
A Framework for Sensor Networks
with Multiple Owners

By

Satyasree Muralidharan
 B.E., Information Technology,
 Bharathiar University, Coimbatore, India 2004

Submitted to the Department of Electrical Engineering and Computer Science

and the Faculty of the Graduate School of the University of Kansas in partial

fulfillment of the requirements for the degree of Master of Science

Thesis Committee:

Dr. Victor S. Frost: Chairperson

Dr. Gary J. Minden

Dr. Joseph B. Evans

Date Defended

 ii

The Thesis Committee for Satyasree Muralidharan certifies that this is the
approved version of the following thesis:

A Framework for Sensor Networks
with Multiple Owners

Committee:

Chairperson

Date Approved

 iii

Abstract

A framework for sensor networks with multiple owners develops a mechanism for

assured and controlled access to sensor assets owned and maintained by disparate

organizations. The framework addresses the limitations in an existing system and

proposes extensions to it. It also provides new mechanisms for cross-domain

authentication and authorization by implementing a prototype as a proof of concept.

 iv

To my Bhagawan Sri SATHYA SAI BABA

Acknowledgements

I would like to present my sincere gratitude to my advisor Dr. Victor Frost, who

guided me throughout this work. I should definitely say that I am fortunate to

work under him for the past two years. Dr. Frost was always available and patient

in answering my questions. I have learnt so much from him over the past two

years, and that pertains not only to my research, but also to all that which applies

to being a good engineer. I thank him for his encouragement, advice and

friendship.

I would like to thank Dr. Gary Minden for his continued suggestions and support

in my research work. I would also like to thank Dr. Joseph Evans for accepting to

be a part of my committee.

I would express my sincere thanks to Mr. Ed Komp who taught the essentials of

programming and who guided me in each step of this research. I wish to thank

Mr. Leon Searl, for his help to start my work on Ambient Computing

Environment (ACE).

I would like to express my thanks to Oak Ridge National Labs for supporting this

work (Award Number 4000043403), as part of the ORNL-SensorNet Initiative.

 vi

I would like to thank my beloved parents Mr. P. Muralidharan and Mrs. S.

Sundaravalli for all that they have provided me until now. I would like to thank

my sister M. Padmashree for her wishes and support. I sincerely thank my grand

mother Mrs. S. Sitalakshmi for her love and for all that she taught me in my life.

My special thanks to my sister Mrs. M. Sripradha, who envisioned my future.

Without her planning and efforts, I would not be graduating from this

distinguished university.

My sincere thanks to my Lord, Bhagawan Sri Sathya Sai Baba, Who always

answers my prayers, Who is always with me and Who leads me in the right path.

Dear Swami Thank You!

Last but not the least, my special thanks to my husband Mr. P. Muthukumaran, for

all efforts and patience throughout my research and who has always been with me

when I needed him.

 vii

Table of Contents

Acceptance Page .. i

Abstract .. iii

Acknowledgements... v

Table of Contents.. vii

List of Figures ... x

1 Introduction... 1

2 Multi-Owner Architecture .. 4

2.1 Overview... 4

2.2 Components and Functionalities... 4

2.2.1 Device Layer... 6

2.2.2 Repository Layer... 8

2.2.3 Application Layer ... 9

2.3 Challenges... 11

2.4 Proposed Solution ... 11

3 Background - ACE.. 13

3.1 ACE Architecture.. 13

3.2 Key Features of ACE for the Multi-Owner Architecture 15

3.2.1 Client Server Communication using Enhanced RMI.................... 15

3.2.2 Secure Communication using TLS ... 16

3.2.3 Access Control using KeyNote Trust Management System......... 16

3.2.3.1 KeyNote Terminology .. 17

3.2.4 Choice of KeyNote Trust Management .. 19

3.3 Access Protocol in ACE.. 23

4 Extending ACE for Access Control for Multi-Owner Architecture 27

4.1 Limitations in the ACE Framework.. 27

4.1.1 Current Set of Action Attributes in ACE...................................... 28

4.2 Extension to the ACE Set of Action Attributes 28

4.2.1 Core Action Attributes for Multi-Owner Architecture 29

 viii

4.2.1.1 External Attributes .. 33

4.2.1.2 Internal Attributes ... 34

4.2.2 Examples... 35

5 Access Control in Multi-Owner Environment.. 41

5.1 Scenario with CA from a Single Organization 42

5.1.1 Revocation of Public Key Certificates and Credentials................ 43

5.2 Scenario with CAs from Multiple Organizations 44

5.3 Proposed Solution ... 46

5.3.1 Authentication using TTP... 47

5.3.1.1 Role of a TTP.. 47

5.3.1.2 Limitations in the Current Authentication Handshake 47

5.3.1.3 Authentication using a Chain of Trust 48

5.3.2 Authorization using Broker... 50

5.3.2.1 Role of a Broker:... 50

5.3.2.2 Delegating Authorization with KeyNote Trust Management... 50

5.3.2.2.1 Limitations .. 53

5.3.2.3 Example .. 54

6 Prototype Implementation... 57

6.1 Overview... 57

6.1.1 Nose Service ... 59

6.1.2 Nose Client.. 60

6.1.3 Database Service... 60

6.1.4 Configuring a Certificate Authority.. 61

6.1.5 Configuring Users for the Sensor Network 61

6.1.6 Getting Credentials ... 62

6.2 Testing and Results ... 62

6.2.1 System Configuration ... 62

6.2.2 Results... 65

6.2.3 Lessons Learned.. 67

 ix

6.3 Credential Extensions ... 69

6.3.1 System Configuration ... 69

6.3.2 Testing and Results ... 70

6.4 Cross-Domain Communication .. 74

6.4.1 System Configuration ... 78

6.4.2 Testing and Results ... 79

7 Conclusion and Future Work .. 83

8 References... 84

A. Appendix... 88

A.1 Nose Client with MVC Paradigm .. 88

A.1.1 Controller providing the results for the View to update its Display89

A.1.2 Model providing the results for the View to update its Display 90

 x

List of Figures

Figure 2.1: Multi-Owner architecture diagram representing the various

components and their communications... 5

Figure 3.1: ACE Architecture showing the various components. 13

Figure 3.2: Example of a credential in KeyNote. ... 17

Figure 3.3: Example of a policy in ACE... 18

Figure 3.4: Example of a credential in ACE... 18

Figure 3.5: Access Protocol showing the sequence of actions when an ACE Client

contacts the Service... 24

Figure 4.1: A credential where the user has a role “Administrator” on a Chemical

Sensor.. 31

Figure 4.2: A policy of a Super Administrator. .. 32

Figure 4.3: A credential where the Authorizer delegates the Licensees “Reader”

role on all cameras and “Administrator” role on one particular

Chemical Sensor. .. 35

Figure 4.4: A credential where the user can modify Service Directory database

and can read sensor data from a Sensor Database. 37

Figure 4.5: A credential where a collector can read sensor data from a

Radiological sensor and update a Sensor Database. 38

Figure 4.6: A credential of user with “Reader”/“Writer” role on a Temperature

 Sensor.. 38

Figure 4.7: A credential where the user can perform only one method on all the

sensors... 40

Figure 5.1: A scenario showing the complexity when a user contacts CA of

different organizations individually for credentials. 45

Figure 5.3: A credential issued to user Alice to access Nose Service. 51

Figure 5.4: A delegated credential issued from Alice to David to access the Nose

Service... 51

 xi

Figure 5.5: A scenario showing the use of a Broker... 55

Figure 5.6: Trust relationship between CA-OrgA and Broker. 55

Figure 5.7: Trust relationship between CA-Organization B and Broker. 55

Figure 5.8: A credential issued by the Broker where the Organizer can read from

Sensor Databases of Organization A and B.. 56

Figure 6.1: An architecture for Prototype implementation.................................. 57

Figure 6.2: A CA issuing a public key certificate and a credential to a new user61

Figure 6.3: Configuration used for the demonstration of access control with two

clients with different permissions. .. 63

Figure 6.4: Credential given to “User A” to contact Nose Service to load a

profile.. 64

Figure 6.5: Credential given to “User A” to contact the ServiceDirectory. 64

Figure 6.6: Credential given to “User B” granting access to start a new

identification and view the results with the Nose Service. 65

Figure 6.7: Test case where User A selected a profile from Sensor database. 66

Figure 6.8: Test case where User A was granted access for loading a profile and

denied access for start identification... 66

Figure 6.9: A test case where User B could perform start a new identification but

could not load a profile ... 67

Figure 6.10: An example of a single credential with multiple clauses. 68

Figure 6.11: Setup used for demonstrating credential extensions. 70

Figure 6.12: A test case where the user could start a new identification, view the

result but could not load a profile. .. 71

Figure 6.13: A test case where the user has “Reader” and “Modifier” role on the

nose. .. 72

Figure 6.14: A test case where the user has “Modifier” role on all the chemical

sensors... 73

Figure 6.15: Certificate chain of CA-Org-A... 75

Figure 6.16: Certificate chain of Bob of Organization B...................................... 77

 xii

Figure 6.17: A credential issued from Broker to Bob-Org B to access Profile

Database Service of Organization A... 78

Figure 6.18: Illustration of a Cross –Domain communication showing two cases:

where a user from Org-B: can 1) authenticate and authorize to Profile

DB Service and 2) authenticate but not authorize to Nose Service of

Organization-A ... 80

Figure 6.19: Illustration of a Cross –Domain communication where a user from

Organization C cannot authenticate and hence not authorize to Profile

DB Service of Organization A.. 82

Figure A.1: MVC Communication cycle when “Start Identification” is clicked . 89

Figure A.2: MVC Communication cycle when “Show list of profiles” is clicked90

 1

1 Introduction

Latest developments in wireless communications attracted increased research upon

sensor networks. The low-cost, low-power sensor devices often have limited

computation and communication capabilities beyond the basic environment sensing.

These capabilities coupled with growth in electronics opened up many technical

issues in building networked systems based on them. This led to the design and

architecture of systems like [1], [2], [3] and [4]. The objectives of [4], the SensorNet

initiative were to: develop and/or discover the technology, standards, and technical

requirements for an integrated national warning and alert system, to provide an

incident discovery, awareness and response capability addressing local, regional, and

national needs. SensorNet provides a standard mechanism to move information from

sensors though the Internet to end user applications. Coordination of SensorNet

activities has been lead by the Oak Ridge National Laboratory (ORNL).

Many efforts in the past addressed the design issues of various component

technologies of sensor networks. PicoRadio [5], SmartDust [6] focused on system

level issues in designing sensor hardware. LEACH [7] focused on network layer

design issues for these networks. Other works like SensoNet [8] and WINS [9]

recommend an entire protocol stack for sensor systems. Relatively few systems like

SINA [8] discussed a model for sophisticated information dissemination systems that

could be based upon the underlying sensor net technologies. At the SensorNet

 2

Architecture Forum [10], a unified architecture to enable the use of resources owned

by disparate organizations to support the objective of SensorNet was discussed.

As sensor networks progress towards widespread deployment the security issues

involved assume importance. Many early protocols like SNEP, µTesla [11] and Tesla

[12] were proposed as building blocks to provide standard security functions to these

networks. While work like [13] focuses on security solutions used for mobile user

devices in the context of sensor networks, efforts like [14] considers a variety of

approaches for key distribution in sensor networks by analyzing the overhead of these

protocols on a variety of hardware platforms. Various research efforts were directed

on providing a in low-end devices by integrating cryptographic primitives with low

cost microcontrollers. For example: AVR controllers [15] and the Dallas iButton [16]

support primitives for public key encryption, together with a possibility for modular

exponentiation.

The above studies focused mainly upon the security functions that can be built

inside a sensor node. They do not consider a broader security infrastructure for other

components of sensor network architecture as the sensors are limited in resources to

handle memory and computation intensive methods like asymmetric cryptography.

Also they do not consider issues arising out of disparate ownership and cross policy

domain resource access.

The research aim of this thesis is to develop one such framework that

incorporates sophisticated authorization/authentication mechanisms that are secure

and suited for disseminating and analyzing sensor information by extending a related

 3

system. The rest of the thesis is organized as follows. Chapter 2 provides an overview

of the components and functionalities of the multi-owner architecture. Chapter 3

gives a background of an existing system Ambient Computing Environment (ACE)

[17], followed by Chapter 4 that discusses the extension of the existing system

architecture to meet the new set of security and management requirements for a

scalable and rapidly deployable sensor network. Chapter 5 presents a trust

management with single and multiple organizations. Chapter 6 describes a prototype

implementation of the proposed access control framework. Chapter 7 describes the

conclusions and future extensions.

 4

2 Multi-Owner Architecture

2.1 Overview

The objective here is to develop a unified architecture that has elements

owned/controlled by a variety of organizations which can communicate across cross-

administrative domains. The features of the architecture include:

• Assured and controlled access to sensor nodes in a multi-owner

environment.

• Archiving and information dissemination.

• Application supporting high bandwidth requirements.

• Rapidly deployable sensor network.

This chapter gives an overview of the components and functionalities of the

architecture.

2.2 Components and Functionalities

The architectural components are divided into three layers as shown in the

figure 2.1 based on their functionality:

• Device Layer

• Repository Layer

• Application Layer

 5

Figure 2.1: Multi-Owner architecture diagram representing the various components
and their communications.

 6

2.2.1 Device Layer

Device Layer composes of all the physical sensor endpoints together with the

first level of data access and management points for the entire architecture. This

consists of

• Sensors

• Sensor nodes

• Sensor services

• Collectors

Sensors are hardware devices capable of transducing a physical property e.g.,

temperature, pressure, light, humidity, etc., into an electric signal. Sensors

communicate the collected data with the sensor node that controls them in the sensor

network. The sensors could be of different types such as radiological, mechanical,

optical or chemical sensors. Often sensors are characterized by small size and low

energy consumption.

A sensor node is a computer that typically manages one or more sensors through a

set of services. The sensors could be directly connected to the node either through

serial or parallel ports or through a multi-hop network. The communication between

the sensors and the node may or may not incorporate a secure communication. The

security of this link depends upon the nature of the connectivity.

Sensor services are programs that control the sensors attached to the node. There

could be one or more services per node, which each service dealing with one sensor.

 7

In the multi-owner architecture, there is a one-one mapping between the sensor

service and the sensor controlled by it. In practical application, a single service could

control more than one sensor. The architecture could be extended so that one service

supports multiple sensors.

Collectors are programs that collect data from these services and transport them to

the repository layer for further processing. There could be one or more collectors

depending on the size of the device layer. The communication between the collectors

and the sensor services follow the access control mechanism discussed later in this

document. Collectors should authenticate and authorize themselves with the service,

before tasking or configuring a sensor. Collectors collect data in one direction (from

device to repository), other services load data or commands from repository to device,

e.g., the Sensor Databases to the sensors to command the sensors. For example:

loading a new smell profile in the Cyranose 320 Electronic Nose sensor (referred as

Cyranose henceforth) from a Sensor database. Hence, Collectors could be viewed as

intermediaries between the Device and the Repository layer. Collectors talk to the

devices which typically belong to their organization or domain, our solution is not

restricted for such a communication but spans across different organizational

domains. Figure 2.1 shows sensors, sensor nodes and collectors from two

organizations A and B.

 8

2.2.2 Repository Layer

This layer stores the collected sensor data from the device layer. This

composes essentially of databases which could be either:

• Sensor Databases that store and retrieve sensor data.

Examples:

o Database of the smell profiles, the response to a particular sample

produced by the Cyranose.

o Database of images captured by cameras used for surveillance.

• Infrastructural databases that store other information required to support the

system. Examples:

o Service Directory – database of current services available such as

Temperature Sensor Service, Nose Service etc...

o Regional Database – database of location of sensors.

There could be multiple repositories in this layer, each owned by a different

organization. Figure 2.1 shows the repositories owned by two organizations A and B,

where Organization A has a database of smell profiles along with the infrastructural

databases and Organization B has a database of temperature data along with the

infrastructural databases. The services from the device layer, register themselves with

the Service Directory when they come online necessitating each organization to

maintain a list of currently available services.

 9

2.2.3 Application Layer

The application layer provides a unified view of the various components of the

architecture. This layer consists of:

• Organizer,

• Applications,

• Service Objects,

• Users,

• Certificate Authorities,

• Broker and

• TTP

Organizer is a program that collects and transports data from the repository layer to

application layer. A user in the multi-owner architecture is a human being who uses

the infrastructure for various applications. Applications are programs that can be

either used to talk to the Organizer to get the processed data or to the Sensor Service

directly as shown in the figure 2.1. All applications are written in Java and use

Remote Method Invocation (RMI) [18] to communication with the sensor services.

With JAVA-RMI, the services present themselves as remote objects. The applications

get handles to these remote objects and use them to talk to the services.

A Certificate Authority (CA) is an entity that issues digital certificates. Each

organization will have its own CA to issue certificates for users within that

organization. The role of the CA is to issue certificates to identify the users and

credentials to identify the actions that can be performed by the users. If a user wants

 10

to talk to devices from multiple organizations, then he/she needs to contact the CAs

of different organizations individually to get credentials. As discussed later, we

propose using a broker to avoid this requirement. A Broker is an entity that can issue

credentials on behalf of CAs of different organizations. The broker is a delegated CA

for the CAs of different organizations. A Trusted Third Party (TTP) is an entity

who issues public key certificates for the CAs of organizations that trust it. The TTP

help establish a chain of trust to authenticate users across multiple organizations.

Chapter 5 describes the identification of users, credential distribution and delegation

of trust when more than one organization is involved.

This 3-tier architecture is layered with organized communication between the layers

using the intermediaries such as Collectors and Organizers. However, we anticipate

that some scenarios might require a user talking directly to a device without having to

pass through this layered architecture.

Direct Communication: Consider a situation where the user takes control over the

sensors of all organizations and may wish to control them without having to talk to

the organizer or the collector. In such a case, the user will get a single certificate to

talk to devices from all organizations. The user will use the applications to talk to the

sensor services controlling the devices through an out-of-band communication. Our

solution also provides a way to have this Direct Communication between the user

and the devices as in figure 2.1.

 11

2.3 Challenges

In the multi-owner architecture, there are many organizations with each

organization owning a large number of devices and supporting a large number of

actions. Some of the challenges that need to be addressed in such a scenario are:

• How to provide control on the set of devices a client may use, even though

the number of devices may be large?

• How to provide control over the set of actions a client can perform on

devices he can access, even though the number and/or types of devices are

large?

• How to provide clients access to devices controlled by multiple

organizations?

2.4 Proposed Solution

In order to address the questions posted in the above section, we expand the

Access Control framework provided by ACE [17], a system previously implemented

at ITTC. ACE provides architecture for access control, but poses certain constraints

for use in multi-owner environment as discussed in Section 4.1. We extend the access

control mechanism used in ACE to achieve the granularity required for sensor

networks with multiple owners.

This chapter provided an overview of the multi-owner architecture, the challenges

and the proposed solution of extending an existing architecture ACE. The next

 12

section gives a background on ACE and highlights the features of ACE that are used

for multi-owner architecture.

 13

3 Background - ACE

Access to resources is usually achieved by programs running on specific

processors. The ACE architecture was developed to untie the binding between

programs and computers, and to create independent services so that the users can

roam anywhere still preserving their sessions with the resources. ACE builds a

pervasive system, where the users have long-lived workspaces and mobility within

the environments irrespective of rooms or machines.

3.1 ACE Architecture

 Figure 3.1: ACE Architecture showing the various components.

The services in the ACE architecture constitute the atomic level of computation.

Services are grouped in to federations.

The communication between the service and the client are accomplished in two ways:

 14

• Control channel: Provides a way for communicating control messages. It

is a reliable in-order channel.

• Media channel: Provides a way for communicating audio and video.

Reliability and in-order delivery are not important in this channel.

ACE allows the client to access resources through four core services as shown in the

figure 3.1:

1. Service Directory: It is a directory service that locates all available

services as well as their characteristics (Name, Location, and Service

Class). All services register and un-register with this service. Since this is

the directory for all the other services, the location of this service is fixed.

2. User Database: It is a database of all users in the system. The information

includes Public Key, Name, Login name and Login characteristics. In

ACE, the login characteristics include information like passwords, finger

prints and iButton ids that can identify the user.

3. Room Database: It is a database of the information of all the rooms and

building in the system.

4. Authentication Database: It contains the certificates of all the users in the

system.

 15

3.2 Key Features of ACE for the Multi-Owner Architecture

3.2.1 Client Server Communication using Enhanced RMI

Whenever a client wants to talk to the service, the client provides his

credential showing that he has permissions to talk to the service to access the

resources. The service validates his credential before providing the resource. The

authorization is not only up to the point of providing the resource, but also extends to

every method that the client requests to perform on the device. In order to provide this

per-method authorization, an enhanced form of RMI is used. The result of the

enhanced RMI system is two classes:

• SecureUnicastServer.java: This handles new connections and creates a new

client thread for each connection.

• ServerClientThread.java: This authenticates the user. When the user requests

to perform an action, this thread does the per-method authorization, and then

executes the requested method and returns the result.

The services present themselves as a Java remote object. The functionalities that the

services advertise are given in the Java Interface. The client obtains the remote object

to the service and performs actions using the Java RMI. This feature can be directly

applied to multi-owner architecture, with the collectors being the clients, sensors

being the devices and the sensor service being the gateway between the collectors and

the sensors.

 16

3.2.2 Secure Communication using TLS

Transport Layer Security (TLS) [19] provides authentication of the user and

security of the message exchanges in the control channel. The users are identified by

public key of the asymmetric key (either RSA [20] or DSA [21]). The keys are

formatted to X.509 format [22], to be used by TLS. The public key is certified by a

CA to verify the validity of the key. The user presents this signed certificate to any

service for authentication. At the end of the handshake between the client and the

server, a session key is negotiated and all the messages are encrypted with this key

using any symmetric key algorithm such as Advanced Encryption Standard (AES)

[23] or Data Encryption Standard (DES) [24].

In sensor networks with multiple owners, security of all the message exchanges

between the elements of the architecture is important. This TLS and AES encryption

of the ACE framework provides authentication of client-server, secured

communication by encrypting the message exchanges and error-free delivery required

in the communications between elements of the architecture.

3.2.3 Access Control using KeyNote Trust Management System

After user authentication, the exact permissions of the user determine the

actions that the user can perform with the services. The service must authorize the

actions requested by the user based on these permissions. ACE uses KeyNote Trust

Management [25] to provide access control on the actions requested by the users. A

 17

very brief overview of KeyNote concepts and terminology that will be used in the

remaining of the document follows.

3.2.3.1 KeyNote Terminology

KeyNote provides a simple language for describing and implementing

security policies, trust relationships and digitally-signed credentials to control

potentially dangerous actions over untrusted networks. Some of the Keynote concepts

and terminology include:

• Assertions: Assertions describe the conditions under which a principal

authorizes actions requested by other principal.

• Policy: Policy is one or more unsigned assertions.

• Credential: A credential is a signed assertion. A credential can be securely

transmitted over untrusted networks.

• Action Attributes: Action Attributes are (name, value) pairs, and the

primary objects on which KeyNote assertions operate. These names and

values are arbitrary-length strings. KeyNote does not interpret the

semantics of these names and values. These semantics must be agreed

upon by the writers of applications and the authors of credentials.

KeyNote-Version: 2
Authorizer: "x509-base64:MIIEBzCC..”
Licensees: "x509-base64:MIIECjC..”
Comment: Authorizer delegates read access to the Licensees
Conditions: (app_domain ==”FileSystems” && file == “etc/passwd”) “read”;
Signature: "sig-rsa-sha1-base64:XQZopw..”
Figure 3.2: Example of a credential in KeyNote.

 18

Figure 3.2 shows an example of a credential. “Authorizer” identifies the principal

authorizing actions to users identified in “Licensees”, under the “Conditions” that in

the application demanding authorization, the action attributes set includes:

• The attribute named “app_domain” with value “FileSystems” and

• The attribute named “file” with value "etc/passwd".

The authorization level is “read”. KeyNote provides a Compliance Checker engine

that evaluates credentials and returns the result (an application-defined string). The

application can then decide what to do depending on the result given by the KeyNote

engine. ACE uses KeyNote Trust Management to authorize the client actions with the

device. In ACE, the administrator “ace” is given all rights to use the system. This

“ace” administrator is provided a policy which is implicitly trusted and does not have

to be signed.

KeyNote-version: 2
authorizer: POLICY
local-constants: KEY1 = "x509-base64:MIIEZzCCA...LCSG0N2ICh"
licensees: KEY1
conditions: (APP_DOMAIN == "ACE") -> _MAX_TRUST;
Figure 3.3: Example of a policy in ACE.

Figure 3.3 shows an example of a policy.

Figure 3.4 shows an example of a credential used in the ACE environment.

KeyNote-version: 2
authorizer: "x509-base64:MIIEZzCCA9CgAw...LCSG0N2ICh"
licensees: KEY1 = "x509-base64:MIIEZnb53...ighfkRT4523k"
conditions: ((APP_DOMAIN == "ACE") &&
(time >= 1082390980610) && (time <= 1082390980628)) -> "write";
signature: "sig-rsa-sha1-base64:Nt4+XIP...soP+mgjjTXWA=="
Figure 3.4: Example of a credential in ACE.

 19

A CA is used to issue public key certificates and credentials. In ACE, the “ace”

administrator acts as the CA. All other users get a credential with the “ace”

administrator being the authorizer.

This trust management allows the multi-owner architecture to control access to the

actions performed by a collector on the sensors. Each method that the client is trying

to access through the remote object of the service can be checked for authorization by

querying the KeyNote engine. If the collector does not have a valid credential, he

cannot perform the requested action on the sensor and an exception is raised. Since

this authorization is implemented within the service infrastructure, all services

inherently implement the authorization procedure. The examples of policy and

credential show the expressiveness and ease of representation of security policies and

credentials using a unified representation language.

Although it is possible to conceive an equivalent system with popular key distribution

and trust management systems like Kerberos, KeyNote offers significant advantages.

The following section highlights and discusses these advantages in more detail.

3.2.4 Choice of KeyNote Trust Management

Kerberos was initially designed for symmetric key distribution and

authentication. It included a delegation and authorization mechanisms which are not

as sophisticated as KeyNote. The following section introduces Kerberos followed by

a comparative discussion between Kerberos and KeyNote.

 20

Introduction to Kerberos:

Kerberos is a secret key based service for Authentication designed by MIT [26].

Kerberos achieves authentication of a user to access remote resources. The entities in

Kerberos are:

• The Key Distribution Center (KDC),

• Principal or user and

• An Application to authenticate users.

The KDC shares a master key (symmetric cryptography) with each of the principal.

Kerberos achieves “Decentralization” by dividing the network into realms. A realm is

a collection of resources, users and a single KDC to manage. Each realm has its own

KDC. Some of the deficiencies in Kerberos include:

Cross-Domain Authentication:

In the sensor network architecture with sensors owned by multiple

organizations, cross-domain authentication is important. Cross-realm authentication

in Kerberos is expensive in terms of administrative effort. All the users in each realm

should know the trust relationships between realms in order to find a path of KDCs in

between, to reach the intended destination. Referrals [27] can be used to interactively

determine which KDCs to contact for tickets to establish a trust path to the

destination. This comes with an assumption of using the domain name of the host for

identifying the next KDC in the trust path. In KeyNote there is regular hierarchy of

trust. Users from different domains can easily find a common CA up higher in the

 21

hierarchy to establish a trust relationship. This feature will be essential to reduce

administrative efforts in establishing trust paths in the multi-owner architecture.

Delegation of Tasks:

Delegation is another important aspect especially when there is a large

network of sensors and cross-domain communications. In Kerberos, handling vertical

separation of duties is difficult as there is no organized hierarchy of realms. If a user

A has to delegate his task to user B, he needs to contact KDC to get a TGT (Ticket

Granting Ticket - This includes {Identity, Session Key, Expiration time} signed by

the KDC’s master key), give this TGT to B, which is used by B to contact the KDC

again to issue tickets. For every delegation event, the KDC is contacted twice which

is a disadvantage for performance reasons. The extra interaction with KDC allows it

to know about a delegation event and enables the KDC to audit delegation events

[28]. With KeyNote, delegation is simple with hierarchical arrangement of

Certificate Authorities. Any user can delegate authority to anyone else in the network

by issuing a certificate (also known as credential signed by this user) without having

to contact any Certificate Authorities at all. The event of delegation is known only

when the delegated user uses his certificate with an application to perform some

action.

 22

Authorization:

Kerberos was initially designed for authentication only. It authenticates the

user, but the actions that the user performs on the resources are not validated.

Kerberos was improved to support authorization by providing a field

“AUTHORIZATION-DATA” in the TGT or tickets. For cross-domain delegation,

this poses a difficulty in access-control as this authorization information should be

included in each ticket issued by the intermediate KDCs and the destination has to

contact each of the intermediate KDCs in the path for authorizing the user. This

requires the KDCs to be online at all times, and also slows down the authorization

procedure. KeyNote was designed mainly for authorization of actions performed by

users. When the user requests an application to perform some action, the application

submits the users request along with his certificate to the KeyNote Engine, which

performs a compliance-checking and gives the result back to the application. The

application can then decide whether to allow the user to continue or not. It helps the

application in this decision-making procedure. For cross-domain authorization, in

order to verify the certificate of the delegated user, KeyNote requires:

• The public key of the CA who signed this certificate,

• The certificate of this CA,

• The public key and the certificate of the CA who issued certificate to the

above CA. This is repeated until the root CA’s certificate is reached.

Since all the public key certificates are available online, the authorization procedure

is fast compared to Kerberos. Speeding up the authorization procedure is essential for

 23

the multi-owner architecture, because the communication between a Collector and the

Sensor Service is time critical.

Synchronization of Clocks:

Another disadvantage of Kerberos is that the nodes in the network should have

their clocks reasonably synchronized (within five minutes) since the users

authenticate each other by verifying the timestamp encrypted with the shared session

key issued by the KDC. There is no need of clock synchronization in KeyNote. It is

expected that the nodes in sensor networks will be loosely synchronized further

motivating the use of KeyNote.

In addition to the above advantages of KeyNote, it has a simple mechanism for

message exchanges when implementing authorization. The following section

describes the protocol of the message exchanges used in ACE.

3.3 Access Protocol in ACE

This section describes the sequence of actions when an ACE user talks to an ACE

service. Each time a new client contacts a service, the service spawns a new thread

dedicated to the communication with the specific client.

 24

Figure 3.5: Access Protocol showing the sequence of actions when an ACE Client
contacts the ACE Service.

Typically the following happens when a client wishes to access a resource:

1. User contacts the service (the client thread of the service) for establishing a

session.

2. The service replies with its certificate for authentication, key exchange for

establishing session key and request the user for his certificate.

3. The user replies with his certificate and session key exchange. The user

verifies the Server’s certificate. The client sends “Finished”.

4. The service sends “Finished”. The TLS authentication is completed and a

session is established.

5. The service creates a new KeyNote Session that will be used for user’s

authorization.

 25

6. The service provides the required policy to KeyNote database to be used to

verify the client’s credentials later.

7. The client provides his credential to the service.

8. The service adds this credential to the KeyNote database.

9. The service replies the result of adding the credentials to the user.

10. The client requests the service for an action. Example: The client requests the

service to list the available services.

11. The service provides the KeyNote, the current set of action attributes such as

domain in which this application is used, room in which the service runs,

current Time and the method requested by the client.

12. The Service queries the KeyNote for authorizing the action requested by the

client.

13. The KeyNote engine verifies the credential against its current set of attributes

and returns the result to the Service.

14. The Service determines whether to perform the action requested by the client

or not depending on the result from the KeyNote engine. If the Service

performs the action, it returns the result to the client. Else, it returns an

“Access Denied” to the client.

Figure 3.5 shows the sequence of actions when an ACE client contacts the Directory

Service.

This chapter described the security features of ACE namely enhanced RMI for

communication, TLS authentication and KeyNote authorization that are required for

 26

multi-owner environment including a discussion on choice of KeyNote over

Kerberos. The RMI, communication and TLS authentication are used as such for the

communication of the sensor elements in the multi-owner architecture, but extensions

are made to ACE authorization mechanism to meet the security requirements of

multi-owner environment and these extensions are discussed in the next chapter.

 27

4 Extending ACE for Access Control for Multi-Owner
Architecture

KeyNote authorization is based on the action attributes in the credentials. A

user is authorized if the conditions in the credential match the current set of action

attributes that the service provides the KeyNote engine. It would be a significant

challenge to define a set of attribute names and the meaning and syntax associated

with the values for each one that would effectively address the requirements for an

ever growing number of organizations and sensor devices. Instead we propose a core

action attribute set for the multi-owner architecture by extending the action attribute

set provided by ACE. This chapter describes the limitations of ACE and the extension

made to the ACE set of action attributes for the multi-owner architecture.

4.1 Limitations in the ACE Framework

The integration of KeyNote into the ACE framework ensures that each client

invocation of a service method is authorized. This provides a firm foundation and a

base for access control in the Sensor Network environment. There is no possibility to

invoke a service method without providing a KeyNote credential for allowing

authorization. However, the action attribute set utilized by services in the ACE

framework is directly embedded at a low level in the program infrastructure. This set

of action attributes is limited, and does not allow the flexibility to conveniently define

 28

credentials that will provide controlled access to a wide variety of sensors in the

multi-owner environment.

4.1.1 Current Set of Action Attributes in ACE

The set of attributes provided by ACE for access control include:

a. APP_DOMAIN – Domain for which these credentials are used.

b. Time – Time of request

c. Method – Method requested to be performed on the device

d. Room – Room in which the device is found

Sensor Network involves distribution of credentials with different levels of

specificity, i.e., it involves situations requiring a single credential for a group of

devices and situations involving credential for a particular action of a device. ACE

cannot define a credential that allows client to execute some method, xxx, on only

one of two devices in the same room (because we cannot distinguish between devices

of the same type in the same room). It cannot provide a user with “read” access to all

devices in a room, it would be necessary to identify all the methods for all types of

devices in the room and include them all in the credential thus making the credential

large.

4.2 Extension to the ACE Set of Action Attributes

The above set of action attributes have to be extended to provide a broader set

of action attributes to support more expressive conditions in KeyNote credentials.

 29

This section describes the names, syntax and meaning of the core action attribute set

for the multi-owner architecture along with a mechanism for extending this set.

4.2.1 Core Action Attributes for Multi-Owner Architecture

The new set of action attributes include:

1. APP_DOMAIN – Domain for which these credentials are used. This

attribute is retained from the current set.

2. ServiceClassHierarchy - Full Java class hierarchy path for the service

performing the action.

3. MachineName - The name of the machine in which the service is

running.

4. Method - Simple (not full) Java method name the client is attempting to

execute. This attribute is retained from the current set.

5. FirstArgValue - Specialized attribute assigned the value of the first

argument supplied to the method to be executed, provided that the method

has at least one argument; and the first argument is an instance of class

String, otherwise it is empty

6. Role - Attribute identifies a general level of device control that the client

must be authorized to perform an action. It is assigned a value from the

following set of alternatives:

• Reader – one who can retrieve information from the device

• Writer – one who can load information on to the device

 30

• Administrator – one who can perform (almost) any action on the

device

• No role attribute is acknowledged for the specialized action.

The attribute Role, is used to identify meaningful groupings of service

methods. The values associated with this attribute is widely used and well

understood.

Each action (method) performed that the Sensor service provides, is

associated with the Role requirement:

1. Reader is allowed to view information from the service/device, for

example, getSensorReading().

2. Writer is allowed to execute methods which modify the state of the

device/service and are intended for usage by a range of clients, for

example, setSensorProfile(newProfile).

3. Administrator is allowed to perform almost all methods provided by

the service. This role implicitly provides access to all methods

permitted to either “Reader” or “Writer” as well as methods that are

reserved for a client with a higher level of authorization, for example,

resetSensor(). The credential will state what role the holder of the

credential could perform on the device. The role could be

combinations of “OR”s when the holder could do multiple roles on the

device. If the client is an “Administrator” the credential will say (Role

 31

== “Reader” || Role == “Writer” || Role ==”Administrator”) as the

“Administrator” role supersets the role of “Reader” and “Writer”.

4. Methods in the system might have either “Reader”, “Writer”,

“Administrator” roles or no role associated with them. Methods that

have a role associated could only be accessed by the user carrying that

particular role in their credential. For example: a user with “Reader”

role will be able to access a method that has an associated “Reader”

role attribute. It should be noted here that the user need not have that

method name mentioned in his credential. However, for accessing

those methods which DO NOT have a role attribute associated with

them can ONLY be accessed by explicitly mentioning the method

name in a user’s credential. Figure 4.1 shows a credential of user

whose role is an “Administrator”.

KeyNote-Version: 2
Authorizer: "x509-base64:MIIEBzCC..”
Licensees: "x509-base64:MIIECjC..”
Conditions:
((app_domain == “SensorNet”) && (Provider == “ITTC”) &&
(Time <= “1151465644580” && Time >= “1161465647580”) &&
(ServiceID == “ChemicalSensor001”) && (Role == “Administrator” ||
Role == “Reader” || Role == “Writer”)) “allow”;
Signature: "sig-rsa-sha1-base64:XQZopw..”

Figure 4.1: A credential where the user has a role “Administrator” on a
Chemical Sensor.

 32

It is also to be carefully noted that this “Administrator” role is different

from the “Super Administrator” in the system that has a system-wide

access. Figure 4.2 shows the assertion for a Super Administrator.

KeyNote-version: 2
authorizer: POLICY
local-constants: KEY1 = "x509-base64:MIIEZzCCA...LCSG0N2ICh"
licensees: KEY1
conditions: (APP_DOMAIN == "SensorNet") -> _MAX_TRUST;

 Figure 4.2: A policy of a Super Administrator.

It is now clear that although a user might have the role of

“Administrator”, he will not be able to access every method in the

system. The method shutdown() on all the sensors could be an

example of such a priviledged method that needs special mention in

the credential. Considering an emergency scenario, a user can get

access to perform ONLY THIS priviledged method on all the sensors

of all the Organizations. He can be given a credential in which case

the credential should be signed by a trusted third party trusted by all

the Organizations.

The credential would need to include a condition:

(ServiceClassHierarchy == “<full-hierarchy-spec>” && Method ==

“shutdown”).

Each Organization needs to decide the set of such priviledged methods

that needs special mention in the credentials.

7. ServiceID – A unique identification for each instance of a service.

 33

8. Time - Time of request. This attribute is retained from the current set.

Of the above set of attributes, attributes that identify the actions that the client can

perform include: ServiceClassHierarchy, MachineName, Method, FirstArgValue and

Role. Attribute that identify the set of devices or the services that the client can talk is

ServiceID.

Based on their nature, the above set of action attributes can also be classified into two

categories:

1. External Attributes

2. Internal Attributes

4.2.1.1 External Attributes

Attributes that are placed outside the service program are external to the

service. The majority of the attributes listed in this document are static (do not

change for a service or device) for the duration of the service session, in particular all

those that relate to identifying the device/service. Therefore, these (name, value)

pairs can be stored in a file and read when the service starts. This approach provides

much more flexibility of the owner of a device to control the syntax for attribute

values (such as DeviceName) and even the number of attribute (name, value) pairs.

Providing additional elements to the action attribute set will never cause a previously

valid credential to fail. Since this file has a direct effect on which credentials will be

valid (or fail) for the associated service, it is critical that access to this file be

carefully controlled. Few examples of external static attributes are “ServiceID” that

 34

does not change for a service, “APP_DOMAIN” that does not change for an

Organization. There are no external dynamic attributes as attributes that are dynamic

can be only obtained programmatically and thus cannot be outside a service.

4.2.1.2 Internal Attributes

Attributes that can be obtained programmatically by the service are internal to

the service. Internal attributes can be either static or dynamic.

Static Internal Attributes: Attributes that do not change for a service such as the

service class hierarchy, Java package name and machine name of the computer in

which the service runs are static for a service, but changes from one service to

another. For example: “ServiceClassHierarchy” and “MachineName” that are

obtained in the program once the service is started and registered with the Service

Directory. Since these attributes are obtained programmatically, this set of action

attributes and their value syntax are more difficult to change or extend (requires

program modification).

Dynamic Internal Attributes: Most of the elements of the action attribute set are

static. Those that are related to identifying the specific method the client requests to

execute such as, “Method”, “FirstArgValue” and “Role” associated with each method

are not, however. Likewise, the attribute “Time” changes with each request. These

elements of the action attribute set must also be assigned programmatically.

Therefore, the dynamic elements of the action attribute list and their value syntax are

also significantly more difficult to change or extend (requires program modification).

Testing and evaluation has shown that there will be little need to modify this set.

 35

4.2.2 Examples

A few examples of the credential with the new set of action attributes showing their

granularity and their expressiveness are given below.

Example - 1:

Consider a case where there is a user from Organization “A” who owns one particular

sensor. This user is the administrator of this sensor. With cross-domain

communication, he could be given access to read sensor data from all sensors of a

particular type owned by a different Organization “B” in the network. Figure 4.3

shows the credential that could be given in such a case. The user has an

“Administrator” role on one particular Chemical Sensor owned by his Organization

“ITTC” and a “Reader” role on all cameras owned by Organization “EECS”.

KeyNote-Version: 2
Authorizer: "x509-base64:MIIEBzCC..”
Licensees: "x509-base64:MIIECjC..”
Comment: The user of this credential has a “Reader” role on all cameras of
Organization “EECS” and “Administrator” role on one particular Chemical Sensor of
Organization “ITTC”.
Conditions:
((app_domain == “SensorNet”) && (Provider == “EECS”) &&
 (Time <= “1151465644580” && Time >= “1161465647580”) &&
(ServiceClassHierarchy ~= "^.*Camera$”) && (Role == “Reader”)) “allow”;
((app_domain == “SensorNet”) && (Provider == “ITTC”) &&
(Time <= “1151465644580” && Time >= “1161465647580”) &&
(ServiceID == “ChemicalSensor001”) && (Role == “Administrator” || Role ==
“Reader” || Role ==”Writer”)) “allow”;
Signature: "sig-rsa-sha1-base64:XQZopw..”
Figure 4.3: A credential where the Authorizer delegates the Licensees “Reader” role
on all cameras and “Administrator” role on one particular Chemical Sensor.

 36

The use of regular expressions in KeyNote credentials avoids listing all the cameras

of Organization “EECS”, and the attribute “Role” clearly defines what the user can do

with each of these organizations.

For the first clause, the ActionAttributeSet file will contain:

Provider = “EECS”

ServiceID = “VCC3Camera009”

And the internal attributes that should result in an “allow” will be:

 Time = “1151465647580”

 Role = “Reader”

Method = “getCameraTiltAngle”

ServiceClassHierarchy = “SecureUnicastSever.Base.Service.

 Device.PTZCamera.VCC3Camera”

 MachineName = “barney.ittc.ku.edu”

For the second clause, the ActionAttributeSet file will contain:

Provider = “ITTC”

ServiceID = “ChemicalSensor001”

And the internal attributes that should result in an “allow” will be:

 Time = “1151465647590”

 Role = “Administrator”

Method = “resetSensor”

ServiceClassHierarchy = “SecureUnicastSever.Base.Service.

 Device.ChemicalSensor.Nose”

 37

 MachineName = “terbium.ittc.ku.edu”

Example - 2:

Consider a case where an Organizer collects data from databases of Organization A

and Organization B and maintains a database of his own. Figure 4.4 shows the

credential that can be used in such a case. The user can read sensor data from a

Sensor Database of Organization “ITTC” and modify a Service Directory database of

Organization “EECS”.

KeyNote-Version: 2
Authorizer: "x509-base64:MIIEBzCC..”
Licensees: "x509-base64:MIIECjC..”
Conditions:
((app_domain == “SensorNet”) && (Provider == “EECS”) &&
(Time <= “1151465644580” && Time >= “1161465647580”) &&
(ServiceID == “ServiceDirectory001”) && (Role == “Writer”)) “allow”;

((app_domain == “SensorNet”) && (Provider == “ITTC”) &&
(Time <= “1151465644580” && Time >= “1161465647580”) &&
(ServiceID == “SensorDatabase002”) && (Role == “Reader”)) “allow”;
Signature: "sig-rsa-sha1-base64:XQZopw..”
Figure 4.4: A credential where the user can modify Service Directory database and
can read sensor data from a Sensor Database.

The credential is simple and captured all the attributes required to identify the

Organizer’s action with both the organizations.

Example - 3:

Consider a case of a typical action of a Collector collecting data from a sensor and

updating a Sensor Database belonging to his organization. Figure 4.5 shows the

 38

credential that can be used in such a case. The collector can read sensor data from a

Radiological Sensor and update a Sensor Database of Organization “ITTC”.

KeyNote-Version: 2
Authorizer: "x509-base64:MIIEBzCC..”
Licensees: "x509-base64:MIIECjC..”
Conditions:
((app_domain == “SensorNet”) && (Provider == “ITTC”) &&
(Time <= “1151465644580” && Time >= “1161465647580”) &&
((ServiceID == “RadiologicalSensor001”) && (Role == “Reader”)) ||
((ServiceID == “SensorDatabase002”) && (Role == “Writer”))) “allow”;
Signature: "sig-rsa-sha1-base64:XQZopw..”

Figure 4.5: A credential where a collector can read sensor data from a Radiological
sensor and update a Sensor Database.

The credential is simple and any user holding this credential will be able to identify

for what this credential was intended by reading through it.

Example - 4:

Consider a case where a Collector configures a sensor and collects data from the

sensor belonging to his organization. Figure 4.6 shows the credential that can be used

for this case. The Collector has the role “Reader” or “Writer” access on the

temperature sensor in a computer “sentinel.ittc.ku.edu”.

KeyNote-Version: 2
Authorizer: "x509-base64:MIIEBzCC..”
Licensees: "x509-base64:MIIECjC..”
Conditions:
((app_domain == “SensorNet”) && (Provider == “ITTC”) &&
 (Time <= “1151465644580” && Time >= “1161465647580”) &&
(ServiceID == “TemperatureSensor350”) && (MachineName ==
“sentinel.ittc.ku.edu”) && (Role == “Reader” || Role == “Writer”)) “allow”;
Signature: "sig-rsa-sha1-base64:XQZopw..”
Figure 4.6: A credential of user with “Reader”/“Writer” role on a Temperature sensor.

 39

Listing all the methods that the temperature sensor provides for configuring and

methods to read sensor data from the sensor would result in a large credential. With

the use of “Role” attribute, the credential captured the requirement of the Collector in

a single line. The attribute “MachineName” identifies the computer on which the

sensor service is available.

The corresponding ActionAttributeSet file will contain:

Provider = “ITTC” and ServiceID = “TemperatureSensor350”

And the internal attributes that should result in an “allow” will be:

 Time = “1151465647580”

 Role = “Reader”

ServiceClassHierarchy=

“SecureUnicastServer.Base.Service.Device.Sensor.TemperatureSensor”

 Method = “getCurrentTemperature”

 MachineName = “sentinel.ittc.ku.edu”

If the collector requests for method “setScale(“Celsius”)”, then the internal attributes

that should result in an “allow” will be:

 Time = “1151465647580”

 Role = “Writer”

ServiceClassHierarchy=

“SecureUnicastSever.Base.Service.Device.Sensor.TemperatureSensor”

 Method = “setScale” and MachineName = “sentinel.ittc.ku.edu”

 40

Example - 5:

Consider a case of an emergency where the user is given permissions to shut down all

the sensors of all organizations. Figure 4.7 shows the credential that can be used in

such a case. All the organizations have a trust relationship with the authorizer of this

credential. The user has rights to perform the privileged method “shutdown” on all

the sensors of Organization “EECS” and “ITTC”.

KeyNote-Version: 2
Authorizer: "x509-base64:MIIA..”
Licensees: "x509-base64:MIIECjC..”
Conditions:
((app_domain == “SensorNet”) && (Provider == “ITTC” || Provider == “EECS”)
&&
(Time <= “1151465644580” && Time >= “1161465647580”) &&
(ServiceClassHierarchy~= "^.*Sensor$”)”) && (Method == “shutdown”))
“allow”;
Signature: "sig-rsa-sha1-base64:XQZopw..”
Figure 4.7: A credential where the user can perform only one method on all the
sensors.

The examples provided in this section described the use of the new set of action

attributes proposed for the multi-owner architecture. It was shown that this new set of

action attributes helps expressing the credential in a simple and meaningful way.

This chapter described the extensions that were made to ACE set of action attributes

to meet the granularity required for access control within the context of a single

organization. However, additional challenges arise when more than one organization

is involved with regards to credential distribution and delegation of trust. The next

chapter discusses these issues.

 41

5 Access Control in Multi-Owner Environment

The access control sub system of the architecture follows a “Take-grant

Protection Model” [29], where in the user presents his capability to request an action.

This is in contrast to “Rule Set Based Access Control” model [30], where in the

system trust the user’s discretion in performing an action. While the latter is desired

and sufficient for a tightly coupled system (e.g., Linux Kernel), the former is more

useful for a loosely coupled distributed system like sensor networks. The core of the

access control subsystem is the ability to issue the authorization information the form

of a “credential”. However, when we analyze the presentation of credentials during

service access, and the granularity of controlled objects, the following questions are

exposed:

1. How to verify a user identity?

2. Who issues credentials across organizations?

3. How does the access control mechanism work when a user talks to a sensor

belonging to his organization?

4. How does the access control mechanism work when a user talks to a sensor

belonging to a different organization?

It is known that in public key cryptography, the users have public keys. Public keys

are accessible by anyone in the network. CA is used in combination with certificates

and protocols to provide authentication and authorization functions. We assume that

each organization maintains its own CA. The CA issues certificates which are signed

 42

messages that map the user and his public key. CA is the public key equivalent of

KDC.

Broadly the functions of CA include:

1. Signing the public keys of the users

2. Creating credentials for users to talk to devices

5.1 Scenario with CA from a Single Organization

Considering the access control mechanism in a single organization, there is one CA

that issues certificates and credentials to users in this organization. The role of CA

ends with issuing the credential and the certificates. The CA need not be contacted

when a user authenticates and establishes session with the sensor service assuming

that the service trusts the public key of the CA. It is enough if the authenticating

sensor service knows and trusts the public key certificate of the CA for signature

verification. The issued certificates and credentials remain with the user. When a user

requests for a credential to access devices, the CA must be aware of the list of sensor

services and functionalities of each of the service that the organization provides. If the

CA does not know the specifics of a service, then it cannot generate a credential that

provides fine-grained access control. The extensions to KeyNote credentials

discussed in the previous chapter poses a constraint on the CA. Each service has a set

of functions and the role that is required for perform that action. Every time there is a

change in the service, the Credential Author (or CA) has to talk to the Service Author

to get the information on the new capabilities and their corresponding roles. In the

 43

current prototype, this interaction between the CA and the Service Author occurs

manually. This interaction can be automated by developing a utility that helps the

Credential Author to look up the service and list the current set of methods and their

roles.

5.1.1 Revocation of Public Key Certificates and Credentials

All public key certificates have an issue date and expiration date. This interval

is determined by the organization. The typical validity interval is about a year, to

avoid the nuisance of renewing certificates with smaller validity periods. The

revocation becomes more pronounced in the event of users entering and leaving the

organization, for example: a user getting fired while he still holds a certificate that is

not yet expired.

A solution to certificate revocation could be to use Certificate Revocation Lists

(CRL). A CRL is a list of serial numbers that should not be honored. A certificate is

valid only if:

• It has a valid CA signature

• Not yet expired

• Not listed in the recent CRL

The authenticating service should check the recent CRL as a part of the authentication

handshake. The use of X.509 certificates for TLS authentication provides an easier

way to tackle this problem. Any X.509 public key certificate has a serial number

along with the version, signature algorithm identifier, validity period, issuer, subject,

 44

public key of subject. The CA that creates the certificate is responsible for assigning

it a serial number to distinguish it from other certificates it issues. When a certificate

is revoked, its serial number is placed in a Certificate Revocation List (CRL). The

prototype implemented here does not provide a solution for the above problem, but

considers the pros and cons of using Certificate Revocation Lists as a part of the

future research tasks.

With KeyNote, credentials are monotonic. Removal of an assertion does not cause an

increase or decrease in the compliance value. KeyNote strictly does not support

negative credential (credential that can invalidate the credential already given).

Hence, once a credential is issued, it is valid until the credential expires, and cannot

be revoked. This might create a problem when there are misbehaving users in the

system resulting in insecure access control. The presence of misbehaving users

determines the significance of revocation.

5.2 Scenario with CAs from Multiple Organizations

Considering a scenario where there are multiple organizations A, B and C. Each

organization has its own CA to issue certificates and credentials to its users. In a

sensor network with multiple owners, it is likely to see that a user from one

organization would be talking to devices owned by other organizations. Considering a

case where a user from an organization A wants to talk to devices from Organization

B and C. He cannot use his public key certificate signed by his own CA with a

service from a different organization, if there is no trust relationships between the

 45

organizations. A straight forward solution to such a case will be that the user to

contact each of the Certificate authorities individually.

Figure 5.1: A scenario showing the complexity when a user contacts CA of different
organizations individually for credentials.

The user from Organization A contacts the CA of organization B. He gets his public

key certified by this CA. Then he places his request for accessing the sensor of

organization B and gets a credential. He uses this credential to talk to the sensor

service of Organization B. This transforms into scenario of a single CA within an

organization, as the user holds a separate public key certificate and credential for

Organization B. He repeats the above steps with Organization C to talk to sensor

service of Organization C. The current prototype implementation has a framework to

demonstrate this solution.

But there are serious disadvantages of using such a straight forward solution:

 46

• When the user wants to talk to multiple devices from multiple organizations,

then he has to get his public key certified by CA of each organization. The

user has to maintain a large set of his public key files signed by each of the

CA. Users will have difficulty in managing huge number of such files.

• Similarly, the user has to get one credential for each of the organizations. This

is highly not scalable and inefficient as the user has to manage and know what

file to present to a service. Figure 5.1 describes the complexity of contacting

multiple CA individually for credentials.

• The users must know the presence of all the different CA in the network.

• Moreover, the CA of a different organization may not trust this user and may

not sign his public key.

5.3 Proposed Solution

The above scenario presents the difficulties of authentication and authorization

during a cross organization service access. We can address these by introducing two

entities: a Trusted Third Party (TTP) and a Broker. The primary function of a TTP in

the architecture is to enable users to authenticate across various domains, whereas the

function of a Broker is to provide a user with authorization for a requested action on

behalf of participating organizations. The roles are complementary and distinct. In

reality both of these roles can be assumed by any user of the system or an outside

entity who is able and trusted. The following sections describe the role and use of

TTP and Broker in more detail.

 47

5.3.1 Authentication using TTP

In the absence of a trust relationship between users and services belonging to

different organizations, we need a TTP to establish such a relationship for

authentication purposes. This section outlines the steps involved in achieving such an

authentication scenario.

5.3.1.1 Role of a TTP

A TTP facilitates authentication between organizations that trust it. They use this

trust to identify the users among organizations. The role of a TTP is issuing public

key certificates to CAs of the trusting organizations. A CA, in turn issues public key

certificates to users within its organization.

5.3.1.2 Limitations in the Current Authentication Handshake

The authentication in ACE is achieved using a CA for each organization. The CA of

each organization has a self-signed certificate. A self-signed certificate is one for

which the issuer (signer) is the same as the subject (the entity whose public key is

being certified). Users within the same organization are certified by the CA, and

hence are trusted by the services within the organization. A user from another

organization cannot authenticate to these services, as the services do not have any

knowledge about the CA of that organization. Hence, the current authentication setup

is limited to users within the same organization and cannot accomplish a cross-

domain communication. The establishment of certificates used in the current setup is

 48

extended using “Chain of Trust” provided by the Public Key Infrastructure (PKI) to

achieve the cross-domain authentication which is discussed in the next section.

5.3.1.3 Authentication using a Chain of Trust

Consider a scenario where two Organizations A and B requires cross-domain

authentication. The TTP is trusted by both of these organizations. The TTP has a self-

signed certificate. The TTP signs the public keys of the CAs of both the organization.

The certificate issued by the TTP and the self-signed certificate of the TTP forms the

certificate chain identifying the CA.

 Figure 5.2: A scenario using a TTP.

 49

User Alice has her public key certified by CA of Organization A. Similarly, User Bob

has his public key certified by CA of Organization B. At the bottom of a certificate

chain is the certificate issued by the CA authenticating the user’s public key. The next

certificate in the chain is one that authenticates the CA's public key, which is the

certificate issued by the TTP. The chain ends with the self-signed certificate of the

TTP. These three certificates form the “Chain of Trust” which is indicated as a

hierarchy of certificates as shown in the figure 5.2. Each certificate in the chain (after

the first) thus authenticates the public key of the signer of the previous certificate in

the chain. When a service from Organization A is presented with a certificate chain

from a user Bob, the service can authenticate Bob as there is a common signer among

their CA and the user. The chain of trust is established here using the Java Keytool

[31], which is the key and certificate management utility. It enables users to

administer their own public/private key pairs and associated certificates for use in

authentication. The top-level TTP certificate is self-signed. However, the trust into

the TTP’s public key does not come from the self-signed certificate itself (anybody

could generate a self-signed certificate). The reason that the public key is stored in a

certificate is because this is the format understood by most tools, so the certificate in

this case is only used as a "vehicle" to transport the TTP’s public key. Before the TTP

certificate is accepted to create the chain using keytool, the certificate is printed and

the displayed fingerprint is compared with the well-known fingerprint (securely

acquiring the finger print requires out-of-band steps) for correctness.

 50

Thus, the cross-domain authentication is achieved using a common TTP. The next

section describes the approach used for authorizing actions among organizations.

5.3.2 Authorization using Broker

The procedure above achieves user authentication across multiple organizations. This

however is not sufficient. A user still needs authorization information, i.e., the

credential to access a service. The following sub-section details how cross-domain

service access can be achieved.

5.3.2.1 Role of a Broker:

A Broker is an entity who can issue credentials on-behalf of a CA. The Broker

can be the single point of contact so that the users do not have to contact CAs of

multiple organizations. The CA of an organization can delegate his rights of issuing

credentials to the Broker. The Broker can act as the “delegated CA”. The Broker must

maintain a trusted relationship with every CA of all organizations that delegates their

authority of issuing credentials.

5.3.2.2 Delegating Authorization with KeyNote Trust Management

Authorization using Broker is achieved using the delegation of credentials supported

by the KeyNote Trust Management. Anyone who has a valid credential can delegate

his rights to another user by issuing a credential. For example, a user “Alice” from an

Organization “ITTC” has access to a Nose Service from 12.00 pm to 6.00 pm on

10/07/07.

 51

KeyNote-Version: 2

Authorizer: "x509-base64:MIIEBzCC..”
Licensees: "x509-base64:MIIECjC..”
Conditions:
((app_domain == “SensorNet”) && (Provider == “ITTC”) &&
 (Time <= “1151465644580” && Time >= “1161465647580”) &&
(ServiceID == “NicholsHallNoseService001”) && (MachineName ==
“sentinel.ittc.ku.edu”) && (Role == “Reader”)) “allow”;
Signature: "sig-rsa-sha1-base64:XQZopw..”
Figure 5.3: A credential issued to user Alice to access Nose Service.

Figure 5.3 shows the credential issued to Alice. User Alice decides to delegate her

rights to User David of the same organization, to access the Nose Service from 1.00

pm to 5.00 pm on 11/07/07. She creates a credential and signs with her private key.

This delegated credential is shown in the figure 5.4.

KeyNote-Version: 2

Authorizer: "x509-base64: MIIECjC..”
Licensees: "x509-base64:MIIZAkA..”
Conditions:
((app_domain == “SensorNet”) && (Provider == “ITTC”) &&
 (Time <= “1151465644685” && Time >= “1161465647980”) &&
(ServiceID == “NicholsHallNoseService001”) && (MachineName ==
“sentinel.ittc.ku.edu”) && (Role == “Reader”)) “allow”;
Signature: "sig-rsa-sha1-base64:XQZopw..”
Figure 5.4: A delegated credential issued from Alice to David to access the Nose
Service.

 52

David has to provide the delegated credential given in the figure 5.4 and also the

credential issued to Alice given in the figure 5.3 to get authorized from the Nose

Service.

 Figure 5.5: A scenario showing the use of a Broker.

The trust relationship between CA of an organization and the Broker is established by

issuing a credential. The CA issues a credential to the Broker delegating his rights of

issuing credentials. When a user requires a credential to talk to a device from another

organization, he contacts the Broker. The Broker issues a credential to this user

delegating the rights to access the device. Usually credentials stay with the users and

the CA does not keep track of the issued credentials. In this case, the user has to

provide the Service: 1) the credential issued to the Broker for authorizing the Broker

 53

and 2) his credential issued by the Broker. This causes difficulty in managing

credentials when the user wishes to talk to devices from multiple organizations and

does not provide any solution or improvements to the scalability issue discussed in

the previous scenario. Hence, a copy of the credential issued to the Broker is retained

by the CA and provided to any service on service startup just like the Policy

authorizing the CA. This allows the Service, or particularly the KeyNote engine to

know that the organization trusts the Broker as an authority, apart from their CA. The

user can provide only his credential to the Service. When the user requests for access

to devices from multiple organizations, the Broker can issue one credential

authorizing all the requested devices. Thus, the user is required to carry only one

credential sufficient to talk to devices from multiple organizations as shown in the

figure 5.5. This approach simplifies the scalability issue presented in the previous

scenario. The organizations can decide on the services it wishes to advertise and be

used by the users of other organizations. The CA of the organization can issue

credentials to the Broker only for these services, which can be delegated to users of

other organization. This approach is flexible as the organization has control on what

services are external and internal to the organization.

5.3.2.2.1 Limitations

The credential of a Broker provides him with a delegated authority to access services

under the conditions mentioned in it. This implies that a broker becomes a valid user

of the system who can access the services just as well as the CA who issued it, or any

 54

other authorized user. This condition may not however be desirable, if the Broker is

required by the multi-owner architecture, not to be able to access the service himself.

However such a condition cannot be represented by KeyNote as it does not have

feature to provide a “meta-credential”, i.e., a credential saying that an entity is

authorized to issue “credentials”. The delegation from the broker to a user can then be

achieved by issuing credential with conditions which forms a proper subset of the

conditions contained in the broker’s credential. Even so, there is no mechanism

within KeyNote to verify whether the conditions in a user’s credential forms correct

subset of those in Broker’s credential during the time of issue. And a faulty

credential is identified only when the credential is used for service access. Faulty

credentials can be avoided if the Broker has the complete details about the list of

services available, method to role mappings and the policies enforced by the

organizations before issuing a credential.

5.3.2.3 Example

Consider a case where an Organizer from Organization C wishes to collect data from

databases of Organization A and Organization B and maintain a database of his own.

The steps that are required to achieve this case are:

Step 1: The Broker should have a trust relationship with the CA of Organization A, B

and C. Each Organization issues a separate credential to the Broker representing this

trust. The following figure 5.6 represents the trust relationship between the Broker

and CA of Organization A, where the CA allows the Broker to delegate access to a

particular Sensor Database service. The Sensor Database service is provided with

 55

this credential to indicate the KeyNote engine, that they trust the Broker apart from

their CA.

KeyNote-Version: 2
Comment: CA-OrgA delegates authority to Broker for access to a particular
SensorDatabase Service
Authorizer: CA-OrgA “x509-base64:MIIEBzCC..”
Licensees: Broker "x509-base64:MIIECjC..”
Conditions:
((app_domain == “SensorNet”) && (Provider == “Organization-A”) &&
(Time <= “1151465644580” && Time >= “1161465647580”) &&
(ServiceID == “SensorDatabase002”)) “allow”;

Figure 5.6: Trust relationship between CA-OrgA and Broker.

Similarly, the Organization B provides a credential to the Broker which is shown in

figure 5.7. Figure 5.7 shows that the Broker is allowed to delegate “Reader”

privileges on all the Database services provided by this organization.

KeyNote-Version: 2
Comment: CA-OrgB delegates authority to Broker for “Reader” access to all
Database services.
Authorizer: CA-OrgB “x509-base64:MIIEBzCC..”
Licensees: Broker "x509-base64:MIIECjC..”
Conditions:
((app_domain == “SensorNet”) && (Provider == “Organization-B”) &&
(Time <= “1151465644580” && Time >= “1161465647580”) &&
(ServiceID == "^.*Database.*$") && (Role == “Reader”)) “allow”;

Figure 5.7: Trust relationship between CA-Organization B and Broker.

Step 2: The Organizer contacts the Broker and requests the Broker to issue a

credential to read Sensor information from the databases owned by Organization A

 56

and B. The Broker can issue one credential meeting the requirements of the

Organizer. Figure 5.8 shows the credential that can be used in such a case.

KeyNote-Version: 2
Authorizer: Broker "x509-base64:MIIEBzCC..”
Licensees: Organizer"x509-base64:MIIECjC..”
Conditions:
((app_domain == “SensorNet”) && (Provider == “OrganizationA”) &&
(Time <= “1151465644580” && Time >= “1161465647580”) &&
(ServiceID == “SensorDatabase002”) && (Role == “Reader”)) “allow”;

((app_domain == “SensorNet”) && (Provider == “Org-B”) &&
(Time <= “1151465644580” && Time >= “1161465647580”) &&
(ServiceID == " SensorDatabase001") && (Role == “Reader”)) “allow”;
Signature: "sig-rsa-sha1-base64:XQZopw..”
Figure 5.8: A credential issued by the Broker where the Organizer can read from
Sensor Databases of Organization A and B.

Step 3: The Organizer contacts the Database Services and provides this credential for

authorization.

The above scenarios represent the possible situations in a practical multi-owner

application. In order to understand the implementation issues that might arise to

deploy a working model, a prototype was implemented. The following chapter

discusses the prototype in detail.

 57

6 Prototype Implementation

A prototype was developed to demonstrate and verify the proof-of-concept of the

proposed access control framework for the multi-owner architecture. It required

identifying different functional components as various implementation modules. This

chapter describes the various components of the prototype.

6.1 Overview

Figure 6.1 shows the prototype of the architecture that was implemented.

Figure 6.1: An architecture for Prototype implementation.

mote

mote

mote
 Nose

Serial Port

Regional
Database

 Directory Service –
 List of available services

Sensor

Database

Secure Network
A
h

orizes use of a
 particular region

Database of smell profiles
f

 electronic nose sensor

Dr. Victor S. Frost

Nose
Service

Client A

Client B

Certificate Authority

 58

The tasks that were required to demonstrate the proof-of-concept of the architecture

include:

• Device Layer: Selecting a sensor and developing a sample sensor service

controlling the sensor. The sensor chosen was Cyranose as it was easy to

program with sufficient features to demonstrate access control in a multi

ownership environment. The service chosen was termed the Nose Service

to be consistent with the service it provides. The Nose Service controls the

Cyranose by downloading smell profiles which represents the control of

Sensor Service on the Sensor. The Cyranose replies with the result of the

actions it performs which represents the response given by the Sensor as

given in the Section 2.2.1 of the multi-owner Architecture.

• Repository Layer: Developing a sample Sensor Database, Directory

Service and Regional Database as given in the Section 2.2.2 of the

multi-owner architecture. We chose to use the Service Directory and

Regional Database provided by the ACE infrastructure. We chose to

establish a Sensor Database of smell profiles used by the Cyranose to

demonstrate the functionalities of a Sensor Database.

• Developing a client to talk to the sensor service and sensor database. We

chose to develop a Nose Client program to communicate with the Nose

Service and Sensor Database Service to demonstrate the functionality of

the “Collector” between the Device and the Repository layer as given in

the Section 2.2.1.

 59

• Application Layer: Setting up CA to demonstrate the distribution of public

key certificates and credentials as given in the Section 2.2.3.

• Demonstrating the access control mechanism in the transactions between

the client, the database and the sensor service using the KeyNote Trust

Management system.

6.1.1 Nose Service

A nose service was written in the ACE framework to communicate with the

Cyranose. An IEEE 1451 NCAP (Network Capable Application Processor) Server

[32] was developed and then used to talk to the nose, send and receive commands

through a mote network. The Nose service was designed in such a way that this

NCAP server is a private member of this service so that no intruder can take control

of this NCAP server to talk to the nose. This service had just one method called

“execute” to be consistent with the IEEE 1451 sensor specific standard. The Cyranose

was thus made to be IEEE 1451 complaint.

The execute method takes the following parameters:

1. OpId – Operation id, id of the method that has to be executed in the NCAP

Server. The methods supported are:

a. Load Profile : Load a new smell profile from the sensor database to

the nose

b. Start Identification : Start a new identification in the nose

 60

c. Fetch Results: Retrieve the results of the last identification from

the nose.

2. Mode – the Operation Mode of the sensor

3. ArgArray – A container class of input and output parameters such as the

profile to the loaded and results of the actions (Load Profile, Start

Identification and Fetch Results) used in communicating with the NCAP

Server.

6.1.2 Nose Client

A Nose Client program was written to provide a user interface to interact with the

Nose service (connected to a nose device). It provides the user interface components

to select a profile, load the profile to the device, start a new identification in the

device, and view the result of the last identification.

6.1.3 Database Service

A Sensor Database was created to store smell profiles. The corresponding

Sensor Database service was also written to facilitate interaction with the database.

The database consists of a table with fields:

1. Id : Name of the smell profile (e.g., Coca cola or Isopropyl alcohol)

2. Profile : Actual smell profile corresponding to the Id.

The Sensor Database service supported the following operations:

1. Adding a new profile,

2. Updating an existing profile,

 61

3. Fetching all the profiles from the database, and

4. Deleting all the profiles from the database.

6.1.4 Configuring a Certificate Authority

The administrator “ace” was chosen to be the CA for the system. This CA was

setup to issue certificates and credentials within the environment. The CA currently

resides in the “ace” home directory. The CA was setup using a script (setupCA.sh). A

new OpenSSL directory “CA” was created.

6.1.5 Configuring Users for the Sensor Network

Figure 6.2: A CA issuing a public key certificate and a credential to a new user.

Each user created his public-private key pair using the KeyNote keygen tool. The

keys were rsa-base64 of size 2048 bits. A certificate request was generated to request

the CA to sign the public key. The CA verified this request and signed the public key.

This signed public key certificate was given back to the user along with the CA

certificate as discussed in Chapter 5.1. The user then imported the signed certificate

 62

and the CA’s certificate into the key rings for use under TLS and KeyNote using the

Java keytool [31].

Figure 6.2 shows the interactions between a new user and the CA while placing a

request for public key certificate.

6.1.6 Getting Credentials

The users in the network requested the CA for access to sensors. The CA

provided the appropriate credentials using the KeyNote - command line tool for

KeyNote operations.

In this current implementation, placing the credential request, verification and issuing

the credential takes place offline. Figure 6.2 shows the interactions between a user

and the CA to get a credential.

6.2 Testing and Results

The objective of this testing was to demonstrate the interaction of various

entities: the Nose Service, the Nose Client and the Sensor Database service in a

secure and controlled access environment. A demonstration portraying the access

control model with two different clients, each having different rights, trying to use the

Nose Service was given.

6.2.1 System Configuration

Figure 6.3 shows the system configuration that was used for this demonstration.

The following steps describe the demonstration procedure:

 63

1. The Service Directory, the Regional Database service and the Sensor

Database service were executed on one computer (khan.ittc.ku.edu -

Pentium III 750 MHz processor, 256 MB RAM, 10 GB HDD, Red Hat

Enterprise Linux WS release 4).

Figure 6.3: Configuration used for the demonstration of access control with
two clients with different permissions.

2. Nose service was connected to the Cyranose through a multi-hop

(wireless) Mote network on one computer (dhcp059.ittc.ku.edu - Dell

Latitude D820, Pentium Dual Core T2500 2.0 GHz, 1 GB RAM, 80GB

HDD, Fedora Core 5 (2.6.16)).

Secure
Network

Nose Service Motes Electronic Nose

Client A

Client B

1. Service
Directory

2. Regional DB
3. Profile DB

 64

3. Nose client program was executed on one computer (halflife.ittc.ku.edu -

Pentium III 933 MHz processor, 512 MB RAM, 80 GB HDD, Red Hat

Enterprise Linux WS release 4).

4. User “A” (“satyam”) was given individual credentials to contact the

Service Directory, Regional Database, Nose Service and Sensor Database.

He was given permissions to “Load a Profile” with the Nose Service but

not to “Start the identifications” or “View results”. Figure 6.4 shows the

credential given to contact the Nose Service:

keynote-version: 2
authorizer:"x509-base64:MIIEBzC …. "
local-constants:KEY1="x509base64:MIIECj…"
licensees: KEY1
conditions: ((APP_DOMAIN == "SensorNet") && (time >=
"1152287101810") && (time <= "1183823100000") && (opid ==
"P_NOSEFBLOCK_LOAD_PROFILE")) -> "true";
signature: “sig-rsa-sha1-base64:XQ..”

Figure 6.4: Credential given to “User A” to contact Nose Service to load a
profile.

 Figure 6.5 shows the credential given to contact the Sensor Database.

Keynote-version: 2

authorizer:"x509-base64:MIIEBzC …. "
local-constants:KEY1="x509base64:MIIECj…"
licensees: KEY1
conditions: ((APP_DOMAIN == "SensorNet") && (time >=
"1152287101810") && (time <= "1183823100000")) -> "true";
signature: “sig-rsa-sha1-base64:XQ…”

 Figure 6.5: Credential given to “User A” to contact the ServiceDirectory.

 65

5. Another user “B” (“mpradeep”) was given credentials to contact the

Service Directory, Regional Database and Nose Service. He was given

permissions to perform “Start Identification” and “View the results” in

the sensor, but did not have rights to “Load a new profile” in the sensor.

Figure 6.6 shows the credential given to user “B”.

keynote-version: 2
authorizer:"x509-base64:MIIEBzC …. "
local-constants:KEY1="x509base64 MIIECjCC…"
licensees: KEY1
conditions: ((APP_DOMAIN == "SensorNet") && (time >=
"1152287101810") && (time <= "1183823100000") &&
(opid == " P_NOSEFBLOCK_FETCH_RESULT" || opid ==
"P_NOSEFBLOCK_START_IDENTIFICATION)) -> "true";
signature: “sig-rsa-sha1-base64:XQ..”

Figure 6.6: Credential given to “User B” granting access to start a new
identification and view the results with the Nose Service.

6.2.2 Results

Test Case 1 - User can perform only load profile:

User A used the Nose Client program and contacted the Sensor Database. He selected

the profile for “Isopropyl alcohol” and contacted the Nose Service to load this profile

to the nose. This action was performed successfully as the User A had permission to

load a profile. When user A tried to perform “Start Identification or Fetch Results”,

he was denied access, as his credentials did not match the action requested. Figures

 66

6.7 and 6.8 show the interactions performed by user A with Profile Database and

Nose service.

Figure 6.7: Test case where User A selected a profile from Sensor database.

Figure 6.8: Test case where User A was granted access for loading a profile and
denied access for start identification.

Test Case 2 – User can perform start identification and fetch results:

User B requested the Nose Service to start a new identification and this operation was

granted access as he had credentials to perform this action. User B could not contact

the Sensor Database service as he did not have credentials to talk to this service. He

 67

requested the Nose service for loading a dummy profile and was denied access as

shown in the figure 6.9.

Figure 6.9: A test case where User B could perform start a new identification but
could not load a profile.

The demonstration to show access control was successful. The communication

between the Nose Client, Nose Service and the Sensor Database service was shown.

User with valid credential was granted access and user with invalid credential was

denied access.

6.2.3 Lessons Learned

Some of the lessons learned from the demonstration include:

1. While testing the access control using the credentials, the same credential that was

used to talk to the Service Directory worked with Sensor Database service. We

learned that the credentials lacked the capability to distinguish between the

services. In the multi-owner architecture, it is possible for two sensor services to

provide the same function. With the limited set of attributes such as

 68

APP_DOMAIN, time, method provided by the ACE environment, the credential

could distinguish services and method for a specific service. We learned that the

credentials have to be extended to be more expressive.

2. The set of action attributes provided by ACE environment were embedded within

the services. We learned that it was necessary to find a mechanism to externally

control, add or delete a few set of action attributes.

3. There were four different credentials, one for each of the services Service

Directory, Regional Database, Sensor Database and Nose Service. It would be

difficult for a user to manage multiple credentials. We learned that with KeyNote

it was possible to combine multiple credentials into one by providing more

clauses in the conditions. For example, figure 6.10 shows a single credential with

two clauses in the conditions, one for contacting the nose service and one for

contacting the Service Directory to see the list of services available.

keynote-version: 2
authorizer:"x509-base64:MIIEBzC …. "
local-constants:KEY1="x509base64 MIIECjCC…"
licensees: KEY1
conditions:
((APP_DOMAIN == "SensorNet") && (time >= "1152287101810") && (time
<= "1183823100000") && (opid == " P_NOSEFBLOCK_FETCH_RESULT" ||
opid == "P_NOSEFBLOCK_START_IDENTIFICATION)) -> "true"; #clause-1

((APP_DOMAIN == "SensorNet") && (time >= "1152287101810") && (time
<= "1183823100000") && (method == “getServices”)) -> "true"; #clause-2

signature: “sig-rsa-sha1-base64:XQ..”

 Figure 6.10: An example of a single credential with multiple clauses.

 69

4. We learned that the Service Author and the Credential Author need to agree upon

a standard nomenclature to provide values for attributes such as “OpID” in the

credential. It was necessary to come up with a set of action attributes and their

nomenclature that can be used for the multi-owner architecture.

5. We learned that any computer that has to register with the Service Directory on a

different computer has to start the RMI registry on its own. We learned to start

RMI Registry before starting any service.

6.3 Credential Extensions

The lessons learned from the previous section pointed to the need to extend the set of

action attributes in ACE to address the large set of devices and actions. Chapter 4

described the limitation of the set of action attributes used in ACE and the extension

made to that set to develop a core set of attributes for the multi-owner environment.

This section describes the prototype of the credential extension and the tests

performed to demonstrate this extension.

6.3.1 System Configuration

The following configuration was setup to demonstrate the credential extensions:

1. Nose Service was chosen as the sensor service for testing. The nose device

was directly connected to one computer (khan.ittc.ku.edu - Pentium III 750

MHz processor, 256 MB RAM, 10 GB HDD, Red Hat Enterprise Linux WS

release 4) using a serial port.

 70

2. The Nose service was started by the “ace” administrator. The Nose Service

was given the ServiceID "NicholsHall_Nose001” by providing an external

action attribute file.

3. The Nose client was executed by user “satyam” on one computer

(halflife.ittc.ku.edu - Pentium III 933 MHz processor, 512 MB RAM, 80 GB

HDD, Red Hat Enterprise Linux WS release 4).

Figure 6.11 shows the configuration used for credential extensions.

Figure 6.11: Setup used for demonstrating credential extensions.

6.3.2 Testing and Results

The user was given multiple credentials. To demonstrate the expressiveness and the

granularity in the credentials, the credential to the Nose service was changed in each

test case to show the different possibilities of access control.

 71

Test Case 1: A User starts a new identification and view the results but cannot

load a profile:

In this test case, the user could only start a new identification and see the result of the

last identification in the electronic nose, and could not perform any other action as

given in the figure 6.12.

KeyNote-version: 2
Authorizer: "x509-base64:MIIEBzC…”
Licensees: “"x509-base64:MIIECjCCA3OgAw..”
Conditions: ((APP_DOMAIN == "SensorNet") && (Time >= "1152287101810")
&&
(Time<="1183823100000")&&(ServiceClassHierarchy==
"SecureUnicastServer.Base.Service.Device.SensorNetwork.ChemicalSensor.Nose")&
&
((Method == “execute”) && (FirstArgValue ==
"P_NOSEFBLOCK_FETCH_RESULT" || FirstArgValue ==
"P_NOSEFBLOCK_START_IDENTIFICATION"))) -> "allow";
Signature:
 "sig-rsa-sha1-base64:KISi0RAbUlYw1z+dr6oOd8hMagAP\
 1nQ2IBgVMNJDenZ1H…”
Figure 6.12: A test case where the user could start a new identification, view the
result but could not load a profile.

Since the method “execute” in the Nose Service is a special method, it does not have

any role associated with it. Hence the credential specifies the method name explicitly.

The first argument value identifies the operation that the “execute” method needs to

perform.

When the client requests for “Start Identification”, the identification was started and

the result was show in the result box. Similarly when the client requests for “Fetch

 72

result”, the result of the last identification was fetched from the nose and displayed in

the result box. If the user tried any other action, he/she was denied access.

Test Case 2: User has role “Reader” and “Modifier” on one sensor:

In this test case, the client can modify only one nose service identified by the

“ServiceID” attribute. The client can switch it ON or turn it OFF according to its

current power condition, and see the result of the action. Figure 6.13 shows the

credential provided to the nose service.

KeyNote-version: 2
Authorizer: "x509-base64:MIIEBzC…”
Licensees: “"x509-base64:MIIECjCCA3OgAw..”
Conditions: ((APP_DOMAIN == "SensorNet") && (Time >= "1152287101810")
&& (Time <= "1183823100000") && (ServiceID=="NicholsHall_Nose001")&&
(Role == "Modifier" || Role == "Reader")) -> "allow";
Signature:
 "sig-rsa-sha1-base64:KISi0RAbUlYw1z+dr6oOd8hMagAP\
 1nQ2IBgVMNJDenZ1H…”
Figure 6.13: A test case where the user has “Reader” and “Modifier” role on the
nose.

The methods “powerOn” and “powerOff” which turns the device ON and OFF,

require the role “Modifier”. The method “getPowerState” in the Nose Service which

tells the current power state of the device requires the role “Reader”. Hence this client

had both “Reader” and “Modifier” role on the device. In the Nose Client, the client

requested for the “Current Power State” and the current power state was provided in

the result box. According to the current power state, the client switched the device

ON/OFF and the result of the actions was shown in the result box. This client was not

 73

authorized to perform any other method such as “execute” or “resetDevice” and

hence the request for these actions was denied access.

Test case 3: User has role “Modifier” on all chemical sensors:

In this test case, the user was a Modifier for all chemical sensors.

KeyNote-version: 2

Authorizer: "x509-base64:MIIEBzC…”
Licensees: “"x509-base64:MIIECjCCA3OgAw..”
Conditions: ((APP_DOMAIN == "SensorNet") && (Time >= "1152287101810")
&& (Time <= "1183823100000") && (ServiceClassHierarchy ~=
"^.*ChemicalSensor.*$") && (Role == "Administrator" || Role == "Reader" || Role
== "Modifier")) -> "allow";
Signature:
 "sig-rsa-sha1-base64:KISi0RAbUlYw1z+dr6oOd8hMagAP\
 1nQ2IBgVMNJDenZ1H…”
Figure 6.14: A test case where the user has “Modifier” role on all the chemical
sensors.

Figure 6.14 shows the expressiveness in the credential. The credential is small and

meaningful and uses the wild card characters to specify all the chemical sensors

instead of listing the chemical sensors one by one.

These test cases demonstrated the expressiveness and the simplicity in the credentials.

The credentials can provide accesses to a client from a broader level to a very narrow

or precise control on the capabilities of the devices. The attribute “Role” helps to

avoid listing all the methods that a client wishes to perform making the simple, small

and easy to understand.

 74

6.4 Cross-Domain Communication

The previous section demonstrated the extensions to the ACE set of action attributes

to form the core attributes to achieve the granularity required for multi-owner

architecture. Chapter 5 discussed the additional challenges arise when more than one

organization is involved with regards to authentication of identity and authorization

of actions. Section 5.3 proposed a solution of using a TTP (for authentication) and

Broker (for authorization). This section details the prototype and the experiments

conducted to verify the prototype.

In order to demonstrate the cross-domain authentication, the following tasks were

taken:

1. A new “TTP” was created. The TTP keys were generated and self-signed

certificate of the TTP was created using OPENSSL.

2. Three Organizations A, B and C were chosen for the experiment. The CAs of

Organization A and B have a trust relation with the TTP. Hence, the public

keys of CA-Org-A and CA-Org-B are certified by the TTP. The TTP must

indicate that these two CAs are not just end users, but authorities to certify

other users in their organization. The TTP includes the X.509 extensions

indicating this requirement, which is given below:

basicConstraints=CA:TRUE,pathlen:1

The pathlen parameter indicates the maximum number of CAs that can appear

below the TTP in a chain. If there is a CA with a pathlen of zero, it can only

be used to sign end user certificates and not further CAs. In this case, there are

 75

no sub-domains within the organizations, and hence the pathlen is 1. But the

number can be modified to include sub-domains within the main

organizations. Java Keytool is used to manage a keystore (database) of the

certificates. The certificates are protected using the keystore_password [31].

The certificate chain for CA-Org-A is shown in the figure 6.15:

CA-OrgA $ /tools/java/i586/jdk1.5.0_09/bin/keytool -v -list -keystore
keystore
Enter keystore password:

Keystore type: jks
Keystore provider: SUN
Your keystore contains 2 entries

Alias name: ca-orga-cert
Creation date: Oct 30, 2007
Entry type: keyEntry
Certificate chain length: 2
Certificate[1]:
Owner: EMAILADDRESS=ca-org-A@ittc.ku.edu, CN=ca-org-A, OU=ITTC,
O=KU, L=Lawrence, ST=KS, C=US
Issuer: EMAILADDRESS=dummyttp@central.com, CN=dummyTTP,
OU=TTP, O=Central, L=Dallas, ST=Texas, C=US
Serial number: 1
Valid from: Sun Oct 28 19:40:25 CDT 2007 until: Mon Oct 27 19:40:25 2008
Certificate fingerprints:
 MD5: 8A:AF:22:BE:A2:8C:3C:F3:DD:18:D1:7B:86:9A:86:58
 SHA1: 17:82:CE:4E:FC:00:B7:8D:F3:49:19:B1:FD:B7:A3:CB..
Certificate[2]:
Owner: EMAILADDRESS=dummyttp@central.com, CN=dummyTTP,
OU=TTP, O=Central, L=Dallas, ST=Texas, C=US
Issuer: EMAILADDRESS=dummyttp@central.com, CN=dummyTTP,
OU=TTP, O=Central, L=Dallas, ST=Texas, C=US
Serial number: 0
Valid from: Sun Oct 28 19:27:35 CDT 2007 until: Mon Oct 27 19:27:35 2008
Certificate fingerprints:
 MD5: 6B:D3:10:48:9D:A1:6D:F4:3F:D3:A5:D7:DD:69:EC:AF
 SHA1: 00:F4:B6:0E:3C:19:EB:8C:8A:B3:48:8E:CC:7A:2E:E6:79:3A:95:CB

 Figure 6.15: Certificate chain of CA-Org-A.

 76

The figure 6.15 shows that there are 2 certificates in this chain:

a. The public key certificate of CA-Org-A issued by the TTP, and

b. The self-signed certificate of the TTP.

CA of Organization C was created. This organization does not have a trust

relationship with the TTP. Hence, the CA-Org-C has a self-signed certificate.

3. User “Alice”, “Bob” and “Carol” of Organization A, B and C were created.

Their public keys are certified by the CA of the respective organization. The

certificate was indicated that these users are end-users and not CAs, by

providing a “False” to the X.509 extensions:

basicConstraints=CA:FALSE

The certificate chain of Bob is shown in the following figure 6.16:

[bob_orgB@terbium .ace_test]$ /tools/java/i586/jdk1.5.0_09/bin/keytool -v -
list -keystore keystore
Enter keystore password: i#J[^ji1s|

Keystore type: jks
Keystore provider: SUN

Your keystore contains 3 entries

Alias name: bob-cert
Creation date: Oct 30, 2007
Entry type: keyEntry
Certificate chain length: 3
Certificate[1]:
Owner: EMAILADDRESS=bobbob@orgb.com, CN=bob, OU=ORGB,
O=ORGB, L=Dallas, ST=Texas, C=US
Issuer: EMAILADDRESS=caorgB@orgb.edu, CN=CAORGB, OU=CA-
ORGB, O=XXX, L=Dallas, ST=Texas, C=US
Serial number: 1

 77

Valid from: Tue Oct 30 21:33:32 CDT 2007 until: Wed Oct 29 21:33:32 CDT
2008
Certificate fingerprints:
 MD5: 44:7E:7E:7C:04:E9:8C:01:B8:4B:86:79:02:29:8D:72
 SHA1:
C4:B6:E4:7D:D9:11:B9:3B:89:49:98:20:8A:6F:90:72:A2:91:0E:BF
Certificate[2]:
Owner: EMAILADDRESS=caorgB@orgb.edu, CN=CAORGB, OU=CA-
PRGB, O=XXX, L=Dallas, ST=Texas, C=US
Issuer: EMAILADDRESS=dummyttp@central.com, CN=dummyTTP,
OU=TTP, O=Central, L=Dallas, ST=Texas, C=US
Serial number: 2
Valid from: Tue Oct 30 20:36:16 CDT 2007 until: Wed Oct 29 20:36:16 CDT
2008
Certificate fingerprints:
 MD5: BB:3B:99:E4:24:86:81:FC:30:53:BF:9A:9A:A9:3E:1B
 SHA1:
52:01:B2:44:CE:B4:69:EB:B7:9A:8E:6E:42:ED:AA:81:6B:C9:A1:90
Certificate[3]:
Owner: EMAILADDRESS=dummyttp@central.com, CN=dummyTTP,
OU=TTP, O=Central, L=Dallas, ST=Texas, C=US
Issuer: EMAILADDRESS=dummyttp@central.com, CN=dummyTTP,
OU=TTP, O=Central, L=Dallas, ST=Texas, C=US
Serial number: 0
Valid from: Sun Oct 28 19:27:35 CDT 2007 until: Mon Oct 27 19:27:35 CDT
2008
Certificate fingerprints:
 MD5: 6B:D3:10:48:9D:A1:6D:F4:3F:D3:A5:D7:DD:69:EC:AF
 SHA1:
00:F4:B6:0E:3C:19:EB:8C:8A:B3:48:8E:CC:7A:2E:E6:79:3A:95:CB

 Figure 6.16: Certificate chain of Bob of Organization B.

4. A Broker was created. Organizations A and B have trust relationship with the

Broker by providing a credential. Organization A decides to provide the

“Reader” privileges from Profile Database Service to users of other

organization. Organization A issues a credential to the Broker to delegate

“Reader” privileges on this service to users of other organizations.

 78

5. Bob from Organization B requests the Broker to issue a credential to talk to

Profile Database service of Organization A. The Broker issues the following

credential:

 KeyNote-version: 2

Authorizer: Broker "x509-base64:MIIEBzC…”
Licensees: Bob-Org-B “"x509-base64:MIIECjCCA3OgAw..”
Conditions:
((APP_DOMAIN == "SensorNet") && (Provider == "OrganizationA") &&
(ServiceID == "NicholsHall_ServiceDir") &&
(Role == "Reader")) -> "allow"; #ServiceDir
((APP_DOMAIN == "SensorNet") && (Provider == "OrganizationA")
&&
(ServiceID == "NicholsHall_RoomDatabase") &&
(Method == "getRoom")) -> "allow"; #RegionalDB
((APP_DOMAIN == "SensorNet") && (Provider == "OrganizationA") &&
 (ServiceID == "NicholsHall_ProfileDatabase001") &&
 (Role == "Reader")) -> "allow"; #SensorNetDBService
Signature: "sig-rsa-sha1-base64:KISi0RAbUlYw1z+dr6oOd8hMagAP”
Figure 6.17: A credential issued from Broker to Bob-Org B to access Profile
Database Service of Organization A.

6.4.1 System Configuration

The following configuration was setup to demonstrate the cross-domain
communication:

1) Profile Database Service was started by the CA-Org-A in one computer

(khan.ittc.ku.edu - Pentium III 750 MHz processor, 256 MB RAM, 10 GB

HDD, Red Hat Enterprise Linux WS release 4). The service connects to the

smell Profile Database. The service was given the ServiceID

"NicholsHall_ProfileDatabase001” by providing an external action attribute

file. This service is informed of the trust relationship with the Broker.

 79

2) Organization A has a Nose Service which is internal to the Organization. The

Nose Service was started on one computer (terbium.ittc.ku.edu - Intel(R)

Xeon(TM) CPU 2.66GHz, 1 GB RAM, Red Hat Enterprise Linux 5).

3) The Profile Database client was executed by user “Bob” on one computer

(sentry.ittc.ku.edu - Intel(R) Xeon(TM) CPU 2.80GHz, 1 GB RAM, Red Hat

Enterprise Linux –SMP).

6.4.2 Testing and Results

The following test cases were performed to demonstrate the cross-domain

communication.

Test Case 1: A user can authenticate and also authorize to a service from

different organization:

Bob from Organization B contacts the Profile Database service. The service

authenticates Bob as there is a common signer or trust between the CAs of both the

organizations. Bob provides the credential issued by the Broker. The service informs

the KeyNote engine the Policy authorizing the CA-Org-A, the credential issued to the

Broker authorizing to delegate access to Profile Database and the credential issued by

the Broker to access Profile Database. The KeyNote determines that the user “Bob”

has “Reader” privileges on the Profile Database service. Hence, the service authorizes

Bob to view the smell profiles in the database. The figure 6.18 given below illustrates

this test case.

 80

Figure 6.18: Illustration of a Cross –Domain communication showing two cases:
where a user from Org-B: can 1) authenticate and authorize to Profile DB Service and
2) authenticate but not authorize to Nose Service of Organization-A.

Test Case 2: A user can authenticate but can not authorize to a service from

different organization:

User Bob requests the Broker to issue a credential to contact the Nose service of

Organization A. But the Nose service is internal to the organization and the Broker

does not have the authority to issue credential for Nose service. Consider a case

where the Broker issues a wrong credential to Bob, authorizing the access to Nose

service. Bob uses this credential to contact the Nose. The Nose service authenticates

Bob, as there is a common signer or trust between the CAs of both the organizations,

 81

but denies access to perform any operation on the Nose device due to the invalid

credential issued by the Broker. The figure 6.18 illustrates this test case. This test case

demonstrates that organization has control on deciding what services are internal and

external to the organization, and even if the Broker issues a wrong credential, the

service will deny access. The Broker should have knowledge of the services that are

external to the organization to avoid issuing wrong credentials.

Test Case 3: A user can not authenticate and authorize to a service from

different organization:

Carol from Organization C contacts the Profile Database service. The Profile

Database service and Carol are not able to authenticate each other, as there is no

common signer or trust between the CA of both the organizations. Hence, Carol is

reported the failure in the handshake procedure as there is no trust in the certificate

chain. The figure 6.19 illustrates this test case.

 82

Figure 6.19: Illustration of a Cross –Domain communication where a user from
Organization C cannot authenticate and hence not authorize to Profile DB Service of
Organization A.

Thus, cross-domain communication is achieved. These test cases demonstrated the

establishment of trusts between organizations through the TTP and Broker. The test

cases also demonstrated that though there is a central authority to issue public key

certificates, the control on what services to delegate and what actions that can be

performed on them still remains within the organization thus providing the access-

control required for multi-owner architecture.

 83

7 Conclusion and Future Work

A unified architecture that control access to sensors by integrating very

components has been proposed and studied. The developed access control framework

provides for a flexible security and policy model to support the multi-owner

architecture. This framework has been successfully designed and tested using a

prototype implementation. Several manually implemented components of the

prototype such as the offline interaction between the CA and the user for issuing

credentials and the interaction between the CA and the Service Author for

determining the available methods and the corresponding role mappings can be

automated. The set of action attributes could be extended to include deployment

specific attributes such as the physical location of the device, the connection of the

device to the service etc. The architecture could be extended to support mobile

sensors. Performing actions on sensors using serialized java objects can be re-

implemented using a method like XML-RPC [33] to make the system accessible to all

programming languages and across all operating systems. Experiments to measure

performance, scalability and deployment issues to complement prototype

demonstrations could be designed.

 84

8 References

[1] A. Hac, “Wireless Sensor Network Designs,” Wiley & Sons, West Sussex,

England, 2003.

[2] D. Estrin, D. Culler, K. Pister, and G. Sukhatme, “Connecting the Physical World

with Pervasive Networks,” IEEE Pervasive Computing, pp. 59–69, January–March

2002.

[3] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless Sensor

Networks: A Survey,” Computer Networks, Vol. 38, pp. 393–422, 2002.

[4] SensorNet Project, Oak Ridge National Laboratory, http://www.sensormag.com/,

April 2005, Vol 22. No. 4.

[5] J. M. Rabaey et al., PicoRadio Supports Ad Hoc Ultra- Low Power Wireless

Networking,IEEE Comp. Mag., 2000, pp. 4248.

[6] J. M. Kahn, R. H. Katz, and K. S. J. Pister, Next Century Challenges: Mobile

Networking for Smart Dust, Proc. ACM MobiCom ’99, Washington, DC, 1999, pp.

27178.

[7] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, Energy-Efficient

Communication Protocol for Wireless Microsensor Networks, IEEE Proc. Hawaii

Int’l. Conf. Sys. Sci., Jan. 2000, pp. 110.

[8] W. Su and I. F. Akyildiz, A Stream Enabled Routing (SER) Protocol for Sensor

Networks, to appear, Medhoc- Net 2002, Sardegna, Italy, Sept. 2002.

[9] G. J. Pottie and W. J. Kaiser, Wireless Integrated Network Sensors,Commun.

ACM, vol. 43, no. 5, May 2000, pp. 551-58.

 85

[10] SensorNet Architecture Forum, August 13-14, 2003, ITTC, University of

Kansas, http://www.ittc.ku.edu/workshops/sensornet/.

[11] Adrian Perrig, Robert Szewczyk, Victor Wen, David Culler, and J.D.Tygar.

Spins: Security protocols for sensor networks. Wireless Networks, 8:521, 534, 2002

[12] Adrian Perrig, Ran Canetti, J.D. Tygar, and Dawn Song, Efficient authentication

and signing of multicast streams over lossy channels, In IEEE Symposium on

Security and Privacy, May 2000.

[13] Bhrat Patel and Jon Crowcroft. Ticket based service access for the mobile user.

In Third annual ACM/IEEE international conference on Mobile computing and

networking, pages 223233, Budapest Hungary, September 1997

[14] David W. Carman, Peter S. Kruus, and Brian J. Matt. Constraints and approaches

for distributed sensor network security. NAI Labs Technical Report #00-010,

September 2000.

[15] Secure Microcontrollers for SmartCards, www. atmel.com/ atmel/ acrobat/

1065s.pdf.

[16] iButton: A Java-Powered Cryptographic iButton, www. ibutton.com/ ibuttons/

java.html.

[17] J. Mauro, “Security Model in the Ambient Computational Environment,”

master’s thesis, Dept. of Electrical Eng. & Computer Science, The University of

Kansas, 2004.

[18] Sun Microsystems, “Java Remote Method Invocation (Java RMI)”,

http://java.sun.com/products/jdk/rmi/.

 86

[19] T. Dierks, C. Allen, “The TLS Protocol Version 1.0”, RFC 2246, January 1999.

[20] B. Kaliski, “PKCS #1: RSA Encryption Version 1.5”, RFC 2313, March 1998.

[21] D. W. Kravitz, “Digital signature algorithm,” U.S. Patent 5,231,668,1993.

[22] R. Housley,W. Polk, W. Ford, D. Solo “Internet X.509 Public Key Infrastructure

Certificate and Certificate Revocation List (CRL) Profile”, RFC 3280, April 2002.

[23] National Institute of Standards and Technology (NIST), “Specification for the

Advanced Encryption Standard (AES)”, FIPS-197, November 26 2001.

[24] United States Department of Commerce, National Bureau of Standards, Data

Encryption Standard, Federal Information Processing Standards (FIPS) Publication

no. 46, January 15, 1977.

[25] M. Blaze, J. Feigenbaum, J. Ioannidis,A. Keromytis, “The KeyNote

Trust-Management System Version 2”, RFC 2704, September 1999.

[26] J. Kohl, J., C. Neuman, C., The Kerberos Network Authentication Service (V5),

IETF RFC 1510. 1993. http://www.ietf.org/rfc/rfc1510.txt.

[27] J. Trostle, I. Kosinovsky, and M. M. Swift. Implementation of Crossrealm

Referral Handling in the MIT Kerberos Client. In Proceedings of the 2001 Network

and Distributed System Security Symposium (SNDSS), pages 109.124, February

2001.

[28] Charlie Kaufman, Radia Perlman and Mike Speciner, Network Security, Second

Edition, Prentice-Hall PTR, 2002.

 87

[29] A. Jones, R. Lipton, and L. Snyder, “A Linear Time Algorithm for Deciding

Security,” Proc. 17th Annual Symp. on the Foundations of Computer Science (Oct.

1976), 33-41.

[30] Amon Ott, Stanislav Ievlev, and Heinrich W. Klöpping. The Rule Set Based

Access Control (RSBAC) Linux Kernel Security Extension. In Proceedings of the 8th

International Linux Kongress, November 2001.

[31] Sun Microsystems, “Java keytool – Key and Certificate Management Tool”,

http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/keytool.html.

[32] IEEE P1451, Draft Standard for a Smart Transducer Interface for Sensors and

Actuators Network Capable Application Processor (NCAP). Institute of Electrical and

Electronics Engineers, Inc., New York, 1996.

[33] Winer, D.,”XML-RPC Specification”,January 1999,

http://www.xmlrpc.com/spec.

 88

A. Appendix

A.1 Nose Client with MVC Paradigm

To improve the Nose client program that is used to talk to the Nose Service, Model

View Controller (MVC) paradigm was used. MVC is a design paradigm used by

applications to need the ability to separate display from the data. The MVC pattern

hinges on a clean separation of objects into one of three categories: model for

maintaining data, views for displaying all or a portion of the data, and controllers for

handling events that affect the model or view(s). It provides a clear distinction

between the module containing the data, the model to display and the model to

manage the user interactions.

The classes implemented for MVC includes:

1. BaseClientModel - contains the basic functions that any client has to perform

in order to get the handle to the remote service using RMI.

2. NoseClientModel – handles the data in the nose client

3. NoseClientView – handles the display of the GUI components

4. NoseClientController – handles the user interactions with the GUI

5. NoseClient – creates the model, view and the controller.

The interaction in the MVC classes of nose client can be of two types:

1. Controller providing the results to the View to update its display

2. Model providing the results to the View to update its display

 89

A.1.1 Controller providing the results for the View to update its
Display

Figure A.1 shows the interaction between the three classes when a “Start

Identification” button is clicked by the user.

Figure A.1: MVC Communication cycle when “Start Identification” is clicked.

The sequence of operations includes:

• The User clicks the button “Start Identification”

• Controller receives this event, asks the model to perform a new identification.

 90

• The model talks to the nose service, and asks it to start a new identification and

gets the result of the action from the nose service.

• The model returns the result to the controller.

• The controller returns the results to the view to update in the result box.

A.1.2 Model providing the results for the View to update its Display

Figure A.2 shows the sequence of operations when a “Show the list of Profiles”

button is clicked.

Figure A.2: MVC Communication cycle when “Show list of profiles” is clicked

 91

The sequence of operations includes:

1. The User clicks the button “Show the list of Profiles”

2. Controller receives this event, asks the model to get the list of profiles.

3. The model does the required work to fetch the list of profiles.

4. As the model’s data is changed, the model informs its “Observer” (the

NoseClientView) with the new list of profiles. The view updates its combo

box with the list of profiles notified by the model.

