or Rhomphaea catch spiders) regarded it as a plesiomorphic theridiid trait because most theridiids catch prey by wrapping them with sticky silk. Whitehouse argued that the behavior is derived because it is very distinctive from normal theridiid wrapping. Theridiids normally attack prey by throwing numerous threads of silk in quick succession with alternating legs IV over the victim until it is completely covered. When Rhomphaea and Ariamnes attack prey, the two legs IV move in unison towards the prey, and the spider will throw one to five sticky threads. Once the prey is immobilized Rhomphaea/Ariamnes will assume normal theridiid wrapping behavior. Whitehouse conceded that within these two species groups there might be a continuum in that some species may throw silk more like a standard theridiid while others may be more distinctive and more stylized. Agnarsson suggested that a solution would be to look for the spigots on the spinnerets that are responsible for producing sticky silk in theridiids. He noted that individuals in the Argy-
<table>
<thead>
<tr>
<th>Species group</th>
<th>Behaviors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigonum</td>
<td>Kleptoparasitic & Araneophagic (bite/lunge)</td>
</tr>
<tr>
<td>Rhomphaea</td>
<td>Araneophagic (line throwing)</td>
</tr>
<tr>
<td>Cancellatus</td>
<td>Kleptoparasitic</td>
</tr>
<tr>
<td>Ariendes</td>
<td>Araneophagic (line throwing)</td>
</tr>
<tr>
<td>Argyrodes</td>
<td>Kleptoparasitic</td>
</tr>
<tr>
<td>Unknown</td>
<td>Kleptoparasitic & Araneophagic (bite/lunge)</td>
</tr>
<tr>
<td>“Argyrodes”</td>
<td>Kleptoparasitic</td>
</tr>
<tr>
<td>Unknown</td>
<td>Kleptoparasitic??</td>
</tr>
<tr>
<td>“Rhomphaea”</td>
<td>Araneophagic (line throwing)</td>
</tr>
<tr>
<td>Unknown</td>
<td>Kleptoparasitic??</td>
</tr>
<tr>
<td>“Rhomphaea”</td>
<td>Araneophagic (line throwing)</td>
</tr>
<tr>
<td>“Argyrodes”</td>
<td>Kleptoparasitic</td>
</tr>
<tr>
<td>“Ariendes”</td>
<td>Araneophagic (line throwing)</td>
</tr>
<tr>
<td>“Argyrodes”</td>
<td>Kleptoparasitic</td>
</tr>
</tbody>
</table>
rodes (‘‘kleptoparasitic’’) species group have lost one of the two aggregates on each PLS. Miyashita added that kleptoparasitic Argyrodes also lack an aggregate gland for producing sticky silk. If basal species do not have these spigots and an aggregate gland, then this would suggest that spider-catching method used by Rhomphaea and Ariamnes species is derived. If basal species do have these structures, then ‘‘throwing silk’’ is more likely to be a plesiomorphic trait.

Our discussions on the phylogeny of Argyrodes emphasized the need for more information. Firstly we need a more comprehensive phylogenetic tree to identify all species groups. We concluded that currently named species groups (Argyrodes, Rhomphaea, Ariamnes and Trigonum) appear to be monophyletic and therefore useful groupings of the species. However these species groups are only specific for American species, and that species in other continents, like Asia, Australia and Africa, may form different species groups. We concluded that we need an integrated, comprehensive phylogenetic tree that includes species found throughout the world, to establish if species groups within the Argyrodes complex are indeed monophyletic and should be recognized as separate genera.

Secondly, we acknowledged that there is a huge lack of behavioral data, and that it is unlikely that we can obtain behavioral data from each of the 200 species worldwide. We concluded that a better approach would be to identify the monophyletic species groups within the genus and then focus on particular species within these groups. Henaut expressed caution with this approach. His point was well taken as the large Cancellatus species group is known to contain a species (A. globosus Henaut 2000) that can do a range of kleptoparasitic techniques including feeding with the host, while it also contains a species (A. caudatus) which has been studied intensively (Vollrath 1984, Henaut & Ibarra-Nunez unpubl. data) but which only gleans insects from around the edge of webs. Because of the size of the group and the morphological diversity within the group it is possible that Cancellatus is not monophyletic. A comprehensive phylogeny would reveal this. Nevertheless we need to show caution when deciding which species will be representative of species groups.

Sociality.—An interesting aspect of the theridiid phylogeny that Agnarsson pointed out and which he discusses in this volume (Agnarsson et al 2001) was that Argyrodes form a monophyletic clade with the genera that contain social spiders. One of the striking characteristics of many species of Argyrodes is that they are gregarious, even forming mixed species groups around other spider’s webs. Their location within the theridiid phylogeny suggests that they may have a phylogenetic predisposition to form groups.

The significance of the group-forming behavior may be that it enhances the effectiveness of kleptoparasitism. For example, many Argyrodes on the same host’s web will be producing vibratory signals from numerous directions, confusing the host. Henaut pointed out that distraction had the effect of cooperation. He observed A. globosus distract the host while another A. globosus stole the food. He also saw A. globosus vary its degree of gregariousness—it was more gregarious on the webs of the more aggressive host (Leucauge mariana Taczanowski 1881, L. venusta Walckenaer 1842 and L. argyra Walckenaer 1842) than the less aggressive host (Gasteranantha cancriformis (Linnaeus 1758)).

Host–Argyrodes interactions.—Another important theme in the symposium was the relationship between hosts and Argyrodes. Firstly, Miyashita looked at the effect of different types of host species on the distribution of Argyrodes in Japan. He found that Argyrodes were limited by the distribution of their hosts and that Nephila spp. were particularly important. Li also pointed out the strong relationship between Argyrodes and Nephila in Singapore, and this relationship has also been noted in the Americas.
Argyrodes could be expanded. Des eggs. We concluded that the effect of were smaller and produced fewer, but larger the presence of the kleptoparasite, N. pilipes stage of the type of host, and even the developmental inately a kleptoparasite of (Walckenaer 1842) (Linyphiidae) and predom-

imated that both araneophagy and kleptoparasitism for all three hosts that she has studied; it is predominately a predator of Neriene radiata (Walckenaer 1842) (Linyphiidae) and predominately a kleptoparasite of Pityohyphantes costatus (Hentz 1850) (Linyphiidae) and Achaearanea tepidariorum (C. L. Koch 1841) (Theriidae).

Whether A. trigonum behaves as a kleptoparasite has to do not only with relative host size, but also with the developmental stage of Argyrodes. Cangialosi, working with a phylogenetically basal species A. trigonum, demonstrated that while this species exhibits both araneophagy and kleptoparasitism for all three hosts that she has studied; it is predominately a predator of Neriene radiata (Walckenaer 1842) (Linyphiidae) and predominately a kleptoparasite of Pityohyphantes costatus (Hentz 1850) (Linyphiidae) and Achaearanea tepidariorum (C. L. Koch 1841) (Theriidae).

Whether A. trigonum behaves as a klepto-

Although A. trigonum switched between kleptoparasitism and araneophagy, the behavioral repertoire within each of these categories was limited. Kleptoparasitically, Cangialosi reported that A. trigonum gleaned insects and stole prey, but that it did not feed with its host (a kleptoparasitic behavior common in the Argyrodes species group) or eat silk. Araneophagically, Cangialosi reported that A. trigonum attacked spiders by biting them, but that it did not throw a silk line over a prey spider in order to catch it (the araneophagic method of species in the Rhomphaea and Ariamnes species groups).

Nevertheless the change in the relationship between A. trigonum and its host (from kleptoparasite/host to predator/prey) provides another dimension to the “interaraneae” interactions within the genus Argyrodes. The flexibility of the ability to change and the ecological ramifications of the change for both the host and the kleptoparasite were discussed and seen as important areas for future development.

Many questions remain concerning the factors contributing to changes in the relationship between Argyrodes species and their hosts. Basal species, such as those from the Trigo-

spp. as a host spe-

Secondly, the actual relationship between host and Argyrodes was explored. Li and Cangialosi emphasized that species of Argyrodes are often assumed to be kleptoparasitic (i.e. derogatory to the welfare of the host) when they could be commensal (have no effect on the host). Li provided evidence that A. flavescens O. P. Cambridge 1880 did have a direct affect on its host Nephila pilipes (Fabricius 1793). In the presence of the kleptoparasite, N. pilipes were smaller and produced fewer, but larger eggs. We concluded that the effect of Argyrodes on the fitness of the host was an area that could be expanded.

Thirdly, the relationship between the host and the Argyrodes can change depending on the type of host, and even the developmental stage of the Argyrodes. Cangialosi, working with a phylogenetically basal species A. trigonum, demonstrated that while this species exhibits both araneophagy and kleptoparasitism for all three hosts that she has studied; it is predominately a predator of Neriene radiata (Walckenaer 1842) (Linyphiidae) and predominately a kleptoparasite of Pityohyphantes costatus (Hentz 1850) (Linyphiidae) and Achaearanea tepidariorum (C. L. Koch 1841) (Theriidae).

Whether A. trigonum behaves as a klepto-

Although A. trigonum switched between kleptoparasitism and araneophagy, the behavioral repertoire within each of these categories was limited. Kleptoparasitically, Cangialosi reported that A. trigonum gleaned insects and stole prey, but that it did not feed with its host (a kleptoparasitic behavior common in the Argyrodes species group) or eat silk. Araneophagically, Cangialosi reported that A. trigonum attacked spiders by biting them, but that it did not throw a silk line over a prey spider in order to catch it (the araneophagic method of species in the Rhomphaea and Ariamnes species groups).

Nevertheless the change in the relationship between A. trigonum and its host (from kleptoparasite/host to predator/prey) provides another dimension to the “interaraneae” interactions within the genus Argyrodes. The flexibility of the ability to change and the ecological ramifications of the change for both the host and the kleptoparasite were discussed and seen as important areas for future development.

More subtle changes in the relationship between Argyrodes and their hosts were also presented at the symposium. Henaut showed that A. globosus would only use the behavior “feeding with the host” with the less aggressive hosts (Gasteracantha cancriformis, Ver-

An unusual relationship highlighted by Smith was that between an unnamed species of Argyrodes and plants protected by ants (Fowler & Venticinque 1996). In this case Argyrodes is not interacting with other spider species but with ants. How the Argyrodes interacts with the ants, and how this species of Argyrodes relates phylogenetically to other Argyrodes species, are two additional areas of research that need developing.

Silk eating.—Both Miyashita and Smith emphasized the importance of Argyrodes consuming the silk of its host. Miyashita pointed out that this behavior enables Argyrodes to survive periods of low prey abundance in the host’s web. It would be interesting to know how widespread this behavior is (Cangialosi reported that she has not seen A. trigonum feed on silk despite many hours of observations). Many species of spiders eat their own silk; do many species eat other spider’s silk as well? This area also needs further investigation.
ARGYRODES

Argyrodes is at a very interesting stage. Our first priority is to improve our understanding of the phylogeny and its relationship to the multitude of foraging techniques common within the genus. With these points clarified we can more easily address ecological questions concerning interspecific interactions between Argyrodes and their “hosts”. Our results suggest that different ecological questions may be particularly relevant for different species groups. For example, members of the Trigonum species group may be particularly useful for investigating a switch from kleptoparasitic behaviors to predatory behaviors. Species in the Argyrodes species group may be useful when asking questions either about host specificity or conditions under which an Argyrodes should change its kleptoparasitic topics.

Obviously, these topics are only the tip of the iceberg. Our symposium only touched on the question of Argyrodes and sociality, the role of crypsis in determining the striking morphology of many Argyrodes species, and how Argyrodes locate their hosts. Mixed species groups of Argyrodes were not discussed, and we did not mention courtship behavior at all. This indicates a very exciting and interesting future for behavioral-ecology research within the genus Argyrodes.

Conclusions.—Research within the genus Argyrodes is at a very interesting stage. Our first priority is to improve our understanding of the phylogeny and its relationship to the multitude of foraging techniques common within the genus. With these points clarified we can more easily address ecological questions concerning interspecific interactions between Argyrodes and their “hosts”. Our results suggest that different ecological questions may be particularly relevant for different species groups. For example, members of the Trigonum species group may be particularly useful for investigating a switch from kleptoparasitic behaviors to predatory behaviors. Species in the Argyrodes species group may be useful when asking questions either about host specificity or conditions under which an Argyrodes should change its kleptoparasitic topics.

Literature Cited

Eberhard, W.G. 1979. Argyrodes attenuatus (Theridiidae); a web that is not a snare. Psyche 86: 407–413.

