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Abstract 

Hormones are critical regulatory factors produced by the body to regulate diverse 

physiological activities such as energy homeostasis, growth and differentiation of a 

diverse array of tissues, sexual maturation and development of secondary sexual 

characters. Cytokines are hormones, which predominantly regulate growth, 

proliferation differentiation, immunomodulation and tumor progression. They act 

in endocrine, paracrine or autocrine manner, and elicit their action by binding to a 

cell surface receptor and activating diverse intracellular signaling cascades.  

Prolactin (PRL) is a peptide hormone, encoded by the PRL gene located on 

chromosome 6 in humans. This gene is under the control of two independent 

promoters, the pituitary promoter which regulates its expression from the 

lactotroph cells of the anterior pituitary and an extrapituitary promoter which 

regulates its expression from extra-pituitary tissues such as endometrium, placenta, 

breast and a variety of tumors. PRL in humans binds specifically to PRL receptor 

(PRLR), to cause intracellular changes modulated mainly via the JAK-STAT or 

JAK-STAT-ERK pathways. Historically, PRL has been studied as an endocrine 

hormone that regulates lactation during pregnancy. However, the identification of 

extra-pituitary PRL and the complex clinical consequences of hyperprolactemia 

have prompted investigators to reevaluate its role in regulating other physiological 
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aspects. Studies from several groups over the last few decades have shown that 

PRL can regulate a spectrum of functions ranging from behavior to immune 

responses to tumorigenesis.  

Cancer is a growth disorder which was mentioned as early as 460-370 BC, by 

Hippocrates who coined the term “cancer” based on its appearance post-surgery. 

Throughout history, cancer has been the cause of severe physical and emotional 

suffering and death in humans and animals alike. Cancer has an exceptional 

capability to take over body’s normal physiology, modulate it and uses it for its 

own growth and to overcome anti-cancer treatment. Over the last several decades, 

research efforts from several laboratories have helped gain a better understanding 

of the molecular mechanisms that regulate cancer initiation, development and 

progression. These studies have also provided new insights for identifying and 

developing new pharmaceutical compounds to target tumor cells. 

Colorectal cancer (CRC) is the third leading cause of cancer related death in 

United States. Worldwide, up to 5% of all reported cancer cases are due to CRC, 

with 60% of them being diagnosed in industrially developed or developing 

countries.  CRC is caused by genetic and environmental factors. Environmental 

factors ranging from changing dietary habits to environmental toxins are associated 

with the development of CRC. Germline mutations in APC, TP53 and DNA 
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mismatch repair genes gives rise to familial inheritable form of CRC and 

contribute to nearly 35% of the registered CRC cases. 

This dissertation outlines the expression pattern of PRLR and the cellular 

mechanism(s) which are regulated or activated by PRL- PRLR signaling and the 

contribution of this signaling towards pathogenesis of CRC. 

We have determined that CRC cells treated with recombinant human PRL show a 

time- and dose-dependent phosphorylation of JAK2, STAT3 and ERK1/2 proteins. 

Previous studies have demonstrated that breast cancer cells treated with PRL show 

a rapid induction of STAT5 phosphorylation. However, in our studies, we found 

that colon cancer cells treated with PRL show an induction of STAT3 

phosphorylation. This may be in part due to low basal level of STAT5 in colon 

cancer cells. In addition, PRL treatment does not lead to increase in proliferation, 

falling in line with earlier observations, that STAT3 is not a proliferation 

promoting factor. Pre-incubating CRC cells with AG490 and PD98059 which are 

established JAK2 and ERK1/2 inhibitors prior to PRL treatment led to a complete 

abrogation of respective phosphorylation, suggesting that the observed activation 

of JAK2 and ERK1/2 is indeed induced by PRL in CRC cells. 

PRL treatment induces spheroid formation, a hall mark of cancer stem cells and 

does so, by activating Notch signaling. The Notch signaling pathway is critical in 
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maintaining cancer stem cell populations both in vitro and in vivo. PRL activates 

Notch signaling by inducing the expression of Jagged 1(JAG1), a Notch receptor 

ligand. Binding of JAG1 to Notch receptor induces conformation changes in the 

receptor, leading to its cleavage and translocation of the cleaved intracellular 

domain (NICD) into the nucleus where it activates expression of Notch responsive 

genes. PRL treatment induces a time dependent increase in Notch cleavage. In 

addition, an increase in expression of Hes1 and Hey1, established Notch target 

genes, clearly implicate PRL treatment in activation of Notch signaling in colon 

cancer cells. In addition, the treatment induced expression of established colon 

cancer stem cell marker proteins such as LGR5, DCLK1 and CD44 suggests that 

PRL contributes towards modulating colon cancer stem cell population. Pretreating 

CRC cells with AG490 and PD98059, leads to loss of Notch activation and 

decreased expression of cancer stem cell marker proteins, again implicating the 

role of PRL in modulating the Notch signaling, thereby playing a critical role in 

regulating colon cancer stem cell population. 

One of the critical aspects associated with human PRL signaling is its receptor 

specificity. Human PRL can bind only to PRLR, which is a specific PRL receptor. 

Our findings indicate that PRL can modulate critical aspects associated with 

colorectal cancer. We were interested in examining the expression pattern of PRLR 

in colorectal cancer patients with an aim to develop novel diagnostic tools or 
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therapeutically target PRL signaling. Our findings clearly indicate that PRLR is 

expressed in normal tissues throughout the GI tract, with predominant expression 

in the large intestine. Additionally, PRLR expression is significantly increased in 

colorectal cancer biopsy samples compared to adjacent normal samples. This 

suggests that PRL signaling can play a critical role in colorectal cancer 

tumorigenesis. A couple of factors may contribute to the increase in expression of 

a gene: first being an increase in copy number of the gene and second being an 

enhanced transcription of the gene. In order to examine the existence of 

chromosomal variation, we analyzed TCGA data sets pertaining to expression and 

copy number data. Data analysis suggested the possibility of an increase in copy 

number of not only PRLR but also of a couple other genes located in the vicinity in 

some patients. Among the other patients, some had an increase in expression 

without any change in copy number. To identify the reason for increased 

expression of PRLR in these patients, we evaluated the possibility of tumor 

specific transcription factor binding and subsequent increase in PRLR 

transcription. We analyzed a 2 Kb upstream region of the PRLR promoter and 

identified binding sites for SREBP-1, a transcription enhancer that regulates 

expression of enzymes necessary for lipid metabolism and energy homeostasis. 

SREBP-1 is highly expressed in colorectal tumors. Studies using ChIP and RT-



 
viii 

 

PCR analysis indicate that SREBP-1 is actively recruited to the PRLR enhancer 

region and can potentially be involved in regulating its expression.  

Collectively, this dissertation provides novel insights into the role of PRL in 

colorectal tumorigenesis. It also implicates the critical role of PRLR signaling in 

colorectal cancer and suggests that PRLR can be exploited as a diagnostic marker. 
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Background and introduction  
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1.1 Cancer Statistics 

The earliest mention of cancer can be traced to Hippocrates in 460- 370 BC. He 

coined the term “cancer” based on the appearance of the tissue mass post-surgery. 

Throughout the world, cancer is responsible for the severe physical and emotional 

suffering and death in both humans and animals. It has been proposed that most 

tumors are clonal in origin, which implicates arising from a single cell. During 

growth, this clonal cell acquires genetic variation and mutations which confer 

collective growth advantage to these cells leading to full-fledged cancer [1].  

Cancer constitutes a rising health issue in developed and developing countries. It is 

a major public health problem in the United States accounting for one in four 

deaths. Prostate cancer alone accounts for 28% of registered cancer related 

incidents in men. Breast, lung and bronchus, and colorectal cancers in women 

account for 51% of cancer cases. According to predictions based on clinical 

statistics, prostate cancer, lung and bronchial cancer, and colorectal cancers (CRC) 

will account for about 50% of all newly diagnosed cancers. It is estimated that 

between 500,000 to 600,000 Americans will be affected by cancer in 2014 [2].  
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1.2 Intestine and its cellular architecture 

1.2.1 Anatomy of the intestine 

The intestinal tract is a tube like organ lined with three concentrically arranged 

tissue layers. The outer smooth muscle layer is heavily innervated with nerve 

terminals which regulate the rhythmic peristaltic movements of the intestine. The 

inner luminal surface consists of a single-cell layer simple epithelium and an 

acellular mucosa (mucosal layer) responsible for nutrient absorption and stool 

compaction. The connective tissue called stroma fills the space between these two 

layers and contains blood and lymph vessels, nerve fibers, and immune cells [3]. 

The intestinal tract can be anatomically divided into two segments: the small 

intestine and the large intestine or colon. Small intestine forms the absorptive 

surface and has numerous finger-like protrusions called “villi” pointing into the 

lumen and invaginations called “crypts of Lieberkühn” which are embedded into 

the submucosa. These villi and crypts increase the absorptive surface of the 

intestine. The colon lacks villi but retains the deeply embedded crypts [4]. 

Prenatally and at birth, intestinal epithelial proliferation is limited to small pockets 

along the length of the intestine. A few weeks postnatally, clear and 

distinguishable villi and crypts begin to appear, spreading across the intestine. As 
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development progresses, the number of crypts continuously increases to 

accommodate the growth of the organ by dividing through a process called “crypt 

fission” [5].  

1.2.2 Cell types of the intestine 

The epithelial lining of the intestine has an average turnover time of 7-8 days and 

is routinely replaced by new cells. Four distinct cell types constitute the intestinal 

epithelium: the absorptive enterocytes, enteroendocrine cells, mucus secreting 

goblet cells and Paneth cells [3] (Fig 1.1). Enterocytes constitute the absorptive 

cells of the intestine and are more abundant in the small intestine. Each enterocyte 

possesses numerous villi like projections that increase the absorptive surface. 

These cells secrete digestive enzymes and help in absorption of digested nutrients 

from the lumen. Enterocytes of the colon are completely devoid of the villi 

structures. Goblet cells secrete mucus and play a role in stool compaction. Their 

population is high in the colon compared to the small intestine. Enteroendocrine 

cells secrete hormones like serotonin, substance P and secretin. Paneth cells, which 

reside at the bottom of each crypt, secrete antimicrobial agents such as defensins 

and lysozyme. These help in regulating and controlling intestinal microbial 

population. In addition, crypts of both the small intestine and colon harbor a 

distinct stem cell population. These stem cells are located at the base of the crypt 
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and can regenerate the cell types lining the intestine [6]. The relative abundance of 

each cell type differs depending on the context of the segment; small intestine has 

a relative abundance of absorptive enterocytes, while the population of mucous 

secreting goblet cells increases in the colon [4].  

1.3 Stem Cells 

Stem cells are pluripotent cells that can differentiate into cells of diverse tissue 

types. They were first isolated and identified by Martin Evans in mouse blastocysts 

[7]. Human stem cells were identified and isolated by James Thompson from 

human blastocysts [8]. Later, stem cells were identified in several tissue types and 

are thought to be responsible for routine tissue regeneration. Hematopoietic stem 

cells were the first to be identified [9]. Stem cells of the intestine are located at the 

base of the crypt and have the potential to regenerate all of the cell types of the 

crypt [10].  

1.3.1 Intestinal stem cells (ISC) 

Stem cells of the crypt as described earlier are present at the base of the crypt and 

are critical in regenerating various cells of the intestinal epithelium [6], however, 

there are a few of these cells in the intestine. For more than a century, crypt stem 

cells were thought to be localized in a “proliferative zone” below the Paneth cells. 

Label retaining experiments by Potten et al., clearly demonstrated that cells located 



 
6 

 

at the 4
th

 position (+4 position) from the base of the crypt constitutes the stem cell 

population [11] (Fig 1.1). These cells divide asymmetrically to produce a +4 cell 

and a transient amplifying cell (TA) [11]. 
3
H-thymidine and BrdU incorporation 

studies including immunochemical labeling using Ki67 have shown that TA cells 

constitute the rapidly dividing cells of the intestine, with a cycling time of 12- 14 

hours and are capable of differentiating into all four cell types of the of the crypt-

villi axis. Both +4 cells and TA cells are pluripotent and can generate all of the 

intestinal cell types of the crypt-villus axis [10]. Radiation studies identified that 

+4 cells are generally resistant to low dose radiation but not high doses, a feature 

that protects the stem cells from genetic damage. In this model, TA cells help 

reestablish the stem cell population by falling into the +4 position to dedifferentiate 

into stem cells [12]. A second school of thought proposed by Leblong, Cheng and 

Bjerknes, believes that Crypt Base Columnar (CBC) cells, located at the base of 

the crypt, interspersed between Paneth cells, are small and undifferentiated, and 

constitute the stem cell population [13, 14] (Fig 1.1).  

Irrespective of their origin (+4 cells or CBC), ISC’s are critical in maintaining 

normal GI architecture and dysregulations in the ISC population can lead to 

neoplastic growth. Various factors, intrinsic or extrinsic, can contribute to this 

dysregulation and eventually lead to development of GI cancers. 
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1.3.2 Cancer stem cells (CSC)  

CSCs were initially identified in human leukemia as a distinct group of cells 

capable of proliferation and self-renewal [15]. Singh and colleagues later identified 

in disintegrated brain tumors that CSC also express normal neural stem cell surface 

markers and were able to form neurospheres when cultured in adhesion free 

conditions. The number of these cells varied with tumor grade with high numbers 

in more aggressive tumors compared to benign forms [16]. Later research 

identified cancer stem cell population in diverse cancer types including breast [17], 

melanoma [18], ovarian [19], prostate [20], and colorectal cancer [21]. It is now 

well established that cancer stem cells are resistant to therapeutic interventions, 

responsible for tumor recurrence after a successful therapeutic intervention and 

ensure continued growth of the tumor [22]. Current therapeutic development 

research is directed towards targeting the CSC population. In spite of the 

awareness of the existence of CSC, an equal number of investigators argue against 

the existence of a distinct CSC population.  

1.4 Signaling pathways and markers of ISC and CSC  

ISC are thought to be located in a niche that regulates the balance between stem 

cell renewal and tissue regeneration. A number of signaling pathways are active 

and regulate the establishment of this niche and proliferation of ISC. 
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Figure 1.1: Structure of a colonic crypt:  Colon consists of deeply embedded 

crypts, which are lined by columnar epithelial cells called enterocytes. Enterocytes 

can be categorized as crypt based columnar cells (CBC) and +4 DCLK1 and LGR5 

positive cells, which make up the stem cells and transient stem cell population, 

mucin secreting Paneth cells, hormone secreting enteroendocrine cells and goblet 

cells. Moving along the crypt axis, the Wnt signaling pathway, critical for 

maintaining stem cell population, is active at the base and decreases in activity as 

we move up the axis. Whereas, Notch signaling, active in transient amplifying 

cells, increases in activity as we move up the crypt axis. 
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Genetic studies have provided evidence that the Wnt/ β-catenin signaling is 

important for ISC maintenance and self-renewal. Notch signaling pathways 

regulate ISC fate and differentiation, while BMP, secreted by the mesenchymal 

cells surrounding the crypt, down regulates both Wnt/ β-catenin and Notch 

signaling and induces differentiation [23] (Fig 1.1).  

1.4.1 Signaling pathways 

1.4.1.1 Notch signaling pathway 

Notch signaling is a pathway that is active in intestinal stem cells and contributes 

significantly to stem cell proliferation and differentiation (Fig 1.2). It is involved in 

regulating stem cell hierarchy and determining cell fate [24] and is active in the 

intestinal crypts [25]. The Notch family of receptors consists of four 

transmembrane proteins designated as Notch 1- 4. Each Notch receptor consists of 

an extracellular domain (NECD) and intracellular domains (NICD). These domains 

are translated as a single protein; however, this peptide undergoes S1 cleavage and 

is later bound by disulfide linkages and held across the membrane. Notch receptor 

ligands (Jagged 1, 2 or Delta 1, 3, 4) are single pass transmembrane proteins that 

are localized on adjacent cell membranes. Binding of the ligand with the receptor 

leads to a conformational change in the Notch receptor leading to S2 cleavage. 

This cleaves off the Notch extracellular domain (NECD) and activates the γ- 
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Figure 1.2: Notch Signaling 
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Figure 1.2: Notch Signaling: Notch signaling is necessary for maintain the crypt 

transient stem cell pool. Notch receptor and ligands are both transmembrane 

proteins. Interaction of the ligand to the notch extracellular domain (ECD), leads to 

a conformational change in the receptor, opening up cleavage sites initially to be 

acted upon by protease tumor necrosis factor α-converting enzyme (ADAM-

TACE) (S2 cleavage) and later by the  proteins of the γ-secretase complex (S3 

cleavage), leading to release of the notch intracellular domain (NICD). NICD 

translocates into the nucleus to form a transcription initiating complex with Master 

Mind (MAML) and CBF1/ suppressor of hairless-1 (CSL) proteins and activates 

transcription of Notch responsive genes. 
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secretase complex consisting of  Presenilin, Nicastrin, Anterior Pharynx Defective 

1 (APH 1) and Presenilin enhancer 2 (PEN-2) proteins, which leads to the last S3 

cleavage, resulting in the release of the Notch intracellular domain (NICD) [26, 

27]. Cleaved NICD would translocate into the nucleus and bind to transcription 

enhancer proteins Mastermind and RBPJ, leading to the activation of Notch target 

genes. Hes-1 and Hey1 have long serves as a powerful target of Notch activation 

[28], and can be used to assess the degree of Notch signal activation. Constitutive 

Notch activation is necessary for intestinal stem cell maintenance [29] and 

deregulation of this pathway have been observed in CRC and other forms of cancer 

[30, 31]. 

1.4.1.2 Wnt signaling pathway 

Canonical Wnt signaling is active at the crypt base and is critical in maintaining 

the colonic stem cell population. Wnt genes were initially identified in Drosophila 

melanogaster as factors that regulate the segmental behavior of larval development 

[32], and were later identified as the gene that is activated in virally induced breast 

tumors [33]. It is thought that perycryptic myofibroblasts produce the Wnt ligand 

that can bind to its cognate receptors located on the adjacent crypt base cells.  Wnt 

receptor consist of a seven transmembrane domain containing Frizzled (Fz) 

proteins, that would bind to the Wnt ligand in the presence of LDL receptor protein 
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(LRP), also a single pass transmembrane protein to activate intracellular signaling. 

β-catenin is one of the critical intracellular proteins, which mediates canonical Wnt 

signaling. Binding of β-catenin to the TCF-LEF enhancer complex localized in the 

promoter regions of the Wnt responsive genes, regulates the expression of these 

genes. β-catenin has a very low turnover and in the absence of Wnt ligands, it 

forms a complex with Adenomatous polyposis coli (APC), Glycogen synthase 

kinase 3 β (GSK 3β), Axin and Casein Kinase-1 (CK-1). Phosphorylation of β-

catenin mediated by CK1 and GSK 3β, directs it to ubiquitin-mediated 

degradation.  Binding of Wnt ligand to the heterodimeric Fz and LRP receptor 

leads to CK1 mediated phosphorylation LRP receptor. Phosphorylated LRP acts as 

binding site for the Auxin causing a conformational change in the protein leading 

to the release of APC and β-catenin, which can eventually translocate into the 

nucleus and activate gene expression [34, 35].  Mutations in components of this 

pathway have been implicated in inheritable CRC, as described below.  

1.4.1.3 Hedgehog signaling 

The hedgehog (hh) gene was identified from genetic screens aimed at evaluating 

genes involved in body segmentation in Drosophila melanogaster [32]. 

Orthologous signaling pathway was later identified in higher vertebrates including 

humans. In humans and rodents, hedgehog signaling is involved in embryogenesis, 

tissue homeostasis, tissue repair and tumorigenesis by modulating stem cells [36]. 
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Three Hh family ligands have been identified in humans: Sonic hedgehog (SHH), 

Indian hedgehog (IHH) and Desert hedgehog (DHH). These ligands undergo auto 

processing and lipid modifications to generate mature proteins [37]. In the absence 

of the ligands, Patched family receptors (PTCH1 and 2) will interact and inhibit 

Smoothened (SMO) signal transducer protein. Sequestration of SMO leads to 

formation of GLI degradation complex. This complex is composed of casein 

kinase Iα (CKIα), glycogen synthase kinase- 3β (GSK-3β) and protein kinase A 

(PKA) and would bind to GLI proteins and phosphorylate them leading to their 

ubiquitin mediated degradation [38]. Binding of hedgehog ligand to the Patched 

receptor leads to release of SMO, which is later activated by STK36 (Serin/ 

threonine kinase), preventing formation of the GLI degradation complex, leading 

to stabilization and nuclear translocation of GLI proteins. Hedgehog signaling 

activates and leads to GLI-dependent transcriptional activation of target genes like 

Cyclin D2, FoxL1 and Jagged 2 [39].  

1.4.1.4 Hippo signaling pathway 

The Hippo signaling pathway was discovered in Drosophila melanogaster and 

regulates organ size across species [40]. Deregulation in this pathway is associated 

with disease and cancer in various tissues. Hippo pathway modulates tissue/ tumor 

size by directly regulating stem cell proliferation and maintenance [41]. Canonical 
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Hippo signaling pathway is mediated mainly by MST1/2 and LATS1/2 serine 

kinases that inhibit the YAP and TAZ transcriptional cofactors by phosphorylating 

them on Ser127 and Ser89, respectively. YAP and TAZ activate TEAD and other 

transcription factors to regulate gene expression. YAP and TAZ can also regulate a 

plethora of other activities including tumorigenesis. YAP expression is typically 

restricted to the crypt compartment.  Expression of constitutively active YAP 

(YAP-S127A) protein in the intestine leads to expansion of undifferentiated cells 

in the crypt. A similar phenotype is observed when YAP protein is activated in the 

skin. Along similar lines, conditional deletion of MST1/2 lead to an intestinal 

phenotype similar to that of the YAP overexpressing model, with an increase in 

stem cell population.  Canonical Hippo components SAV1 and MST1/2 actively 

restrict nuclear translocation of YAP in the ISCs, thus regulate their proliferation 

under normal conditions. Under pathological conditions such as CRC, active 

Hippo signaling together with Wnt and Notch signaling contribute to tumor 

progression by modulating ISC population [40]. 

1.4.2 ISC markers 

1.4.2.1 Doublecortin like kinase 1 (DCLK1) 

 DCLK1, earlier known as Doublecortin and Calmodulin Kinase Like 1 

(DCAMKL1) is a microtubule-associated protein which is highly expressed in 
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developing brain [42]. Work by Giannakis and colleagues using gene expression 

microarray analysis of small intestinal crypt cells identified DCLK1 as a potential 

stem cell marker [43]. Co-labeling studies with BrdU and DCLK1 demonstrated 

that DCLK1 cells have low BrdU retention and are generally located at the base of 

the crypt. Based on co-staining, Gagliardi and colleagues concluded that DCLK1 

co-localizes with LGR5 (another colon crypt stem cell marker, described below) at 

the base of the crypt and with Chromogranin-A (CgA), a marker for 

enteroendocrine cells, throughout the crypt, further suggesting that DCLK1 can 

mark a specific subset of crypt stem cells specifically in the colon [44]. Work by 

May and colleagues demonstrated that DCLK1 is an epithelial cell surface protein 

and that even though coexpressed with LGR5, DCLK1 is expressed and retained 

more in the quiescent crypt stem cells while LGR5 is expressed more in actively 

dividing stem cell population [45]. Most recently, work done by Nakanishi using 

the Apc
Min/+

: Dclk1
CreERT2/+

 mouse model, showed that in a normal colon, DCLK1 

may be expressed in crypt stem cells but is specifically expressed in tumor stem 

cells and potentially contributes towards maintaining CSC phenotype [46].  

1.4.2.2 Leucin-rich-repeat-containing G-protein-coupled receptor 5 (LGR5) 

 LGR5, earlier known as an orphan G-protein coupled receptor GPR49, was 

identified as a stem cell marker protein identified in intestinal Wnt target gene 
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panel by Baker and colleagues [47]. In addition using the Lgr5
Cre/+

: Rosa2 
lacZ/+

 

mouse model, they showed that these cells are located at the base of the crypt, 

interspersed with Paneth cells and that they can give rise to all the other intestinal 

cell types over the course of time [47, 48]. Lineage tracing studies by Schepers and 

colleagues using a Lgr5
EGFP-Ires-CreERT2

: Apc
fl/fl

 mouse model, suggested that, LGR5+ 

cells constitute 5- 10% cells of the adenomas generated in this model. They also 

demonstrated that these LGR5+ cells are capable of forming adenomas when used 

in a xenograft model [49]. Recently, LGR5 expression was also detected in 

specific cells of the embryonic metanephric mesenchyme cells, a group of cells 

that give rise to adult kidneys. Knock down of LGR5 expression in these cells led 

to improper kidney development [50].  

1.4.2.3 Other putative stem cell markers 

Musashi-1 (Msi-1) is an RNA binding protein identified in neural stem cells of 

Drosophila melanogaster [51]. It is involved in down regulating Notch signaling 

by translational regulation of its target gene Hes-1, that is required for 

differentiation of stem cells into secretory lineage. Msi-1 marks cells located at the 

base of the crypt are interspersed among Paneth cells [52]. Mice lacking Msi-1 

expressing cells, however, do not have defective crypt and intestinal development 

[53].  
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Polycomb complex protein BMI-1 (BMI-1), also known as Polycomb group RING 

finger protein 4 (PCGF4) or RING finger protein 51 (RNF51), plays a critical role 

in maintenance of chromatin silencing [54] and is highly expressed and necessary 

for self-renewal of neuronal, hematopoietic, and leukemic cells. Lineage tracing 

using Bmi-1
Cre/+

mouse model, demonstrated that Bmi-1 expression is found in 

crypt based cells and colocalizes with LGR5+ cells, indicating that Bmi-1 cells 

also mark crypt stem cells [55].  

1.5 Colorectal cancer  

Colorectal cancer (CRC) is the third leading cause of cancer related death in 

United States. Worldwide, up to 5% of all reported cancer cases are due to CRC, 

with 60% of them being diagnosed in industrially developed or developing 

countries.  CRC is caused by genetic and environmental factors. Environmental 

factors ranging from changing dietary habits to environmental toxins are associated 

CRC. In addition, genetic factors such as germline mutations in APC, TP53, and 

DNA mismatch repair genes also contribute to CRC pathogenesis and 

demographically constitute nearly 35% of the registered CRC cases [56]. 

1.5.1 Genetic mutations in colorectal tumorigenesis 

Colorectal tumorigenesis is a multistep process and provides an excellent model of 

study to elucidate the sequential molecular events that lead to cancer initiation and  
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Figure 1.3: Vogelstein Model: According to this model, mutations in the APC 

gene (a critical component of the Wnt pathway) and mis- match repair (MMR) 

pathways are some of the initial events in neoplastic transformation. Following 

this, dysregulation in KRAS-BRAF (Ras/Raf) signaling pathways leads to an 

increase in cell proliferation and adherence free cell growth. Further mutations in 

TP53 gene and activation of PI3K, PTEN, and SMAD pathways would lead to a 

complete neoplastic transformation and development of full-fledged adenoma. 
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progression [57].  The occurrence of CRC is preceded by a sequence of mutation 

events in genes whose normal function would be to maintain chromosomal 

integrity and regulate proliferation. According to “Vogelstein Model” (Fig 1.4), 

colorectal tumors arise as a result of the mutational events, which cause 

inactivation of tumor suppressor genes and simultaneously cause oncogenic 

activation. Mutation in at least four to five tumor suppressor genes is required for 

initiation and formation of a malignant tumor. Fewer mutational events lead to the 

formation of a benign tumor. Most of these mutational events often occur in a 

sequential order in CRC.  It is the accumulation of these mutations that determines 

the biological properties of the tumor [58]. These mutations account for most of 

the chromosomal instability associated with colorectal tumors and lead to loss/ 

mutation of the wild type copy of APC, P53, and SMAD family member 4 

(SMAD4) of tumor suppressor genes whose normal function is to oppose 

malignant phenotype [59] (Fig 1).  

1.5.1.1 Adenomatous polyposis coli (APC) gene mutation   

A variety of signaling pathways play an active role in establishing CRC but clearly 

the Wnt signaling pathway stands out as the prime pathway. As discussed earlier 

(Section 1.3.1 and Fig 1.2), Wnt signaling is critical in establishing a normal crypt 

axis and ensures survival of crypt stem cells. Most of the initial mutational events 
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which lead to colorectal tumors, both in the hereditary form or the spontaneous 

form, occur in genes that code for protein involved in this pathway. A direct 

involvement of the Wnt pathway in colorectal tumors was identified in patients 

with familial adenomatous polyposis (FAP) which a form of inheritable CRC.  

APC is a tumor suppressor gene that is mutated in most FAP patients. Apart from 

serving as a carrier and playing a critical role in regulating cytoplasmic verses 

nuclear level of β-catenin, it also translocates into the nucleus either independently 

or in complex with β-catenin [60].  Recent evidence suggest that APC can regulate 

expression of Wnt target genes by recruiting H3K4 histone demethylase and α-

catenin onto the regulatory regions of these genes [61, 62]. Mutations in APC are 

mostly truncations leading to complete lack of the β-catenin/ axin binding domain. 

This results in increased nuclear translocation of β-catenin and subsequent 

activation of Wnt responsive genes. Multiple intestinal neoplasia (Min) is a mutant 

allele of the murine Apc locus developed using ethylnitrosurea and has high 

penetrance [63]. Like humans with FAP, Apc
Min/+

 mice show extensive 

predisposition to spontaneous intestinal tumors and have been used as models to 

study intestinal tumorigenesis [64, 65]. Taken together, these observations suggest 

that mutations in APC gene serve as the starting point for colorectal cancer 

development. 



 
24 

 

1.5.1.2 Tumor protein p53 (TP53) mutations 

Mutations in the TP53 gene are the second key genetic event in development of 

CRC. TP53 encodes for p53 a tumor suppressor protein which mediates cell-cycle 

arrest, cell death checkpoint, and activates multiple cellular stresses. Most of the 

colorectal adenomas have either a missense mutation or deletion of entire 17p 

chromosomal locus containing the TP53 gene leading to inactivation of one or both 

the alleles of TP53 gene. TP53 mutations cause transition of large adenomas to 

invasive carcinomas [59].  

1.5.1.3 Transforming Growth Factor Beta Receptor Type 2 (TGFBR2) 

mutations 

Somatic mutations in the TGFBR2 are noted in a majority of patients with 

advanced colorectal cancer [66]. The TGFBR2 gene is subject to frameshift 

mutations which occur primarily due to lack of mismatch-repair mechanism in 

advanced CRC. In addition, mutations in the downstream components of the TGF-

β pathway, such as mutations in SMAD genes, lead to high-grade carcinomas [67]. 

1.5.1.4 Mutations in RAS- BRAF and PI3K pathway genes 

Oncogenic mutations in the RAS gene occur in a majority of CRC.  These 

mutations enhance the GTPase activity of the protein rendering it constitutively 



 
25 

 

active. Activated RAS in turn activates the RAF protein by phosphorylation and 

together they activate (via phosphorylate) proteins of the mitogen-activated protein 

kinase (MAPK) signaling pathway to stimulate growth and proliferation [68]. 

Similarly, independent mutations in BRAF alone can activate the serine–threonine 

kinase activity and activate the MAPK signaling cascade. 

BRAF mutations are most commonly detected in small polyps compared to RAS 

mutations, which are more common in hyperplastic polyps, serrated adenomas, and 

proximal colon cancers. Patients with numerous and large hyperplastic lesions, a 

condition called hyperplastic polyposis syndrome, which carry activated RAS-RAF 

mutations, have an increased risk of CRC [69].  

Activating somatic mutations in PI3K-CA, which encodes the catalytic subunit of 

phosphatidylinositol 3-kinase (PI3K), can be detected in advanced cases of CRC. 

The loss of PTEN, an inhibitor of PI3K signaling, is a less common genetic 

alteration and can substitute and augment the effects of PI3K mutations. In 

addition, amplification of the insulin receptor substrate 2 (IRS2), an upstream 

activator of PI3K signaling, along with coamplification of the downstream 

mediators of PI3K signaling component like AKT and PAK4, are also detected in 

advanced colorectal tumors [70, 71]. 
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Figure 1.4: Involvement of growth factors in CRC 
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Figure 1.4: Involvement of growth factors in CRC: Activation of various 

growth signaling pathways plays a critical role in establishment of colorectal 

cancer. COX-2, an inflammation related protein, is upregulated in the initial stages 

of CRC. Subsequent activation of EGFR and TGFBR signaling leads to the 

establishment of tumor. Progressive activation of VEGF signaling induces 

formation of new blood vessels, ensuring tumor survival and aiding metastasis.  
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1.6 Growth factor pathway activation in colorectal cancer 

Numerous growth factor pathways are activated in CRC. These factors directly or 

indirectly influence surrounding tissue environment to help in the growth of the 

tumor and tumor progression (Fig 1.5).  

1.6.1 Prostaglandin E2 

Activation of prostaglandin signaling is an early and critical step in the 

development of an adenoma. Abnormal activation of COX-2 due to inflammation 

or mitogen signaling, mediates the synthesis of prostaglandin E2 (PGE2), an agent 

strongly associated with CRC. 15-prostaglandin dehydrogenase (15-PGDH) is a 

rate-limiting enzyme which catalyzes the degradation of prostaglandin E2. In the 

early stages of CRC, the β-catenin/ T-cell factor-1 (TCF-1) complex binds to and 

inhibits the expression of 15-PGDH leading to complete loss of the enzymatic 

activity and increased accumulation PGE2 and COX-2 in the majority of colorectal 

adenomas and cancers. Clinical trials using non-steroidal anti-inflammatory drugs 

(NSAID), which inhibit COX-2 activity not only prevented development of new 

adenomas but also induced regression of established adenomas [72]. 
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1.6.2 Epidermal Growth Factor Receptor 

Epidermal growth factor (EGF) is a soluble protein that has trophic effects on 

intestinal cells. Clinically, in a subset of colorectal cancer cases, active EGF 

signaling through the EGF receptor (EGFR) has been shown to play a critical role. 

EGF- EGFR signaling activates the MAPK and PI3K signaling cascades. Recent 

clinical data has shown tumor promoting mutations of this pathway. Activating 

mutations in KRAS, BRAF and the p110 subunit of PI3K have been shown in 

advanced colorectal cancer [73]. 

1.6.3 Vascular Endothelial Growth Factor 

Vascular endothelial growth factor (VEGF) is an angiogenic factor that is 

responsible for production of new blood vessels, and is produced in states of injury 

and during the growth of normal tissue. Clinically angiogenic signaling pathways 

play a critical role in the growth of colorectal cancer even conferring metastatic 

advantage to the tumor. Anti-VEGF therapy using bevacizumab (an anti-VEGF 

antibody) increased the overall survival of colorectal cancer patients [74].  

Inferring from the above results and clinically speaking, colorectal cancer is a 

result of multifactorial interactions that ultimately manifest into a disease. 

However, the challenge is to determine the factor(s) and understand how these 
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factors initiate the development of the tumor, drive its progression, and determine 

its responsiveness to therapeutic agents. 

1.7 Role of endocrine hormones in colorectal cancer 

Endocrine hormones are synthesized and secreted by specialized cell types in the 

body, released into the blood and are involved in regulating growth, development, 

and differentiation of various tissues in the body. They also play an active role in 

regulating various physiological functions such as growth, metabolism and 

reproduction by modulating specific signaling pathways. Any disruption either in 

the synthesis and production of these hormones or their downstream signaling 

cascade would lead to a disease state. Endocrine hormones particularly PRL, play a 

relevant role in breast, lung, hepatic and prostate cancer. Accumulating evidence 

indicates PRL’s active involvement in colorectal cancer.   

1.8 Prolactin (PRL) 

PRL is a peptide hormone produced and secreted by the lactotrophs of the anterior 

pituitary was initially identified in 1928 by Stricker and Grueter [75]. Later 

experiments by Oscar Riddle in 1933, using the pigeon crop-sac assay, clearly 

elucidated for the first time that this pituitary extract can stimulate milk production 

and named it “Prolactin” [76]. The existence of a distinguishable human 

homologue of PRL was a highly debated issue prior to 1970. Histochemical studies 
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by independent labs identified PRL secreting cells in the pituitary during 

pregnancy. This has provided compelling evidence for the first time for the 

existence of PRL, thus establishing its identity, independent from growth hormone 

[77]. Serum levels of PRL are high in pregnant and lactating women [78] and 

neonates [79].  

In humans, the PRL gene is located on chromosome 6 [80]  spanning a region of 10 

Kb, and it consists of 5 exons coding for a peptide of 227 residues (of which 28 

residues make up the signal peptide) [81]. PRL gene and protein share 

considerably homology with growth hormone (GH) and placental lactogen (PL) 

and are grouped into the same protein family. It is believed that all these genes 

arise from the same ancestral gene through gene duplication and mutation events 

[82, 83]. Several PRL variants have been identified which arise due to 

posttranslational modification and considerably expand the functionality of the 

hormone [84].  

Contributions by Horseman and Ormandy using animal models including mice 

deficient in PRL [85] confirmed that PRL was the hormone responsible for 

lactation. Synthesis and secretion is PRL is a tightly regulated process which is 

multifactorial involving both negative (dopamine) and positive regulators 

(Estrogen, cAMP, Insulin, Thyroid Releasing Hormone). 
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Figure 1.5: Prolactin gene and transcripts: PRL gene is located on chromosome 

6, and codes for two distinct transcripts from two different and independent 

promoters. The pituitary transcript is shorter than the extrapituitary transcript, 

which has an additional exon ‘1a’. However, irrespective of the promoter used or 

the length of the transcript, they both produce the same 23 kDa active PRL protein. 
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Neuroendocrine regulation at the hypothalamic level is regulated by dopamine, and 

contributes to the daily variation in serum PRL levels and the stress induced 

increase in serum PRL [86, 87]. Secretion of pituitary PRL is regulated by a short-

loop feedback regulation. First, synthesis and secretion of pituitary PRL is 

controlled by dopamine, a catecholamine neurotransmitter. Dopamine is produced 

in the hypothalamus and acts through the D2 subclass of dopamine receptors on the 

lactotroph cells of the anterior pituitary to negatively regulate PRL expression and 

secretion [88].  Second, after reaching a threshold serum concentration, active PRL 

signaling through PRL receptor (PRLR) increases dopamine production leading to 

inhibition of PRL [89]. Supportive evidence for the negative feedback effect of 

PRL comes from work by Binart and colleagues who observed increased serum 

PRL levels in Prlr knockout (Prlr
-/-

)mouse models [90, 91]. Several factors such as 

neurotransmitters, neuropeptides and other hormones have also been implicated in 

regulating PRL production [92]. Ectopic production of PRL has also been detected 

in mammary [93], lung [94], bladder [95], uterine decidua [96, 97], prostate and 

ovary tumors [98]. PRL or PRLR transcripts and protein were found to be 

overexpressed in malignant tissue as compared to normal tissue and this increase is 

localized mainly to the epithelial cells. This suggests that epithelial cells are the 

main ectopic source of the peptide hormone [99]. 
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PRL expression is regulated by two distinct promoter elements; a pituitary 

promoter located upstream of the transcription start site is necessary and sufficient 

for transcription of PRL in response to pituitary signals [100]. A second promoter 

regulates extrapituitary expression of PRL and was initially described as directing 

PRL expression in lymphoid and decidual cells [101, 102]. The transcript lengths 

differ depending on the promoter used and the tissue type, but encode identical 23 

kDa (23k PRL), mature peptide. This represents the predominant form synthesized 

and secreted by the pituitary and extra-pituitary tissues (Fig 1.5). In addition, a 

novel N-Terminal 16 kDa (16K PRL) fragment of PRL has been described which 

inhibits angiogenesis by affecting endothelial cell proliferation [103, 104]. 

1.9 Prolactin and its role in normal development and pathologies 

Since its initial identification, the involvement of PRL in regulating normal 

development of various tissues and its role in various growth abnormalities, 

particularly cancer has been a subject of active research. We now know from 

published work over the last decade that PRL and the subsequent signaling induced 

by it regulate not only normal development of various tissues, but also have a 

supportive role in development of various pathologies.  
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1.9.1 Role of PRL in brain, stress, fertility and pregnancy 

Apart from circulating PRL being transported to the brain, work done by Fuxe and 

colleagues using PRL specific probes and antibodies showed the existence of PRL 

like transcripts and protein in brain sections of hypophysectomized rat brains 

suggesting that brain produces PRL [105-107]. Similarly, estradiol (E2)-treated 

hypophysectomised rats or direct injection of E2 into the pons-medulla region of 

the brain caused increased PRL expression compared to untreated controls, further 

supporting pituitary independent expression of PRL in brain [108]. PRL is an 

anxiolytic agent capable of inducing a dose-dependent suppression of anxiety 

behavior and acute stress response [109, 110]. Injecting PRL antisense oligos into 

the pituitary portal system prevented anxiety and acute stress response supporting 

the role of PRL as an anti-stress factor [110]. Corticotrophins are released in 

response to acute stress. Chronic PRL treatment blocked stress-induced increases 

in corticotrophin releasing hormone in para-ventricular nucleus thus reducing 

neuronal activation in response to stress [109]. 

Pituitary production of PRL increases during pregnancy and lactation. It is 

necessary for the proper establishment and maintenance of pregnancy. Elevated 

levels of PRL are maintained by the suckling stimulus in the post parturition period 

[111, 112]. Along similar lines, increased immuno-reactive PRLR was observed in 
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brain sections of rats having active and ample sucking stimulus compared to 

control non-pregnant rats, demonstrating increased sensitivity of brain and 

associated neurons to PRL during pregnancy [113]. PRL causes pregnancy induced 

increases in food intake by inducing leptin (a hormone responsible for satiety) 

resistance [114], an adaptation necessary to meet the energy demands of the  

developing fetus and/ or lactation [115]. The anxiolytic effect of PRL suppresses 

stress responses induced by glucocorticoids during late pregnancy, lactation, and 

pregnancy induced hyperthermia an adaption responsible for decreasing fetal 

growth and abnormalities [116, 117]. In addition, PRL-induced transient 

suppression of fertility as adaptation to balance the nutritional need and energy 

expense necessary for lactating females and birth spacing [118]. Finally, PRL-

induced hypothalamic neurogenesis during pregnancy is important in establishing 

maternal recognition of the offspring, contributing to enhancement of maternal 

behavior [119].  

1.9.2 Role of PRL in normal breast development and breast cancer 

PRL is the principal lactogenic hormone secreted by the lactotroph cells of the 

anterior pituitary and is critical in inducing and establishing lactation, milk 

production and milk macronutrient content. The concentration of circulating 

prolactin increases during pregnancy so that by the end of gestation, levels are 10 
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to 20 times over normal non pregnant levels. Acting both as a mitogenic and a 

differentiating agent, PRL profoundly influences the normal development and 

differentiation of the mammary gland. Data obtained using PRL and/or PRLR 

knockout mice show that PRL regulates branching of ductal epithelia during 

puberty and controls lobulo-alveolar development and lactogenesis during 

pregnancy [120]. Elevated levels of progesterone, observed during pregnancy 

prevent pre-parturition PRL induction of milk secretion. Following fetal delivery, 

clearance of progesterone and estrogen releases the inhibitory influence on PRL, 

ensuring copious milk secretion [120]. Experiments on bovine models indicate that 

inhibiting PRL delays mammary gland development and differentiation.  

In differentiated mammary cells of a nursing female, PRL stimulates synthesis and 

secretion of milk protein β-casein, a part from stimulating the synthesis of alpha-

lactalbumin (the regulatory protein of the lactose synthetase enzyme system) and 

increasing lipoprotein lipase activity. Post parturition, PRL ensures continued milk 

production. PRL is also secreted into milk at levels nearly close to the circulating 

concentration, however the physiological significance of this PRL in the infant is 

unknown [121]. 

Evidence supporting the mitogenic role of PRL on mammary epithelia comes from 

studies where PRL was knocked down either in mammary epithelium, stroma, or 
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both. These mice demonstrated normal mammary development until parturition. 

However, a significant decrease in mammary epithelial cell proliferation was 

observed postpartum, as demonstrated by decreased bromodeoxyuridine (BrdU) 

incorporation in the PRL knockouts compared to wild type controls, suggesting the 

involvement of autocrine/paracrine PRL in mammary epithelial cell proliferation 

[122].  

A large number of publications in the early 1970’s indicated a strong association 

between excess PRL in the serum with increased risk of developing breast cancer. 

The role of PRL in mammary cancer was suggested several decades ago, based on 

initial observations in rodent models of breast cancer [123]. Welsch and colleagues 

showed that mammary PRL contributes significantly to the pathogenesis and 

progression of neoplastic mammary tumors in mouse models [124]. Isograft of 

pituitary under the renal capsule in rodent models leads to elevated serum PRL 

levels. Multiple incidences of spontaneous mammary tumors were noted in these 

model suggesting active production of mammary PRL and its involvement in 

mammary tumorigenesis [125]. Oakes and colleagues identified a decrease in 

neoplastic lesions in PRLR knockout mouse [126].  

To demonstrate the autocrine/ paracrine function of PRL in human breast cancer, 

PRL responsive estrogen receptor (ER) negative breast adenocarcinoma cells 
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T47Dco and  ER+ve MCF7 cells were treated in vitro with monoclonal anti-human 

PRL antibodies (mAb 631 and mAb 390). This resulted in 86 and 68% inhibition 

of cell growth in T47Dco cells and 20 and 71% reduction in the MCF7 cells 

respectively as compared to untreated cells implicating the mitogenic effect of 

local PRL in human breast cancer. Additionally, PRL responsive, Nb2 rat 

lymphoma cells, cultured in conditioned medium collected from PRL antibody 

treated T47Dco had decreased growth, as compared to cells cultured in media from 

untreated T47Dco cells, further supporting active secretion and  an autocrine action 

of PRL in these cells [93]. Together, these data suggest that human breast tissue, 

both normal and malignant, is a source of extrapituitary PRL. Not only PRL but 

transcript and protein levels of PRLR were also increased in a vast majority of 

breast cancer biopsies independent of estrogen and progesterone receptor status 

[127, 128].  

1.9.3 Role of PRL in normal prostate development and prostate cancer 

The prostate gland is a hormone-dependent organ. Androgens and PRL plays an 

important role in growth, development, and differentiation of the prostate. Prostate 

cancer (CaP) currently represents the second most common cause of cancer death 

and is the most frequently diagnosed cancer in men [2]. Worldwide 8-103 cases 

per every 100,000 individuals are diagnosed with CaP with a mortality rate of 2-32 
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per 100,000 individuals. In the United States, CaP represents the most frequent 

tumors representing 25% of all new reported male cancer cases occupying the 

second most common cause of male mortality [2].  

In 1955, Grayhack identified that prolactin was necessary for complete prostate 

formation and development, using rat models where PRL secretion was inhibited 

in embryonic stages, leading to abnormal development prostate [129]. Similarly, 

chronic hyperprolactinemia rodent models showed a significant prostate 

enlargement [130]. In vitro PRL treatment caused an increase in survival and 

decreased apoptosis in PC3 prostate cancer cells [131]. Transgenic mice expressing 

PRL in a prostate specific probasin induced model had an expansion/ increase of 

the basal/stem cell compartment in the prostates [132]. Additionally, homozygous 

PRLR knockout mice had a 30- 40% reduction in occurrence of prostrate tumors 

compared to wild type mice when challenged with tumor inducing virus, such as 

SV40T [133]. Clinically, elevated preoperative levels of serum PRL were also 

noted in hypernephroma patients and the levels dramatically decreased after 

surgical removal of the tumor [95]. These observations clearly implicate the 

critical role of PRL not only in prostate development, but also in prostate cancers. 
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1.9.4 Role of PRL in normal liver development and hepatological cancer  

PRL is a potent liver mitogen and circulating levels of PRL increase during 

physiological and pathological liver growth. Clinically, a significant increase in 

serum PRL levels was noted in a cohort of patients with hepatic cirrhosis (27-30 

ng/ml in males and 38-42 ng/ml in females) compared to control subjects. Among 

them, patients with suspected encephalopathy had significantly higher serum PRL 

than others which was significantly correlated with mortality [134]. Intravenous 

PRL injection into mice with  chemically induced hepatic cancer, for six weeks, 

led to hepatomegaly, large tumor like foci along with an increase in hepatic DNA 

synthesis and an increase in liver-to-body weight ratio (LBW), suggesting a 

mitogenic role of PRL in hepatic tumors [135]. An additional, PRL treatment for 

23 weeks lead to further increase in the number of tumor foci [135]. In rodents, 

partial hepatectomy (PH) led to an elevation in serum PRL levels as early as 5-15 

min post operation. Protein kinase C (PKC) signaling is a critical pathway that 

regulates hepatic cell proliferation. A simultaneous increase in nuclear PKC 

activity with increased serum PRL in PH rats suggests active PRL-PKC signaling 

leading to hepatic proliferation post hepatectomy [135]. At a molecular level, PRL 

administration after PH causes an increase in several transcription factors involved 

in hepatic cell proliferation such as AP-1, c-Jun and STAT3 along with liver-

specific differentiation and maintenance of energy metabolism such as CEBPα, 
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HNF-1, HNF-4 and HNF-3 [136]. Further, isolated hepatocytes from lactating rat 

treated with exogenous PRL showed an increase in Src- tyrosine kinase activity 

along with an increase in expression of c-fos, c-jun, and c-src genes, which 

promote proliferation and cell division implicating the critical role of PRL in 

promoting liver growth and regeneration [137]. 

1.9.5 Role of PRL in gynecological cancer  

Serum levels of PRL are elevated in women with ovarian and endometrial tumors 

to variable levels and serves as a strong diagnostic biomarker in these tumors 

[138]. Additionally, an increase in expression of PRLR was observed in tumor 

biopsies from patients with ovarian and endometrial cancer compared to healthy 

tissues. This increase in PRLR may be responsible for the PRL induced increase in 

proliferation, cell survival in ovarian and endometrial cancer. In vitro ovarian 

cancer cells treated with exogenous PRL had a rapid activation of Ras-signaling; a 

critical event which initiates ovarian and endometrial cancer development [139], 

implicating the role of PRL in regulating at least some gynecological cancers. 

1.9.6 Prolactin and its role in normal intestine 

PRL stimulates proliferation of the mucosal cells of the gastrointestinal tract in  the 

lactating rat model [140] suggesting a pregnancy induced  role of PRL in 

regulating growth and proliferation in the gastrointestinal tract. Rodent models 



 
44 

 

where pituitary explants were transplanted into the renal capsule showed cellular 

and mucosal hyperplasia in both jejunum and ileum [141]. Pregnancy-induced PRL 

also increased intestinal specific vitamin D and calcium absorption [142]. PRL 

induces expression of bicarbonate transporter necessary for water and electrolyte 

transport suggesting that PRL is helpful maintaining intestinal ion homeostasis 

[143] [144]. 

1.9.7 Implication of prolactin in colorectal tumors 

Bhatavdekar and colleagues reported high serum concentration of PRL in 

preoperative colorectal cancer patients [145, 146]. Ilan and colleagues also 

observed that in 53% of the patients with colorectal malignancy, there was elevated 

levels of PRL that decreased after surgical removal of the tumor [147]. Conflicting 

data by Baert and colleagues suggested hyperprolactinemia to be a secondary 

effect and that it occurs more common in rectal cancer and do not support the 

hypothesis of ectopic PRL production by colorectal tumors [148]. Similar 

observations were reported by Carlson and colleagues, suggesting that the increase 

in circulating PRL may be a consequence of renal, endocrine and psychiatric 

disorders, medications and/ or a premenopausal situation in patients with colorectal 

neoplasms [149]. 
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Studies by Jan-Michel Otte and colleagues with colon cancer cell lines showed  

that exogenous PRL treatment increased H
3
-thymidine incorporation suggesting a  

mitogenic role of PRL in colorectal cancers [99]. Soroush and colleagues observed 

that 76% of patients with colorectal malignancies had an increase in circulating 

PRL levels and suggested that PRL can be a better prognostic marker than 

carcinoembryonic antigen (CEA), an established colorectal tumor marker, a 

finding further supported by Bhatavdekar [145, 150, 151]. However, a further large 

scale studies on an extended patient population comprising both preoperative and 

postoperative patients is necessary to validate the use of PRL as a valid marker for 

colorectal cancer.  

1.9.8 Role of prolactin in stem cells 

Autocrine/ paracrine PRL has been implicated in promoting proliferation and 

growth of stem cell populations in high grade prostate cancer via the activation of 

Jak/STAT pathway [132, 152]. Inhibiting Jak/STAT activation using prostate 

specific PRL knock down and using competitive PRLR-antagonist, Route and 

colleagues, reported prevention of the expansion of prostate stem cell populations 

[153]. 

PRL has also been indicated to play a critical role in the expansion of the neural 

stem cell population during severe brain injury and pregnancy [154]. Isolated 
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neuronal cells treated with recombinant PRL showed an increase in neurosphere 

formation in vitro by a significant proportion compared to untreated cells. Direct 

infusion of PRL into adult dentate gyrus induces an expansion of precursor cell 

population [155].  

Isolated ovarian cancer cells, treated with exogenous PRL showed an expansion of 

clonogenic population and an increase in adherence free growth indicating that 

PRL-induced expansion of primordial/ stem cell population [139]. These findings 

clearly demonstrate that PRL can regulate organ/ tissue specific stem cell 

population. However, the intracellular signaling modules activated in the presence 

of PRL which can regulate growth and expansions of stem cell population are not 

well characterized. 
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Figure 1.6: Prolactin receptor gene structure 
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Figure 1.6: Prolactin receptor gene structure: Located on chromosome 5 at p13 

locus, prolactin receptor gene codes for a single transcript driven from same 

promoter region. However, alternate transcription leads to the production of 

multiple variants as depicted in the figure. These have deletion of various exons 

and have different stop sites.  
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Figure 1.7: Prolactin receptor isoforms 
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Figure 1.7: Prolactin receptor isoforms: Prolactin receptor (PRLR) is a single 

pass transmembrane protein, consisting of extracellular, transmembrane, and 

intracellular domains. The extracellular domain consists of ligand binding S1 and 

S2 domain with S1 having a higher affinity for the ligand compared to S2 domain. 

The intracellular domain consists of B1, V, B2, X-box and Tail domain. B1 and B2 

interact with Jak proteins that can phosphorylate various domains on the tail 

domain. This phosphorylated tail domain now acts as docking sites for STAT 

proteins, which are responsible for intracellular transduction of the signals. 
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1.10 Prolactin receptor 

PRL signals through PRLR, a high-affinity membrane bound, class I cytokine 

receptor family protein [156]. Located on chromosome 5p13, the PRLR gene 

consists of 10 exons with a single promoter region (Fig 1.6) [128]. Multiple PRLR 

isoforms generated by alternate splicing  have been identified in both normal and 

malignant tissues  (Fig 1.7) [157, 158]. The long form (LF), also called the full 

length (FL) isoform of PRLR, represents the classical type I transmembrane 

protein [159, 160]. The extracellular region is made of 24 amino acids and is 

composed two subdomains, the ligand binding S1 domain and a receptor 

dimerization S2 domain, which also has some residual ligand binding activity. The 

intracellular domain contains five juxtamembrane motifs called Box 1, Variable 

Box (V-Box), Box 2, Extended Box 2 (X-Box) and a tail domain, which are 

conserved across the cytokine receptor superfamily. The function of each of these 

motifs is poorly understood; however, it is suggested that the Box 1 motif is 

involved in interaction and activation of Janus kinase 2 (Jak2) after ligand 

stimulation [161-163]. The C-terminal tyrosine residue interacts with STAT5 [164] 

and SH2-containing protein tyrosine phosphatase (SHP-2) [165]. Considerable 

differences exist in the C terminal region of PRLR between humans and rodents, in 

terms of the number and location of the tyrosine residues and the surrounding 

amino acid residues. Further, posttranslational modifications of PRLR and the need 
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of other accessory proteins to modify PRLR upon receptor dimerization have not 

been well elucidated in rodents.  

The intermediate form of PRLR has a deletion of all coding sequence C terminal to 

the X-Box and has been implicated to mediate cell survival but not cell 

proliferation in transfected cells [166].  ΔS1 has a complete deletion of S1 domain 

in the extracellular region and hence has a decreased affinity to PRL [167]. In 

comparison, the long form of PRLR has a relatively higher affinity for PLR 

compared to other isoforms. PRL binding protein (PRLbp) is a freely circulating 

form of PRLR which has been recently identified in human serum, however, its 

real presence and function are being actively investigated [168]. In vitro, it can 

bind to circulating PRL and prevent its interaction with PRLR thereby suppressing 

PRL signaling. Stoichiometrically, PRLbp can potentially sequester up to 35% of 

circulating PRL, indirectly reducing the amount or PRL available for active 

signaling [168]. PRLR is expressed in all organs and tissues at varying levels. The 

expression of various isoforms is thought to vary with hormonal status, estrous 

cycle, pregnancy, and lactation [156].  

1.10.1 PRLR and its implication in pathologies and cancer 

Evaluating the expression of PRLR in diverse tissues has shown that most of the 

tissues expressed both the long and the short form of the receptor in a tissue 
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specific manner. At a tissue level, muscle, thymus and kidney expressed both 

forms in equal amounts. Ovary, uterus and cerebral cortex, expressed the long 

form, only in the estrous phase, the liver expressed predominantly the short form 

[169]. 

Clinically, more than 50% percent of patients with breast cancer showed a 

significant increase in expression of PRLR [170]. At the transcript level there is a 

difference in expression pattern. Grade-I breast tumors predominantly express the 

LF while the grade-II tumors express higher SF and low levels of LF and grade-III 

tumors express similar amounts of LF and SF [171].  

Multiple fibroadenomas (MFA) are a form of spontaneous benign breast tumors, 

which occurs most frequently in young women. In a cohort of 74 MFA patients 

and 170 control subjects, heterozygous activating mutations leading to substitution 

of isoleucine-146 with leucine (Ile(146)-->Leu) was noted in some of the patients. 

This mutation resulted in a constitutively active form of PRLR, leading to 

increased STAT5 signaling and rapid cell proliferation [172]. In vivo, stable 

overexpression of PRLR in breast cancer cell lines caused an increase in PRL 

signaling leading to increased cell proliferation and tumor formation in xenograft 

models. Knocking down of PRLR led to decreased proliferation and an overall 

reduction of tumor mass [173, 174]. Given the widespread expression of PRLR 

and the corresponding PRL-PRLR signaling in breast cancer, several 
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pharmacological interventions have been developed aimed at targeting PRLR to 

treat breast cancer [175]. LFA102 is a humanized neutralizing monoclonal 

antibody directed against the extracellular domain of PRLR. Nb2-11 rat 

lymphocyte cells, which respond to PRL by increasing proliferation, however, 

when treated with LFA102 they showed a significant decrease in cell division and 

xenograft formation [176]. Clinically, LFA102 is being recommended to patients 

with breast cancer, where it antagonizes PRL signaling leading to reduction of 

tumor load [176].  

1.10.2 PRLR and its implication in gastrointestinal cancer 

The widespread expression of PRLR mRNA along the GI tract and associated 

lymphatic tissue, suggests an active role for PRL in regulating GI immune 

functions [177] and CRC. PRLR transcripts were detected in isolated gastric 

glands, gastric cell fractions, and intestinal mucosa lineages from human, rabbit, as 

well as fetal and adult rat [177]. Human gastric mucosal adenomas, gastrointestinal 

cancer cell lines, and intraepithelial lymphocytes also expressed high levels of 

PRLR.  

1.11 Prolactin Signaling 

Binding of PRL to PRLR triggers an intracellular signaling cascade involving the 

Jak/ STAT pathway, Jak-Ras-Raf-MAPK pathway and/ or the Src tyrosine kinase 

pathway proteins [156, 178]. Site directed mutagenesis studies led to the 
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identification of specific features in the intracellular domain that can be linked to 

activation of specific signaling cascade via the recruitment of STAT proteins, 

insulin receptor substrates (IRS) and other adaptor proteins to the receptor dimer 

with the presence or absence of these features, dictating the activation of a specific 

signaling pathways [165, 179]. PRLR isoforms can also heterodimerize, which is 

important, as PRL target cells usually express more than one PRLR isoform further 

increasing the complexity of signaling associated with PRL.  

PRLR deficient mice have served as a useful model to study the effects of PRL in a 

detailed manner. Mice having germ line deletion of Prlr were produced by 

homologous recombination by Ormandy and colleagues [91]. A detailed analysis 

of these mice was done by Kelly and colleagues who identified that circulating 

PRL levels in these mice were elevated by 30 -100 fold, suggesting a direct 

feedback regulation of PRL expression. Homozygous mutant (Prlr
-/-

) females are 

completely sterile with defects in blastocyst implantation and breast development 

apart from other reproductive tract abnormalities. In hemizygous condition (Prlr
+/-

) 

females exhibited severe, breast development and nursing defects occurred in their 

first pregnancy but recovered in subsequent pregnancies. Homozygous null 

females also exhibited a higher degree of maternal anxiety when challenged with 

foster pups and suffered a general decrease in bone development and density [180]. 
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1.12 JAK-STAT signaling 

Darnell and colleagues identified that interferon-α and γ treatment leads to 

activation of Drosophila melanogaster melanogaster homologue of Jak proteins in 

human cells. Activated Jak in turn lead to the activation of STAT proteins [181, 

182]. This pathway is a pleotropic cascade responsible for transducing multiple 

signals that regulate development, immunity, and homeostasis from flies to 

humans. In higher mammals, such as humans, the Jak-STAT pathway is the 

principle pathway regulating cytokine and growth factor responses that stimulate 

cell proliferation, differentiation, migration and apoptosis, events that are critical 

for hematopoiesis, immune development, mammary gland development, lactation, 

adipogenesis and sexual maturation. Activation mutations in proteins of this 

pathway lead to neoplastic transformation of these tissues. Similarly, dominant 

negative mutations inactivate of these proteins, lead to several early developmental 

defects and embryonic lethality [183, 184] .   

Mechanistically (Fig 1.8), receptors that activate Jak-STAT signaling are normally 

single pass transmembrane receptors for cytokines and growth factors. Binding of 

these ligands to the extracellular domain leads to receptor activation and 

subsequent dimerization. Dimerized receptors serve as docking sites for the Jak 

family of proteins in a region designated as Box1 and 2 domains.  In humans, the 

Jak family has four members: Jak1, Jak2, Jak3 and Tyk2. Receptor bound Jak 
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transphosphorylates multiple other sites on the Jak and the receptor itself. These 

phosphorylated sites on the receptors act as binding sites for STAT proteins [185, 

186]. 

STAT proteins are latent transcriptional factors/initiators that reside in the 

cytoplasm until activated through phosphorylation. Receptor bound STAT proteins 

are phosphorylated by receptor bound Jak proteins at the evolutionary conserved 

C-terminal domain at the tyrosine residue leading to its activation. Activated STAT 

proteins release the receptor and dimerize in the cytoplasm via the conserved SH2 

domain and subsequently translocate into the nucleus, aided by the importin-Ran 

proteins. Once inside the nucleus, STAT proteins bind to the conserved 

sequencesin the enhancer regions of STAT responsive genes. Jak mediated STAT 

activation is sometimes aided by adapter proteins such as STAM (signal 

transducing adapter molecules). STAM1 and 2A are predominant forms in 

humans, which interact with protein phosphatase. These proteins can interact with 

either Jak or STAT proteins and inactivate them through dephosphorylation [187]. 

Apart from binding to STAT proteins, Jak phosphorylated residues on the receptor 

also serve as docking sites for the SH2-domain containing adapter protein complex 

consisting of GRB2, SHP-2 and SHC proteins. This complex of proteins lead to 

subsequent downstream activation of mitogen activated kinase proteins (MAPK). 
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Figure 1.8: Jak- STAT signaling 
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Figure 1.8: JAK- STAT-ERK signaling: This signaling pathway is 

predominantly activated by cytokines and growth factors. Binding of the ligand to 

receptors leads to receptor dimerization. JAK proteins bind to the dimerised 

receptor and get auto phosphorylated and also phosphorylate several tyrosine 

residues on the receptor which act as binding sites for STAT family of proteins. 

These STAT proteins are later phosphorylated by JAK leading to their activation, 

dissociation from the receptor, and dimerization in the cytoplasm. Dimerized 

STAT proteins translocate into the nucleus and bind to respective enhancer 

elements. Additionally, Jak proteins can activate ERK signaling mediated by the 

Grb2-Ras/Raf complex. 
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1.12.1 Role of JAK-STAT signaling in pathologies 

Cytokine signaling plays a critical role in maintaining appropriate immune 

responses and also in several autoimmune diseases. The cytokine activated Jak-

STAT signaling cascade is hyperactivated in autoimmune diseases [188]. Renal 

cancer cell lines treated with cytokines had increased activation of STAT3 leading 

to increased cell proliferation and decrease apoptosis [189]. AG490 mediated Jak 

inhibition causes complete abrogation of STAT activation implicating Jak-STAT 

signaling has a pivotal role in renal cancer progression [189]. 

Pancreatic ductal adenocarcinoma is an aggressive, highly metastatic form of 

pancreatic cancer with hyper active Jak2/ STAT3 signaling pathways that regulate 

both initiation and progression of the disease. Therapeutically, inhibiting both 

these pathways using the JAK2 inhibitor, in cell lines and animal model decreases 

growth, cell proliferation, migration, invasion and increases apoptosis compared to 

untreated cells, implicating the critical role of Jak/STAT signaling in pancreatic 

cancer [190]. 

Bonni and colleagues demonstrated the critical role of Jak-STAT in glial 

differentiation [191]. They showed that Jak-STAT signaling is active in embryonic 

cortical precursor cells and initiated differentiation of these cells into astrocytes, a 

phenomenon augmented by cytokines [192]. Clinically, STAT3 was not active in 

normal brain however, increased levels of STAT3 phosphorylation along with 
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increased expression of STAT3 responsive genes that promote cell cycle 

progression and decrease apoptosis, was observed in brain tumor cell lines. In 

addition, multiple other pathways also seem to converge on STAT3 in brain 

tumors. Further support for this comes from that fact that inhibiting STAT3 alone, 

genetically or pharmacologically leads to a decrease in tumor phenotype, 

implicating the central role of STAT3 in brain tumor pathologies [193]. 

1.12.2 Significance of JAK-STAT signaling in colorectal cancer 

Corvinus and colleagues demonstrated that Jak/STAT signaling apart from Wnt 

signaling plays a significant role in colorectal cancer. Dedifferentiated cancer cells 

and infiltrated lymphocytes of CRC patient samples showed a constitutively active 

STAT3 compared to uninvolved colon epithelium. Isolated CRC cells from these 

patients eventually lost their STAT3 activity. However subsequent implantation of 

these cells into flanks of nude mice led to reactivation of STAT3. Blockade of 

STAT3 activation slowed down the development of CRC derived xenograft tumors 

[194, 195]. Xiong and colleagues showed that either inhibiting JAK activity using 

AG490 and STAT3 expression using specific siRNA, decreased expression of 

genes responsible for cell growth, survival, invasion, and migration such as Bcl-2, 

p21, p27, E-cadherin, VEGF, and MMPs. They also showed that Jak2 is subjected 

to proteasome-mediated proteolysis and dephosphorylation. An increased level of 

nuclear phopho-STAT3 immunostaining was identified in adenomas and 
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adenocarcinomas while phospho-Jak2 immunoreactivity was found in the 

cytoplasm suggesting a positive correlation between Jak-STAT and CRC [196]. 

Adenoviral mediated overexpression of the suppressor of cytokine signaling 

(SOCS3) gene (an inhibitor of the JAK/STAT3 pathway) suppressed CRC cell 

growth and induced apoptosis both in vitro and in vivo, suggesting the critical role 

of JAK-STAT3 pathway in CRC. This action efficiently inhibited the activation of 

this pathway and decreased expression of downstream tumor promoting factors 

[197]. Clinically, genetic variations in JAK1, JAK2, TYK2, SOCS1, SOCS2, 

STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B, and STAT6 were 

predominant in patients with colorectal cancer. Among them JAK2, SOCS2, 

STAT1, STAT3, STAT5A, STAT5B, and STAT6 were predominant in patients 

with colon cancer while STAT3, STAT4, STAT6, and TYK2 were associated with 

patients with rectal cancer further implicating that JAK-STAT polymorphism and 

signaling have a critical role in CRC, and may be potential therapeutic targets [195, 

198].  
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Chapter 2: 

 

Prolactin signaling enhances colon cancer stemness by modulating Notch 

signaling via JAK2-STAT3/ERK pathway 
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2.1 Abstract 

Prolactin (PRL) is a secretory cytokine produced by various tissues. Binding of 

PRL to the cognate prolactin receptor (PRLR) activates intracellular signaling via 

Jak, ERK and STAT proteins. PRL regulates diverse activities under normal and 

abnormal conditions including malignancies. Previous clinical data suggest that 

serum PRL levels are elevated in colorectal cancer patients. In this study, the 

expression of PRL and PRLR in colon cancer tissue and cell lines was assessed. 

Higher levels of PRLR expression in the cancers and cell lines were observed 

compared to normal colonic epithelial cells. Incubation of colon cancer cells with 

PRL induced JAK2, STAT3, and ERK1/2 phosphorylation and increased 

expression of Jagged 1 (JAG1), a Notch-1 receptor ligand. The cleaved/ active 

form of Notch-1 receptor (NICD), increased expression of Notch responsive genes 

HEY1, HES1 and stem cell marker genes DCLK1, LGR5, ALDH1 and CD44 were 

all increases in CRC cell lines. Finally, pharmacologically inhibiting the PRL 

induced JAK2-STAT3 and JAK2-ERK1/2 signaling abrogated Notch activation an 

important component of CRC stem cell. Together, the results demonstrate that 

cytokine signaling induced by PRL is active in colorectal cancers and may provide 

a new target for therapeutic targeting. 
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2.2 Introduction 

Colorectal cancer (CRC) remains one of the leading causes of cancer related deaths 

in both economically developed and developing countries. It is the second leading 

cause of cancer deaths in both males and females in United States [2]. The 

precancerous predisposition of colorectal epithelial polyps is no longer disputed.  

There is a plethora of morphologic and molecular studies that carefully analyzed 

the progression of a non-cancerous polyp, into invasive cancerous lesions.  These 

process are complex and influenced by various intrinsic and extrinsic factors such 

as hormones [199]. 

Prolactin (PRL), a cytokine hormone, accumulates in the tissue microenvironment 

and elicits its action in an autocrine and/ or paracrine manners to regulate diverse 

physiological activities that include reproduction, growth, development, 

metabolism, and immunomodulation [93, 120, 200, 201]. Binding of PRL to the 

single pass, transmembrane Prolactin receptor (PRLR) induces several intracellular 

signaling cascades mediated via JAK-STAT [153, 202] and JAK-RAS-MAPK 

components [203].  

PRL acts as a mitogen promoting cell proliferation, inhibiting apoptosis, and 

inducing chemoattraction in breast cancer cells [120, 204, 205]. Blood levels of 

PRL were found elevated in patients with hepatocellular carcinoma [206, 207] and 

ovarian cancer [138]. Cultured immortalized ovarian epithelial cells and 
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endometrial cells treated with exogenous PRL demonstrated increased proliferation 

and inhibition of chemotherapy induced cell death [139]. Autocrine PRL induces 

PRLR-mediated Jak2-STAT signaling in prostate cancer [130, 131, 152, 208] and 

modulates the stem cell/basal cell population [152].  

PRL and PRLR are expressed all along the GI tract in fetal and neonatal stages 

during development [177]. In adult rats, PRL induces active potassium ion 

transport in distal colon and chloride
 
ion transport in proximal and transverse colon 

[209]. IEC-6 colon crypt epithelial cells treated with PRL had increased expression 

of nutrient and mineral transport channel proteins without inducing proliferation 

[210].  Elevated serum levels of PRL have been identified in patients with 

colorectal malignancies [145-147, 150]. In addition, increases in PRL and PRLR 

expression were noted in CRC cell lines and tumor samples [99]. 

Cancer stem cells (CSC) initially identified in hematological disorders as tumor 

initiating cells when isolated and transplanted in NOD-SCID mice [15], are long 

lived, self-renewing population of cells that initiate and sustain tumor growth and 

can be identified by unique set of marker proteins such as DCLK1 [44-46], LGR5 

[47, 48, 50, 211], CD44 [212] and CD133 [23], which also mark normal colon 

stem cells. These cells are resistant to therapeutic interventions and cause tumor 

relapse and metastasis [213, 214]. Identifying cellular factors that regulate the stem 

cell population are critical in understanding the process of neoplastic 
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transformation and for development of novel therapeutics to target the cancer stem 

cell pool. Isolated primary mouse hippocampal cells treated with exogenous PRL 

showed increased number of stem cells [155]. Similarly, in mouse models, 

inducing PRL under the control of prostate specific probasin promoter led to 

expansion in the basal cell compartment [132, 152], which constitutes the stem cell 

population of the prostate gland. Although these data suggest that PRL can affect 

the tissue stem cell population, its effects on cancer stem cells have not been 

determined.  

The Notch signaling pathway is active in intestinal stem cells [215]. It is involved 

in regulating stem cell hierarchy and determining cell fate [24] and is active in the 

intestinal crypts [25]. Constitutive Notch activation is necessary for intestinal stem 

cell maintenance [29] and dysregulation of the pathway has been observed in 

colorectal and other forms of cancer [30]. There are four members in the Notch 

receptor family Notch 1 to Notch 4. Binding of specific ligands like Jagged 1, 2 or 

Delta like 1, 3, 4 to the Notch receptors results in a conformational change in the 

receptor. Subsequent activation of the -secretase complex, composed of 

Presenilin, Nicastrin, Anterior Pharynx Defective 1 (APH 1) and Presenilin 

enhancer 2 (PEN-2) cleaves the Notch receptor to release the intracellular domain 

(NICD) [26, 27]. The NICD then translocates into the nucleus, interacts with co-

factors CSL and MAML, bind to target sequences and activate the transcription of 
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genes such as Hes1, Hey1 and stem cell responsive genes [28] such as c-Myc, all 

of which can be used to assess the degree of Notch signal activation. Interestingly, 

ERK can modulate Notch signaling by regulating the expression of its ligand, 

Jagged 1 [216].  

The current study is aimed at determining the effect of PRL on signaling in colon 

cancer cells. We show that PRL induces JAK2-ERK1/2 mediated activation of 

Notch signaling, leading to an increase in spheroid formation and changes in 

cancer stem cell population. Furthermore, PRL signaling in these cells can be 

suppressed with specific inhibitors of JAK2 and ERK1/2.   
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2.3 Materials and Methods 

2.3.1 Cells 

Colon cancer cell lines HT29, HCT116, SW480, SW620, DLD1 and normal 

intestinal epithelial FHC cells were obtained from ATCC (Manassas, VA). The 

cells are well characterized and have been used by multiple investigators. They 

were cultured in the recommended media supplemented with 10% fetal bovine 

serum (Sigma Aldrich, MO) and 1% antibiotic-antimycotics solution (Mediatech 

Inc, VA) at 37°C in a humidified atmosphere of 5% CO2. The cells were cultured 

in serum free media overnight prior to treatment with PRL (500 ng/ml). Where 

indicated, cells were pre-treated with 50 μM Jak2 inhibitor AG490 or 10 μM 

ERK1/2 inhibitor PD98059 (Selleckchem, TX).  

2.3.2 Spheroid assay  

Cells were seeded at a limiting dilution of 1500 cells/ml (total 2 ml = 3000 cells/ 

well in a 6 well dish) in DMEM supplemented with or without PRL (0-500 ng/ml) 

and inhibitors AG490 or PD98059, in addition to EGF (5 ng/ml), FGF (5 ng/ml), 

heparin (1 μg/ml) and B12 supplements (0.25X) and plated on ultra-low 

attachment plates (BD Biosciences, NY). An important point to note is that the 

amount of growth factors used in the culture conditions were reduced to prevent 

any growth promoting effects by these growth factors which can complicate the 

analyses in order to gain a better idea of the role of prolactin in promoting spheroid 
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formation. Specifically, 1/4
th

 the dose of growth factors (EGF, FGF) was used 

along with, Heparin and B12 supplements recommended by earlier studies [217]. 

The limiting dilution of cells was also determined based on this concentration of 

aggregates that lasts for 8 days. Colosphere formation was assessed after 4 to 6 

days and the number and size of colospheres was determined using Celigo 

(Cyntellect, CA).  

2.3.3 RT- PCR analysis 

Colon cancer cDNA panel with matched adjacent tissue controls was obtained 

from Origene (Rockville, MD). Total RNA from cell lines was isolated using 

Trizol reagent (Invitrogen, Carlsbad, CA) following manufacturer’s instructions. 2 

μg RNA was used to synthesize complimentary DNA using Superscript II reverse 

transcriptase and random hexanucleotide primers (Invitrogen, CA). Individual gene 

expression was quantified using SYBR green reagent (Molecular Probes, OR) and 

specific primers with GAPDH as internal standard. Primers for the PCR include 5`-

GCATATTGCGATCCTGGAAT-3` and 5`-CGTTTGGTTTGCTCCTCAAT-3` 

for PRL, 5`-GGAGCTGGCTGTGGAAGTAA-3` and 5`-

CTCCCACTCAGCTGCTTTCT-3`for PRLR, 5`-

GTGCGGTATATTTCCTCCAA-3` and 5`-GTTCCCGTGAAGCCTTTGT-3` for 

JAG1, 5`-CCTCTCTTCCCTCCGGACT-3` and 5`-

GGTCAGTCACTTAATACAGCTCTCTCT-3` for HES1, 5`- 
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Figure 2.1: Expression of Prolactin and its cognate receptor in colorectal 

cancers 
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Figure 2.1: Expression of Prolactin and its cognate receptor in colorectal 

cancers:  

(A) Real time PCR to evaluate expression of PRLR in colon tumors. Increased 

expression of PRLR is noted in tumor samples compared to adjacent controls. (B) 

Real time PCR for PRL colon tumors. Data suggest no change in expression of 

PRL between tumor samples and adjacent controls. (C) Real time PCR for PRLR 

in colon cancer cell lines compared to normal (FHC cells). Increased PRLR 

expression was observed in all colorectal cancer cell lines. (D) Western blot 

analysis.  There were higher levels of PRLR in colorectal cancer cells when 

compared to FHC cells. (E) Real time PCR for PRL in normal and cancer cell 

lines. PRL mRNA was present in all cell lines. (F) ELISA bases quantification of 

PRL.  
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GCTGGTACCCAGTGCTTTTGAG-3` and 5`-TGCAGGATCTCGGCTTTTTCT-

3` for HEY1, 5`-GGTGAACGTCAAGACCACCT-3` and 5`-

GTCCTGAAGGCACATCACCT-3` for DCLK1, 5`-

AACAGTCCTGTGACTCAACTCAAG-3` and 5`-

TTAGAGACATGGGACAAATGCCAC-3` for LGR5, 5`-

TGTTAGCTGATGCCGACTTG-3` and 5`-TTCTTAGCCCGCTCAACACT-3` 

for ALDH1, 5`-CAGCCTCAAGATCATCAGCA-3` and 5`-

GTCTTCTGGGTGGCAGTGAT-3` for GAPDH. 

2.3.4 Western Blot Analysis and Enzyme-Linked Immunosorbent Assay 

Protein samples were prepared in RIPA buffer (Thermo Scientific, IL).  Following 

quantification using BCA Kit (Thermo Scientific, IL), the lysates were subjected to 

poly acrylamide gene electrophoresis and transferred onto PVDF membrane (EMD 

Millipore, MA). Antibodies for PRLR (ab87992), DCLK1 (ab37994) and LGR5 

(ab119012) were obtained from Abcam (Cambridge, MA), Jagged1 (sc6011), Hes1 

(sc25392), Hey1 (sc28746) and ACTB (sc1616) were obtained from Santa Cruz 

Biotech Inc (Dallas, TX), Nicastrin (A00883), Presenilin1 (A00881), APH1 

(A00884) and Presenilin enhancer protein (PEN2) (A00882) were obtained from 

Millipore (Billerica, MA) and Jak2 (3230S), pJak2 (3776S), STAT3 (4904S), 

pSTAT3 (9131S), Erk1/2 (p42/44) (9102S), pErk1/2 (p-p42/44) (9101S), cMyc  
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Figure 2.2: Prolactin induces Jak2, STAT3 and ERK1/2 phosphorylation  
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Figure 2.2: Prolactin induces Jak2, STAT3 and ERK1/2 phosphorylation: (A, 

B) HCT116 cells were treated with 500ng/ml PRL, and lysates were collected at 

regular intervals and subjected to SDS-PAGE. PRL treatment increased 

phosphorylation of Jak2, STAT3 and ERK1/2, starting at 1 min post treatment and 

lasting for 30 min. (C) STAT3 responsive luciferase plasmid was transfected into 

cells and the luciferase activity analyzed after PRL treatment. Dose- and time- 

dependent increases in luciferase activity were observed following PRL treatment 

as compared to untreated controls (*p<0.05).   
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(5605S), NICD (4380S), CD44 (3570S) and GAPDH (2118S) were obtained from 

Cell Signaling (Boston. MA). Specific proteins were detected using 

chemiluminescence (GE Healthcare, NJ). To determine PRL levels, cells were 

cultured in serum free media and the media was subjected to ELISA according to 

manufacturer’s instructions (Molecular Innovations, MI). Briefly, 100 μl of the 

provided standard and concentrated serum free media collected from cells was 

added into wells pre-coated with PRL antibody in triplicates and allowed to bind 

for 30 minutes at which point the wells were washed and treated sequentially with 

primary antibody and streptavidin-HRP bound secondary antibody. Colorimetric 

quantification after treating with substrate was done at 450 nm.  

2.3.5 Luciferase Assay 

Cells were plated and transfected with either 4XM67 pTK-Luc (Addgene plasmid 

8688) [218] or Hes-1A/B-Luc, a kind gift of Dr. Kimberly Foreman, Loyola 

University, Chicago [219], which encode firefly luciferase gene under the control 

of the minimal thymidine kinase (TK) promoter and four STAT3 (4X STAT3 BS) 

or a single Hes1 (HES1 BS) binding site using Lipofectamine 2000 (Invitrogen, 

NY). Cells were pre-treated with PD98059 (10 μM) and/ or AG490 (50 μM) for 2 

h prior to treating with PRL (500 ng/ml). Renilla luciferase expressing pRL-TK 

plasmid (Clontech, Mountain View, CA) was used as internal control. Luciferase 

levels in the cell lysates were determined using Dual Luciferase Reporter Assay 
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System (Promega Corporation, Madison, WI). 

Figure 2.3: Prolactin induces Jak2, STAT3 and ERK1/2 phosphorylation 
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Figure 2.3: Prolactin induces Jak2, STAT3 and ERK1/2 phosphorylation: (A) 

AG490 or PD98059 treatment alone inhibited Jak2 and STAT3 activation which 

was rescued by PRL treatment. However, the combination of both inhibitors 

completely abrogated Jak2 and STAT3 activation which could not be rescued by 

PRL treatment. (B) Cells treated with PD98059 had decreased ERK activation 

while AG490 enhanced ERK1/2 phosphorylation when treated alone. However, the 

combination of AG490 and PD98059, significantly inhibited ERK activation even 

in presence of PRL. 
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2.3.6 Statistical Analysis 

Data from at least three independent experiments were expressed as the mean ± 

SEM and analyzed by unpaired or paired student’s t-test using GraphPad Prism 5 

(La Jolla, CA). P ≤ 0.05 was considered to be statically significant. 
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Figure 2.4: STAT5 is not induced by PRL 
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Figure 2.4: STAT5 is not induced by PRL: HCT116 colorectal cancer cell line 

has low basal level of STAT5. In these cells, PRL (500 ng/ml) treatment did not 

induce an activation of STAT5. T47D breast cancer cell line has higher basal 

STAT5 and in these cells PRL treatment led to a significant STAT5 

phosphorylation as early as 10 minutes post treatment. 
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2.4 Results 

2.4.1 PRLR but not PRL is upregulated in colon cancer cells 

To determine whether prolactin signaling occurs in colorectal cancer, we first 

analyzed the expression of PRL and PRLR in human colon cancer tissues and cell 

lines. Real time PCR quantification using colorectal cancer patient samples 

indicated a significant increase in PRLR but not PRL transcript levels in the 

cancerous tissue when compared to adjacent normal tissue (Fig 2.1 A, B). A 

similar increase in PRLR mRNA levels and protein was observed in CRC cells 

compared to normal colonic epithelial cells (FHC) (Fig 2.1 C, D). Moreover, no 

difference in expression of PRL mRNA was observed between normal colonic 

FHC cells and CRC cell lines (Fig 2.1 E). Quantification of concentrated culture 

media from the cell lines by ELISA indicatd that all cells secrete PRL; however, 

the amount varies with time and in a cell line specific manner ranging from 2- 80 

pg/ml after 24 h (Fig 2.1 F).  

2.4.2 PRL treatment induces STAT3 and ERK1/2 phosphorylation 

Upregulation of PRLR particularly in CRC compared to normal colonic cells 

suggests a role for the pathway in the pathogenesis of colorectal cancer. Binding of 

PRL to PRLR is known to activate the JAK/STAT and JAK/ERK pathways [153, 

202, 203]. The ERK- MAP kinase pathway is also known to be highly active in 

patients with Familial Adenomatous Polyposis [220]. HCT116 cells were treated 
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with recombinant PRL and western blot analyses were performed for JAK, STAT 

and ERK proteins.  There was an increase in Jak2, STAT3 and ERK1/2 

phosphorylation within a minute of PRL treatment (Fig 2.2 A,B). To validate PRL-

mediated STAT3 activation, we transfected HCT116 and HT29 cells with 4XM67 

pTK-Luc plasmid, which encodes, the firefly luciferase under the control of a 

minimal promoter and four tandem STAT3 binding sites (M67 sites). This 

construct has been previously used to demonstrate STAT3-induced gene 

expression [218]. PRL treatment increased luciferase activity in both cell lines in a 

dose- and time- dependent manner (Fig 2.2 C). Even at 100 ng/ml of PRL, there 

was significant induction in luciferase activity observed even at 1h. Pre-treating the 

cells with AG490, a pharmacological inhibitor of JAK2, prior to PRL treatment, 

led to a decrease in STAT3 and ERK1/2 phosphorylation (Fig 2.3 A,B) even in the 

presence of PRL. However, pretreatment with PD98059 alone led to increased 

STAT3 activation (Fig 2.3 A). Moreover, cells treated with the combination of 

JAK2 and ERK1/2 inhibitors, AG490 and PD98059, resulted in complete 

inhibition of JAK2, ERK1/2 and STAT3 phosphorylation (Fig 2.3 A, B). Together, 

the data suggest that PRL induces JAK2, ERK1/2 and STAT3 phosphorylation in 

colon cancer cells. Given that STAT5 phosphorylation has been shown to be 

significantly upregulated in breast cancer cells in response to PRL [7], we also 

determined the level of STAT5 phosphorylation in the colon cancer cells.  
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Figure 2.5: Prolactin affects colosphere formation 
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Figure 2.5: Prolactin affects colosphere formation: (A) Colon cancer cells were 

grown in specific spheroid media in ultra-low binding plates and treated with 

increasing doses of PRL. After 5 d, the colospheres were photographed and 

counted. (B) A dose-dependent increase in spheroid number was observed with 

statistical significance at 500 and 1000 ng/ml of PRL (*p≤0.05). (C) Similar 

increases in diameter were noted at similar doses (*p≤0.05).  
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However, levels of total STAT5 protein were relatively low in colon cancer cells, 

and no significant changes in phosphorylation of the protein were observed (Fig 

2.4), suggesting that STAT3 may be a key player in PRL:PRLR signaling in colon 

cancer cells.  

2.4.3 PRL induced spheroid formation, is inhibited by JAK2 and ERK 

inhibitors 

Previous studies have demonstrated mitogenic activity for PRL in breast cancers 

[120]. Accordingly, we determined whether PRL affects proliferation of colon 

cancer cells. PRL did not have any effect on proliferation of various colon cancer 

cells (Chapter 4, Fig 4.1). Further confirmation of this was obtained when cells 

were subjected to cell cycle analyses by flow cytometry following propidium 

iodide staining.  

Again, there was no difference in cell cycle progression between PRL-treated and 

control cells (data not shown). These data, taken together suggest that PRL does 

not affect proliferation of CRC cells in vitro. 

We next determined whether PRL affects spheroid formation because previous 

studies have demonstrated that PRL stimulates neurosphere formation when 

hippocampal cells are treated with PRL [155]. Additionally, spheroid formation 

remains the best available functional assay to assess the presence of cancer stem  
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Figure 2.6: Prolactin affects colosphere formation 
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Figure 2.6: Prolactin affects colosphere formation: (A and B) Pre-treatment 

with AG490 and PD98059 alone or in combination led to a significant decrease in 

spheroid formation and number as compared to PRL treatment alone (*p≤0.05).  
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cells in a given cancer cell pool [16, 221]. We treated colon cancer cells HCT116,  

SW480 and HT29 with increasing concentrations of PRL (0-500 ng/ml) and 

allowed the colospheres to form over a period of 6-8 days. There was a dose 

dependent increase in colosphere formation (Fig 2.5 A), with a significant increase 

in both number (Fig 2.5 B) and diameter of spheroid (Fig 2.5 C) in all the three cell 

lines. We also determined the effect of inhibiting JAK-STAT and ERK1/2 

signaling with the two inhibitors AG490 and PD98059. Pre-incubation with the 

inhibitors AG490 and PD 98059, either alone or in combination, abolished 

colospheres formation (Fig 2.5 D,E). Moreover, the inhibitors affected colosphere 

formation in the presence of PRL. There were also fewer numbers of colospheres 

and the size of the spheres was significantly smaller, when compared to cells 

treated with PRL alone. These results suggest that PRL signaling can potentially 

regulate colosphere formation. 

2.4.4 PRL induces expression of colon cancer stem cell marker genes 

Since PRL stimulated colosphere formation, a marker for stem cell-dependent 

growth, we next determined whether PRL affects stem cell related gene. Stem cell 

gene were quantified using  Real-Time PCR and western blot of specific markers 

including DCLK1 [44-46], LGR5 [47, 48, 50, 211], CD44 [212], CD133 [23] and 

ALDH1A1 [38]. Real-time PCR analysis demonstrated that PRL treatment induced 

expression of DCLK1, LGR5  
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Figure 2.6: Prolactin induces stem cell marker protein expression 
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Figure 2.6: Prolactin induces stem cell marker protein expression: CRC cells 

were treated with PRL (500 ng/ml) showed increased levels of (A) DCLK1 (B) 

LGR5 and (C) ALDH1A1 mRNA and (D) protein levels. (E) Treatment with 

either AG490 or PD98059 alone decreased DCLK1 and LGR5 protein levels (lane 

4, 6) compared to PRL treatment samples (lane 2, 3). PRL was able to rescue this 

inhibition (lane 5, 7); however, the combination of both AG490 and PD98059 led 

to complete abrogation of DCLK1 and LGR5 expression even in presence of PRL 

(lane 8).  
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and ALDH1 expression (Fig 2.6 A-C). Further confirmation was obtained by 

western blot analyses which showed that all three proteins  along with CD44 and c-

Myc, an oncogene that plays a predominant role in stemness [222], are upregulated 

compared to untreated controls (Fig 2.6 D). This further demonstrates the 

biological relevance of STAT3 activation by PRL. We also determined whether 

signaling through the JAK-STAT and ERK1/2 pathways affects stem cell marker 

expression. Pre-treatment with AG490 or PD98059 alone caused a decrease in 

expression of DCLK1 and LGR5, which was partially rescued upon PRL treatment 

(Fig 2.6 E). These data further suggest that PRL signaling can modulate the 

expression of colon cancer stem cell maker protein expression.  

2.4.5 PRL affects cancer stem and progenitor cells by inducing Notch 

signaling 

Notch signaling plays a significant role in stem cells, and is a pathway active in 

colon cancer stem cells [24, 29]. Phosphorylated ERK1/2 induces Jagged 1 

(JAG1), a Notch receptor ligand [216]. Binding of JAG1 to the Notch receptor 

causes a conformational change and sequential cleavage by ADAM and -secretase 

complex proteins to release the Notch intracellular domain (NICD), which 

translocates into the nucleus and activates  

expression of target genes [215]. We determined whether PRL treatment affects 

Notch signaling in colon cancer cells by modulating JAG1 expression. Quantitative 
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Real-Time PCR analyses demonstrated increased expression of JAG1 and the 

Notch signaling target gene HEY1 (Fig 2.7 A,B). Western blot analyses further 

confirmed the upregulation of JAG1 and HEY1 (Fig 2.7 C). In addition, there was 

an increase in NICD protein levels, along with increased levels of -secretase 

complex proteins anterior pharynx defective 1 (APH1), Presenilin 1 (PSEN1) and 

Presenilin enhancer (PSENEN) (Fig 2.7 C). To further confirm that Notch 

signaling is activated upon PRL treatment, we transfected HCT116 and HT29 cells 

with a plasmid encoding the luciferase reporter gene under the control of the Hes-1 

promoter.  Following 500 ng/ml PRL treatment, a robust induction in luciferase 

activity was observed in both the cell lines (Fig 2.7 D). These results were also 

confirmed using the specific JAK and ERK inhibitors. Inhibiting either JAK2 or 

ERK1/2 signaling alone using AG490 or PD98059 showed decreased JAG1 

expression, NICD cleavage and expression of HEY1, HES1and PSEN1 proteins 

(Fig 2.7 E). This was partially rescued by PRL. Combined inhibition of both the 

inhibitors lead to a further reduction in JAG1 expression, Notch-1 cleavage 

(NICD) and expression of HEY1, HES1 and PSEN1 (Fig 2.7 E) even in presence 

of PRL, suggesting that PRL can regulate Notch signaling through either JAK2-

STAT3 or JAK2-ERK1/2 pathways. 
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Figure 2.7: Prolactin treatment activates Notch signaling  
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Figure 2.7: Prolactin treatment activates Notch signaling:  (A) Real-Time PCR 

analysis of cells treated with PRL show a time dependent increase in expression of 

JAG1 (*p<0.05).  (B) Similar increase in expression of Notch target gene HEY1 

was also observed in Real-Time PCR analysis (*p<0.05). (C) Lysates of PRL 

treated cells showed increased JAG1 and HEY1 expression, NICD accumulation 

and induction of -secretase complex proteins APH1, PSEN1 and PSENEN 

expression as compared to controls. (D) Colon cancer cells, transfected with HES1 

responsive luciferase plasmid showed a PRL dependent induction of luciferase 

activity. (E) AG490 and PD98059 pre-treatment (lanes 4-7) caused a decrease in 

NICD accumulation and JAG1, HEY1, HES1 and PSEN1 expression compared to 

PRL treatment. PRL was able to rescue this activation; however, the combination 

of both AG490 and PD98059 (lane 8) led to complete abrogation of NICD 

accumulation and HEY1, HES1 and PSEN1 expression to levels similar to control. 
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2.4.6 Notch signaling is necessary to mediate PRL induced changes  

Based on the above findings, we hypothesized that PRL induces JAK2-STAT3 and 

JAK2-ERK1/2 cascades that in turn activate JAG1 mediated Notch signaling. To 

evaluate this, we overexpressed NICD in the three colon cancer cell lines. NICD 

overexpression significantly induced colosphere formation, similar to that observed 

when cells were treated with PRL (Fig 2.8 A). There was an increase in the number 

and size of the spheroids (Fig 2.8 B, C). Furthermore, treatment with the inhibitors 

alone did not affect the number or size of spheroids in the presence of NICD 

overexpression. However, a small decrease was observed in secondary spheroids 

when treated with the combination of the two inhibitors (Fig 2.8 D). Similarly, 

protein levels of DCLK1, LGR5 or CD44 increased in NICD overexpressing cells 

to levels comparable to PRL treated cells (Fig 2.8 E). The two inhibitors either 

alone or in combination did not affect expression of stem cells markers in the 

NICD overexpressing cells further suggesting that PRL-induced activation of 

Notch signaling is sufficient to enhance stem cell activity.  
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Figure 2.8: NICD overexpression recapitulates loss of PRL signaling  
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Figure 2.8: NICD overexpression recapitulates PRL-induced changes in 

colosphere formation and stem cell marker protein expression: (A) Colon 

cancer cells were transfected with NICD overexpressing plasmid, grown in specific 

spheroid media in low adherent plates for 5 d in the presence of PRL and 

inhibitors. Neither AG490 nor PD98059 treatment alone or in combination caused 

any significant decrease in colosphere formation in NICD expressing cells. (B) 

Significant increase in spheroid number was observed in NICD expressing cells 

compared to untreated controls. The inhibitors did not affect the NICD 

overexpressing cells (*p≤0.005). (C) Increased colosphere diameter was also 

observed in NICD overexpressing cells compared to control (*p≤0.05). (D) 

Secondary spheroids. The primary spheroids were collected, trypsinised and 

replated without PRL or the inhibitors. PRL primed and NICD expressing cells 

treated with either inhibitor maintained high colosphere formation compared to 

control. Combination of the inhibitors had comparable decrease in spheroid 

number compared to PRL treated or NICD expressing cells. (E) Lysates from 

NICD overexpressing cells either alone or treated with the inhibitors alone or in 

combination had increased expression of cancer stem cell markers DCLK1, LGR5 

and CD44. However, expression of PSEN1 and PEN2 was not affected in NICD 

expressing cells as compared to PRL-treated cells. 
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2.5 Discussion 

Our findings implicate an increase in PRLR transcript in CRC samples compared 

to adjacent normal tissue. Similarly, CRC cell lines had increased PRLR levels 

compared to normal FHC cells. In line with earlier observations [223], SW480 

cells expressed relatively lower PRLR levels compared to other cell lines. No 

significant change in mRNA expression or robust secretion of PRL into the media 

was noted in CRC cell lines compared to FHC. These findings clearly show a 

preferential upregulation of PRLR in CRC cells suggesting a role for PRL-PRLR 

signaling in colorectal tumors.  

Binding of PRL to prolactin receptor (PRLR) activates JAK/STAT and/or RAS-

RAF-ERK1/2 pathway [156, 178]. In fact, we observed a rapid and robust increase 

in STAT3 phosphorylation. We also observed an increase in STAT3 

phosphorylation when treated with PD98059, a similar finding reported earlier 

[224].  In their studies, the authors demonstrated that treating the melanoma cell 

line LU1205 with only PD98059 induces robust phosphorylation of STAT3 and 

STAT5 [224]. Previous studies in breast cancers have also demonstrated STAT5 

activation and not STAT3 activation in the presence of PRL. More importantly, in 

breast cancers it was determined that STAT5 and STAT3 mediate opposing effects 

on several key target genes such as BCL6, with STAT5 exerting a dominant role.  

When both STAT3 and STAT5 are activated at the same time, there is in fact a 
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reduction in the proliferation of the breast cancer cells. Moreover, there was and 

increased sensitivity to chemotherapeutic drugs [225, 226]. In our studies, we 

observed that PRL did not affect the proliferation of CRC cells. The fact that only 

STAT3 is activated in CRC cells suggests differential activity for PRL that 

depends on the cancer type. It might be interesting to overexpress STAT5 in CRCs 

and determine whether PRL treatment would mimic the reduction in proliferation 

as observed in breast cancer.  

The spheroid formation assay helps us determine the presence of cancer initiating 

cells in a cancer cell population [16, 221]. Our results show a dose dependent 

increase in spheroid formation, number and diameter in CRC cells following PRL 

treatment. This is in agreement with previous studies with prostate cancers where 

PRL expression in mouse prostate led to increase in stem cell/basal cell population 

[132, 152]. Similarly, neurosphere formation along with expansion of hippocampal 

precursor cell population [155] has been observed in a PRL dependent manner.  

We also observed increased expression of DCLK1, LGR5, ALDH1 and CD44. 

However, there were differences seen in the stemness based on cell lines. HT29 

cells expressed only moderately higher levels of the marker proteins when 

compared to HCT116. This is also in line with studies of PRL effects on neural 

stem cells [155]. It would be interesting to determine whether expression of stem 

cell related proteins is affected in neural stem cells, and whether this expression is 
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affected in brain tumors.  

PRL also induced Notch signaling via the JAK2-ERK1/2 pathway by inducing 

JAG1 expression leading to NICD accumulation along with an increase in 

expression of Notch target genes. This is of high significance because clinically 

increased ERK1/2 activation was noted in patients with familial adenomatous 

polyposis [220]. Moreover, previous studies have also demonstrated that ERK1/2 

can modulate Notch signaling by regulating the expression of its ligand JAG1 

[216]. Notch signaling is active in intestinal crypts [25] and helps regulate stem 

cell hierarchy and to determine cell fate [24]. Dysregulation in this pathway can 

lead in colorectal cancer [30, 31]. It would be interesting to determine whether 

PRL upregulation is essential for tumorigenesis.  

Based on our observation, we put forward a model where the presence of PRL in 

the tumor microenvironment of CRC cells would activate JAK2 after binding to 

PRLR, which would in turn induce ERK1/2 phosphorylation. Activated ERK1/2 

would induce JAG1 expression in the cells which would translocate to the cell 

membrane. Binding of JAG1 extracellular domain to the single pass 

transmembrane Notch-1 receptor would lead to intracellular conformational 

changes and cleavage by the -secretase complex proteins leading to separation of 

the NICD from the transmembrane domain. The cleaved NICD would then 

translocate to the nucleus and complex with Mastermind-like (MAML) and CSL to 
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induce respective gene expression (Fig 2.9). However, it is important to note that 

PRL expression itself is not upregulated in the cancer tissues, but rather only 

PRLR. However, previous studies have demonstrated increased levels of PRL in 

the blood stream of patients with CRC [145, 146]. This suggests that PRL 

expression is induced at other sites. This is also different from what has been 

observed in breast cancers where the cancer tissue itself induces PRL expression 

[93, 152]. It would be interesting to determine how and where PRL expression is 

induced in colon tumorigenesis. In this regard, it should be noted that PRL is 

believed to be a hormone whose expression is responsive to stress. PRL does 

increase in response to psychosocial stress, although women may have higher 

magnitude of increase than men, and this might be dependent on estradiol levels 

(62). Moreover, dietary fat was shown to induce circulating PRL under conditions 

of either stress, and dietary fat can also affect tumorigenesis [227].  
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Figure 2.9: Proposed model of PRL signaling in CRC: Prolactin present in the 

tumor microenvironment would bind to PRLR and induce Jak2-ERK1/2 

phosphorylation. The activated ERK1/2 induces expression of Jagged 1 (JAG1), a 

Notch-1 ligand. JAG1 would translocate to the cell membrane and bind to the 

transmembrane Notch receptor in the neighboring cell. This binding would induce 

a conformational change in the receptor leading to sequential cleavages by various 

enzymes including the -secretase complex in the neighboring cell. This results in 

the release of the Notch intracellular domain (NICD) that then translocates into the 

nucleus, complexes with Mastermind-like (MAML) and CBF1/ suppressor of 

hairless-1 (CSL) to activate target gene expression.  
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Chapter 3: 

Heterogeneity in expression of Prolactin receptor in colorectal cancer 
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3.1 Abstract 

Prolactin receptor (PRLR) is a single pass transmembrane protein that activates 

proliferative and growth responses upon interacting with its ligand Prolactin 

(PRL). Overexpression of PRLR was reported in several cancers with higher 

incidences particularly in breast cancer. Our study illustrates a significant increase 

in expression of PRLR in colorectal cancer patient samples and cell lines compared 

to adjacent normal tissue or cells. In addition, we observed a stage specific increase 

in expression of PRLR in patient samples with adenomas and carcinomas having 

high expression while it is low in polyps and inflammation. In silico analysis for 

expression and copy number variation on data retrieved form The Cancer Genome 

Atlas (TCGA) data base pertaining to colorectal cancer patients suggest both an 

increase in expression and copy number of genes in the 5q13 chromosomal locus. 

This locus harbors the PRLR gene along with other genes which may play a critical 

role in colorectal cancer. Sterol response element binding protein 1 (SREBP1) is a 

transcription enhancer and is upregulated in colorectal cancer. It has binding 

regions in the PRLR promoter regions and can regulate its expression in colorectal 

cancer cells. Taken together, our observations indicate that there is a stage specific 

upregulation of PRLR in colorectal cancer and that this upregulation may be a 



 
107 

 

contribution of locus amplification and/ or increase in gene expression due to 

enhanced transcription.   

3.2 Introduction 

Cytokines present in the tumor microenvironment play a critical role in tumor 

progression and metastasis. Upregulation of several cytokines and their receptors 

have been noted in several cancer types. Cancer cells respond to host-derived 

cytokines by increasing cell proliferation, attenuating apoptosis, and increasing the 

invasion and metastasis phenotype. A more detailed understanding of cytokine-

tumor cell interactions provides new opportunities for improving cancer 

immunotherapy [228, 229].  Cytokines interact with specific receptors which are 

transmembrane proteins. This interaction leads to dimerization of the receptors. 

These dimerised receptors can activate several intracellular signaling proteins/ 

cascades that promote cell growth or death.  

Several clinical observations and experimental studies indicated an increase in 

cytokine receptor expression in breast, prostate, ovarian, and endometrial cancers. 

Analysis on a cohort of seventeen breast cancer tissues and adjacent normal tissue 

revealed that growth hormone receptor (GHR) and progesterone receptor (PR), 

showed a significant increase, suggesting that growth hormone (GH) and 

progesterone (P4) may be acting together to promote breast cancer development 

[230]. However, tumor grade (MIB-1 index) and GHR have an inverse correlation 
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indicating that GHR and PR may serve as early prognostic marker [230]. A similar 

increase in expression of GHR, EGFR, keratinocyte growth factor receptor 

(KGFR), in addition to receptors for several colony stimulating factors, was 

observed in inflammatory bowel disease (IBD) [231].  

DNA copy number variations (CNVs) constitute an important component of 

genetic variation. Since their advent, they have been identified in a variety of 

conditions implicating their role in susceptibility to a wide spectrum of 

pathologies. In addition, somatic CNVs can be used to identify regions of the 

genome involved in these disease phenotypes [232]. CNVs occurring in a specific 

gene or affecting the whole chromosomes have been identified to cause various 

pathologies and developmental abnormalities as well as act as a source for genetic 

diversification, adaptation and evolution [232]. CNVs occurring in many genes 

simultaneously can be very detrimental. Compared to higher organisms, CNVs are 

beneficial, increasing survival under selective pressure and augmenting drug 

resistance in microorganisms [233]. Until recently, the significance of CNVs in 

cancer was underappreciated. However, in vitro and clinical studies have 

characterized genomic instability while chromosomal structural dynamism was 

observed in a plethora of cancer types, leading to the conclusion that these genetic 

variations form an important part of cancer pathogenesis [232]. 
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Human epidermoid carcinoma cells A431 have high levels of EGFR. The EGFR 

gene is located on short arm of chromosome 7 and cytological studies have 

identified that this locus is duplicated/ amplified in epidermoid carcinomas. This 

correlates with increased EGFR expression [234]. Similarly, chromosomal band 

analysis on  human pancreatic cancer cell lines T3M4, PANC-1, COLO 357, and 

UACC-462, suggested structural alterations of chromosome 7p in T3M4, PANC-1, 

and COLO 357 cells, while UACC-462 showed multiple copies of chromosome 7 

[235, 236]. Amplification of 20q12-13 chromosomal region encompassing genes 

coding for AIB1, PTPN1, MYBL2, BTAK and ZNF217 is common in breast cancer 

and in ovarian tumors. Clinical studies done on 24 sporadic, 3 familial and 4 

hereditary ovarian carcinomas and in 8 ovarian cancer cell lines showed 

amplification of at least one of the five regions of 20q12-13.2 chromosomal locus 

in 54% of sporadic and 100% of hereditary tumors. AIB1 and PTPN1 genes were 

preferentially amplified in sporadic ovarian tumors while BTAK, MYBL2 and 

ZNF217 gene locus were preferentially amplified in sporadic breast tumors. Such 

high frequency of gene amplification at 20q12-q13.2 suggests that the genes 

present in this region may play a central role in the pathogenesis of ovarian and 

breast cancers [237]. CNV of 1q21-23, 2p12-16, 8q24, 9q34, 12q12-14, 13q32, 

16p12, 18q21-22, and 22q12 locus identified in  large B-cell lymphomas (DLBL) 

demonstrates the significance of genes located in this region in lymphoma-genesis 
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[238]. Oral squamous cell carcinomas often possess a triploid karyotype which is 

associated with disease severity and drug resistance [239]. As regards GI-related 

cancer, amplification of  ERBB2 gene was identified in MKN-7 gastric cancer cell 

line [240]. Apart from amplification, deletion of a locus or the complete 

chromosome can also confer selective advantage. For example, haploinsuffecieny 

of BRCA1 in breast cancer leads to increase in GHR and PR leading to an increase 

in cell survival [241]. 

 In addition to the a forth mentioned genetic changes which can contribute to the 

increase in gene expression, an increase in binding of transcription enhancing 

factors to the enhancer regions of the PRLR gene can also lead to increase in PRLR 

expression at a transcription level.  

Aberrant increase in lipogenesis is a metabolic feature of proliferating tumor cells. 

Normal cells, acquire their fatty acid stock from the circulation: however, in tumor 

cells there is an active de novo synthesis of lipids. Sterol regulatory element-

binding proteins (SREBP), also referred to as sterol regulatory element-binding 

transcription factor (SREBF) encoded by the SREBF genes in humans, is a member 

of the basic helix-loop-helix-leucine zipper (bHLH-Zip) transcription factor family 

of proteins [242], and is a master regulator of lipogenic gene expression. SREBP-

1a, SREBP-1c, and SREBP-2 are the three isoforms of SREBP proteins.  SREBP-

1a and SREBP-1c are transcribed from the same SREBP-1 gene, but from two 

http://en.wikipedia.org/wiki/Basic_helix-loop-helix_leucine_zipper_transcription_factors
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distinct promoters, while SREBP-2 is encoded by SREBP-2 gene as a single 

mRNA. The relative levels of SREBP-1a and -1c mRNA vary depending on the 

tissue type. SREBP-1c is the predominant isoform in adult liver and adipocytes, 

while, SREBP-1a is predominant in spleen and in cancer cells. 

SREBP-1a interacts with co-activators such as p300/CREB-binding protein and 

Sp1 to regulate transcription. SREPB proteins bind to a highly conserved sequence 

called sterol regulatory element-1 (SRE1) in the promoter upstream regions of 

target genes. SREBP-1a and 1c are potent transcription activators of genes that 

mediate synthesis of cholesterol, fatty acids, and triglycerides, while SREBP-2 

preferentially activates cholesterol synthesis genes [243]. SREBP-1 mRNA is 

translated as a precursor which attaches to the nuclear membrane and endoplasmic 

reticulum. Following activation and cleavage, the mature protein translocates to the 

nucleus and activates transcription by binding to the SRE1. Sterols inhibit the 

cleavage of the precursor, and the mature nuclear form is rapidly catabolized, 

thereby reducing transcription [244, 245].   

Small molecule mediated inhibition of fatty acid synthesis in the HCT116 CRC 

cell line resulted in a dramatic increase in SREBP-1 protein levels [246]. Similarly 

SW480 and SW620 CRC cells treated with oridonin, a potent antiproliferative 

http://en.wikipedia.org/wiki/Endoplasmic_reticulum
http://en.wikipedia.org/wiki/Endoplasmic_reticulum
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diterpenoid agent, isolated from Rabdosia rubescens, caused a dramatic decrease 

in SREBP-1 levels resulting from decreased fatty acid synthesis [247].   

Earlier, we have demonstrated that PRL treatment activates the stem cell 

population in CRC. In humans PRL specifically binds specifically to PRLR to 

activate intracellular signaling events [248]. We have shown that an increase in 

expression of PRLR was observed in CRC patient samples and cell lines compared 

to adjacent normal tissue or normal intestinal epithelial cell line. However, the 

reason for this upregulation is not yet known. This work is directed towards 

identifying the expression pattern of PRLR and the molecular basis for its 

upregulation in CRC. 
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3.3 Materials and Methods 

3.3.1 Cell lines 

Well characterized colon cancer cell lines used in the study were obtained from 

ATCC (Manassas, VA). These cells were cultured in DMEM media supplemented 

with 10% fetal bovine serum (Sigma Aldrich, MO) and 1% antibiotic-antimycotics 

solution (Mediatech Inc, VA) at 37°C in a humidified atmosphere of 5% CO2.  

3.3.2 RT-PCR Analysis 

Total cDNA from various sites along the normal human gastrointestinal tract was 

obtained from Clontech (Clontech, CA). Colon cancer cDNA panel with matched 

adjacent tissue controls was obtained from Origene (Rockville, MD). Trizol 

reagent (Invitrogen, Carlsbad, CA) was used to isolate total RNA from cell lines 

following manufacturer’s instructions. 2 μg RNA was used for cDNA synthesis 

using Superscript II reverse transcriptase and random hexanucleotide primers 

(Invitrogen, CA). PRLR expression was quantified using SYBR green reagent 

(Molecular Probes, OR) and specific primers with GAPDH as internal standard. 

Primers for the PCR include 5`-GGAGCTGGCTGTGGAAGTAA-3` and 5`-

CTCCCACTCAGCTGCTTTCT-3`for PRLR, 5`-

CAGCCTCAAGATCATCAGCA-3` and 5`-GTCTTCTGGGTGGCAGTGAT-3` 

for GAPDH, 5`-CTGCTGTCCACAAAAGCAAA -3` and 5`-

GGTCAGTGTGTCCTCCACCT-3` for SREBP-1, 5`- 
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GCTACCTGTCCGGCTACATC-3` and 5`-CGATGCCCATAATGTTGTTG-3` 

for NR2F1/ COUP-TF1, 5`-CCAGGCACCATGCTAGGTAT-3` and 5`-

GTAAGAACAGACCCAGCCACTT-3` for GFI1. 

3.3.3 Western Blot Analysis 

Protein samples were extracted using RIPA buffer (Thermo Scientific, IL) 

supplemented with protease and phosphatase inhibitors. 10-30 μg of protein was 

subjected to poly acrylamide gene electrophoresis and transferred onto PVDF 

membrane (EMD Millipore, MA) following quantification using BCA Kit 

(Thermo Scientific, IL). Antibodies for PRLR (sc-377098), SREBP-1 (sc-365513) 

and ACTB (sc-1616) were obtained from Santa Cruz Biotech Inc. (Dallas, TX). 

Proteins were detected using chemiluminescence (GE Healthcare, NJ).  

3.3.4 Histology 

Tissue microarray slides containing colorectal cancer, adjacent normal, liver and 

lymph node metastatic and normal samples (CO702) and colon adenocarcinoma, 

mucinous, papillary, squamous cell carcinoma of different grades and normal 

colon tissue (CO802) were obtained from Biomax (Rockville, MD). The tissue 

sections were fixed in 1% formaldehyde, following de-waxing at 60
o 

C. Following 

sequential hydration and blocking, the sections were incubated overnight with 

PRLR antibody. Staining was developed using the Histostain kit (Invitrogen, CA) 

following manufacturers protocol. Staining was scored using Clarient Automated 
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Cellular Imaging System (ACIS) (San Juan Capistrano, CA) as previously 

described [249] and the scores obtained were used for further analysis. 

3.3.5 ChIP Assay  

ChIP assay was performed based on protocol from Dr. Jeffery Rosen’s lab 

(https://www.bcm.edu/rosenlab/index.cfm?PMID=13002) with little modification. 

Briefly, HCT116 and DLD1 cells were plated at a confluence of 2 X10
6
 in 100mm 

dishes and were grown to 90% confluence, at which point the cells were cross-

linked by adding 4% formaldehyde (Cat # 433284, Sigma, St. Louis, MO) directly 

into the media to a final concentration of 1%. Fixing was stopped by adding 

glycine to a final concentration of 125 mM. The cells were washed in ice cold PBS 

and cells were scraped and collected. Cell were lysed using a mild buffer (5mm 

PIPES in KOH (pH 8.0), 85mM KCl and 0.5% NP-40, supplemented with protease 

and phosphatase inhibitor) and dounced (Type B) repeatedly to ensure thorough 

cytoplasmic lysis as seen under a microscope. The nucleus was pelleted by 

centrifuging (5000 rpm for 5 min) and suspended in nuclear lysis buffer (50 mM 

Tris (pH 8.1), 10 mM EDTA and 1% SDS supplemented with protease/ 

phosphatase inhibitors) and sonicated to obtain DNA fragments of 0.3- 1 kb size. 

The chromatin was diluted 1:5 in ChIP dilution buffer (0.01% SDS, 1.1% Triton 

X-100, 1 mM EDTA, 16.7 mM Tris (pH 8.1), 167 mM NaCl supplemented with 

protease inhibitors) and pre-cleared using salmon sperm DNA treated protein A 

https://www.bcm.edu/rosenlab/index.cfm?PMID=13002
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agarose slurry. A part of the pre-cleared lysate was saved to be used as input and 

the remainder was mixed with 5-8 μg of SPREBP-1 antibody and following an 

overnight incubation, the antibody/DNA complex was precipitated using salmon 

sperm DNA/ protein A agarose slurry. Reverse crosslinking and DNA extraction 

was followed by semi-quantative PCR using primers specific to upstream region of 

PRLR gene: 5`- GAACTTCAAGAGGAGGAAGT-3` and 5`- 

CCTACAACTTCTACATCTTCTT-3` which produce a 415bp fragment and 5`-

CCTGCATTAGAAGCTCTGCAA-3` and 5`-CTTCCCTCTCAGTGCCTTAA-3` 

that produce a 114 bp fragment.  

3.3.6 Analysis of TCGA Data Sets 

The Z-score values for gene expression and the log2 ratios for copy number 

variations for each of the five genes PRLR, AGXT2, RAD1 and DNAJC21 were 

obtained for 156 patients from TCGA portal (http://tcga-data.nci.nih.gov/ 

tcga/tcgaHome2.jsp) with the collaboration of Dr. Andrew Godwin. Samples with 

a tumor/normal expression level of more than or equal to 0.5 were considered up-

regulated. Samples showing a tumor/normal log2 values of >0.3 for CNV were 

considered to possess a copy number gain [250]. Correlation and regression 

analysis was used to analyze the data. 

3.3.7 Statistical Analysis 

GraphPad Prism 5 (La Jolla, CA) was used to perform all the descriptive statistics 

http://tcga-data.nci.nih.gov/
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including mean, standard deviation and student’s t-test. Data from at least three 

independent experiments were expressed as the mean ± SEM. P value ≤ 0.05 were 

considered significant. 
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3.4 Results 

3.4.1 Expression of PRLR along the gastrointestinal tract 

We first determined the expression of PRLR along the GI tract to get a better idea 

about the expression pattern. Specific primers were designed to detect the full 

length and dSF1 isoforms (together called long form) or the SF1a, SF1b and the 

d7/11 isoforms (short form) (Fig 3.1A and B).  Real-Time PCR data suggests that 

both PRLR long and short forms are differentially expressed along the length of 

the GI tract with the long form being the predominant isoform. Ileocecum, colon 

and liver have higher long form expression compared to other sites, with colon 

having the highest expression (Fig 3.2 A). While the expression of long form is 

predominant in the intestinal portion of the GI tract, short form expression is 

spread throughout, with detectable expression all the way from stomach to rectum, 

and the liver (Fig 3.2 B).    

3.4.2 Expression of PRLR in CRC and normal tissues 

Next, we evaluated the expression of PRLR in CRC and adjacent normal human 

tissues using the same primer pairs. We noted that there was a three-fold increase 

in expression of the long form and a four - fold increase in short form (Fig 3.3 A 

and B) in the tumor samples compared to adjacent normal tissue. However, there 

was a considerable variation in the expression of short form ranging from one to 

five fold increase (Fig 3.3 B). On the other hand, the expression pattern for the  
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Figure 3.1: PRLR transcript grouping and primer binding sites 
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Figure 3.1: PRLR transcript grouping and primer binding sites: For the ease 

of desigiing primers, PRLR transcripts were catagorized into two groups. (A) The 

long form including the full length and the dSF1 isoforms and the (B) short form 

including the SF1a, SF1b and the d7/11 isoforms. For the long form, primers were 

designed spanning exon 9-10, while that for the short form were designed spanning 

only exon 10, but the binding site for the reverse primer is very unique for the short 

form. 
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Figure 3.2: Expression of PRLR along the GI tract 
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Figure 3.2: Expression of PRLR along the GI tract: Evaluation of PRLR across 

the GI tract indicate that both the long (A) and the short (B) form are expressed at 

varying levels across the GI tract with the long form predominantly in the intestine 

and short form more generally expressed. Expression of long form is more 

prominent in the colon as compared to other intestinal sites. Placental tissue was 

used as experimental controls. 
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Figure 3.3: Expression of PRLR in patient samples from CRC and adjacent 

normal tissue 
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Figure 3.3: Expression of PRLR in patient samples from CRC and adjacent 

normal tissue: In general, a significant overall increase in expression of both the 

isoforms of PRLR is observed in CRC tumor samples compared to adjacent normal 

tissue samples. (A) While the expression of the long form is more compact and 

significant, (B) short form expression is more variable among both the normal and 

maligant samples.  

 

 

 

 

 

 

 

 



 
125 

 

long form was tighter with most of tumor samples showing a significant increase in 

expression as compared to adjacent normal samples (Fig 3.3 A). 

3.4.3 Histological validation of PRLR expression in CRC and normal tissues 

We next used immunohistological studies to further validate the increase in PRLR 

expression. CRC samples and normal tissue sections were stained with PRLR 

antibody which detects  the C-terminal region of PRLR receptor and scored for 

intensity. Detectable levels of PRLR was noted along the crypt length in normal 

colon (Fig 3.4 A, B), predominantly in the membrane of  the epithelial cells lining 

the crypt and a few stromal cells. However, in adenoma samples, the crypt 

structure is completely lost accompanied with  a significant and distorted 

expression of PRLR (Fig 3.4 C, D). Further more in some cells, nucelar staining 

for PRLR was also observed. Histoscore analysis indicated a significant increase in 

PRLR expression in adenomas and adenocarcinomas (Fig 3.5 A). In addition, this 

increase occurs in a stage specific manner with decresed expression noted in 

inflammation and polyps while increased expression was observed in adenomas 

and adenocarcinomas (Fig 3.5 B). 

3.4.4 Analysis of PRLR expression in metastatic sites 

Further histological analysis of samples derived from distant metastatic sites such 

as lymph nodes and liver indicates that the increase in PRLR expression observed 

in adenomas and adenocarcinomas is maintained in these metastatic foci localized 
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to these regions. Lymph nodes have a lower level and diffuse expression of PRLR 

(Fig 3.6 A, B), however, metastatic foci have significantly higher levels of PRLR 

compared to surrounding tissue (Fig 3.6 C, D). Normal liver samples (Fig 3.7 A, 

B) have a significant higher PRLR expression compared to metastatic foci (Fig 3.7 

C, D). Histoscore analysis also indicates the same with higher PRLR expression in 

metastatic foci of the lymph nodes as compared to liver site (Fig 3.8 A).  

3.4.5 TCGA based evaluation of changes in PRLR expression 

Changes in the expression of a particular gene can occur due to a number of 

reasons, including chromosomal anomalies. Numerical variations, referred to as 

copy number variations (CNV), constitute one of the frequently observed 

chromosomal variations in most cancers [251]. The Cancer Genome Atlas 

(TCGA), data sets containing expression and CNV data pertaining to PRLR and 

four other genes flanking the PRLR gene DNAJC21, RAL14, RAD1 and Alanine-

glyoxylate aminotransferase 2 (AGXT2), were analyzed to determine whether the 

increase in expression was due to underlying genetic variation. We noted a 

significant increase in expression of PRLR, DNAJC21, RAD1 and RAL14 in 35- 

40% of patient samples (Fig 3.9 A, B, C and D). AGXT2, on the other hand, did not 

show any significant change in expression (Fig 3.9 E). The remaining patient 

population had a decrease in expression of PRLR; however, the decrease is not 

statistically significant.  
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Figure 3.4: Histological analysis of PRLR expression in CRC and adjacent 

normal tissue 
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Figure 3.4: Histological analysis of PRLR expression in CRC and adjacent 

normal tissue: (A, B) PRLR is expressed at very low levels and is primarily  

localized to the basolateral membrane surface. (C- F) In colorectal tumor samples, 

the crypt structure is completely distorted accompanied with an overall increase in 

PRLR expression in all the cells of the tumor. A few cells also show nuclear 

staining. 
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Figure 3.5: Histoscore analysis of PRLR expression in normal and CRC tissue 

samples 
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Figure 3.5: Histoscore analysis of PRLR expression in normal and CRC tissue 

samples: (A) In comparison to normal colon sections, increased expression of 

PRLR is observed in adenomas and adenocarcinomas. (B) However, during the 

initial stages of CRC progression, that is during inflammation and polyps, a 

decraese in PRLR expression is observed.  
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Figure 3.6: Histological analysis of PRLR expression in lymph node metastatis 

site 
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Figure 3.6: Histological analysis of PRLR expression in lymph node metastatis 

site: (A, B) Normal lymph exhibits diffused PRLR staining. C,D) metastatic foci 

in the lymph node expressed higher levels of PRLR compared to surrounding 

lymph nodes tissue. Metastasis also led to complete loss of tissue integrity. 
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Figure 3.7: Histological analysis of PRLR expression in liver metastatis site 
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Figure 3.7: Histological analysis of PRLR expression in liver metastatis site: 

(A) PRLR is expressed at high levels in a diffuse manner with deep staining in the 

nuclei of some cells. (B) Metastatic foci have higher PRLR expression. 
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Figure 3.8: Histoscore analysis of PRLR expression in metastatic sites 
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Figure 3.8: Histoscore analysis of PRLR expression in metastatic sites: (A) 

Compared to normal intestinal tissue, PRLR expression is increased in adenomas 

and adenocarcinomas and increases further in lymph node metastatic sites. 

However, in the liver metastatic foci PRLR expression is decreased. 
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Figure 3.9:  Evaluating changes in expression of genes located in the PRLR 

locus 
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Figure 3.9:  Evaluating changes in expression of genes located in the PRLR 

locus: Expression data sets pertaining to genes DNAJC21, RAD1, RAL14, AGXT2 

which are in close vicinity of PRLR gene for 156 patients was obtained from 

TCGA data base. Data indicates that there is a significant increase in expression of 

(A) PRLR, (B) DNAJC21, (C) RAD1and (D) RAl14 in 30-40% of patient 

population, while expression of  (E) AGXT2 seems to increase, but is not stastically 

significant. *= p<0.05. 
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Figure 3.10:  Evaluating changes in the copy number of genes located in the 

PRLR locus 
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Figure 3.10:  Evaluating changes in the copy number of genes located in the 

PRLR locus: Patient data sets pertaining to copy number analysis for DNAJC21, 

RAD1, RAL14, AGXT2 genes which are in close vicinity of PRLR gene for 156 

patients was obtained from TCGA data base. Data indicates that there was a 

significant increase in copy number of (A) PRLR, (C) RAD1, (D) RAl14 and (E) 

AGXT2 while the copy numer of (B) DNAJC21 does not change significantly (*= p 

≤ 0.05). 
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In addition to the expression data, we also evaluated for any changes in the copy 

number as an increase in copy number has also been identified as a contributory 

factor for increase in gene expression [252]. TCGA analysis demonstrated that 

there is a significant increase in mean copy number of PRLR, RAD21, RAL14 and 

AGXT2 (Fig 3.10, A, C, D, E) with no significant change in DNAJC21 (Fig 3.10 

B). Next we performed a correlation and regression analysis on normalized data to 

identify existence of correlation between the increase in expression and the CNV 

of the genes. Data indicates a strong correlation in the increase in expression of 

PRLR, DNAJC21, RAD1 and RAL14 (Fig 3.11 A, B, C, D) with an increase in copy 

number of these genes indicated by a positive correlation, while in the case of 

AGXT2, this correlation is lost (Fig 3.11 E). 
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Figure 3.11:  Evaluating changes in the copy number of genes located in the 

PRLR locus 
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Figure 3.11:  Evaluating changes in the copy number of genes located in the 

PRLR locus: Correlation analysis to identify if there is a relationship between the 

observed changes in expression and copy number. It may be speculated that the 

increase in expression observed in (A) PRLR, (B) DNAJC21,  (C) RAD1and (D) 

RAl14 may be due to an increase in copy number of the genes in some patients. 

Such positive correlation did not exist in the case of (E) AGXT2.  
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3.4.6 Intrinsic transcription factors which regulate PRLR expression 

In the above study, some patients show an increase in PRLR gene expression but 

no change in copy number, suggesting a different mechanism. To identify the 

cause for increase in expression of PRLR noted in these samples, we investigated 

the intrinsic transcription enhancer factors that can potentially regulate PRLR 

expression. We analyzed the 2.5 Kb promoter upstream region for PRLR 

transcription start site for several transcription enhancers (Table 2.1). Of the 

multiple factors, we identified only three, SREBP1, NR2F1 and GFI1, that had 

single binding sites. Real-time PCR analysis to identify expression levels of these 

factors in colorectal cancer cells shows that HCT116 cells have a  significant 

increase in expression of SREBP-1 compared to other cells types (Fig 3.12 A) and 

is predominantly localized to the nucleus (Fig 3.12 B). Based on this, we directed 

our further studies to identify if SREBP-1, which can regulate expression of 

metabolic genes [247], is also involved in regulating PRLR expression in CRC. To 

this end, chromatin-immuno precipitation followed by semi-quantative real-time 

PCR was performed using two different primer pairs which flank the SREBP-1 

binding sites of PRLR enhancer region (Fig 3.12 C). There was an increase in 

SREBP-1 occupancy in HCT116 cells, compared to isotype control (Fig 3.12 D). 

Collectively, this data suggests that expression of PRLR in CRC patients can be 

regulated individually or in combination by in CNV or an increase in transcription.  
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Figure 3.12:  Evaluating SREBP-1 expression and its occupancy of the PRLR 

enhancer elements. 
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Figure 3.12:  Evaluating SREBP-1 expression and its occupancy of the PRLR 

enhancer elements: (A) Evaluating expression of three transcription enhancer 

proteins which have a single binding site in the PRLR promoter region. Data 

indicates that SREBP-1 was upregulated in HCT116, DLD1 and SW620. (B) 

Western blot indicates that SREBP-1 accumulated in the nucleus.  (C) Depiction of 

SREBP-1 binding site in the PRLR enhancer region, two primers of 114 and 415 

bp were designed to evaluate binding. (D) ChIP data indicating active recruitment 

of SREBP-1 onto the PRLR promoter region.  
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3.5 Discussion 

PRLR is a single pass non-tyrosine kinase receptor belonging to the class 1 

cytokine receptor family. Localized to chromosome 5p13-14, it contains 10 exons 

and codes for a single transcript, which is then alternately spliced to generate 

diverse functional isoforms. Binding of PRL leads to dimerization of the receptor 

and activation of intracellular signaling mediated predominantly by JAK-STAT or 

JAK-ERK pathways. Several tissues have been identified to express PRLR where 

it plays a critical role in tumorigenesis. Our earlier studies have shown that CRC 

cells treated with recombinant PRL show  activation of Jak2- STAT3 signaling, 

clearly demonstrating the presence of functional PRLR in CRC cells [253]. In 

humans, PRL is only known to interact with PRLR. This intrigued us to evaluate 

the levels and pattern of PRLR expression in patient population and to identify if 

there is existence of any heterogeneity in the expression pattern with an intention 

to exploit it as a diagnostic tool.  

For the ease of desigining primers, we catagorized, PRLR isoforms into two major 

groups. The full length and the dSF1 forms were grouped into long form and the 

SF1a, SF1b and d7/11 isoforms were grouped as short form (Chapter 1, Fig 1.7). 

We evaluated the expression of PRLR in various regions of the GI tract and 

identified that the long form is predominantly expressed in the intestinal region. 

The long form was expressed more in the colon compared to short form, which is 
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expressed at varying level across the GI tract (Fig 3.2 A, B). Next we evaluated 

PRLR expression in CRC patient samples, and observed an increase in the 

expression of both the long and the short form of PRLR transcripts in a cohort of 

patient samples. However, the levels of long form of receptor is higher than that of 

the short form (Fig 3.3 A, B). Similar findings were reported earlier [99, 223]; 

however, our study provides in depth analysis and demonstrates an isoform 

dependent variation in expression of PRLR. The increase in long form of PRLR 

compared to short forms clearly indicates that PRL signaling potentially plays a 

significant role in CRC tumorigenesis.  

Next, we evaluated PRLR expression in tissue sections pertaining to tumor and 

adjacent normal samples. PRLR is expressed both in normal (Fig 3.4 A,B) and 

malignant sections (Fig 3.4 C,D). It is expressed in all the cells lining the crypt and 

predominantly on the basolateral membrane surface. However, in malignant 

samples the crypt structure is completely lost with a distorted expression pattern of 

PRLR, a finding further supported by histoscore analysis (Fig 3.5 A). PRLR 

expression is decreased in the initial stages of CRC (such as the inflammatory 

stages) as compared to adenoma and adenocarcinoma (Fig 3.5 B). These data 

clearly indicate that PRLR expression changes in a stage specific manner with 

higher expression observed in malignant tissue. This increase in PRLR expression 

is retained in metastatic sites of lymph nodes (Fig 2.6 B) and liver (Fig 3.7 B), 
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where invasion leads to loss of native tissue structure and formation of metastatic 

foci.  

We next analyzed gene expression and CNV data sets derived from TCGA datasets 

to identify the underlying reason for the observed increase in PRLR levels in  

colorectal cancer patient samples. Our data suggest that there is increase in 

expression of PRLR, including  DNAJC21, RAD1, RAL14 and AGXT2 genes 

located in the same locus. These genes have also been shown to play a critical role 

in tumorigenesis of various cancer types. In addition, PRLR, RAL14, RAD1 and 

DNAJC21 genes also exhibited an increase in gene copy number (Fig 3.8- 3.10). 

There exists a correlation between the increase in expression and increase in copy 

number of PRLR, RAL14 and RAD1 genes. However, DNAJC21 did not follow that 

relationship, there was a increase in expression but no change in CNV. AGXT2 on 

the other hand shows only an increase in copy number but not expression. This 

may have been due to improper design of probe sets used to quantify changes in 

expression and CNV or changes in promoter region of this gene.  

We next evaluated whether, there are any intrinsic factors that can regulate 

expression of PRLR. For this, we analyzed the 2.0 kb region upstream of the 

transcriptional start site for PRLR gene. Consences sequences for binding of 

several transcription enhancer factors was found in this region (Table 3.1). 

However, among the factors which have unique binding sites, only SREPB-1 
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seemd to be expressed at high levels compared to other factors. SREBP-1 plays a 

critical role in lipid biosynthesis and energy homeostasis in CRC. Our findings, 

based on ChIP analysis followed by real-time PCR, clearly indicate that SREBP-1 

can potentially bind to and regulate the expression of PRLR.   

Collectively, our findings indicate increase in expression of PRLR in colorectal 

tumor samples compared to normal samples. We also demonstrate that PRLR is 

expressed in normal colon crypt and is predominantly localized to the membrane. 

The study also suggests that the increase in expression may be a combined 

contribution of increase in copy number of PRLR gene and an increase in 

transcription, facilitated by increased binding of enhancer factor to the promoter 

proximal region of the PRLR gene. Further studies directed towards cytological 

evaluation to validate this increase in copy number and including a wider 

population may provide a clearer view of the expression pattern of PRLR in CRC 

and may provide new directions in evaluating PRLR based early diagnostic tools 

for detection of CRC.  
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Table 3.1: List of transcription factors or enhancers that have potential 

binding sites in the 2 Kb region upstream of the PRLR promoter 

region. 

 

Transcription 

factor/ enhancer 

Number of 

sites 

CDX2 70 

AML1a 16 

SRY 51 

GATA-X 3 

MZF1 8 

CP2 4 

GATA2 12 

GATA1 28 

LYF1 3 

DeltaE 6 

NKX2 5 

SREBP1 1 

USF 8 
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TST1 4 

S8 5 

OCT1 11 

EVI7 6 

AP1 9 

P300 1 

C/EBPB 5 

c-ETS 9 

SP1 1 

IK2 5 

AP4 1 

C-REL 4 

COUPT 1 

HNF3b 11 

XFD1 1 

N-MYC 2 

CDPCR 2 

GFI1 1 

HFH2 10 
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Chapter 4 

Discussion and future direction 
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4.1 Discussion 

PRL was identified in the early 1920’s [75, 76] and since then it has been shown to 

affect a diverse array of physiological activities. Released in a circadian manner 

[254] from the pituitary, PRL regulates stress related responses [110]. In humans 

PRL regulates reproduction [255] and milk production and secretion [118] and 

cancer [123]. Even though at a slow rate, new attributes are continuously being 

connected or advocated as being caused by PRL, such as its role in regulating the 

normal neuronal stem cell population [155], including our finding that it regulates 

cancer stem cells [253] in colorectal cancers.  

The first evidence of the role of PRL in GI tract comes from the work of Muller 

and Dowling [141] who induced hyperprolactinemia by injecting perphenazine, an 

antipsychotic drug that increased PRL secretion (as a side effect) [256] and found 

that this led to an increase in mucosal hyperplasia. Nagano and colleagues later 

identified that PRLR is expressed in the intestine [177], additional studies have 

shown that intestinal PRL can regulate calcium homeostasis and ion transport [142, 

209]. Clinically high serum levels of PRL was observed in patients with colorectal 

cancer [147]. Surgical removal of the tumor led to normalization of serum PRL 

levels, based on these observations; the authors propose the use of serum PRL as a 
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better prognostic marker for early detection of CRC. On similar lines, an increase 

in PRLR expression was observed in CRC tumors [223]. These findings implicate 

that expression of both PRL and PRLR is upregulated in CRC patients. However, 

the biological significance of this upregulation and the intracellular signaling 

pathways which are activated or regulated by PRL via PRLR in CRC remain 

elusive. Similarly, the expression pattern of PRLR in normal GI tract and how the 

expression varies in CRC has not been well characterized. This thesis is aimed at 

providing a clear understanding of the signaling induced by PRL and to identifying 

the expression pattern of PRLR in normal GI tract and in CRC, in order to develop 

better diagnostic/ prognostic tools and identify therapeutic agents to inhibit PRL-

PRLR signaling.  

4.2 Intracellular pathways activated by PRL in CRC 

The first part of this dissertation deals with understanding the intracellular 

signaling pathways that are activated by PRL in CRC. Based on in vitro studies, 

using established colorectal cancer cell lines, we first showed that PRLR is 

expressed at varied levels in these cells implicating that they are PRL responsive. 

Second, culturing these CRC cells in presence of recombinant PRL showed an 

increase in spheroid formation, an assay used to quantify the presence of stem 

cells. In addition, we showed that PRL induces, JAK2, STAT3 and ERK 
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phosphorylation. JAK, STAT and ERK family of proteins are established “signal 

transducers” which are responsible for transducing an extracellular event to the 

nucleus either directly or through other accessory proteins to induce changes in 

gene expression in response to extracellular cues [257].  

PRL activates JAK2- STAT5 signaling pathways in breast cancer [258] and 

prostate cancer [153]. However in CRC, we showed that PRL activates JAK2- 

STAT3-ERK pathway compared to other cancer types. Several publications 

including our own (Chapter 2, Fig 2.4) have demonstrated that the basal level of 

STAT5 in the CRC cells lines used in this study significantly low. This implicates 

that PRL can differentially activate either STAT5 or STAT3 depending on the cell 

type and abundance of STAT proteins. The differential activation also implicates 

different downstream effect, such as STAT5 promotes proliferation, but STAT3 

does not [259].  This may be the reason that we did not observe a change in 

proliferation in our study (Fig 4.1). However, we observe an increase in cancer 

stem cell population (Chapter 2, Fig 2.5).   

Notch signaling, as elaborated in Chapter 1, is critical in regulating colorectal 

cancer stem cell population. The fact that PRL can regulate CRC stem cell 

population, by inducing Notch signaling, suggests that it can activate additional 

pathways that help coordinate its action on stem cells. Goh and colleagues 
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demonstrated that phosphorylated ERK can induce JAG1, a Notch receptor ligand 

[216]. We have demonstrated that PRL treatment induces JAG1 expression which 

in turn activates Notch signaling pathway. These results indicate that PRL can 

activate not only JAK-STAT-ERK pathways, but also accessory pathways that can 

regulate critical events in colorectal tumorigenesis. 

4.3 Expression pattern of PRLR in colorectal cancer 

Next, we looked at levels of PRLR, which is critical in regulating PRL induced 

signaling in CRC. In a patient population based study, we observed an increase in 

PRLR expression in CRC tissue compared to adjacent normal tissue samples. 

Similarly, histological analysis shows an increased PRLR staining in CRC biopsy 

samples compared to adjacent normal tissue (Chapter 3, Fig 3.3- 3.5). Similar 

changes in expression pattern of PRLR was earlier reported in breast cancer [175] 

where tumor specific increases in PRLR expression were observed. However a 

similar and dramatic change in PRLR expression is also seen in normal breast 

tissue under varied physiological condition limiting its application as a prognostic 

tool in breast tumors. In comparison, an increase in PRLR distinctly in CRC tissue 

compared to adjacent normal, may implicate its diagnostic relevance. 

Some of the histological sections and in vitro studies show nuclear localization of 

PRLR particularly in CRC cells treated with PRL (Fig 4.2). Similar nuclear  
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Fig 4.1: Presence of PRL does not induce proliferation neither does it induce 

cell death.  
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Fig 4.1: Presence of PRL does not induce proliferation neither does it induce 

cell death proteins: (A) HCT116, HT29, SW480 and SW620 colorectal cancer 

cells treated with exogenous PRL for 24 and 48 hours do not show any increase in 

proliferation. (B) An increase in Cyclin E levels, clearly implicate active PRL 

signaling, however an absence in increase in Cyclin D, a critical protein to promote 

S-G1 transition, suggest that PRL treatment may not induce proliferation. 

Similarly, an absence of PARP cleavage and an increase in levels of anti-apoptic 

protein BCL2, suggest that prolactin may prevent cell death in CRC cell lines. 

 

 

 

 

4.2: Nuclear localization of PRLR upon PRL treatment in CRC 
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4.2: Nuclear localization of PRLR upon PRL treatment in CRC: CRC cells 

treated with exogenous PRL (500 ng/ml) led to nuclear translocation of PRLR as 

early as a 1h post treatment as compared to untreated sample. At 3h, there was a 

decrease in nuclear and membrane localization of PRLR but the cytoplasmic levels 

remain unchanged. 
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localization of PRLR was observed in breast cancer tissue [260] where it can bind 

to HMGN2 to induce expression of STAT5 responsive genes. Given the fact that, 

PRL signaling in CRC leads specifically to STAT3 activation and that STAT3 and 

STAT5 activate different sets of genes, it will be interesting to identify the proteins 

that can interact with PRLR in CRC and the genes that are regulated by this 

complex.  

4.4 Future Directions 

4.4.1 Analyzing PRLR locus amplification 

In silico data analyzed and presented earlier (Chapter 3, Fig 3.9- 3.11) clearly 

indicate the possibility of occurrence of locus amplification. Several early reports 

indicate similar amplification in genes in other cancers that have been exploited as 

diagnostic tools [261, 262]. These chromosomal amplifications can be identified 

using PCR [263] or through chromosomal staining. Current focus in the lab is 

directed towards identifying means to analyze 5p13-14 locus amplification in 

colorectal cancer. Data from this analysis would help us develop novel diagnostic 

tool for early detection of CRC. 
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4.4.2 Identifying novel small molecular inhibitors to target JAK-STAT 

signaling 

Data presented in Chapter 2 indicates that PRL actives JAK-STAT pathway in 

CRC cell lines. In addition, the dose and time dependent increase in STAT3- 

luciferase activity further supports the observation. The lab intends to use this 

plasmid to scan for novel STAT3 inhibitors, from the existing small molecule 

library available at the NCI and KU repository.  

4.4.3 Evaluating SREBP-1 binding to the PRLR enhancer elements  

Data presented in Chapter 3, clearly demonstrates that SREBP-1 can bind to the 

enhancer region of the PRLR gene. SREBP-1 binds to a specific sequence known 

as Sterol Response Element- 1 (SRE-1) in the enhancer region. Current studies in 

the lab are focused on cloning wild type and mutated SRE element upstream of a 

luciferase promoter. The luciferase activity from this plasmid would be used as a 

read out for the active binding of SREBP-1 to the PRLR promoter regions. 
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