Clearing your Desk!
Software and Data Services for Collaborative Web Based GIS Analysis

David Tarboton, Ray Idaszak, Jeffery Horsburgh, Dan Ames, Jon Goodall, Larry Band, Venkatesh Merwade, Alva Couch, Rick Hooper, David Maidment, Pabitra Dash, Michael Stealey, Hong Yi, Tian Gan, Tony Castronova, Brian Miles, Cuyler Frisby, Zhiyu Li

USU, RENCI, BYU, UNC, UVA, CUAHSI, Tufts, Texas, Purdue, Caktus

http://www.hydroshare.org
Outline

• Data and computational challenges
• HydroShare
 – Goals
 – Resource data model
 – Architecture
• Terrain analysis and TauDEM in OpenTopography and CyberGIS
• Data services for hydrologic modeling
• Summary
The challenge of increasing Digital Elevation Model (DEM) resolution

1980’s DMA 90 m
10^2 cells/km²

1990’s USGS DEM 30 m
10^3 cells/km²

2000’s NED 10 m
10^4 cells/km²

2010’s LIDAR ~1 m
10^6 cells/km²

e.g. 50,000 km² Watershed

27 MB

240 MB

2 GB

200 GB
Data Heterogeneity

• From dispersed federal agencies
• From investigators collected for different purposes
• Different formats
 – Points
 – Lines
 – Polygons
 – Fields
 – Time Series

• The way that data is stored can enhance or inhibit the analysis that can be done
• We need ways to organize the data we work with
• Data models
Data intensive models to understand and examine consequences, impacts and effects of land surface and climate changes.
Do you have the access or know how to take advantage of advanced computing capability?

A digital divide
HydroShare Goals

• To provide a cyberinfrastructure platform for hydrologic research to solve problems of size and scope not otherwise solvable using desktop computing through
 – Software as a service
 – Data as a service
 – Models as a service
 – Visualization and analysis services

• To enable more rapid advances in hydrologic understanding through collaborative data sharing, analysis and modeling

• To address community cyberinfrastructure needs
HydroShare is a collaborative environment (being developed) for data sharing, analysis and modeling

- Share your data and models with colleagues
- Manage who has access to the content that you share
- Share, access, visualize and manipulate a broad set of hydrologic data types
- Sharing and execution of models
- Web services API to facilitate automated and client access to almost all functionality
- Access to and use of high performance computing
- Publication of data and models with a DOI

Our goal is to make sharing of hydrologic data and models as easy as sharing videos on YouTube or shopping on Amazon.
Functionality

- Sharing and publication of data
- Social discovery and added value
- Model sharing
- Model input data preparation
- Model execution
- Visualization and analysis (best of practice tools)

Collaboration

Server/Cloud Computation
- Platform independence
- Big data
- Reproducibility
- Software installation and configuration
HydroShare is a system for sharing Resources and Collaborating

• Files and sets of files structured to represent a hydrologic process, model, or element in the hydrologic environment
• Standard data models enhance interoperability and support functionality “hydro value added”
• Tools that act on resources to visualize, modify and create new resources
 – Encode standard/best practices
• Access control and sharing model
Types of data to support as resources

Resource Types

- Generic ✓
- Geographic Raster ✓
- Time Series ✓
- Multidimensional Space Time dataset ✓
- Model program ✓
- Model instance ✓
- Geographic Feature set ✓
- Referenced Time Series (CUAHSI HIS web service link) ▴
- Application ▴
- River Geometry
- Sample based observations (ODM2 and CZO)
- Model component
- Composite resources
Great Salt Lake Level and Volume

Authors: David Tarboton, Ibrahim Mohammed
Owners: David Tarboton
Resource type: Generic
Created: June 7, 2015, 7:57 p.m.
Last updated: June 11, 2015, 4:28 a.m. by David Tarboton

Abstract

These comma separated variable files give the level and volume of the Great Salt Lake from 1847 to 2014-03-05. Level in feet is as recorded by the USGS. Level in m was computed from the bathymetry.

How to cite

Tarboton, D., I. Mohammed (2015). Great Salt Lake Level and Volume, HydroShare/resource/7875d551e40a43b8848f74c63f5481ae
Clearing your desk. The trend towards network (cloud) computing.

Can we deliver GIS and Hydrologic Analysis functionality as services over the web?

Based on slide from Norm Jones
Terrain Analysis

- Topography is fundamental to hydrology
- Watersheds are the most basic hydrologic landscape elements
- Topography dictates the flow of water across the landscape
- Flowing water sculpts the landscape

- This synergy is at the heart of much hydrologic modeling relating to questions of runoff generation important for flooding and water resources
- Representing hydrologic processes at high resolution is important to help solve these problems
TauDEM is software for deriving hydrologically useful information from Digital Elevation Models.

http://hydrology.usu.edu/taudem/
TauDEM

• Stream and watershed delineation
• Multiple flow direction flow field
• Calculation of flow based derivative surfaces
• MPI Parallel Implementation for speed up and large problems
• Open source platform independent C++ command line executables for each function
• Deployed as an ArcGIS Toolbox with python scripts that drive command line executables

http://hydrology.usu.edu/taudem/
Using TauDEM today requires

- Expertise in Hydrologic DEM analysis
- The software
 - ArcGIS licenses (for ArcGIS plugin)
 - The ability to install software
 - TauDEM command functions with MPI installation
 - Compilation for other platforms
- Sufficient Hardware (RAM and Disk)
- The data (GDAL formatted rasters with consistent grid size and spatial reference)
Moving TauDEM to the cloud

CyberGIS
http://gateway.cigi.illinois.edu/

Open Topography
www.opentopography.org
TauDEM Parallel Approach

- MPI, distributed memory paradigm
- Row oriented slices
- Each process includes one buffer row on either side
- Each process does not change buffer row
- Improved runtime efficiency
- Capability to run larger problems
Open Topography Data and Product Selection

1a. Select area of data to download or process:

1b. Choose Return Classification:
- Ground
- Unclassified

6. Hydrologic Terrain Analysis Products (TauDEM):

- Hydrologically correct DEM with pits filled
- D-Infinity Flow Direction
- D-Infinity Specific Catchment Area
- Topographic Wetness Index
- D8 Flow Direction
- D8 Contributing Area

This option is only available when DEM generation via TIN is selected in step 3b above.
Open Topography Result

<table>
<thead>
<tr>
<th>Job Id</th>
<th>Dataset</th>
<th>Title</th>
<th>Submission</th>
<th>Completion</th>
<th>Duration</th>
<th>Num points</th>
<th>Final Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>14083553398881902715633</td>
<td>CA04_Power</td>
<td>Eel River TauDEM analysis</td>
<td>2014-08-18 02:49:00</td>
<td>2014-08-18 02:58:39</td>
<td>579 secs</td>
<td>7,647,196</td>
<td>Done</td>
</tr>
</tbody>
</table>

Download Job Metadata: metadata-14083553398881902715633.txt

Download Job Results

Point Cloud Results:
Download point cloud data in LAS format: points.las

DEM Results:
Download DEM (Local Gridding): dems.tar.gz
Download DEM (TIN): dems.tar.gz

Derivative Product Results:
Download Hillshade & Slope Products (Local Gridding): viz.tar.gz
Download Hillshade & Slope Products (TIN): viz.tar.gz

TauDEM Product Results:
Download PitRemove file: pitRemove.tar.gz
Download D-Infinity: Slope file: dinfSlope.tar.gz
Download D-Infinity - Area Contribution file: Dinfarea.tar.gz
Download Topographic Wetness Index file: TWI.tar.gz
Contributing area from D-Infinity
CyberGIS TauDEM App

http://gateway.cigi.illinois.edu/

CyberGIS Geospatial Data Sources

<table>
<thead>
<tr>
<th>Name</th>
<th>Provider</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>USGS National Elevation Dataset (NED)</td>
<td>USGS Nation...</td>
<td>Available</td>
</tr>
<tr>
<td>OpenTopography Lidar data (prototype)</td>
<td>OpenTopogr...</td>
<td>In Progress</td>
</tr>
<tr>
<td>I will provide the dataset</td>
<td>User</td>
<td>In Progress</td>
</tr>
</tbody>
</table>

Name: USGS National Elevation Dataset (NED) - 1/3 arc (10-meter) resolution

Information: NED is one of the eight layers of map data provided by the National Map project at USGS. 1/3 arc (10-meter) NED dataset is organized as 1x1 degree tiles, covering U.S. terrain. Total dataset size is about 2TB

Data provider: USGS National Map

Data URL: http://nationalmap.gov

Data provider info: The National Map project from the U.S. Geological Survey provides eight layers of map covering the U.S., including elevation, land cover, orthoimagery, structures, boundaries, hydrography, geographic names, and transportation.
Select the products you want

The wizard configures the sequence of functions to run to get the result
Results displayed in browser
Advancing Data Services for Modeling and Analysis

Assumptions

1. GIS and hydrologic modelers have to learn and become comfortable using a modern scientific programming language (e.g. Python or R)

2. Modeling is data intensive (large datasets from a range of sources) demanding more data and computing resources than is in most PC’s

3. Reproducibly installing and configuring models on different platforms is a challenge

4. Should not have to become expert in HPC systems and learning them is a barrier to using HPC and research with big data and computationally intensive models
Computation via Python Client calling Data and Modeling Services

Input

```python
from hydrogate import Client
client = Client()
client.subset_dem(left_top_x=410000, left_top_y=4682453, right_bottom_x=408700, right_bottom_y=4682000)
# Previously created shapefile
outlet_shapefile_url = "http://129.123.41.158:8080/dem/subset_dem_request/client.get_most_recent_request(service_name="subset_dem")
print subset_dem_request.file_path
input_raster_url = subset_dem_request.file_path
client.generate_watershed_raster(input_raster_url_path=input_raster_url,
                                 outlet_shapefile_url_path=outlet_shapefile_url,
                                 save_as=r'C:\Users\dtarb\Desktop\HydroGateDemo\WS_Logan.tif')
```

Python session on desktop but data and analysis on server

Result

C:\Python27\ArcGIS10.2\python.exe C:/Users/dtarb/Desktop/HydroGateDemo/modeldemo.py
subset_dem execution was successful.


```json
{
    "Output file path": "http://129.123.41.158:8080/dem/dem3937079318519734987.tif.zip",
    "Service status": "success",
    "Request time": "2014-11-16 00:26:20.548000",
    "Service name": "subset_dem",
    "Service ID name": "",
    "Service ID value": ""
}
```


Output file URL path: http://129.123.41.158:8080/dem/dembfa12a4fd924fa6b096f852eb83c9WS.tif.zip

Downloaded file saved successfully at: C:\Users\dtarb\Desktop\HydroGateDemo\WS_Logan.tif
Utah Energy Balance Snowmelt Model

Used to address what are the impacts of land cover change on watershed snowmelt inputs

Example preparation of inputs for UEB using HydroDS Services

Utah Energy Balance (UEB) Snowmelt Model Input Data Preparation Script

Authors: David Tarboton, Pabitra Dash, Tseganeh Gichamo
Owners: David Tarboton
Resource type: Generic
Created: July 10, 2015, 9:43 p.m.
Last updated: Nov. 2, 2015, 11:59 p.m. by David Tarboton

Abstract

This resource contains scripts to use CI-WATER data services to set up inputs to the Utah Energy Balance Snowmelt Model for any watershed in the western US using data accessible through CI-WATER data services. It also includes simpler pedagogical scripts to test and learn how to use these services.

Main script
uebSetup.py

Pedagogical examples
demo.py. Illustration of Watershed Delineation using CI-WATER data services
ListStaticFiles.py. Lists common data that is part of CI-WATER data services
settings.py. Template for saving credentials
PushFileToHydroShare.py. Illustration of how to transfer a file from CI-WATER workspace to HydroShare.
ClearMyFiles.py. Deletes all personal files in CI-WATER workspace.
ListMyFiles.py. Print list of files in CI-WATER workspace
Use UEB to examine Sensitivity of SWE to Canopy removal
Summary

1. A new, web-based system for advancing model and data sharing
2. Access multiple types of hydrologic data using standards compliant data formats and interfaces
3. Flexible discovery functionality
4. Model sharing and execution
5. Facilitate and ease access to use of high performance computing
6. Social media and collaboration functionality
7. Links to other data and modeling systems
Thanks to the HydroShare team!

- USU
- RENCI/UNC
- CUAHSI
- BYU
- Tufts
- UVA
- Texas
- Purdue
- SDSC

http://www.hydroshare.org

OCI-1148453
OCI-1148090
2012-2017