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ABSTRACT

Self-consolidating fiber reinforced concrete (SCFRC) is a hybrid concretasthwith
self-compactingandfiber reinforced.Use of SCFRC in reinforced concrete membdes been
shown to result in improved behavior under shear,efure, and compression relative to
conventionafreinforcedconcreteThe aim of this studyas toinvestigaterelationships between
the compressivand tensileresponse®f SCFRCas well as relationshipsetweenmeasured
compressre and flexuralbehavior Suchrelationships wouldsimplify characteriation of the
mechanical behavior of SCFRMased on a relatively limited number of standard tests. A
secondary objectiveras to quantify the effect 6 introducing different volume fractions of four
types of steel fiber to SCCs with compressive strengths of A@Rkdi. Four different hooked
endsteel fibers were used in this study at volume fractions between 0.5% and 1.5%.

Results showed that th@od-peak slope in compression and the pwatking flexural
and tensile strengths all increasesffiber volume fractionincreasedwhereas properties up to
development of cracking (or peak strength in the case of compression) were not affected by use
of fibers. Among the parameters investigated, it was shown thajpdstpeak compressive
response was most closely correlated withpibetcrackpeakstrengthin flexureand theflexural
strengthcorresponding to anid-span deflectiorof 0.04 in. It was alsofound that he within
batch coefficient of variation of pestack peak tensile and flexural loads decreased significantly
when Tso was at least 1.0 secorfdom an average of 40% to 13@f the fibers investigated, the
RC-80/30-BP had the greatest impaoh mechanical performance for a given volume fraction

and the3D RG55/30BG fiber had the least.

Keywords: fiber reinforcedconcrete compression, flexuredirect tension self-consolidating

concretehooked steel fibers
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CHAPTER 1: INTRODUCTION

1.07 General

Reinforced concrete is the number one structural material in the world with billions of
tons of annual production. It is used to construct the majofityfrastructure, including bridges,
dams, and power plants. Concrete has excellent compression strength, but its tensile strength is
much lower. Commonlyreinforcing steel(steel rods) are used to reinforce members where
tensile strengths required Unfortunately, there are issues associated vathforcing steelise
such as installation time, construction cost, corrosionraemdorcementongestion. Steel fibers,
when used as a partial replacement for ordinary reinforcement, can siogplgfructionUse of
steel fiber reinforced concrete (SFRC) as a replacement for wire mesh -strunctaral steel
reinforcing bars is increasingly common because SFRC reduces the construction time and
produces concrete with fewer or no visible cra¢Wsndran, 1991; Hockenberry & Lopez,
2012)

In addition to improved constructability, use of fiber reinforced concrete (FRC) can
improve the behavior of structural members. Steel fibers have been shown to improve the
behavior of con@te under shear, tension, flexure, and compression stresses. In addition, adding
fiber to concretemprovesthe bond between concrete amihforcing steelinder cyclic loading
(Hota, 1997; Otter & Naamah988; Mindess, 1995)

Unfortunately, introducing fibers to conventional concrete reduces its workability, which
is considered a barrier tasein practice(Liao, Chao, Park, & Naaman, 2008)his can be
overcome by using Heconsolidating concrete (SCC) instead of ordinary concrete as the base for

FRC. Selfconsolidating fiber reinforced concrete (SCFRC) combines the properties -of self



consolidating concrete (SCC) with the characteristics of FR&, Chao, Park, & Naaman,
2006) SCFRChas a considerably flowable, naegregating cemeiitased matrix. It spreads
into place, fills the formwork, and flows around the reinforcing steel withwegd for
mechanical consolidation in typical concreteistures(ACI Committee 237, 2007 5CFRC has

been usedn several applications, including, precast concrete, dams, bridges, industrial floors,

deep foundations, and structures designed to resist seismic demands.

1.17 ResearchObjectives

The aim of this studyas to develop relationships between compression test results
(compression stress vs. longitudinal strain) and tensile test results (tensile stress vs. crack width)
as well as relationships between results from compressidnflexural tests (flexural load vs.
mid-span net deflection)lhese relationships would make it easier for engineers to characterize
the mechanical behavior of SCFRC for modeling or design based on a relatively limited number
of standard tests. A secomgaobjectivewas to quantify and report the effect of introducing
different volume fractions of four types of steel fiber to SCCs with compressive strengths of 6

and10Kksi.

1.27 Scope

The behavior of SERC with different volume fractions (0, 0.5, 0.7B0, and 1.5%) of
four types ofhookedend steel fibersvastestedunder compression, flexure, and tensionl the
results are reportedReported properties include compression strength, modulus of elasticity,
postpeak slope, compression stré@sgitudinal strain behavior, and compression stiateral

strain response. Flexural strength, flexural loeatk width behavior, flexural loadet



deflection behaviorflexural loadsupport rotatiorbehavior tensile strength, and tensile stress
crack width behvior are also reportedereshstate properties of the SCFRC, including slump
flow, visual stability index, 3o, Jring slump flow, concrete density, and air conteste also
documentednd are reportedPreliminary aalysesare presented that weaimedat relating the

postpeak slope in compression to key features of the measured tensile and flexural responses.

1.371 Hypothesis

Because concrete cylinders often fail as a result of splitting cracks, the resistance
providedby fibersto crack opening canmprove the pospeak response of concrete cylinders
under compression. lis therefore expectedhat the pospeak response of SCFRC in
compression can be related to the tensile stiegk opening behavior and flexural response of
the SCFRC.

Based on mvious work, it is expected that introducing fibers to S@C reduce the
workability, flowability, and the passability of FRC. Addition of fibers is not likely to affect
the mechanical properties before cracking occurs, but it is expected to indreasentrete
toughness after cracking. Improvements in the strength, toughness, and cracking behavior are

expected tdoe linkedto increases in the fiber volume fraction and aspect ratio.

1.47 Research Significance

To facilitate the use of FRC in desighere is a need for simple and robust methods for
characterizing the response of the material to stiesgccessful, this study will provide a means
of relating the pospeak compressive response of FRC, which is difficult to measure, to the

measuredasponse of FRC in tensile or flexural tests, which are relatively easy to conlect.



aim is a significant simplification of the testing required to characterize the mechanical behavior
of a particular FRCIn addition thecurrentstudywill provided detiled data regarding the effect

of different volume fractions of various types of hooked end steel fibers on the properties of
freshly mixed SCFRC (workability, flowabilty, stability, and passability) as well as the

mechanical and physical properties (tongss, ductility, and cracking behavior).

1.57 Organization of Report

Thisreporthas six chapterand four appendiceJ he first chapter describes the topic and
motivation for the study of SCFRC. The second chapter summarizesf reviewof the related
literature that provides a basis for the presented study. The third chapter describes the
experimental program with details of material propertiesxture proportions, mixing
procedures, specimen construction, and test mett@iispter Fou reports the properties of
freshly mixed concrete such as slump flow, visual stability indey, Fring slump flow,
concrete density, and air content. In addition, the results of compression, tensile, and flexure tests
are reported iChapter FourChaper five presents an analysis of the test results. A summary and

conclusionsare describeth chapter sixDetailed test results are presented in the Appendices.



CHAPTER 2: LITERATURE REVIEW

2.07 Introduction

This chapter offers an overview pfeviows studieson lf-consolidating fiber reinforced
concrete (SCFRC)A brief review of thehistory, advancesand applications o6CFRCare
presentedn the chapterThis section gives an overview of the propertiesfreshly mixed

SCFRC and summarizes thmechanical characteristics of the material

2.17 History
2.1.17 History of Fiber Reinforced Concrete

Use of fibers in constructiois not a recent breakibmgh. Egyptiars and Babylonias
used straw as reinforcementadobe brick§ACI Committee 544, 1996)n 1874, metallic waste
was added to concrete as reinforcen{dtihelli, 2005) andasbestostripswere usedn concrete
in the1900s.However,fiber reinforced concrete (FRE@)d not become a focus of the research
community until the 1950By the 1960sFRC with glass syntheic, and steelfibers had been
tested In that decade, straight steel fibeas first used to reinforcenortar and plain concrete
(Balaguru & Shah, 1992)n the second half ahe1970s, the Europeanarket started producing
steel fiber reinforced concrete (SFRC), but there weneecmmmendations or standarfds their
use by engineers. Partially due to the lack of standards, adoptiofR® I3y the market has
been slow(Ross,2008) Figure 2.1 illustrates the tiriee of design and test methotsat have

been adopted fdfRC (Ross, 2008)
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Figure 2.17 FRCtimeline of design and test metho(Ross, 2008)

2.1.271 History of Self Consolidating Concrete

Seltconsolidating concrete (SCC) was first developethénlate 1980s in Japan, for the
purpose of ensuring compaction of concrete in dense reinforcement regardless of the
construction work quality(ACI Committee 237, 2007; Gencel, Brostowb, Datashvili, &
Thedford, 2011) As new chemical admixtures and cementitioomsaterials that improve the
quality and lower the cost of SCC have entered the marketplace, use of SCC has become

somewhat common in construction.



2.1.37 Development ofSelf Consolidating Fiber Reinforced Concrete

New generations of additives such as superplasticizers (SPs), which improve concrete
plasticity, and viscosity modifying agents (VMAS), which adjust corcwecosity and prevent
segregation, have been developed and added successfully to SCTRBgesnew additives make
achieving high strength concrefmssiblewithout any reduction in concrete workabilitiyine
cementitiougmaterialssuchasfly ash blastfurnace slagsilica fume, and limestone finesave
alsobeen developethat improveSCFRGs. For example, addition ofrfe cementitiougnaterials
reduce voids which tends teenhancehefiber-matrix bond(Barnes, 2007)

Adding fibers tocementitiouscomposits reducesthe matricesworkability, especially if
the cementitiouscomposite containcoarse aggregates. Ritchie and Rah(&73),and Lukeet
al. (1973 examinedthe impact that addingstes! fiber had on concrete wotbidity. They found
that concrete workability decreaksteadilywith the ncreaseof steel fiber content. They found
that a 3% fiber volume fraction of steel fibers decreaglkd slump by 12%while 8% volume
fraction of steelfiber reducesthe slump by 7%. Liao et al (2006) investigated the effect of
adding 1.2 inch long hooked end steel fibers in volume fractions ranging between 1.5% to 2% to
SCCs of compression strengths ranging between 5 ksi to 9.9 Hesyy. developed a mixture
design fora tensilestrain hardening selfonsolidating FRC that was used as a basis for the
mixture designs used in this study.

SCCsare highly affected by the mixingtepsandthe time each step takes$n addition,
minor changes in the mixing procedure as well as the sequénmexing may significantly
affect the fresly mixed concreté propertiegLiao, Chao, Park, & Naaman, 200Qesearchers
have done many studies to impro8€C production processes. Traditionally, using standard

mixing gproaties and undeveloped fibefstraight and smooth steel fibers) led tdfiber



segregation and fibdralling. Using glued steel fibers, special mixing processes, and unique
placing methodgo minimize segregation and to distribute fibers uniformly, are coreside
significant advances in FR@Glaaman A. E., 2003)
2.21 Types ofFibers

Use of different types of fibers has been shown to have multiple advantages, including
reducel crack widtrs, improved concretetoughnessprevenion of concrete spalling during fise
and reducel plastic shrinkagesracking (LOFGREN, 2005).The three primary types of fiber
materials are syntheticarbon, polypropylene, polyester, and nylon), steel, na(stadh as
wood based)and glassFigure 22 showns several types of commercial fibeBteel fibers arene
most commoly usedfiber for structural application®©nly Spectra (polyethylene fiber), twisted
steel fiber, and hooked end steel fiber have been successfully used to prodymerfoighance

fiber reinforced concrete (HPFRC) with fiber volume fractions less thafB2%%kit, 2012)

Figure 2.27 Several typesf theavailable fiber{LOFGREN, 2005)



Steel fibers are addeto FRCs to mprove toughnessuctility, and otherproperties
(Hockenberry & Lopez, 2012 o improve the anchorage of steel fibers in concrete, steel fibers
come in several different shapes, includisgnooth and straight, twisted, crimped coiled,
indented, withpaddledends, with hooked ends, or witluttored ends. Some common shapes of
steel fibersare shownn Figure 23.

According to Naamar2003), fibers must have several characteristics in order to be
effective in FRCsOne of the mstimportant characteristics of a fiberits aspect ratipdefined
as the ratio ofength to diameter. Comonly, steel fiber aspect ratios ramtpetween 20 antiO0
thoughit can easily exceed 100 for fine fibgfisub, 2011) Fibers with large aspect ratios have
a larger ratio of surface area to crgestional area, which makes them more capable of
developing their full strength through bond with the matrix. Also, fibers with large aspect ratios
tend to have a small volumgg, for the same volume of fibers, those with large aspect ratios will
have a larger number of individual fibewlso, the tensile strength of fibers must imeich
greater tharthe matrixcapacity(about2 to 3 orders of magnituleThird, the bond strenpt
between the fiber and matrixust begreater tharthe matrix crackingstrength Fourth the
elastic modulus ofhe fibers shouldbe at least three timesathof thematrix. In addition, fbers
must have enoughluctility; it is not desirablefor fibers to fracture. Finally, the thermal
coefficient and the Poissoreatio of fibers should b the same ordeasthe matrix.

The quanty of fibers in a mixture i®ften expressedsa portion of the total composite
volume, referred to herein as the fiber wokifraction. Practical fiber volume fractiorsnge

between 0.2% and 3% for steel fibe(@rub, 2011)
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Figure 2.37 Someof thestandardshapes of steel fibe(eOFGREN, 2005)

231 Classification of Fiber Reinforced Concrete Based on Mechanical Behavior

ACI Committee 544lefinesFRCasa matrix made otementitious materialeggregates,
and discontinuous discrete fibgsCl Committee 544, 1996As shown inFigure 2.4, FRC can
be classified on the basis of its response to flexural and direct tensile loads rébjaamsan &
Reinhardt, 2005) T h e ighgarfonmanck fiber reinforced concrete (HPFRGas been
used to refera FRC that develops a pestackingtensilestrength higher than the first cracking
strength(strain hardeningandalso typically developsnultiple cracls instead of a single large
crack Other FRCs that exhibit higher flexural strength after first cragkiare referred to
deflectionhardening FRCYT.Mastsumoto & Mihashi, 2002)it is common for deflection
hardening composites to exhibit the tensile strain softening response shown in Figure 2.5.

HPFRCs have been shown to hdiie most significant impact on structural behavior

(ParraMontesinos G. J., 2005When HPFRC is used, the spacing betwertks and crack

10



widths are smaller than thosexpected in a similar structure construected with a str@m-

hardening materigNaaman A. E., 2008)
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Figure 2.47 Classification of FRCs on the basis of tensile ststissn responsandtheflexural

load-net defletion responséNaaman & Reinhaitgd 2005)
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Figure 2.57 HPFRCsand FRG response under tensile stregd&saman A. E., 2008)

Although not investigated in this study, there are other classifications of FRCs. A
common class of FRCs are referred to #satlhigh-performancefiber reinforcedconcrete
(UHPFRC), whichcommonly fas a compression strengbietween 2232 ksi (150220 MPg)
(Trub, 2011) UHPFRCcombires the properties difigh strength concrete amlde characteristics
of FRC (Yu, Spiesz, & Brouwers, 2013fibers are introducetb UHPFRCgo0 prevent sudden
failure by increasing the concrete toughness and dudiisyarlioglu & Krauthammer, 2014)

The ultra high-peformancecan be achieved by using a large quantity of cement and fine
materialssuch as fly ash and/or silica fume to achieve maximum packing den&BWA,
2013) In addition,a smaller coarsaggregatesiominal sizea low water-cementratio (0.16
0.20), anca superplasticizglSP) are necessary pooduce UHPFRGFHWA, 2013)
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247 Structural Applications of FRC
Although FRC has become common in slabs and other flatwork where crack control is
the primary design consideration, use of FRC has been shown to be advantageous in several

structural applications, as described below.

24.17 Members under Cyclic Loads

Use of HPFRC in concrete structures that aexpose to seismic activitiescan be
advantageous. Typically, structures that are expected to undergo inelastic displacement reversals
have congested reinforcement that is required to confine and reinforoerbeete but that
makes concrete placemedifficult. An investigation conducted byaRaMontesinos and
Chompreda (2007) shaa that flexural members with polyethylene higarformance fiber
reinforced concrete (PHPFRC) and without transverse reinforcement have larger damage
tolerance and greater drift capacities in comparison to cowwetiy reinforced concretélhe
sameinvestigationalso showed that HPFRCis capableof sustaining highshear stress and

providebuckling restrainto the longitudinal reinforcement.

24.27 Coupling Beams

The overall behavioand constructabilitypf coupling beams, which are subjected to high
shear stresseand deformation demands in a seismic eveah be improved by using HPFRC
instead of conventional concrdfganbolat, Parrdontesinos, & Wight., Experimental Study on
Sesmic Behavior of HigiPerformance FibeReinforced Cement Composite Coupling Beams,
2005) Canbolat, ParrdMontesinos, and Wight (200%)vestigatedour shortHPFRC coupling

beams withlength to depth ratios of 1.0fhey reportedthat using HPFRE improved the
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deformation capacity anbughness of the beams, redditke reinforcement requirements, and

improves the damage tolerance by distributiaghageover multiple cracks.

24.31 Shotcrete

Shotcrete, which is defined BACl 506R (2005) asi mo r t comcret® pneumatically
projected at high velocity onto a surfatean contain fibergvVondran, 1991) If supplied in a
sufficient quantity, ibers can replacewire-mesh reinforcement irshotcrete applications
(Vondran, 1991)An advantage to using fibers as reinforcemarshotcreteapplications is to
prevent shadows, whictre air voids and sand pockétshind reinforcing bars thaanlead to
corrosion issues and surface cracks. FigureilbuStratesthe diffelence between using steel
fibers andreinforcing bars asreinforcement in shotcrei@pplications Another reasorfor using

FRC in shotcretapplicationss to reduce theasting time andoss.

Packets,
Voids &
Shadows

S
Nozzle Direction sl / e ; i
L e }“H ’}- {
) i;;: !

R RRRR R R R AR RS

Steel Fiber .
Reinforced - 13}‘ '

Figure 2.67 Comparison between fibeasd reinforcing steein shotcretgVondran, 1991)
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24.47 Low-Rise Structural Walls
Use of HPFRG in low-rise structural wallshat are subjected to earthqudi¢pe cyclic

loads has been shown to allow a reductiowd shearreinforcementind result in amncrease

in damage toleranceéA study conducted by ParMontesinos and Kim (20049f the use of

HPFRCCsin low-rise structural wallsvith a heightto-lengthratio of 1.5,usingtwo different

HPFRCCsshowthat the FRC caresist about 70% of the total shear stresse

24571 PrecastConcrete

SCFRCshavebeen used for many years precast concretapplications teenhance the
resistance of precast concrete units to corrosion and cratksigy SCFRGin precast concrete
improvesits performance in aggressively corrosive environmentsirsredases its resistance to
impact shock. In addition, SCFR@end to reduce the width afracks including settlement
cracks, bed crackgattern cracks, surface cracksid cracks that ooc due tohandlingof the
units

For example,n the 1970s, the U.S.rAy Corps of lgineers made 600 units of precast
dolosse twisted Hshape units which had80 to 120lbs/yd® of steel fibersas theirprimary
reinforcement. @ly two of them were fractired during transportation After 14 years of
exposureo the Pacific Ocearthe Corpsreported that nevidence ofiber corrosionwas found
in the precaststeel fiber reinforcedlolosse In contrast, the U.SArmy Corps reported that 80
percent of the &ditional reinforced precadblosseunits disintegrated within a few yeatse to

corrosion exacerbated by plastiettiement crack®/ondran, 1991)
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24.61 Beam Column Connections

Using HPFRCsn beamcolumn connectionscreass the shear strengtyond strength
betweenthe matrix and the reinforcement, and overall damage tolerance of the conniction.
study by ParraMontesinos (2005) concluded that using HPFRCs for bealomn connections
increass the confinement of théngitudinal reinforcement in that region which allows for a
reduction in the required transverse reinforcement and an increase in the required minimum

spacing of the transverse reinforcement.

2A.771 Other applications of FRC
FRCs have been used in seal other applications, especially in those where limitation of
crack widths is important but placement of reinforcement is difficult. Sewéréthiese other

applications are shown in Figu2e’.
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Figure 2.77 SFRC main application&ollo, 1985)

257 Properties of Freshly Mixed SCFRC

As discussed in Section 2.1.3, the workability of concrete tends to be reduced when fibers
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are added to the mixture. However, this limitation can be overcome through use of chemical
admixturesthat increase the workability of fresh concrete. This improved workability is the

primary advantage of using SCFRC instead of conventional FRC.



Certain fiber properties are known to affect the workability of the mixture. Gru"newald
and Walraven 2001) reported that therere direct relationship between the fibefactor (the
product of fiberaspect raticand volume fractionand the concretevorkability as illustrated in
Figure 28. Similarly, (Liao, Chao, Park, & Naaman, 2008howed thathe higher the aspect
ratio is, the lowethe dosage of fiber thatam be addedor a given target workabilityA study

that was produced by Bentur and Mindess (1990) shows the effect of different fiber lengths (0.8,
1.6, and 2.4 inches) andffdrent fiber content (43%) of polypropylene fiber on the concrete

slump as shown in Figure®.

A problem associated with producing SCFRC is fiber balling, which is commonly caused
by using high coarse aggregates content (usually more than 55% obtéhecambined
aggregates) and/or over mixirfgurtseven, 2004)Many studies show that the risk bélling
increases as the fiber stiffness decrsasel as the fiber diameter decremas®everal solutions
are available tocontwl balling such as using prglued fibes and/orusing special mixing

proceduregNaaman & Reinhardt, 1995)

7 800 *\ 20
£ 700 %15__Ot=0h ..
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& 500 | z ﬁ’”’”jégg:g;;#
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F 300 = T T § 0 T T T
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Figure 2871 The effect of fiber factors on the workability of SQGru"newald &Walraven,

2001)
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Figure 2971 The effectof fiber length andhe content of polypropylene fiben concrete slump

(Yurtseven, 2004)

Although fiber properties influence workability, properties of thatrix havea greater
effect on the concrete workabilityvhen fiber volume fractionsare 0.5-2% (Barnes, 2007)

Figure 2.10shows the relationshgpbetween theneasured slumppaseé volume fraction, and
fiber contentAs illustrated inFigure2.11, themaximum size of coarssygregatealso influences
the distribution of fibers and should influence the choice of fiber len@tiao, Chao, Park, &
Naaman, 2006; Johnston, 1996; Mangat & Swamy, 19@) Committee544 recommendshat
the fiber lengthbe no longerthan 24 times the maximum size of coarse aggregateereas
Vandewalle (1993) suggestsusing fibers with alength larger the maximum size of coarse

aggregates.
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Figure 21071 The effect ofpaste volume on the workability 8FRCCgqJohnston, 2001)
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Figure 2117 The effect of maximum size of coaraggregatesn the fiber length and
distribution(Johnston, 1996)

The maximum pactical fiber volume fraction is a function of matrix properties.
Narayanan and KareeRalanjian (1982) shosd thatincrea®s in the finécoarse aggregate ratio,
fiber contentcanincrease due to an increase in the amount of the paste, which fills the void
between fibers and aggregatésstudy by Mangatand Swamy(1974) showedthat the coarse
aggregate content affsthe maximum steel fiber content. In their study, they used strstigghl

fibers with aspect rati@00 (1.0 in.lengthand0.01 in.diamete) and crushe@ggregatesvith a
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nominal maximum aggregate size of 0.4 in@hey found that the maximum allowable fiber

contentdecrease ascoarseaggregateontentincreasedKigure2.12).
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Figure 21271 The relationship between tisearse aggregatesrtent and the maximugontent

of the steel fibe(Mangat & Swamy, 1974)

261 Mixing Procedures

There are many methods available for introducing steel fibersomaretemixtures
Comparedwith the conventionatoncrete mixingproceduresSCC is highly affected by the
mixing stepsandthe time each step take$n addition, minor changes in the mixipgocessas
well as the sequence of mixing may significantly affectpfepertiesof fresHy mixed concrete.
Furthermore, depemalj on the sequence and content of the added fibers, identical mixtures that
are prepared with identical techniques might lead to different properties of(IS&{; Chao,
Park, & Naaman, 2006Moreover the mixing duration shdd be kept asshortas possiblen
order to prevent segregatigencel, Brostowb, Datashvili, & Thedford, 201This section

provides several mixing procedures that have been used successfully in several studies.
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The ACI Committee 544 (1998) published two successful ming method of making
SFRCs. In both of thesmethodsthe fibershould be added to a fluid mix to prevéailing of
the fibers and toensuredispersion of the steel fibers. The fimbcedurewhich has ben used
successfully by many readyix concrete producerss efficient whenusinga transit mix truck
It requires the following steps: First, the wet mixtigprepared without any fibeso that it hag
slumpthat is at leasbne to two inches highehnan the desired slump of the SFR@enthe fiber
shall be addedradually,perhaps by dumping the fib&rrougha four-inch meshscreen. After
adding all fibersthe mixng speed is slowefdr aboutthirty to forty revolutionsof the drum

The second mhbd of the ACI Committee 544.998) can be done by charging a central
mixer or transit mixtruck with fiber and aggregates at the same time. Followingrelelar
mixing manney fibers should be addeda a conveyor belwith the aggregates additiort. |
possible the operatoshouldelongate the time it takes to add fibers and aggregates to the mix.
Furthermore fibers shall not be introduced as clumipscausethey remain as clumps after
mixing. In addition the mixng drum has to be rotated fast enougimix the fibers efficientlyas
they are introducedIf glued fibersare usednot more tharthirty fibers per bundle is allowed.
The fiber bundles caalso beintroducel to the mixure at the end to eliminate tHmalling risk.
This procedurés successfullyisedfor themajority of fibrous concrete projects.

Naaman, Alkhairi,and Hammoud,(1993) usedthe fdlowing steps during the mixing
process:in the beginning,one mustadd and mix the aggregates fone minute. Next the
cementitousmaterials are addeghd miedfor anotheminute. After that, 75% of the water and
the superplasticizemust be introduced slowlyrhenthe air entraining gent and the corrosion
inhibitor (if used) should be mixed with the remaining 20% of the wak&e operator shall ix

the matrixfor a few minutes to ensuegproper and unifornmix. Finally, the fibes are addetb
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the concretethrough a sieve (0-Bhchessquareopenings) to guarantee araity distribution of

the fibers, eliminatdiber balling, and preventsegregation Altogether, this mixing procedure
takes about five to sixninutes.

Liao etal (2006)proposeca mixing procedurdor producing SCFRCHatis summarized
in several stepshe cementitousmaerials and the fine aggregate® mixedor thirty seconds
then half of the premixed liquid (Weat+SP+VMA) must be added. duarter of the remaining
premixed liquid (Water+SP+VMA) shoulde pouredn and mixed for one minut&hen, 1/8,
1/16, andall of the remainindiquid can be addedith one minute of mixing the between each
addition After one minute bmixing, the coarse aggregates shadl introducedo the mixture.
The operator cantart adding the steel fibgslowly after two minutes of mixingAfter addition
of the fibers and mixing for three minutesxing can be stoppedhe total mixing time of this
techniquas tenminutes andhirty seconds.

Sahmaran, Yurtseven, and Yam&0@9, and Sahmaran and Yam#&2007) useda
different mixing technique in tireexperimental studiesf FRCs. They used fiber thi avolume
fraction of about 0.8%. They used the following steépe irst step is thedry-mixing of the fine
aggregates, coarse aggregates, and fitmerghirty seconds Then,the operator musadd the
cementthelimestone powder and 1/3 dfetotal water amount. After 1.5 minutes of mixirfgg
or she shaladd the premixed liquid (2/3 of the water wg8PR). The total mixime for all batches
is five minutes.

Brodowski @005) has proposed a mixingrocedure of producing SGdy using up to
2% of fiber content. The following stepare requiredto achievesatisfactoryresults:the frst
step the coarse aggregatethe fine aggregates, and the steel fibers shdednixedfor four

minutes. hen half of the watemust be introduced 1o the mixin aoneminuteinterval After
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that, half of the fly ash and the cemeah be added. Next, the operator nadgda quarter of the
water. After one minute of mixing, he or she caaid the last quarter of water with a quarter of
the fly ash amount. Thera quarterof the SP, the rest of the cement, and fly ashn be
introducedto the mix. After thatthe operator musidd the rest of th8PF, and mixfor two more
minutes.He or she shall i until all the fibersare completely separate@his procedure takes
about gyht to tenminutes.

Gru’newald(2006) used fiberwith a volume fraction of 1.5%, and a pan mixer. His
procedurerequires the following stepsirst, the operator shalnix the cementitous materias
andthe fine aggregates for ten seconds. Thenptieenixed liquids (water and&P) must be
introduced to the mixturendthenmixedfor 110 seconds. After that, the coarse aggregates
be addedand mixed for one minute. Nextthe operator has twait for one minute allowing the
SP to activate, anchix for thirty seconds. Finallyhe or she shathidd the fiberslowly and mix
for ninety seconds. ther mixingmay be requred to dissolve the glued fibdrundles. This

procedure requires about six to eighinutes.

2.77 Mechanical Properties of FRC

The followving section offers a brietlescription of the most important mechanical
properties of FRCCharaceristicssuch as strength, stressain behavior, modulus of elasticity,
and toughness, as well as a brief discussion of sesudtsfound in the literaturare reported

In general,there is nosignificant improvemenin the elastic regionbgfore crackinyg
from addition of fibers t@ementbased materialdn addition,smallfiber volume fractions have

a negligible effect on the compressiostrengthand he modulus of elasticityBarnes, 2007)
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Introducing fibers to concrete can, however, resultsignificantly improved postracking

behavior.

2.7.17 CompressionStrength

In plain concrete and FRC with fiber volume fractidass than 1%he stresstrain

relationshipcan be represented by a linp to approximatel30% of thecompressiorstrength,

followed by a period ofradual softeimg up to theconcretecompressiorstrength Beyond the

compressiorstrength, the stresgtrain relationship exhibitstrain softening until failure occurs

(Williamson, 1974; Wafa & Ashour, 1992Adding steel fibes tends to reduce the pegseak

slope of the stresstrain relationship, resulting in a respernt® compression like that of well

confined concretegs illustrated irFigure2.13 (LOFGREN, 2005)
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Figure 21371 Schematic descriptiomébehaviorof plain concreteand FRC undecompression

stresse$L OFGREN, 2005)
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Although small volume fractions of fibers do not affect the compressive strength, large
fiber volume fractions can. For these mixtures, it has lsbemn that the orientation of fibers
influences the concrete compressionrggth (Fanella & Naaman, 1985; Homrich & Naaman,
1987; Ezeldin, Balaguru, & Perumalsamy, 1992; Balaguru & Najm, 2004; Li & Mishra,.1992)
When fibers are orienteperpendiculdy to the loading direction, fibers are more efficient in
reducingcracks propagation and slidirifBarnes, 2007)Homrich and Naamarii987)recorded
that about 50% highestrengthcanbe achievedy orienting fibers perpendicular tthe loading
direction instead of oriemmg them parallel to the loading directidRanella and Naaman (1985),
and Balaguru and Najm (2004) reported that the strength increaseS9y @hen steel fibers
(Dramix fibers)are oriented randomly, while Naam#®tter, and Najm (1991) found that adding
hooked end steel fibers with volume fraction$1®6 in making SIFCON increases the strength
in the range of 30@00%.Severalresults from previous studies of compression streafy#FRC

are listedn Table2.1.
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Table 217 Results of several studies@impressiottests found irtheliteraturecompared by

Barnes(2007)
. Aspect
Reference Matrix ﬁ"’e’ Age | Ratio fksi)| | e
vpe (days) (i) (ksi)

Hughes and concrete hooked 30 1.5% 114 6.2 57 0.92
Fattuhi (1977) steel 190 7T 6.2 0.81
Williamson concrete straight 28 1.0% 41 8.8 8.9 1.01
(1974) maortar steel 8.5 8.1 0.95
concrete 1.5% 8.8 9.2 1.05
maortar 8.5 8.1 0.95
concrete 2.0% 8.8 9.8 1.11
maortar 8.5 7.8 0.92
Naaman and martar straight 1.0% a3 7.2 8 1.11
Fanella steel 20% 85 9 1.06
(1985) 3.0% 89 10.6 1.07
Li martar hooked 3.0% 40 1.10
(1992) wn}ﬁﬂgca steel 6.0% 195
Ezeldin and concrete hooked 0.4% 75 52 6.9 1.33
Balaguru steel 0.6% 52 6.5 1.25
(1992) 0.8% 52 6.2 1.19
”ifarj”rﬁ'z ; ggﬁr' mortar hzfe":'d 240 | 110% | 80 | 48 | 15 | 3413

Mansur and concrete hooked
Chin with silica | steel 28 | 10% | 60 10| 1151 115
(1999) fume 1.0% 124 11.6 0.94
1.5% 15 15 1.00
Balaguru and martar hooked 35 3.0% 60 8.6 12.6 1.47
Najm (2004) | Withsilica | steel 3.5% 86 | 109 | 127

fume

2.7.21 Tensile Strength
As defined previously, HPFRC is a class of FRC materials that exhibit tensile strain

hardening, or increasl tensile strength after cracking. In contrast, plain concrete and
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conventionaFRC exhibit the greatest strengthfast cracking andtherefore they exhibit strain

sdtening, as shown in Figure 2.14.
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Figure 2.147 Classification ofFRCsbasedon ther behavior under tensile stres¢e©FGREN,

2005)

It hasbeen well reportedhat adding steel fibenmcreases the concrete tensile strength
(Johnston & Coleman, 137 Homrich & Naaman, 1995; Balaguru & Najm, 2004singsmall
fiber volume fractions(1-2%) increasesthe tensile strength by about 10@Barnes, 2007)
Naaman and Chandrangsu (2003) used 2% volume fractionsiétisteeliber with fly ash to
achieve strai hardeningBalaguru and Najm (2004) achieved a 10% higher tensile strength by
using 1.5% volume fraction of hooked end steel fipersile Johnston and Coleman (1973)
produced a 30% higher tensile strength by using 6knwe fraction of hooked end steel fiber.
In addition adding polymerfibers slightly increases the concraiéimate tensile strength.

Balaburu and Khajuria (1996), and Kao (20@#g90 found that adding polymer fibgslightly
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increases early ages tensg#gength, but there is no significant effect lmmg termtensile

strengthTable 2.2 shows results from tensile strength festsdin the literature.

Table 227 Results of tensile strength tests found inltteeaturethat were compared Barnes

(2007).
- . Age Aspect f; f, f
Reference | Matrix | Fiber Type | dagysj Vr RE“ o f e YO Fo/fe | Fu/fic | T/t
Number {psi) {(Dsi) {psi]
straight
Johnston and |- ooy steel 30-180 | 2.0% 3 1.01
Coleman
(1973) 63 1.04
94 1.14
4 0% M 1.04
63 1.11
94 1.27
6.0% H 1.04
63 1.18
94 1.34
twisted
g‘;’;’[’:&?g‘n;”sf‘ mortar steel® 20% | 100 447 | 837 187
(2003) with fly | twisted
ash sieel’ 417 8458 2.06
MNaaman and hooked
mortar
Otter wihfy |  stee’ 150 | 156% | 80 5250
(1991) ash 16.7% 6100
slurry hooked
Nfg;ﬁr’iﬁ”d (cement |  steel® 60 124% | 60 1400 | 2280 163
(1987) and fly
ash) 13.8% 2340
Li, Li, and concrete hooked
Chang with steel 2.0% 60 580 616 G616 1.06 1.00 1.34
(1998) silica
fume 3.0% 580 71 i 1.23 1.00 1.34
6.0% 580 a70 1305 1.50 1.50 1.34
3.5% 100 580 a70 1196 1.50 1.37 1.34
Wafa and concrete hooked
Ashour with steel 28 1.0% 75 797 1087 1.36
silica
(1992) fume 15% 797 1450 182
where

f; = unreinforceccementitiousompositegensile strength,
fic = reinforcedcementitousompositegensile first cracking strength,
fut = reinforcedcementitousompositesiltimate tensile strength

a: 25 x 25 mm (square cressctional dimesions),
b: 50 x 12.5 mm (rectangular cressctional dimensions),
c: fibers were oriented parallel to the loading direction,
d: using split cylinder test.
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2.7.37 Flexural Strength

Deformed steel fibers are more efficient in increasing concrete flexuealgéh than
synthetic fibergYurtseven, 2004; Naaman & Chandrangsu, 2@@ause synthetic fibers have
a lower modulus of elasticity than steel fibgiBalaguru & Khajura, 1996; Naaman &
Chandrangsu, 2003Naaman and Chandrangsu (2003) obsethatlusing twisted steel fiber
produceshigher flexural strengthihan using synthetic (Spectra fibers. In addition, encrete
flexural strength is highly sensitive tihe aspet ratio and volume fractiorof the fibers
(Yurtseven, 2004) Higher flexural strength canbe achievd by using higher aspect ratios
(Johnston, 1973; Yurtseven, 2004)sing aspect ras rangng from 30120 enhanceshe
concrete flexual strength by 180% (Barnes, 2007)Adding fibers with volume fractianless
than 1.06 does not significantly affe¢he flexural strength beyond the first crack. By conjras
thosevolume fractiors would gredly enhance the flexural pestacking strengtiiSetkit, 2012)

The effect of different volume fractisrof hookedendsteel fibes on concreteflexural strength
is shownin Figure2.15 (Balaguru, Narahari, & Patel, 199Hor reference, 200 Ib/§jabf steel
fibers is approximately equivalent to a fiber volume fraction of 1.5%.

For normal strength concretegfdrmed steel fibers havaoreimpact on concrete pts
cracking flexural strength than straight steel fibeksreasonthe improved behavior is the
excellent mechanical bordkevelopedoetween deformed steel fibers and concrete as shown in
Table 23 (Ramakrishnan, Brandshaug, Coyle, & Schrader, 1980; Bentur & Mindess, 1990;
Balaguru & Shah, 1992; Mindess, Chen, & Morgan, Determination ofErestk Strength and

Flexural Toughness of Steel Fibeeinforced Concrete, 1994)
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strength(Balaguru, Narahari, & Patel, 1992)

2.7.471 Shear Strength

One of the mairadvantage®f introducingsteelfibers toconcreteis to enhance shear
strength(Setkit, 2012; Kwak, Eberhard, Kim, & Kim, 2002 particularly those subjected to
displacement reversals such as coupling beams aahdolumn connections Several
researchers have investigated the effeanwbducing steel fibers to concrete applications and
the possibility of replacing part or all of the steel stirrups by steel flbetson, Jenkins, and
Spatney (1972), and Darwish (1987), and Swamy and Bahia ($88b¢dthe effect of adding
steel fikers to concrete beams. They reported that adding fibers improved the shear resistance.
Barragan (2002) reported thatnall volume fractions of steel fibers do not affect the cracking

strength, but they significantly affect the toughness behavior aftdkswecured
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Table 2371 Flexural strength results for different types of steel f{Bawrnes2007)

Where
"Q: modulus of rupture afinreinforced matrix
"2 modulus of rupture akinforced matrix
"Q : maximum bending stress
a:100x 100x 355 mm (bx w x |),
b: 75x12x 305 mm (bx w x ).

Yang, Joh, and Kim (2011) investigated tlfilee of using steel fibrs in 12 UHPFRC-I
beams (deptl27.5 inches, compression strength2ZZ35ksi) as a replacememor steel stirrups.
They found that the ultimate shear resistance increased as the fiber volume fractions increased.
Hockenberry and Lagz (2012)showed the same in theatudy of the effect ofhookedendsteel
fibers on the performance of concrete beanigected to shealn addition they showed thahe

shear capacity of the tested FRC beams was more than the limitations of AG3 (31 80%.
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