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Abstract 

Expression of genes at the right time and place is crucial during adult homeostasis as 

well as embryonic development. Multicellular organisms regulate this spatiotemporal 

expression of genes by employing tissue specific transcription factors which bind to enhancer 

and repressor elements distant from the gene transcription start site. In embryonic 

development, most of the research understanding cell differentiation has focused on identifying 

such tissue specific transcription factors. What we do not understand clearly, is how these 

transcription factors that bind so far away from the gene promoter site influence the decision 

of RNA Pol II to transcribe or not transcribe. A recent discovery of a mega-dalton protein 

complex, called Mediator, has begun to answer this question. Mediator complex physically 

interacts with RNA Pol II and general transcription factors on one side and with transcription 

factors bound to enhancer/repressor sites on the other side. Mediator has thus been shown to 

act as a bridge that relays information between the transcription factors and RNA Pol II 

machinery and thus regulate gene expression. The various subunits of Mediator complex have 

been shown to interact with distinct transcription factors to regulate expression of specific 

genes. In this work, I describe the role of one such Mediator subunit, MED23. 

 The role of MED23 during mammalian embryonic development was identified through 

a forward genetics screen done in the lab. Loss of med23 leads to mid-gestational lethality in 
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mice embryos along with defects in craniofacial, neural and vascular development. We 

currently do not know the exact cause for embryonic lethality in med23 mutant embryos, but 

my results indicate that MED23 is crucial for endothelial cell-cell junction formation at E9.5, 

defects in which have previously been shown to affect embryonic survival. Specifically the 

formation of adherens and tight junctions between endothelial cells is affected in med23 

mutant embryos. Analysis of neuronal defects in med23 mutant embryos suggests that MED23 

is required during various steps of cranial placode development and this is regulated by 

MED23-mediated regulation of canonical WNT signaling.  

  How and why loss of MED23 leads to defects in these specific tissues is currently 

unknown, but work with conditional mutant analysis as well as transcription factor-binding 

screens are underway to figure this out. My work thus highlights a unique link between 

general transcription co-factor, Mediator, and its subunit MED23 with development of neural, 

vascular and craniofacial tissues and a crucial signaling pathway, WNT signaling.  
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Part 1: Craniofacial Development 

 One third of all congenital deformities have a craniofacial structure anomaly. In their 

severe forms, craniofacial defects affect the basic functioning of the head, ranging from jaw 

closure defects that affect the ability of patients to talk and eat, to debilitating defects in sensory 

organs affecting cognition. Even in their mildest forms where the functioning is not highly 

affected, defects in facial appearance affect well-being of patients. Prevention of occurrence of 

these craniofacial occurrences warrants a detailed understanding of how a normal head 

structure forms and an understanding of crucial genetic and environmental factors responsible 

for its normal development. While some genes and environmental factors required for proper 

craniofacial development have been identified, we clearly do not have a comprehensive 

understanding of head development and defects.  

The high occurrence of craniofacial anomalies is not a surprise given the highly 

complex nature of craniofacial development. Head induction begins as soon as the anterio-

posterior axis of the embryo is defined at gastrulation. All three germ layers, ectoderm, 

mesoderm and endoderm contribute to the developing craniofacial complex and their 

induction, differentiation, proliferation and patterning have to be highly orchestrated for 

proper head development. In head, ectoderm gives rise to the nervous system (central and 

peripheral) and majority of the craniofacial skeleton; mesoderm forms the cephalic 
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musculature and blood vessels as well as some of the skull bones while the endoderm forms the 

foregut lining, pharynx and trachea along with other organs. This section gives a general 

overview of head induction including formation of anterio-posterior axis and gastrulation 

followed by brief description (when and how) of differentiation of each germ layer into the 

various structures within craniofacial complex.  

 

I) Gastrulation and Formation of Anterio-posterior axis 

 Mouse embryos begin as a single cell zygote which undergoes a series of cell divisions 

and a process of compaction eventually forming a fluid filled epithelial vesicle known as 

blastocyst.  At late blastocyst stage, the outer epithelium cells are committed to the  

trophectoderm lineage which subsequently forms the placenta while the cells inside the vesicle, 

known as inner cell mass (ICM),  is composed of two cell types, epiblast which gives rise to all 

cell of the embryo proper and some extra-embryonic membranes and primitive endoderm 

which primarily forms the endoderm layer of the extraembryonic yolk sacs1. These early events 

in a mouse embryo describing formation of blastocyst and first asymmetry with ICM have been 

extensively described elsewhere and summarized in Figure 12. 

One of the crucial aspects of embryonic development is formation of the three axes, 

Organisms like Drosophila and Zebrafish, rely on asymmetric distribution of maternal  
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transcripts and proteins to generate polarity in the embryo. In mammals, however, transition of 

transcription under exclusive zygotic control (maternal-to-zygotic transition) occurs earlier 

than specification of axes. Following implantation the mouse blastocyst forms an egg cylinder 

with a proximal (the pole with the trophectoderm derived ectoplacental cone) – distal (P/D) 

axis1. Recent lineage tracing experiments have identified a specific group of lefty-1 expressing 

cells within the ICM prior to implantation3. These lefty-1+ cells form the distal visceral 

endoderm (DVE) of the egg cylinder, which populates the distal pole of the P/D axis, suggesting 

a possibility that P/D axis is formed prior to implantation. DVE cells were originally believed to 

give rise to anterior visceral endoderm (AVE), an extra-embryonic signaling center crucial for 

imparting anterior character to the embryonic region adjacent to it 2,4,5, 6. Recent works show 

that AVE cells are specified de novo and DVE is not required for its induction3,7-9. DVE however 

has been shown to be required initiating AVE migration toward the prospective anterior pole3. 

Epiblast cells receiving signals from AVE acquire anterior fate and contribute to head and brain 

structures while the cells away from AVE acquire a posterior fate1. 

The process of gastrulation forms the mesoderm and endoderm lineages from epiblast 

cells at the posterior end of the mouse embryo. In mice embryos, gastrulation begins with the 

formation of primitive streak. Primitive streak is formed by the epiblast cells undergoing 

polonaise movement at the future posterior end of the embryo. The polonaise motion results in  
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Figure 1: Emergence of asymmetry within a developing mouse embryo 

 

A) At blastocyst stage, the embryo is already separated into three distinct cell types, ICM 
(light blue), Primitive endoderm (pink) and trophectoderm (grey). ICM cells already 
display asymmetric gene expression, and the lefty1+ cells (dark blue and green) will 
eventually contribute to DVE (dark blue). AVE cells (green), also lefty1+, are specified 
later than DVE. 

B) Implantation induced proximal (ectoplacental cone)-distal axis. Primitive endoderm 
eventually forms the visceral endoderm that surrounds the epiblast and extra-
embryonic tissues. DVE and AVE cells migrate to the distal pole of the embryo (boxed 
area with red dotted lines).  WNT signaling is activated (orange) at the future posterior 
end of the embryo. 

C) Future posterior end expresses WNT and Nodal signaling ligands. Gastrulation begins. 
DVE and AVE cells migrate to the future anterior side of the embryo (boxed area with 
green dotted lines) and express WNT and Nodal signaling inhibitors.  
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epiblast cells moving in circles around a morphologically visible midline, which is the 

primitive streak. As time progresses the epiblast cells undergo epithelial-to-mesenchymal 

transition (EMT) and ingress through the streak into the embryo. These newly ingressed 

mesenchymal cells are a mixture of mesoderm and endoderm progenitors and signals 

emanating from the site of ingression help specify their eventual fate within the embryo. As 

gastrulation proceeds the embryo gets divided into three distinct germ layers: ectoderm which 

is the inside-most layer, endoderm which is the outside-most layer; and mesoderm, in between 

the two. The inside-outside positioning of the ectoderm and endoderm gets reversed when the 

mouse embryo undergoes turning at around E9.0.  

 

Ia)   Molecular determinants and signaling pathways in gastrulation and A/P axis 

determination  

The formation of the anterio-posterior (A/P) axis within the embryo requires two 

separate yet related processes; specification of the anterior end (involvement of AVE) and 

specification of the posterior end (marked by presence of primitive streak, site of gastrulation). 

Pre-gastrula embryos have been shown to display asymmetry in gene expression. For example, 

components of canonical WNT signaling, wnt3, wnt2b and activated β-catenin have a 

restricted pattern of expression at the future posterior end of the embryo10-12. Mouse knock-
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out studies have also shown that embryos lacking functioning WNT signaling (Wnt3 -/- 13 or 

WNT co-receptors Lrp5 -/- or Lrp6 -/- 14) fail to establish a primitive streak and thus lack 

mesoderm and definitive endoderm lineages. All of this information together makes a strong 

case for the involvement of WNT signaling in establishing gastrulation site and hence in 

establishing posterior end of the embryo. At the same time it is crucial to block WNT signaling 

for the specification of the anterior pole. This blockage of WNT signaling is achieved by 

expression of WNT signaling inhibitors specifically at the anterior end. As mentioned earlier, 

cells within AVE secrete signals that specify the anterior end of the embryo. One of these 

secreted signals is a molecule called Dickkopf-1 (DKK-1), a well-known inhibitor of WNT 

signaling15. The importance of blocking WNT signaling for anterior specification comes from 

the fact that the complete knock-out of Dkk-1 leads to expansion of WNT signaling and results 

in complete absence of anterior head structures16.  

The seemingly straightforward role for WNT signaling does not hold true for the other 

signaling pathways also involved A/P axis formation. Nodal, a member of TGFβ family of 

secreted ligands has a more complex role in specifying anterior and posterior poles of the 

embryo. Although it is well established that inhibition of Nodal signaling, achieved by secretion 

of Nodal antagonist, LEFTY, from AVE cells is crucial for anterior specification17, the 

specification of DVE/AVE itself requires active Nodal signaling from the epiblast cells. DVE cells 
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are first specified within the ICM of a pre-implantation embryo at the future distal end. The 

specification of proximal-distal axis at this stage (E3.5 – E4.0) requires active Nodal signaling. 

Once the DVE cells are specified, active Nodal signaling is observed specifically at the 

posterior–proximal end of the embryo and the newly specified DVE/AVE cells secrete Nodal 

antagonists to restrict Nodal signaling to the posterior end of the embryo.  

 

II) Ectoderm  

Following A/P axis specification and gastrulation, medial part of the ectoderm 

undergoes neural induction forming a neural plate, which will eventually give rise to the entire 

central nervous system (brain at the anterior end and spinal cord at the posterior end). Neural 

induction is the first step of ectoderm differentiation and segregates the homogenous ectoderm 

into neural ectoderm (forming the neural plate) and non-neural ectoderm or surface ectoderm 

(everything else). The boundary between the two is called the neural plate boundary (NPB) 

region. In the most anterior regions, NPB gives rise to two separate ectodermal derivatives, 

neural crest and ectodermal placodes. The majority of the craniofacial skeleton is derived from 

cranial neural crest cells, while the cranial peripheral nervous system has contributions from 

both cranial neural crest  and ectodermal placodes. 
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IIa)    Neural Crest Cells  

First observed by William His in 1868 as a string of cells delaminating from in between 

the neural tube and the future epidermis of the spinal cord in a chicken embryo, neural crest 

cells were originally given the name “ganglionic crest”18. These cells are induced bilaterally at 

the border of neural and non-neural ectoderm throughout the A/P axis, undergo epithelial-to-

mesenchymal transition and emigrate out in stereotypical trajectories to contribute to a variety 

of tissues within the body (Figure 2). Specifically, in the head region, crest cells follow a 

dorsolateral trajectory to form the craniofacial mesenchyme. The timing when neural crest 

emigration begins differs among various vertebrate species and in mice emigration begins 

before the neural plate forms the neural tube.  

 

IIa.1)  Induction of Neural Crest cells  

Induction of neural crest cells is a multi-step process that varies between the various 

vertebrate species (reviewed in details here19). Work in Xenopus embryos has shown that high 

levels of BMP signaling are required for epidermal differentiation while complete inhibition of 

BMP signaling is required for neural induction20. It has been proposed that chick neural crest 

cells, which arise from the territory in between the future epidermis and neural plate, require 

intermediate levels of BMP signaling for their induction, which are generated as a consequence 
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of the BMP gradient generated between BMP ligand expressing epidermal cells21 and BMP 

antagonists (Cerberus, Noggin, Chordin, Follistatin etc) found in the underlying paraxial 

mesoderm19,22,23. In mice embryos, conclusive evidence depicting a crucial role for BMP 

gradient in neural crest induction is not established. However, other early aspects of neural 

crest development seem to require BMP signaling, for example, BMP5 and BMP7 have 

redundant roles in survival of post-migratory neural crest cells24 and BMP2 has been shown to 

be important for formation of migratory neural crest cells25. It should be kept in mind that BMP 

signaling is in no way sufficient to induce neural crest cell marker expression even in Xenopus 

or chick embryos23,26 suggesting that neural crest cell induction requires help from additional 

signals as well. 

A role for WNT signaling in neural crest induction has been shown in all major 

vertebrate model systems20,26-32. WNT signaling ligands are expressed and secreted from the 

paraxial mesoderm and overlying surface ectoderm, both tissues that have been shown to be 

important for neural crest induction33. Activation of WNT signaling expands neural crest cell 

domain, while inhibition of WNT signaling perturbs neural crest induction in Xenopus, chick 

and fish embryos20,26,27,29,34. Interestingly, defects in neural crest induction caused by ablation 

of paraxial mesoderm in Xenopus embryos can be reversed by overexpression of WNT ligand, 

wnt3a35. In Xenopus, a two-step mechanism for induction of neural crest involving both WNT 
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and BMP signaling has been proposed36. In this model WNT and BMP signaling work 

antagonistically (WNT signaling activates and BMP signaling inhibits) in the first step for 

induction of crest cells, but once induced, neural crest cell maintenance requires tandem 

activation of both WNT and BMP signaling. This two-step model is supported by chick explant 

studies37; however, there is a lack of in vivo evidence for it.  Wnt1/Wnt3a double knock-out 

mice show reduced numbers of neural crest cells and minor defects in craniofacial skeleton 

formation30. Elimination of β-catenin, the intracellular effector of canonical WNT signaling, 

exclusively within neural crest cells affects formation of craniofacial skeleton and cranial 

ganglia due to increased apoptosis of neural crest cells, suggesting a role for WNT signaling in 

neural crest survival but not in the neural crest induction28. At later stages, WNT signaling has 

also been shown to regulate differentiation of neural crest cells into sensory and melanocyte 

lineages in mice embryos38-40. 

FGF ligands represent another set of signaling cues that are capable of inducing neural 

crest. The role for FGF signaling in neural crest induction is mostly depicted in non-

mammalian species. Overexpression of FGF8 transiently induces neural crest cells in Xenopus 

embryos41 albeit with the help of other signals as exogenous FGF8 alone is not sufficient to 

induce neural crest marker expression42. FGF2 mediated up-regulation of neural crest cell and 

epithelial-to-mesenchymal transition marker, snail2 in Xenopus embryos, requires 



 

12 
 

concomitant attenuation of BMP signaling43, 44. Recent evidence in Xenopus embryos suggests 

that FGF signaling induces neural crest cells indirectly through activation of wnt8 in lateral 

mesoderm45. In chick embryos, however, FGF/MAPK signaling has been implicated in 

specification of the neural plate border during gastrulation46.  Similar to what is observed with 

WNT signaling, mouse embryos lacking FGF ligand, FGF8, FGF10, FGF18 or FGF receptors, 

FGFR1 or FGFR2 display defects in craniofacial skeleton; however, neural crest cell induction is 

not abolished in these mutants (reviewed in details here47). 

Recently, in a new theory, Garcia-Castro et al. propose that neural crest induction  

begins earlier than previously assumed, at gastrulation stage, and is independent of neural or 

mesodermal tissues48. Using in situ hybridization and immuno-staining, the researchers depict 

pax7+ cells in two bilaterally symmetric oblique bands lateral to the Hensen’s node in 

gastrulating chick embryos, which can in vitro form melanocytes and neurons. In gastrulating 

embryos, these pax7+ cells do not overlap with neural plate, epidermis, ectodermal placode or 

neural plate border markers. Lack of marker expression however does not rule out the 

possibility that the pax7+ cells might belong of any of those lineages. Interestingly, lineage 

tracing of this domain by DiI labeling showed that these (pax7+) cells eventually incorporate 

into the dorsal neural folds, arguing against their neural crest specific lineage and suggesting 

that the pax7+ domain at gastrulation might represent a unique domain contributing the  
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Figure 2: Mammalian neural crest cells 

A) Sox10 labeling shows dorsoventrally migrating neural crest cells throughout the 
anterio-posterior axis 

B) A transverse section through a Wnt1-Cre; RosaeYFP embryo immunostained for YFP (green) 
shows the neural crest cells arising at the dorsal end of the neural tube and migrating out. 
Figure A shows the approximate axial location of where the section would be.  
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neuroectoderm.48 The involvement of pax genes in neural crest formation has been implicated 

in both Xenopus and mouse as well; however, this early role of pax genes in neural crest 

induction is not supported by current work done in either of these species. In Xenopus, loss of 

pax3 or pax7 leads to neural crest induction defects indirectly through defective development 

of ectoderm and mesoderm respectively49. Both pax3 and pax7 mouse mutants individually 

show defects in neural crest derivatives. Loss of pax7 causes postnatal lethality with 

malformations in facial structures involving maxilla and nose, while loss of pax3 leads to 

defects in the spinal cord, sensory ganglia and cardiac development50, 51. Normal neural crest 

induction and formation in pax3 and pax7 mutant mice has been attributed to functional 

redundancy between the two, a notion supported by the fact that knock-in of pax7 into pax3 

locus can rescue pax3 mutant phenotype52. Interestingly, induction of avian pax7+ 

presumptive neural crest precursor population at gastrulation is affected by perturbation of 

WNT and BMP signaling48. 

 

IIa.2) Delamination, Migration and Differentiation of Neural Crest cells 

Neural crest cells are indistinguishable from the progenitor neuroepithelial pool before 

the actual event of delamination. Delamination of neural crest cells from neuroepithelium 

requires two events, epithelial-to-mesenchymal transition and a G1/S transition of progenitors, 
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as neural crest cells always delaminate in S-phase. Work in chicken embryos has shown that 

delamination of neural crest requires a transition of expression pattern from N-cadherin+ 

(non-neural crest) to Cadherin 6B+ (pre-migratory neural crest) to Cadherin7/11+ (migratory 

neural crest (reviewed in53).  Down-regulation of Cadherin 6B has been shown to be directly 

downstream of a transcriptional repressor Snail254, whose expression in trunk (but not 

cephalic) neural crest cells have been shown to be under the control of WNT/BMP signaling55-

58. A lot of our understanding of molecular control of neural crest delamination comes from 

work done on avian species and specifically in the trunk neural crest cells. Our understanding 

of delamination of cephalic neural crest cells, specifically, that of mouse cephalic neural crest 

cells is very murky. Even though the role for Snail proteins in inducing neural crest 

delamination is well understood in Xenopus and chick54,59, mouse knock-out of both Snail 

homologues, Snail1 and Snail2, individually or in combination does not result in neural crest 

defects60,61. There has been only one gene reported to have defects in mouse neural crest 

delamination, Zfhx1b (Zeb2 or Sip1: smad interacting protein 1). Zfhx1b has also been shown 

to be important for G1/S cell cycle transition in EMT62. Mutations in Zfhx1b in mice result in 

complete lack of post-otic vagal neural crest cells and affect delamination of anterior cephalic 

neural crest cells63; however, analysis of neural crest-specific deletion of Zfhx1b in mice 

embryos suggests that this defect observed in complete null embryos is not neural crest cell-
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autonomous64. No analysis of the role for Zfhx1b in neural crest delamination is done in other 

species.  

Cranial neural crest cells delaminate from the neuroepithelium as a continuous wave of 

cells that then swiftly segregates into distinct stereotypical streams along the anterio/posterior 

axis. A sub-population of these cells halt at a relatively dorsal location and contribute to the 

peripheral nervous system of the head (Cranial sensory nervous system), while the rest migrate 

to ventral locations to make the craniofacial skeleton. The mechanisms responsible for 

segregation of this continuous wave along the A/P axis are similar among cephalic neural crest 

from different species. Cranial neural crest migration is regulated by both positive and negative 

interactions that occur between migrating crest cells and mesoderm surrounding them. 

Repulsive signaling, non-cell autonomously mediated by receptor tyrosine kinase Erbb465 and 

cell-autonomously mediated by Neuropilin/Semaphorin signaling66,67 (also reviewed in68) have 

been shown to be required to maintain the neural crest streams entering branchial arches 1 

and 2 separate. Similarly, repulsive interactions between Eph receptors and Ephrin ligands is 

required for segregation of neural crest streams entering pharyngeal arches 2, 3 and 469,70. On 

the other hand, FGF signaling has been suggested to be an attractive signal that creates a 

permissive environment for neural crest cells to enter pharyngeal arch 271.  
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Cranial neural crest cells differentiate into a broad array of cell types within the head.  

There are two possible explanations as to how neural crest cells differentiate into these 

different cell types. Crest cells could be thought of as a multi-potent population of cells that 

subsequently differentiate into different cell types. Signals from surrounding tissues would be 

the major source of instructive cues to the multi-potent neural crest cells, suggesting extrinsic 

regulation of neural crest differentiation. Conversely, neural crest cells could comprise a 

heterogeneous mixture of progenitor cells, each of which can give rise to a separate cell type 

within the body. This would require pre-specification of neural crest cells as they migrate out 

of the neural tube, implying an intrinsic regulation of neural crest differentiation. This question 

of extrinsic versus intrinsic specification of neural crest has plagued researchers for more than 

a century, and our current understanding is that both these modes are utilized for neural crest 

differentiation and are in certain cases interdependent on each other. For instance, changes in a 

cell intrinsic factor like Sox10 influences how the crest cell interprets its external 

environment72. The detailed mechanisms of differentiation of cranial neural crest into specific 

neuroglial or skeletal cell types will be discussed later in specific chapters pertaining to those 

topics (Chapter 3 and 5 respectively). 

 

IIb)      Ectodermal placodes  
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Ectodermal or cranial placodes are a unique derivative of cranial ectoderm originally 

defined by the thickened morphology within the cranial epithelium. Cranial placodes 

contribute to the developing paired sense organs and sensory ganglia and differentiate into 

various cell types based on the sense organ or sensory ganglia they are contributing to. In mice, 

the cranial placodes include adenohyphyseal, olfactory, lens, trigeminal, otic and epibranchial 

placodes  amongst which the lens and adenohypophyseal placodes are non-neurogenic. The 

lens placode forms the lenses of the paired eyes is while the adenohypophyseal placode 

eventually forms the anterior and intermediate lobes of the pituitary gland.  Fish and amphibia 

also possess lateral line placodes which give rise to the lateral line system which detects motion 

currents and aids in determining schooling behavior and prey detection. The lens, olfactory, 

otic and lateral line placodal cells form the paired sensory organs, while the trigeminal and 

epibranchial placodal cells differentiate into sensory neurons of the cranial sensory nervous 

system73.  

 

IIb.1) Induction of Cranial placodes 

Formation of cranial placodes is thought to follow a hierarchal pattern of gene 

expression that correlates with the status of placodal differentiation. Generally, a pre-placodal 

region (PPR) is specified first from the cranial ectoderm, which is then segregated into multiple  
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Figure 3: Ectodermal placodes of a developing mouse embryo 
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cranial placodes based on extrinsic and intrinsic signals. Each of these placodes then 

differentiates into a number of cell types specific to the particular placode.  

Most of the work trying to understand the origin of cranial placodes comes from non-

mammalian species. All cranial placodes have been suggested to come from a common 

ectodermal territory called the Pre-placodal region (PPR), which is specified at neurulation73. 

Similar to neural crest induction, the importance of underlying head mesoderm and 

pharyngeal endoderm in formation of placodes has been shown in chick embryos74. Activation 

of FGF signaling and inhibition of WNT & BMP signaling together have been shown to be 

necessary and sufficient for PPR induction75, 76. Fate map analysis in Zebrafish, Xenopus, and 

chick and mouse embryos indicates that around the time of gastrulation the precursors for 

different placodes are widely intermingled with future neural, epidermal and neural crest 

cells77.  

 

IIb.2) Molecular determinants of cranial placodes 

Differentiation of PPR into the various cranial placodes has been covered in depth in 

reviews by Gerard Schlosser, Andrea Streit and Sally Moody73, 78, 79. Around the time of 

neurulation, six and eya family of transcription factors (six1/4, eya1/2) are expressed in a 

horseshoe shaped region surrounding the rostral neural plate (forebrain to hindbrain levels)77 
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and eventually this six1+/eya+ domain forms the pre-placodal region (PPR). Studies in Xenopus 

have shown that six1 is required for cells to acquire a PPR character and mis-expression of 

six1 leads to up-regulation of genes specific to placodal precursors at the expense of neural 

crest and epidermis markers80. Recent evidence in chick suggests that six1 and eya2 act 

synergistically to promote PPR gene expression, suppressing the neural and neural crest fates. 

These are, however, not sufficient to impart placodal competence to non-placodal cells, hence 

do not induce ectopic placodes81, suggesting that additional signals must be required to specify 

PPR from ectoderm. Convincing visual evidence showing the presence of pre-placodal territory 

in mice is not available. Hence, analysis of whether six and eya genes are responsible for its 

formation is not possible, But whether a pre-placodal territory exists in mouse embryos or not, 

the importance for six and eya gene families in overall formation of cranial placodes is 

demonstrated through loss of function mutations in mice as well as humans. Mice 

heterozygous for eya1 display a phenotype similar to the Branchio-oto-renal (BOR) syndrome 

in humans82, in which the development of neck tissues, ear and kidneys is affected. 

Homozygous eya1 mutant mice have severe defects in inner ear formation. In addition, 

trigeminal ganglia of these mice are reduced in size while the epibranchial placode derived 

ganglia are completely missing or severely affected83. Human six1 mutations have also been 

associated with BOR syndrome. Null mutation in six1 in mice also causes similar phenotype 
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like eya1: smaller otic vescicles, lack of vestibulo-cochlear ganglion, loss or reduction in the 

number of trigeminal and epibranchial placode derived neurons84. Information about eya2 loss 

of function is very sparse, while Six4 mutant mice have not been yet shown to have a placode 

phenotype85. However, six1 and six4 double mutant mice show a more severe phenotype than 

six1 mutants alone 86 suggesting that Six1 might compensate for loss of six4.  

Sox2 and Sox3 of the SoxB1 subfamily of HMG box containing transcription factors, as 

well as, homeobox transcription factors irx1 and irx6 have also been shown to be important 

for cranial placode development. These genes show widespread expression pattern in the PPR 

but do not cover it entirely. In Zebrafish, irx genes are required for placodal neurogenesis in 

the profundal/trigeminal placode87 while sox3 appears to be important for neurogenesis in the 

epibranchial placodes88. Cranial placode specific expression of sox3 is not observed in mice 

embryos, highlighting the differences in the mechanism of placode specification between 

species. Both irx and soxB1 family genes are down-regulated as soon as the placodal derived 

neurons migrate away and express neuronal determination and differentiation genes88,89, 

suggesting their role in maintenance of a neural progenitor state in the placodes, similar to 

their function in the neural plate.  
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Members of the pax2/5/8, pax 3/7 and pax6 subfamilies but not pax1/9 subfamily also 

play a role in specifying the different cranial placodes from the more general PPR. Pax genes 

interact with the regulatory network of eya-six-dach genes 90 and these genes are expressed in 

PPR. But the fact that pax genes are expressed in a more regionally restricted manner in the 

forming placodes has led to a hypothesis that pax genes are involved in conferring placode 

specific identity to the preplacodal cells91-93. Pax6 is a marker of the olfactory and lens 

placodes while pax3/7 markers of the ophthalmic trigeminal placode. Pax3 and Pax7 are 

expressed in the lateral neural plate (later dorsal neural tube) and neural crest as well as in the 

trigeminal placode. pax3 mutants display severe hypoplasty in various cranial ganglia 

including the profundal ganglia (ophthalmic division of the trigeminal ganglion in amniotes), 

however whether these defects are of placodal origin or neural crest is not known 94. Pax 2/5/8 

mark the otic placode and pax2/8 expression is also observed in the developing epibranchial 

placodes73, 92. Pax2 has been suggested to control epibranchial neural identity and Pax2 and 

pax8 have crucial but redundant functions in otic placode development91. Pax2 mice mutants 

exhibit severe defects in sensory organ formation and neurogenesis from the inner ear 95. Each 

pax gene is still expressed in multiple placodes and hence specification of placodal identity 

should be a result of cooperation between pax family of genes and some other transcription 
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factors. Detailed description of neuronal differentiation of some of these cranial placodes 

expressing pax gene subfamily members will be provided in later chapters (Chapter 3).  

 

IIc)      Interactions between Neural crest and cranial placodes  

In vertebrate head, neurogenic cranial placodes and neural crest cells work together to 

form the cranial sensory nervous system. Although most neurons of the cranial sensory 

nervous system are derived from the neurogenic placodes, proper migration and functioning of 

neural crest cells is required for the differentiation of placodal cells into neurons. Neural crest 

cells have been shown to be important for proper guidance of placode derived epibranchial 

neurons as they extend their axons towards hindbrain96. Improper migration of cranial neural 

crest cells, following loss of Semaphorin/Neuropilin signaling has also been shown to affect 

axon guidance of placode derived sensory neurons97. Neural crest cells have also been shown 

to influence the formation of cell-cell junctions between placodal cells thus helping in 

organization of trigeminal and epibranchial placodes which then affects their neuronal 

differentiation98. On the other hand, disruption of sensory neurons derived from epibranchial 

placodes has been shown to affect directional outgrowth of hindbrain motor neurons and the 

formation of neural crest derived proximal epibranchial ganglia99.  Proper formation of cranial 
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PNS is thus highly dependent on proper formation, migration and differentiation of both neural 

crest and cranial placodes; processes that have been shown to be interdependent.  

 

III) Mesoderm 

Mesoderm, the middle germ layer formed during gastrulation, is an exclusive feature of 

triploblastic organisms. Head mesoderm precursors undergo gastrulation through the primitive 

streak prior to precursors of trunk mesoderm100. Within the head, mesoderm gives rise to most 

of the musculature of the head and neck, some bones of the neurocranium as well as the 

endothelial and supporting cells forming the cranial vasculature101. Differentiation and 

patterning of head mesoderm into cranial musculature and blood vessels is highly 

interdependent and proper patterning of these mesoderm derived tissues require normal 

formation of craniofacial skeleton (neural crest derived) and pharyngeal endoderm.  

 

IIIa) Head Musculature 

Head musculature includes about 60 distinct skeletal muscles that can be divided into 2 

groups, 1) Six extra-ocular muscles (EOM) that move and rotate the eye and 2) pharyngeal 

muscles (aka branchial arch muscles) which control jaw mastication, facial expression, 

breathing as well pharyngeal and laryngeal function. Both EOM and pharyngeal muscles are 
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derived from head mesoderm. It is well established that pharyngeal muscles are derived from 

the subset of head mesoderm known as pharyngeal mesoderm (PM) (or paraxial mesoderm) 

which is located within the core of branchial arches and surrounding the developing 

pharynx102. EOM are largely derived from another subset of head mesoderm called prechordal 

mesoderm; however, whether there is any contribution from pharyngeal mesoderm is not 

clear103. Some of the muscles of the neck are derived from the mesoderm cells that originate in 

the anterior-most somites and migrate into the branchial arches103. 

 

IIIa.1) Regulation of Head musculature development 

Unlike trunk mesoderm, which is segmented into metameric units called somites, head 

mesoderm is unsegmented. Head mesoderm patterning is heavily dependent on signals from 

pharyngeal endoderm and cranial neural crest cells migrating into the pharyngeal arches and 

is regulated by gene regulatory networks distinct from that governing trunk mesoderm 

development. For example, paired homeodomain transcription factor, PAX3, which is 

considered to be the master regulator of trunk myogenesis, is not expressed in head mesoderm 

and mutations in pax3 do not affect head musculature formation cell-autonomously104. MYF5 

and MYOD are key regulators of myogenesis in general. Combined loss of Myod and Myf5 

affects craniofacial muscle development much more drastically than trunk muscle 
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development, as presence of another transcription factor MRF4 is able to rescue trunk muscle 

differentiation105. Four transcription factors have been shown to be crucial for pharyngeal 

mesoderm differentiation. CAPSULIN (TCF21) and MYOR are transcriptional repressors, 

required for MYF5 activation in first branchial arch106. PITX2, a homeobox transcription factor 

is crucial for EOM formation from prechordal mesoderm as well as differentiation and survival 

of first arch derived muscles107,108 while TBX1 is required for robust expression of MYF5 and 

MYOD throughout the pharyngeal mesoderm109-111. MYF5 activates SIX1, which has been 

shown to be important for maintenance of pharyngeal myogenesis111,112 and together with a 

related family member SIX4, is required for formation of certain pharyngeal muscles113.   

Interestingly, even though both pitx2 and tbx1 are eventually expressed throughout the 

head mesoderm, their expression begins in a relatively regionalized manner. Early on, pitx2 is 

expressed in the anterior head mesoderm (from di- to metencephalic levels) while tbx1 is 

expressed in more posterior head mesoderm (adjacent to hindbrain). Given that loss of PITX2 

affects EOM development107,108 but loss of TBX1 does not114, and anterior and posterior head 

mesoderm has distinct cell fates (EOM vs. pharyngeal muscles respectively), it is possible that 

early pitx2 and tbx1 expression boundaries represent a regionalization within head 

mesoderm115. These restricted patterns of pitx2 and tbx1 are achieved by a network of 

signaling pathways regulating each other. Recent work from Dietrich lab suggests that head 
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mesoderm patterning begins much earlier than thought. Regionalization within the head 

mesoderm is observed immediately following gastrulation (chicken embryo stage HH5-6). An 

initial inhibition of Retinoic acid signaling in the anterior head mesoderm combined with 

activation of FGF signaling in the posterior head mesoderm, at this time, is required for 

regionalizing pitx2 and tbx1 expression in anterior and posterior head mesoderm respectively. 

Anterior regionalization is refined by active BMP signaling, which activates expression of Myor 

and alx4 in the pitx2 expressing region, while posterior regionalization is refined by increasing 

levels of FGF signaling. Subsequently anteriorly spreading FGF signals spread tbx1 expression 

throughout the pharynx region eventually leading to a final pattern of expression where 

anterior pitx2 expression labels precursors of EOM while posterior tbx1 expression labels 

precursors of pharyngeal muscles116. Analysis of mandibular muscle specification in Zebrafish 

shows that at much later stages (20 hours post fertilization ~ equivalent to a HH22 stage 

chicken embryo) BMP, Hedgehog and WNT signaling are dispensable for patterning of 

mandibular muscles, while active FGF signaling still seems to be important for its patterning117.  

 

IIIb) Endothelial Cells 

Organogenesis is critically dependent on blood supply. Failure to form proper blood 

vessel network has been shown to lead to major defects during development and has been 
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shown to play a key role in many diseases (reviewed in118). Blood vessels comprise of an 

endothelial tube, which is surrounded by a covering of support cells, comprising pericytes, 

vascular smooth muscle cells, and connective tissue. Almost all of the blood vessels in the entire 

embryo and extra-embryonic tissues are derived from mesoderm, except for the vascular 

smooth muscle cells and pericytes surrounding some of the cranial arteries (great arteries, 

branchial arch arteries) which are derived from cranial neural crest.  

Formation of blood vessel network in amniotes is usually believed to begin in extra-

embryonic tissues around the time of gastrulation. Mesoderm cells in yolk sac first differentiate 

into angioblasts, which are precursors to endothelial cells. The locally differentiated endothelial 

cells coalesce into the first tubular network, through a process called vasculogenesis. This 

initial vessel network, known as the primary capillary plexus, then expands and remodels by 

angiogenesis. Angiogenesis involves several morphogenetic events that can expand the primary 

plexus through endothelial cell proliferation as well as remodel the primary network through 

branching, directional migration and breaking and making of cell-cell junctions. The result of 

angiogenesis is formation of a mature blood vessel network. Although separated in time, both 

vasculogenesis and angiogenesis utilize similar mechanisms and signaling pathways for 

regulation of blood vessel formation.  
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 One of the major signaling pathways crucial for differentiation of endothelial cells 

from mesoderm is Vascular Endothelial Growth Factor (VEGF) signaling. Expression of ligand 

Vegf is observed throughout the newly formed endoderm of a gastrulation stage embryo. At the 

same time, its receptors, VEGFR1 and VEGFR2 are expressed in the newly formed yolk sac 

mesoderm. VEGF signaling has a dose dependent requirement during blood vessel 

development. The importance of VEGF signaling is highlighted by the fact that loss of vegfr2 

leads to a complete absence of endothelial and blood cell formation119. Loss of one or both 

copies of Vegf ligand also leads to defects in blood vessel development resulting in embryonic 

lethality in mice120. On the other hand too much VEGF signaling has also been shown to be 

detrimental for blood vessel formation. Loss of VEGFR1, which is a negative regulator of 

embryonic angiogenesis, or up-regulation of VEGF levels have both been shown to cause mid-

gestational embryonic lethality in mice121, 122.  

During angiogenic sprouting, VEGF ligand has been shown to act a chemoattractive 

cue123. Interestingly, it was shown that not all endothelial cells react to VEGF chemoattractive 

cue equally. During angiogenic sprouting, endothelial cells could be of two types, tip cells or 

stalk cells, depending on their location within the forming sprout; tip cells are at the tip of the 

sprout, first ones to experience the external cues while stalk cells as the name suggests are 
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behind the tip cells. Recent study has found that the tip versus stalk cell fate of endothelial cells 

is highly dynamic and depends on cell-cell inhibition by active Notch signaling124. 

  

IV) Endoderm 

The contribution of endoderm to the developing head is very poorly understood. 

Endoderm contributes to the pharynx and foregut lining in the head region and is required for 

segregating the developing pharyngeal arches and preventing mixing of the neural crest- and 

mesoderm- derived mesenchyme between the pharyngeal arches. The endoderm that is derived 

from gastrulation is known as Definitive Endoderm. Prior to gastrulation, the inner cell mass 

(ICM) of the embryo differentiates into two cell types: Epiblast, which contributes only to the 

embryo proper, and Primitive Endoderm, which was originally thought to contribute to the 

extra-embryonic tissues. Recently, live imaging has shown that some cells from the primitive 

endoderm get incorporated in the early gut tube125. The eventual fate of these primitive 

endoderm derived cells within the gut of mammalian embryos is currently unknown. Similar to 

mesoderm, induction of endoderm during gastrulation requires active WNT and Nodal 

signaling. Post specification formation of the gut tube lining from endodermal cells requires a 

cohort of transcription factors, which include members of GATA, Forkhead factor, and Sox 

families (reviewed here126).   
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Part 2: Mediator and Transcriptional Control of Gene Expression  

 Expression of genes at the right time and place is crucial for proper functioning of all 

biological processes. This is especially true during embryonic development, where gene 

expression mistakes or delays can result in congenital deformities. This control of gene 

expression is achieved through many mechanisms, one of the most prominent being regulation 

of messenger RNA (mRNA) synthesis by RNA polymerase II (Pol II). This regulation is achieved 

by use of transcription factors that bind to regulatory elements upstream of a gene and either 

activate or repress gene expression. The activation or repression of gene expression is achieved 

through recruitment of large co-activator or co-repressor complexes. About two decades ago, 

researchers identified a multi-subunit mega-dalton protein complex in yeast that acts as a 

transcriptional co-activator. This complex, called Mediator, which has now been shown to be 

conserved from yeast to humans, also plays an important role in gene expression regulation, 

through its various subunits and their interactions with other intracellular proteins and protein 

complexes.  

 

Mediator complex  

 Mediator complex is required for transcription of most (if not all) protein-coding genes, 

housekeeping and activated. Binding studies have shown that Mediator complex, through its 
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various subunits, conveys information from the gene specific transcription factors bound 

upstream to the Pre-initiation complex present at the transcription initiation site127-129 130. 

When first identified in yeast, Mediator complex was shown to be composed of 25 subunits. 

Five more metazoan specific mediator subunits have been identified since then. Electron 

microscopy and biochemical studies have shown that the different subunits of Mediator 

complex reside within four modules, Head, Middle, Tail and Kinase (Figure 9), and this 

modular architecture is conserved from yeast to humans. 

 

Regulation of transcription by Mediator 

Mediator has been associated with both active and inactive genes131, 132. Both yeast and 

human studies show Mediator binds to and recruits of RNA Pol II to the gene promoter site133-

136 and thus enhances basal and activated transcription by facilitating pre-initiation complex 

(PIC) formation137,138. Apart from being required to assemble the PIC, Mediator has also been 

shown to aid in post-recruitment processes. The interaction between Mediator and 

transcription factor, hepatocyte nuclear factor 4 (HNF4) is required for activation by HNF4 but 

not for recruitment of RNA Pol II139. Similarly, interaction of Mediator tail subunit, MED23 

with transcription factor ELK1 has been shown to affect downstream gene expression at a 

much higher fold level than its effect in RNA Pol II binding at the gene promoter site140. CDK7, 
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Figure 4: Composition of the Mediator Complex 

Mediator complex is divided into 4 modules, Head (H), middle (M), and tail (T) and kinase (CDK8). Subunits of the 

Head module interact with the pre-initiation complex (PIC) machinery (green) sitting at the gene promoters while 

the tail subunits interact with the transcription factors (orange) at the distal regulatory sites.   
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the kinase component of TFIIH, a general transcription co-factor subunit of PIC, is important 

for phosphorylating Serines 5 and 7 of RNA Pol II C-terminal domain (CTD) and allowing the 

transition of transcription initiation to transcription elongation141. Notably, it has recently been 

shown that the phosphorylation of Serine 7 by CDK7 is regulated by Mediator, thus suggesting 

a role for Mediator beyond PIC assembly142.  Evidence showing a role for Mediator in 

transcription elongation comes from recent work showing interactions between Mediator 

subunit MED26 and elongation factors and a role for this interaction in releasing paused 

polymerase143. 

The recruitment of RNA Pol II and other general transcription factors to pre-initiation 

complex is facilitated by the conformation changes caused in Mediator complex by its 

association with transcription factors. For example, binding of p53 Activator Domain to 

Mediator forms a large pocket domain in Mediator and transitions the pre-initiation complex 

from a stalled state to an elongation state144, suggesting pre- and post- recruitment roles for 

Mediator. In a very elegant study, it was recently shown that Mediator facilitates gene 

expression by assembling enhancer/core promoter DNA loop complex145. In this study, Chip-

Sequence analysis showed Mediator occupancy at both enhancers and core promoters in 

actively transcribed genes in mouse ES cells along with Cohesin (protein required for 

chromatid attachments) and Cohesin loading factor Nipb1. Chromosome Conformation 
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Capture (3C) experiments had previously shown the proximity of enhancers and promoter 

regions during gene activation146 ,147. All these observations combined suggest a formation of 

Mediator – Cohesin – Nipb1 complex, which allows for enhancer/core promoter DNA 

looping145.  

 

Head Module: Interactions of Mediator with Pre-Initiation complex (PIC) 

The subunits of the Head module directly bind to components of the PIC (RNA Pol II + 

general transcription co-factors). Rbp3 subunit of RNA Pol II has been shown to interact with 

Med17, Med18 and Med22 subunits of the Head module148, 149. Cryo-EM techniques have also 

shown that the interaction of Mediator head module with Rbp4-7 subunits of RNA Pol II 

triggers a conformational change in RNA Pol II structure so as to improve the accessibility of 

enzyme binding site to DNA sequence of the promoter150. This data provides an explanation for 

findings that showed that Head module alone was able to influence basal transcription151 ,152.   

Med1 and Med8 subunits of Head module interact with general transcription factors TFIIH and 

TBP153, 154. Mediator interactions with the general transcription co-factors of pre-initiation 

complex help strengthen Mediator – RNA Pol II interactions and help tether RNA Pol II at the 

site of gene promoter155. 
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Table 1:  Mediator subunits and transcriptional activators. 
Table adapted from “Interactions between subunits of the Mediator complex with gene-specific 
transcription factors” by Borgreffe and Yue, Seminars in Cell and Developmental Biology, 2011 

 

Mediator subunits    Transcriptional activators 
 

MED1  TRα/β, PPARα/gamma, RARα, RXRα; VDR; ERα/β; RORα; GR; 

FXR; AHR; HNF4; GATA-1; PGC-1α ; BRCA1; GABPα ; Pit-1; 
GATA2 ; C/EBPβ ; p53  

MED12  SOX9; RTA; Gli3; β-catenin; G9a; AICD  
MED14  GR; HNF4; STAT2; SREBP-1_; PPARgamma  

MED15    Smad2/3/4; SREBP-1α  
MED16    DIF  
MED17 VP16; p53; HSF; DIF; RXR; STAT2; p65 
MED19    REST  

MED21    TRα/β  
MED23  E1A-CR3; Elk1; DIF and HSF; ESX; C/EBPβ 

MED25  VP16; DIF and HSF; RARα; HNF4; SOX9  
MED26    REST  
MED28    Merlin and Grb2  
MED29    DSXF  
CDK8     c-myc  
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Tail Module: Interactions of Mediator with Transcription regulators 

At the other end, Tail module subunits interact with gene specific transcription 

regulators. Interestingly, it has been shown that even though diverse in sequence composition, 

all the binding domains within transcription factors responsible for their interactions with 

Mediator Tail subunits, form similar 3-dimensional arrangements upon binding to Mediator 

tail subunits. These structural transitions in the binding domains of transcription factors are 

dynamic, thus generating a situation where the same binding domain is flexible to form varied 

conformations, allowing it to interact with different Mediator subunit interfaces156. 

Transcription regulator – Mediator Tail subunit interaction recruits Mediator complex to the 

site of gene expression. It also leads to a conformation change in the Mediator complex that 

allows formation of a binding pocket for interaction with Pol II and other transcriptional co-

factors thus regulating gene expression144, 157-159.  

 

Mediator interactions with transcription factors: Involvement in Cell Differentiation  

 Transcription factor specific binding of Mediator subunits has been reported in all 

organisms possessing Mediator complex (Table 1). In yeast, MED10 has been shown to 

specifically interact with GAL10, and mutations in both these proteins lead to severe defects in 

transcription of genes involved in carbon metabolism and amino acid synthesis, leaving the 
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transcription of all other genes intact160. The C. elegans homologue of MED23 subunit of  

Mediator complex has been shown to directly interact with WNT and Ras signaling pathways 

and regulate vulval development161, while MDT-15, C.elegans homologue for MED15 has been 

shown to be important for expression of fatty acid metabolism genes162. RNAi screen analysis 

showed distinct requirements for Drosophila Mediator subunits, MED16 and MED23 in 

transcription of specific genes attacin A and hsp26163.  

MED1, which is a subunit of the Middle module of Mediator complex and has been 

shown to be a part of only about 20% Mediator complexes164, is one of the most studied 

subunits of Mediator in terms of transcription factor binding. Loss of MED1 does not affect the 

overall integrity of Mediator complex. However, its loss affects Mediator interactions with 

specific transcription factors like various nuclear hormone receptors (Vitamin D receptor, 

glucocorticoid receptor, estrogen receptor, retinoic acid receptors and others (Table 2)), GATA1 

and GATA2, p53, C/EBPβ and many others165-171. MED1 is also important for adipogenesis 

through its interaction with PPARgamma172.  MED1 was the only Mediator subunit shown to 

interact with nuclear receptors until recently, when MED14 was shown to be important for 

adipogenesis as well through its interaction with PPARgamma173. MED14 has also been shown 

to interact with glucocorticoid receptor and can act in an independent manner as well as in 
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co-operation with MED1 to enhance glucocorticoid receptor transactivation174. A null 

mutation for MED14 has not been reported yet.  

Similar to MED1 and MED14, another subunit of Tail Mediator complex, MED23 has 

also been shown to be important for adipogenesis but through a different mechanism. Under 

the influence of active Insulin signaling, MED23 has been shown to interact with transcription 

factor ELK1, and this interaction is crucial for activation of egr2 (krox20), which is crucial for 

adipogenic differentiation175. MED23 was originally identified as a co-regulator of adenovirus 

E1A and has been shown to be important for expression of egr1 (aka krox24) through its 

binding with ELK1140 ,176. Both active and inactive forms of C/EBPβ interact with Mediator 

through MED23177.  

MED15 is another Mediator Tail subunit, which has been shown to mediate gene 

expression downstream of TGFβ/Activin signaling through its interaction with intracellular 

TGFβ signaling effector complex Smad 2/3/4178. Like C.elegans, a lipid homeostasis role for 

MED15 in higher eukaryotes has not been reported. However, given the sequence similarity 

such a role would not be a surprise162. MED25 has also been shown to regulate lipid 

metabolism through its interaction with transcription factor HNF4179 and regulate mouse 

embryonic development through its interaction with an E3 ubiquitin ligase WWP2180. MED19 

and MED26, though not a part of the Mediator Tail complex, have been shown to interact with 
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RE-1 silencing transcription factor (REST) and regulating epigenetic silencing of neuronal gene 

expression181.  

Similar to Mediator Tail subunits, subunits of CDK8 module have been shown to 

directly interact with specific transcription factors. Work done in HeLa cells has shown that the 

kinase module subunit, MED12 can bind to β-catenin and this interaction is crucial for 

transcription of WNT signaling responsive genes182. CDK8 itself has been shown to bind to 

MYC, a protein highly up-regulated in cancer cells. Whether this binding has any role to play 

in cancer progression is unknown, but the recruitment of CDK8 by MYC has been shown to be 

sufficient for activation of a synthetic promoter construct183.  

 

Mediator Kinase module (Activator or Repressor?) 

 From the four modules making up Mediator complex, Kinase (CDK8) module is variably 

associated with the Mediator and its interaction with Mediator has been usually associated 

with rendering the complex transcriptionally inactive and unable to RNA Pol II C-terminal 

domain158. The CDK8 module of Mediator consists of four subunits, MED12, MED13, cyclin C 

and CDK8. Reconstitution of human CDK8 module has shown that MED12, but not MED13, is 

required for its kinase activity184 while MED13 is required for its interaction with the rest of 

the Mediator185. In spite of being members of cyclin and cyclin dependent kinase families, 
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Cyclin C and CDK8 (respectively) have not been shown to have any role in cell cycle 

regulation186. A paralog of CDK8, with high amino acid sequence conservation, has been 

observed in vertebrates, named CDK19 (earlier known as CDK11), which has also been shown 

to associate with Mediator complex135. CDK8 knockout leads to embryonic lethality in mice 

and in spite of high sequence similarity, presence of CDK19 is unable to compensate for CDK8 

loss, suggesting that the two kinases are not functionally redundant187. In fact, work done on 

viral activator VP16-dependent transcription suggests that the two kinases, CDK8 and CDK19 

have opposite roles188, 189. Similar to CDK8, MED12 and MED13 also have vertebrate paralogs, 

MED12L and MED13L135, and whether they have a preferential binding for CDK8 containing 

or CDK19 containing kinase modules is currently unknown186.  

 The first indication for the role of CDK8 kinase module in mediating transcription 

repression came from electron microscopy studies done in yeast, S. pombe.  CDK8 module was 

shown to be bound to the same cleft in Mediator where RNA Pol II was observed to be bound 

earlier, suggesting a steric hindrance to Mediator – RNA Pol II interaction190. Repression of 

activated transcription by human CDK8 module was independent of its kinase activity but was 

dependent on availability of its subunits MED12 and MED13185. Two in vivo studies have 

highlighted the role for CDK8 association with inactive Mediator. C/EBPβ is an intrinsic 

repressor whose conversion into activator form requires active RAS signaling. The Leutz group 
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has shown that the transition from repressor C/EBPβ to activated C/EBPβ under influence of 

active RAS signaling is associated with an exchange of Mediator containing CDK8 module with 

Mediator devoid of CDK8 module177. In another study it was shown that active Retinoic Acid 

(RA) requires DNA binding protein PARP-1 for dissociation of CDK8 containing Mediator 

complex for target gene expression191.  

 Recently, an activator role for CDK8 module has come to light. These studies highlight a 

context dependent role for CDK8 module, which might act as an activator or a repressor in a 

gene-specific manner. CDK8 module and its kinase activity have been shown to be important 

for RNA Pol II recruitment to and activation of a gene called dio1192 and for transcriptional 

activation of p53 target gene p21193. CDK8 mediated gene activation has also been shown 

down-stream of signaling pathways like TGFβ and Notch signaling194, 195. Colon cancer cell 

lines show a copy number gain in CDK8 and a requirement for CDK8 in cancer cell 

proliferation and β-catenin mediated gene transcription196. The transactivator domain of β-

catenin binds to MED12 subunit of CDK8 module and recruits Mediator to WNT responsive 

genes in vivo. Null mutations in MED12 or specific mutations in MED12 affecting β-catenin 

binding, block β-catenin mediated gene activation182. CDK8 has also been shown to influence 

β-catenin mediated gene activation indirectly by phosphorylating and inhibiting transcription 

regulator, E2F1, known to cause protein degradation of β-catenin197. RNA Pol II CTD 
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phosphorylation and assembly of elongation complexes requires active CDK8 module, 

suggesting that CDK8 module might be important for post-recruitment activation and 

transcription elongation198.  

 

Mediator and Embryonic Development 

 Above section showcases how Mediator proteins interact with various transcription 

factors to influence specific cellular differentiation cascades. Some of these known Mediator-

Transcription factor interactions have been shown to be important in embryonic development 

and highlighted in the section above. Mutant analyses in drosophila, zebrafish, mice and 

human cell lines have shined light on Mediator subunits required for specific developmental 

processes, and for some of these no Mediator-Transcription factor interactions are currently 

known. Table 2 summarizes the mutant analyses for various Mediator subunits that appear to 

be involved in embryonic development.  

 Although known as a general transcription co-factor, only one Mediator subunit has yet 

been shown to be involved in general transcription. ES cells homozygous for med21 deletion 

cannot be generated and med21-/- mouse embryos die at blastocyst stage, a time point 

correlated with onset of zygotic transcription199. Similar to MED21, MED6 has been shown to 

regulate most, but not all, housekeeping and cell homeostasis genes in drosophila, and loss of 
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med6 affects drosophila larval development200. C.elegans homologues of MED6, MED7 and 

MED10 (ceMed6, ceMed7 and ceMed10) have been shown to be required for transcription of 

developmental genes but not housekeeping genes. RNAi mediated inhibition of ceMed6, 

ceMed7 and ceMed10, individually showed defects C.elegans embryonic development post 

300cell stage but not prior. Low doses of RNAi caused defects in germ cell development and 

generated sterile adults (Kwon PNAS 1999). As mentioned above, MED1 has been shown to 

interact with GATA transcription factors (amongst many others). This interaction between 

MED1 and GATA transcription factors seems to be most pertinent in terms of early embryonic 

development as med1-/- mouse mutants display embryonic lethality at 11.5dpc associated with 

impaired placental and cardiovascular development, processes for which its interaction with 

GATA proteins seems to be important201-203. 

 Both MED12 and MED13 have been shown to be important for formation of eye and 

wing imaginal disc in drosophila204-206. Hedgehog and WNT signaling pathways have been 

shown to be disrupted in eye and wing imaginal discs of med12 and med13 mutant flies204 ,206, 

207. MED12 and MED13 have also been shown to be involved in mediating GATA/RUNX 

regulated embryonic crystal cell formation in Drosophila hematopoiesis208, 209. The interaction 

of MED12 and WNT signaling in C.elegans is shown to be opposite of that observed in  
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Table 2 – Mediator subunits and vertebrate embryonic development 

 
Mediator gene  Organism  Mutant phenotype      

 
 

Med1    Mouse   Cardiac, vascular and growth defects 
Med12   Zebrafish  Neural crest and cartilage development, hindbrain  
     patterning and cardiovascular defects 
Med12   Mouse   Neural tube, somitogenesis and cardiovascular defects 
Med14   Zebrafish Retina and rod cell development 
Med21    Mouse  Arrest at blastocyst stage     
Med23   Mouse   Systemic circulatory failure      
Med24   Zebrafish Enteric neuron differentiation defect 
Med24    Mouse  Cardiovascular, neural tube and cell growth defects 
Med25   Zebrafish,  Mouse Palatal malformations     
Med27   Zebrafish  Retina development  
Med31   Mouse   Cell proliferation defect and developmental delay    
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Drosophila. In Drosophila, MED12 is required for WNT target gene activation, while in 

C.elegans; MED12 is shown to be an inhibitor of WNT signaling during neurogenesis210. 

MED12 has also been shown to be important for C.elegans vulval development; however, this 

role of MED12 is independent of WNT signaling, but dependent on active RAS signaling211. 

Vertebrate requirement for MED12 is very widespread. In zebrafish, multiple med12 mutations 

have been discovered from mutagenesis screens, suggesting a role for MED12 in brain 

development, endoderm development, neural crest development and kidney development212-

214. MED12 has been shown to be a co-activator for activation of SOX9 target genes involved in 

neural crest, cartilage and ear development in zebrafish; however, an involvement of WNT 

signaling has not been reported215. In mice too, MED12 has been shown to interact with 

canonical and non-canonical WNT signaling. med12 mouse mutants display defects in neural 

tube development, axis elongation, somitogenesis and heart development through its 

interaction with canonical and non-canonical WNT signaling216. MED12 and MED13 have 

also been shown to be important for pattern formation in Arabidopsis, highlighting the 

evolutionary conservation of the subunits and their importance in embryonic development217.  

Loss of med23, a metazoan specific Mediator Tail subunit has been shown to cause 

embryonic lethality in mice at 10.5dpc possibly through a systemic circulation failure218. 

Although a few transcription factor interactions have been reported for MED23, none can 
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provide an explanation for causing mid-gestational embryonic lethality. In absence of MED23, 

its two Tail module interacting partners MED16 and MED24 also do not incorporate into the 

Mediator complex176. Loss of MED24 also leads to mid-gestational embryonic lethality along 

with defects in cardiovascular development, central nervous system development and placenta 

formation219. MED23, MED16 and MED24 form a small subunit that is missing in both 

med23-/- and med24-/- mutants. Loss of MED24 has also been analyzed in zebrafish. 

Zebrafish med24 mutants display defects specifically in neural crest derived components like 

craniofacial structure and enteric nervous system220. Differentiation of neural crest cells in 

mouse med24 mutants has not been undertaken owing to early embryonic lethality of mutant 

embryos. Hence, the defects observed in each of these mutants could be a due to a compound 

loss of both, a possibility that has not been explored in details yet.  Loss of another metazoan 

specific subunit, MED25 also causes neural crest and craniofacial development defects in 

zebrafish through an indirect effect on SOX9180. Most of the subunits show somewhat similar 

defects between species. Loss of MED31 however, seems to have different roles in drosophila 

and mouse development.  In drosophila, MED31 seems to be important for anterior-posterior 

axis formation221, while loss of MED31 in mouse embryos does not affect early patterning; 

however, general developmental delay and proliferation defects are observed post-

midgestation222.  
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Summary  

 The past two decades of work has shown us very clearly that Mediator and its subunits 

are crucial for general and activated gene transcription, a process especially crucial for 

embryonic development. While the interaction of head module subunits with RNA Pol II and 

general transcription co-factors anchors the pre-initiation complex at the polymerase start site, 

the selective interactions of the rest of the Mediator subunits with specific transcription factors 

is what gives Mediator a role in regulating gene transcription. The fact that loss of specific 

Mediator subunits themselves or specific Mediator subunit-transcription factor interactions 

affects transcription of only a subset of genes, calls for the presence of a “Mediator Code”, 

which regulates transcription of a specific group of genes. Evidence for presence of such 

multiple forms of Mediator complexes has been observed in vivo, but we are currently far 

away from understanding the finite details of how each of these different complexes function. 

This current work is compilation of studies done to understand the role of one of these 

Mediator subunits, MED23 in transcription of a specific set of genes involved in specific 

differentiation processes during mammalian embryonic development.  
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Chapter 1 

MED23 is required for mammalian embryonic development 
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Summary 

 Mammalian embryonic development is a complex process that requires orchestration of 

multiple differentiation events happening at the same time. Precise transcriptional control is 

one of the mechanisms by which the embryo ensures the expression of genes at the right time 

and place. Through an unbiased 3-generation forward genetics screen, our lab identified ten 

mutants that show defects in normal embryonic development, specifically craniofacial 

development223. Here, I describe one of these mutants, snouty, which leads to embryonic 

lethality, craniofacial, neural and vascular development defects. Dr. Lisa Sandell, a previous 

post-doctoral fellow in our lab, identified snouty to be a point mutant in med23, which 

encodes a subunit of the Mediator complex. Our snouty phenotype phenocopies published 

med23-/- phenotype, suggesting that the snouty allele is a null allele of med23. We think snouty 

is a great tool to understand the role of ubiquitously expressed transcription co-factors in 

mammalian embryonic development and have generated additional null and conditional alleles 

of med23 for a comprehensive study of its role in mammalian embryonic development.  
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Introduction 

Craniofacial anomalies are a part of one-third of all congenital anomalies. A lot of 

craniofacial anomalies have been found to be associated with defects in neural crest-derived 

craniofacial skeleton and could arise from defects in neural crest formation (Treacher Collins 

syndrome)224,225, migration (Bardet-Biedl syndrome)226 or differentiation (Craniosynostosis)227. 

Bone and cartilage derivatives of neural crest cells serve as important scaffold for formation of 

mesoderm derived muscles, tendons and vasculature. At the same time, the migration of neural 

crest cells through the surrounding mesoderm requires proper formation and patterning of the 

mesoderm itself. Signals from ectoderm and endoderm are also required for proper neural crest 

survival, patterning and growth. Thus, overall, craniofacial disorders, though usually 

manifested as defects in bone and cartilage formation, may arise also due to causes extrinsic to 

neural crest cell development. Defects in proper development and patterning of any of the 

germ layers, ectoderm, mesoderm and endoderm can lead to defects in craniofacial 

development.  

Formation of the craniofacial complex uses common molecular pathways like WNT, 

FGF, SHH, BMP and RA (Retinoic acid). We have some understanding of how these signaling 

molecules and the factors involved in and affected by their intracellular cascades regulate the 

different aspects of craniofacial development, but not all the details are known. Most of our 
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understanding of these molecules in mammalian systems comes from gene knock-out 

strategies, which focus of loss-of-function phenotypes or very rarely occurring spontaneous 

mutations in the laboratory mouse. Completion of mouse genome sequence, however, now 

allows us to utilize the tool of forward genetics screen even with a small focus. Forward 

genetics screen, using alkylating agent N-ethyl-N-nitrosourea (commonly also known as ENU) 

has been successfully used in many model organisms, including laboratory mouse, to explore 

the genetic basis of many biological processes. ENU is injected into healthy adult males, where 

it potently induces point mutations in premeiotic male germ line. The point mutations are the 

most unique feature of ENU mediated mutagenesis as functionally they lead to all kinds of 

mutations, null, hypomorphic and hypermorphic. Also, point mutations can provide us an 

insight into the structural and functional details of the various domains within a protein and 

the single point mutations generated by ENU are unbiased.  

With all this in mind, our lab designed a simple three-generation forward genetics 

screen to identify novel genes that might be involved in craniofacial development223. The 

overall scheme for the screen involved breeding ENU-injected C57Bl/6 male mice to generate 

founder males (F1) heterozygous for the ENU-induced mutation. The founder males were 

outcrossed to FVB females and the daughter offspring were then backcrossed to each founder 

male to generate lines that reproducibly produced autosomal recessive mutant phenotypes. The 
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time point of observation was E10.5 and the embryos were analyzed for morphological defects 

in craniofacial development. Using this screen, ten recessive mutant lines were identified, each 

of which was analyzed morphologically for defects in embryo size, frontonasal prominence 

and branchial arch patterning, development of sensory organs (eye, ear, olfactory), formation 

of neural tube, neural crest development and neurogenesis and vasculogenesis. The phenotypes 

of all the mutants identified from the screen ranges from exencephaly to frontonasal and 

branchial arch hypoplasty to defects in vascular development as well as remodeling. Almost all 

of the mutants identified from this screen are embryonically lethal at mid-gestation, suggesting 

the crucial role that the genes involved play during mammalian embryonic development. The 

embryos also typically display a smaller size and have mild-to-severe defects in neural crest 

cell formation, migration or differentiation.  

The goal for the screen was to identify novel genes involved in craniofacial 

development. Each mutant line was generated essentially from a cross between C57Bl/6; 128Sv 

mixed background mutagenized male and an FVB background female. Using a panel of 

microsatellite markers polymorphic between C57Bl/6; 128Sv genetic background from males 

and FVB genetic background from females, we have been able to identify the genomic interval 

associated with each phenotype. Once the genomic interval is identified various approaches, 

from RT-PCR to exon sequencing to whole chromosome sequencing have been used for the 
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different mutants to conclusively identify the one single gene whose mutation is responsible for 

the phenotype. We have been able to identify known and previously unknown roles of multiple 

genes during craniofacial development using this approach (205 & personal observation, data 

not published).   

Here, I characterize the phenotype of one such mutant, snouty, identified from the 

above-mentioned screen. snouty is an autosomal recessive allele, and its homozygosity causes 

defects in embryonic survival beyond E10.5. As described below in details, snouty mutant 

embryos display defects in frontonasal process and branchial arch-1 formation along with 

defects in neurogenesis and vascular remodeling. Dr. Sandell, a previous member of our lab 

identified snouty as a single point mutation in med23, a gene encoding for a universally 

expressed transcription co-factor complex subunit, MED23.  

 

Results 

I. snouty mutation leads to craniofacial development defects and embryonic lethality 

snouty mutant embryos have a variable phenotype with the most severe embryos being 

much smaller and are quite developmentally delayed (up to a day) than their wild-type 

littermates. Most of the severe-phenotype snouty embryos display an open neural tube and lack 

of axial turning. snouty embryos with mild phenotypes also display a reduced size in 
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comparison to the wild-type counterparts, however they are bigger in size than the most severe 

mutant embryos, and these embryos do complete most of the neural tube closure. Some mild-

phenotype snouty embryos do display lack of neural tube closure in the most anterior regions 

that include the forebrain and the midbrain. The mild snouty-phenotype is the predominant 

phenotype in these mutants; hence, most of my analysis from here on focuses on the mild-

phenotype embryos.  

The smaller size of the mild-phenotype mutant embryos, observed at E9.5, does not 

seem to be due to developmental delay, as these snouty embryos are only 4-6 hours behind in 

development as determined by their somite number. By E9.5, snouty embryos display a smaller 

and malformed frontonasal prominence (FNP) and first branchial arch (BA) (Figure 5A and B), 

the regions of the embryo which will give rise to the face (snout) of the adult mouse; a 

characteristic which lead to the mutant phenotype being christened snouty. snouty embryos 

also display defects in eye and ear development, as observed by the smaller optic and otic 

capsules in the mutants (arrows, figure 5A and B). The optic capsule of the snouty embryos 

seems to be ventrally shifted in comparison to their wild-type littermates; this could however 

be an artifact due to lack of FNP structures that are normally formed ventral to the optic 

capsule. The forming heart (h, Figure 5A and B) should have already undergone cardiac 

looping by E9.5, a process which is delayed in snouty embryos. The representative mild- 
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Figure 5: snouty embryos display a smaller size and craniofacial defects at E9.5 

Wild-type (A) and snouty (B) E9.5 mouse embryo littermates were stained with DAPI and 

imaged with confocal microscope. Arrows- optic and otic capsules, h- heart, f - frontonasal 

process, b- branchial arch 1.  
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phenotype snouty embryo is about 2/3rd size as that of its wild-type embryo (Figure 7A). By 

E10.5, snouty embryos, even though alive as assessed by live beating heart, have heavily stunted 

growth leading to a very sick looking mutant embryo. Considering this, we selected E9.5 – 

E10.0 as our time-point for analysis to make sure that we are able to differentiate between the 

direct consequences of snouty mutation versus the indirect defects in the mutant embryos 

owing to their unhealthy state at E10.5. 

 

snouty mutation causes mid-gestation embryonic lethality and the mutant embryos die 

by E10.5.  Majority of organ systems of the mouse embryo are established post-E10.5. Hence, 

the embryonic lethality phenotype of snouty, although proving a crucial role for the mutated 

gene in embryogenesis, prevents us from understanding its role in organ system formation. 

However, two systems, nervous system and cardio-vascular system, both extremely crucial for 

embryonic development, have already begun forming and differentiating by this time point. 

Defects in both nervous system development as well as embryonic and extra-embryonic 

vascular development have been associated with mid-gestational embryonic lethality. 

Considering this, we analyzed the formation of neurons and blood vessels in snouty embryos at 

E10.0.  

 



 

59 
 

II snouty mutant embryos have defects in neural and vascular development 

Neural Development 

Development of neurons was analyzed by immuno-staining with an antibody against 

neuronal cell specific cytoskeletal marker β-tubulin III. At E10.0, β-tubulin III labels both the 

cell bodies and axons of the developing neurons of the central and peripheral nervous systems 

(CNS and PNS). In Figure 6A, we can see that β-tubulin III (green fluorescence) labels the 

developing neuronal network of the midbrain (mb) which is a part of the CNS. Here, β-tubulin 

III is also labeling the cell bodies and axons of the developing neurons of the cranial sensory 

nervous system (CSNS), which includes trigeminal, facial/vestibuloacoustic, glossopharyngeal 

and vagal ganglia,  as well as the developing trunk sensory neurons whose cell bodies coalesce 

to form dorsal root ganglia (DRG). snouty mutant embryos are able to form the CNS neurons as 

can be seen by the presence of β-tubulin III immuno-stained neuronal cells in the midbrain 

neuronal network (mb, Figure 6B), however, they lack the neuronal differentiation in the 

developing CSNS, with only few cells showing positive β-tubulin III immuno-staining in the 

forming trigeminal ganglion (TG) and no cells showing β-tubulin III immuno-staining in the 

epibranchial ganglia (EG). snouty embryos also show a reduced neuronal differentiation in the 

DRGs; however the extent of this defect is variable amongst the mutants. The neurons of the 

CSNS are derived from a mixture of two cell populations, neural crest and cranial placodes.  
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Figure 6: snouty embryos have defects in peripheral nervous system formation.  

Wild-type and snouty E9.5 littermate embryos were immuno-stained for antibody against TuJ1 

(neuron marker). snouty embryos display disrupted cranial sensory nervous system formation 

(very few TuJ1+ cells in TG – trigeminal ganglion and no TuJ1+ cells in EG – epibranchial 

ganglia) but relatively normal neurogenesis in midbrain (mb).   



 

61 
 

Subsequent chapters will analyze which of the two cell populations are affected in 

snouty embryos leading to the defect in CSNS differentiation. The question of whether this 

defect is a differentiation defect or a cell survival defect will also be addressed.  

 

Vascular defect 

Having established that snouty embryos have a defect in formation of PNS, we next 

analyzed the formation of the embryonic and extra-embryonic blood vasculature in these 

embryos. Platelet endothelial cell adhesion marker (Pecam-1) aka CD31 is a protein expressed 

at the junctions of embryonic and extra-embryonic endothelial cells as they are forming blood 

vessels. We analyzed snouty embryos for the blood vessel development by immuno-staining the 

embryos using an antibody against Pecam-1. We know that snouty embryos are smaller in size 

than their wild-type littermates at E9.5. This reduction in size could be a consequence of 

reduced nutrient and oxygen supply to the developing embryo owing to defects in blood vessel 

formation. Hence, we decided to first look at the development and organization of the blood 

vasculature in wild-type and snouty embryos and yolk sacs at E9.5 (Figure 7). By E9.5, wild-

type embryos form a very nicely organized vascular tree in the head and epibranchial regions 

of the embryo (asterisk, Figure 7E). snouty embryos display a mis-organization of the vascular  
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Figure 7: snouty embryos have defects in vascular remodeling 

Pecam-1 immuno-staining of Wildtype (A, C, E, F) and snouty (B, D, F, H) E9.5 embryos. Mis-

regulation of vascular tree like network is visible in yolk sacs (C, D) and in the head (*) and 

epibranchial regions (E, F). Intersomitic vessel formation (arrow, G, H) is not affected.  
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tree in the head and epibranchial regions (asterisk, Figure 7F). The inter-somitic vessels (ISM, 

Figure 7G and H) develop normally in the snouty embryos. The vessels infiltrating the heart 

(Figure 7A, B) also seem to be dilated, but that could be a consequence of delayed and defective 

cardiac development in snouty embryos. The yolk sac vasculature (Figure 7C, D) of snouty 

embryos displays a similar phenotype to embryonic vasculature. The blood vessels of the yolk 

sacs in snouty embryos are also mis-organized, thicker and more dilated. The characteristic 

vascular tree formation in the embryos and yolk sac is achieved by remodeling of the newly 

formed blood vessels during angiogenesis. Given that the blood vessels are formed in snouty 

embryos but the refined vascular tree network is not formed, it seems that snouty embryos have 

a defect in the vascular remodeling.  

 

III snouty mutation was identified as a single nucleotide change in med23, a gene 

encoding for Mediator complex subunit, MED23 

 The mapping for snouty mutation was done in our lab by a previous post-doctoral 

candidate, Dr. Lisa Sandell. Using SNP and microsatellite markers exclusive to C57BL/6 or FVB 

strain the exact point of mutation in snouty  was determined to be a single base pair change in 

exon 22 of a gene med23, located on chromosome 10 of mice (Figure 8). The single base pair 

change leads to a single amino acid change from Valine to Aspartic acid (V to D) in the  
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Figure 8: snouty is a mutant in med23  

snouty mutation was identified to be a single base pair mutation on Exon 22 of med23 gene 

leading to a single amino acid change, valine to aspartic acid, in the protein. Western blot 

against N-terminal of MED23 shows drastic reduction of MED23 protein levels in snouty 

mutant embryos  
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transcribed protein. Putative structure analysis suggests that MED23 protein comprises of 

multiple alpha helices joined together by linker motifs V-to-D mutation in med23sn/sn 

(sn=snouty) falls in one for the linkers connecting the alpha helices. We speculated that the 

mutation might lead to instability in the transcribed protein. Western blot against N-terminal 

domain of MED23 showed a that MED23 protein in med23sn/sn embryo was reduced by ~85% 

in comparison to wild-type littermate embryos (Figure 8).  

 

IV Generation of knock-out med23 mouse strain 

 To additionally confirm that snouty mutant carries a mutation in med23 and that 

med23sn allele is a functionally null allele of med23, we procured ES cells carrying a gene-trap 

mutation in med23 from Knock-out mouse consortium project (KOMP). The schematic of the 

gene-trap mouse allele is shown in Figure 9A.  The KOMP-med23 allele contains a (splice 

acceptor) SA-lacZ-neo cassette, known as β-geo from now on, introduced within the intron 

between exons 12 and 13. Because of the presence of SA site 5’ of β-geo cassette and a polyA 

tail 3’ of β-geo cassette, this KOMP-med23 allele (known as med23bgeo from hereon) 

transcribes into a truncated RNA product consisting of exons 1-12 and a fused β-geo (Figure 

9B). The translated protein is hence truncated at exon 12 and fused with LACZ. Formation of 

such a protein product gives us two advantages. First, the truncated protein from med23bgeo 
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Figure 9: 

A) Schematic representation of med23bgeo allele 

B) Formation of LacZ-fused truncated med23 RNA product from med23bgeo allele 

C) Ubiquitous expression of LacZ (representative of med23 expression) throughout the 

embryonic and extraembryonic yolk sac from E7.5 to E9.5.   
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 (MED23*) cannot perform same functions of MED23, and hence med23bgeo allele serves as a 

functionally null mutation. Secondly, the MED23*-LACZ fusion protein can be utilized to 

analyze the expression pattern of med23 within the developing embryo. ES cells containing 

med23bgeo allele were on C57BL/6 background. To generate med23bgeo/+ mouse strain these ES 

cells were cultured and injected into the C57BL/6 blastocysts generating chimeras which were 

then injected into a pseudo-pregnant C57Bl/6 females. Germ-line transmission was confirmed 

through tail-genotyping of the first generation and second generation offspring. med23bgeo/+ 

animals were intercrossed and embryos were obtained at E9.5.  

 

med23 is ubiquitously expressed in all cells of the developing embryo 

 We made use of the MED23*-lacZ fusion protein formed in med23bgeo/+ embryos to 

analyze the expression pattern of med23 during embryogenesis. med23bgeo/+ males were mated 

with C57BL/6 females to harvest embryo litters from E7.5 to E9.5 (Figure 9C). At each stage the 

embryos were subjected to X-gal staining, in which regional distribution of LACZ enzyme is 

determined using its property to cleave X-gal molecule and generate a blue colored product. 

The presence of blue staining indicates the presence of LACZ, which in this case indicates the 

site of med23 expression. As can be seen from Figure 9C, med23 is expressed ubiquitously in 

all embryonic and extra-embryonic tissues.  
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Figure 10: med23bgeo/bgeo embryos halt their development at E8.75 

DAPI immuno-stained littermate control and med23bgeo/bgeo embryos at E9.5 show the 

developmental delay in the latter, med23bgeo/bgeo embryos fail to undergo axial turning, display 

edematous heart, and are developmentally halted at E8.75.  
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V med23bgeo homozygosity is embryonically lethal and leads to phenotype more severe 

than med23sn/sn embryos 

 med23bgeo strain is on C57BL/6 mouse background, which is different from the FVB 

background of med23sn strain. Hence, we analyzed the morphology of med23bgeo/bgeo embryos 

to compare to med23sn/sn embryos and determine whether there is any strain dependence of 

med23 loss-of-function (LOF) phenotype. med23bgeo/bgeo embryos do not survive beyond E10.5, 

a phenotype similar to med23sn/sn embryos. The difference between med23sn/sn and 

med23bgeo/bgeo embryos is that med23bgeo/bgeo embryos halt their development at E8.75. At E9.5, 

even though med23bgeo/bgeo embryos are alive with a beating heart, the mutant hearts are 

edematous (Figure 10A and B), they have not undergone axial turning and their FNP and 1st BA 

(future craniofacial structures) have not developed equivalent to the littermate E9.5 wild-type 

embryos.  

.  

VI  Complementation test to confirm snouty mutation as a functionally null mutation in 

med23 

 The severity of med23bgeo/bgeo phenotype as compared to med23sn/sn embryos is most 

likely due to the strain differences between the backgrounds of the mouse lines. However, there 

remains a faint possibility that med23sn/sn is a hypomorph and med23bgeo/bgeo represents the  
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Figure 11: Schematic of Complementation test  
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complete null phenotype for med23 LOF. To test for this possibility we crossed med23bgeo/+ and 

med23sn/+ adult animals and harvested the double mutant embryos at E9.5. The scheme for 

mating and expected outcomes is described in Figure 11. The analyses are performed by 

examining the phenotype of med23bgeo/sn (double mutant) embryos and compare it to 

med23sn/sn and med23bgeo/bgeo embryos. If med23sn allele is indeed a hypomorphic allele, then 

combining one snouty - hypomorphic allele with a bgeo - null allele should still lead to 

formation of some functional  MED23 protein (at levels lower than med23sn/sn embryos), and 

the phenotype of the double mutant med23bgeo/sn embryos should be more severe than 

med23sn/sn embryos. In another case if med23sn allele is a functionally null allele, then the 

phenotype of the combined knock-out med23bgeo/sn embryos should be similar to that of 

med23sn/sn embryos. There is also a third possibility where the phenotype of double mutant 

med23bgeo/sn embryos is milder than med23sn/sn embryos; this would suggest that the med23bgeo 

allele is a hypomorph, something that has been observed in gene-trap alleles containing the β-

geo cassette. Given the highly severe phenotype for med23bgeo/bgeo embryos, the third possibility 

is highly unlikely in our case.  

 We know that med23sn/sn embryos display defects in anterior morphology, neural 

differentiation and blood vessel organization at E9.5. Hence, we analyzed the combined mutant 

med23bgeo/sn embryos for the same three processes at E9.5. Embryonic morphology was  
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Figure 12: snouty is a functionally null allele 

Wildtype (A, C, E) and med23bgeo/sn (B, D, F) littermate embryos were immunostained for DAPI 

(A, B), TuJ1 (C, D) and Pecam-1 (E, F). Morphological, neural and vascular defects in 

med23bgeo/sn embryos are similar to med23sn/sn embryos suggesting that med23sn is a null allele.  
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determined by pseudo-SEM DAPI staining (Figure 12A and B), neural differentiation was 

determined by β-tubulin III immuno-staining (Figure 12C and D) and blood vessel formation 

was determined by Pecam-1 immuno-staining of endothelial cells (Figure 12E and F). In all the 

three processes, the defects observed in med23bgeo/sn embryos were similar (neither milder nor 

more severe) to med23sn/sn embryos. At E9.5, med23bgeo/sn embryos are smaller in size than their 

wild-type littermates, their FNP and 1st BA (Figure 12B) are smaller in size and mis-formed and 

the heart is under-developed (Figure 12B). The forming nervous system of med23bgeo/sn 

embryos displays similar defects as that of med23sn/sn embryos. med23bgeo/sn embryos also lack 

β-tubulin III immuno-stained differentiating neurons in the forming cranial sensory nervous 

system and have fewer and mis-organized β-tubulin III immuno-stained differentiating 

neurons in the forming trunk sensory nervous system (Figure 12D). Moreover, Pecam-1 

immuno-staining shows that the defects in vascular organization of med23bgeo/sn embryos 

(Figure 12F) are also similar to that of med23sn/sn embryos. med23bgeo/sn embryos do not survive 

beyond E10.5 similar to med23sn/sn embryos. These results from the complementation test 

suggest that snouty is indeed a functionally null mutation of med23 and the phenotypic 

differences between med23sn/sn and med23bgeo/bgeo embryos are due to the background strain 

differences.  
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VII Generation of med23 conditional knock-out mice 

 To overcome the early embryonic lethality of med23bgeo/bgeo embryos and to analyze the 

role for MED23 during later gestation and postnatally, we decided to generate conditional 

mutant mouse lines for med23. med23bgeo allele obtained from KOMP (Figure) has been 

designed such that the genetrap cassette within intron 12 is flanked by FRT sites. To make use 

of the Flp/FRT system, we crossed the med23bgeo mice to a C57BL6 Flpper mouse strain. The 

flippase enzyme  excises out the genetrap sequence flanked between FRT sites leaving two loxP 

sites flanking exons 13 and 14 of med23 (Figure). This mouse line, med23floxed will be used to 

mate with various cre lines to generate tissue specific and time specific conditional mice. The 

scheme of matings is depicted in Figure 13.  

Unfortunately, much after the Flpper and med23bgeo mating was underway we realized 

that the Flpper mouse is not very efficient. In the med23bgeo allele, the FRT sites flank the 

complete ‘bgeo’ cassette, which includes the genome sequence encoding for lacZ as well. Using 

lacZ staining in the developing gonads of embryos obtained from med23bgeo x flpper mice, we 

observed that majority of the embryos that are carry both flp and med23bgeo alleles are still 

unable to excise out ‘bgeo’ cassette and express lacZ and stain blue upon X-gal staining (Figure 

14). The FLP/FRT mediated excision in this particular system is mosaic and as a result we ended 

up with animals of mixed genotypes containing med23bgeo, med23floxed and flp alleles all  
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Figure 13: Mating scheme to generate conditional mice from med23bgeo animals  
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Figure 14: Mosaic activity of Flpper mice 

C57Bl/6 Flpper mice were crossed with med23bgeo/+ animals and embryos were harvested at 

E14.5 to analyze their genital ridges for complete excision. LacZ staining from bgeo genetrap 

allele was used to determine if the excision occurred or not. Excision of bgeo genetrap by 

Flpper would result in absence of lacZ staining, however 1 out of 9 (embryo # 6) embryos from 

C57B/6 Flpper x med23bgeo cross still expressed lacZ (in spite of having the Flp allele 

genotypically) showing that Flpper excision is not complete.   
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together. We did not want to generate our conditional mice with these mixed genotypes and 

getting around this ended up extending our timeline beyond previous expectations. In order to 

avoid leakiness of med23bgeo allele into the conditional animals (med23floxed), we have screened 

all the offspring of Flpper x med23bgeo mating by genotyping not just for the presence of the 

newly ‘floxed’ allele but also for absence of ‘lacZ’ or ‘bgeo’ allele and generated our med23floxed 

founder males and females (med23floxed F2 generation) only from these newly identified 

floxed+; lacZ- animals (med23floxed F1 generation). Since our genotyping is done with tail clips, 

we had to bear in mind that the mosaicism caused by inefficient Flppase enzyme activity could 

result in a situation where the all the tail cells end up with perfectly excised med23floxed alleles 

(also lacZ-) but the germ cells could still carry some residual med23bgeo alleles. This indeed did 

happen as some of F2 animals were still genotyped as lacZ+; our solution to this problem was to 

discard the lacZ+ F2 animals and maintain only the floxed+; lacZ- ones. This solution has been 

successful yet quite slow in generating the med23floxed mouse line.  

In spite of these hurdles and time delays, we have now been able to cross the med23floxed 

line to various cre lines (Wnt1cre, Tekcre, ERT2cre and ZP3cre). Wnt1cre; med23floxed line will help 

us excise med23 specifically out of neural crest cells, while Tekcre (Tie2cre) will excise med23 

out of all endothelial cells in yolk sac and embryo beginning E9.5228. ERTcre is a mouse line 

which expresses cre in a tamoxifen-dependent manner, hence ERT2cre; med23floxed mouse line  
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Figure 15: Tamoxifen inducible ERT2Cre is able to excise loxP floxed alleles at 5mg/kg dosage 

ERT2Cre mouse line was crossed with R26RlacZ mouse line, where “stop” codon upstream of 

lacZ gene is flanked by loxP sites. Pregnant mothers were treated with oral gavage of 5mg/kg 

tamoxifen (+1mg/kg Progesterone) at E9.5 and embryos were analyzed for excision at E10.5. As 

shown above Embryo # 3 and Embryo # 5, carrying cre alleles show ubiquitous lacZ staining 

suggesting ubiquitous excision by ERT2cre allele at this dose.   



 

81 
 

will be used to surpass the early embryonic lethality of med23sn/sn embryos and excise med23 

out during later stages of embryonic development. Our preliminary studies have identified 

5mg/kg dosage of Tamoxifen as optimum for complete excision of floxed allele by ERT2cre 

(Figure 15). At this dose, Tamoxifen requires 24hours post-oral gavage to completely excise the 

floxed allele. The purpose of ZP3Cre; med23floxed mouse line would be to excise med23 in the 

egg cells and generate another model for med23 null mutation to compare to med23bgeo/bgeo 

and med23sn/sn embryos.  

 

Discussion 

 The mega-dalton protein complex, Mediator, is well conserved from yeast to humans. 

When first discovered, Mediator complex was assumed to serve as a tether between the 

regulating transcription factors and the PIC (Polymerase Initiation Complex) assembly. 

However, subsequent work done by many other labs has shown that Mediator is not a passive 

player in transcription. Mediator subunits themselves are arranged in three separate modules, 

Head, Middle and Tail. These subunits, through their interaction with transcription factors, 

intracellular signaling components, and polymerase machinery subunits create a system which 

provides an added layer of transcription initiation regulation. Mediator complex comes in two 

forms; the activator form of Mediator is associated with subunit MED26 while the repressor 
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form is associated with the CDK8 module. Both MED26 and CDK8 bind to the middle module 

of Mediator. Recent work has also shown that MED26 subunit containing Mediator complex 

plays a role in regulation of transcript elongation. MED23 subunit (mutated in snouty and 

med23bgeo) has been shown to be associated with both activator and repressor forms of 

Mediator177. 

 It is intriguing to see that loss of a single subunit of transcription co-factor complex, 

Mediator, results in such specific embryonic defects. Our data shows that med23 is 

ubiquitously expressed. Intuitively, we would expect a RNA Polymerase II co-factor to be 

crucial for all transcription within the embryo which would mean that losing a subunit of this 

co-factor complex would have severe defects within the homozygous embryo beginning as 

soon as the start of zygotic transcription, which happens really early in mammalian embryos. 

However, our data points to the contrary. How a mutation in a ubiquitously expressed subunit 

of a transcription co-factor complex can lead to defects specific to craniofacial, peripheral 

neurons and cardio-vascular tissue development, while sparing the other organ systems 

(central nervous system, muscle progenitor somatic tissue) is perplexing but not 

unprecedented. Some other Mediator subunits, like MED12, have shown roles in specific organ 

system development and specific signaling pathway regulation216. One possible explanation for 

such tissue specific role for MED23 could be that loss of MED23 subunit does not affect the 



 

83 
 

assembly of the rest of the Mediator176. We also know that MED23 is a subunit of the tail sub-

complex of Mediator, whose function is to bind and interact with specific transcription factors. 

All of this suggests a system in which the different subunits of Tail sub-complex interact with 

specific transcription factors and these specific interactions have roles in regulation of specific 

processes only, thus making MED23 the tail subunit important for formation of frontonasal 

process, peripheral nervous system and cardiovascular system within the mammalian embryo. 

The med23sn/sn mutant embryos die before we can analyze late gestational or post natal role for 

MED23. We have now generated conditional med23 mice that will help us overcome this mid-

gestational lethality. 

 snouty is a point mutant of med23; which means that snouty could be a null or a 

hypomorphic allele of med23. Our work, which also supports published reports176,218 argues 

against snouty being a hypomorph. The phenotype of snouty embryos matches perfectly with 

the published med23-/- embryo phenotype, in spite of differences in the mouse strains carrying 

the two mutations. We also see a loss of about 85% of MED23 protein product in snouty 

mutant embryos presumably due to instability of the mutant MED23 protein. We have 

generated a truncated allele of med23 (med23bgeo), which in homozygosity also leads to mid-

gestational lethality, but slightly earlier than snouty. Our complementation test tells us that 

snouty and med23bgeo allele are both functionally null, and the only reason for increased 
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severity of med23bgeo/bgeo embryos is the background strain differences between snouty and 

med23bgeo. med23bgeo allele still forms a truncated RNA product consisting of first 12 exons. 

The expectation is that this truncated mRNA would undergo Nonsense Mediated Decay (NMD) 

however, some transcript is still observed in the mutant embryos. No information is currently 

available from our or other labs to suggest that the truncated mRNA product is still active, 

however, the possibility cannot be completely ruled out. The evidence that snouty and 

med23bgeo are indeed functionally null alleles also comes from a comparison with a published 

phenotype of a med23 null allele. Berk lab has generated a mutant allele of med23 in which 

they have knocked out exons 2 and 3 of the gene (med23-/-)176. Analysis of this med23-/- 

phenotype revealed that the mutant embryos die between E9.5 to E10.5 as observed our snouty 

embryos218. Berk lab med23-/- embryos also display a growth defect at E9.5 along with defects 

in formation of the PNS and organization of blood vasculature. In spite of being on different 

mouse strain backgrounds and having different sites of mutation, snouty embryos (FVB strain; 

point mutation exon 22) and Berk lab med23-/- embryos (F1 strain; deletion exon 2 and 3) 

display similar defects in embryogenesis. This suggests to us that even though med23sn allele 

translates about 15% of the mutant MED23 protein; the translated product is functionally 

inactive. Our med23bgeo/bgeo embryos phenotype is still more severe that the Berk lab med23-/- 

and med23sn/sn embryo phenotype, suggesting that these differences might be more due to the 
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underlying strain differences. Comparing the Berk lab med23-/- embryo phenotype with 

med23sn/sn and med23sn/bgo (complementation) embryo, it seems that med23sn is a null allele.  
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Chapter 2 

MED23 is required for mammalian vascular development 
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Summary 

Proper blood vasculature development ensures proper blood flow to all organs and cell 

types within the body. Availability of oxygenated blood and nutrition is just as important, if not 

more, during embryonic development as it is in maintaining body homeostasis. As described 

earlier, med23sn/sn
 embryos seem to display a defect in formation for proper vascular network 

within the yolk sac and embryo. Our analysis shows that MED23 is dispensable for 

vasculogenesis (the process of formation of vasculature de novo) but seems to be important for 

remodeling of the blood vessels after the primary plexus has been established. It seems that loss 

of MED23 disrupts endothelial cell-cell junction formation. Later roles for med23 in 

differentiation of vascular smooth muscle cells has been shown in zebrafish embryos, however, 

med23sn/sn mice embryos die much before those analyses could be performed. Early on, 

preliminary vascular smooth muscle development seems unaffected in these embryos. We have 

also observed an increase in Vegfa transcript levels following loss of med23, which has been 

reported to cause embryonic lethality in mice embryos due to cardiovascular development 

defects. Whether the combination of all these vascular defects in med23sn/sn embryos is severe 

enough to cause the mid-gestational lethality is currently debatable. We hope that our analysis 

with endothelial cell-specific deletions of med23 will give us better understanding of how 

MED23 regulates blood vasculature development.  
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Introduction 

Development and functioning of all organs depends on a properly functioning vascular 

network. Blood vessels consist of an endothelial tube surrounded by mural or support cells 

(vascular smooth muscle cells for arteries and veins or pericytes for arterioles, venules and 

capillaries), which regulate vessel diameter and blood flow. Endothelial cells that line the entire 

blood vessel network are thought to derive de novo from mesoderm that first forms a primary 

vascular plexus within the extra-embryonic tissue and share their lineage with hematopoietic 

cells through a common progenitor, called hemangioblast, which has been described in 

drosophila, zebrafish, chick and mice embryos229-234.  

Blood vessel formation is typically divided into two stages, vasculogenesis (de novo 

formation of endothelial tubes from angioblasts) and angiogenesis (remodeling of existing 

blood vessels into new ones).  

 

Vasculogenesis 

Vasculogenesis begins in the yolk sac during gastrulation and involves differentiation of 

mesodermal cells into angioblasts. Angioblasts are endothelial cell precursors that come 

together and form the primary vascular plexus within the yolk sac. This differentiation of 

primary endothelial cells has been shown to require signals similar to the ones required for 
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mesoderm specification during gastrulation, BMPs and FGFs. Loss of BMP signaling effector 

proteins, SMAD4 or SMAD5, result in yolk sac vasculature defects leading to embryonic 

lethality235-237. In mouse embryonic stem cells, BMP signaling has been shown to initiate a 

FGF2-dependent signaling program that regulates specification of angioblasts238, 239. The 

hierarchy of BMP and FGF signaling cascades is reversed in human embryonic stem cells where 

FGF signaling has been shown to be required for stem cell survival and proliferation, while 

BMP signaling is required to promote endothelial cell differentiation240. BMP signaling in this 

case is under regulation of Hedgehog (IHH) pathway whose components are expressed in the 

yolk sac visceral endoderm and mesoderm at the time of vasculogenesis and their loss affects 

endothelial cell differentiation241.  

 

Angiogenesis 

Angiogenesis or vascular remodeling involves proliferation, migration and sprouting of 

endothelial cells to form new vessels from pre-existing ones and also involves differentiation of 

endothelial cells into arterial, venous and blood-forming hemogenic phenotypes. One of the 

signaling pathways crucial for angiogenesis is Notch signaling242, 243. Loss of ligands, notch1 

and notch4 together, causes severe defects in embryonic and extra-embryonic vessel 

remodeling leading to embryonic lethality244 while mice lacking a copy of Notch receptor, dll4, 
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exhibit smaller dorsal aorta and remodeling defects in yolk sac vessels245. HEY1 and HEY2 are 

downstream effectors of Notch signaling and have been shown to be crucial for vascular 

development. Loss of both hey1 and hey2 together leads to embryonic lethality in mice at E9.5, 

specifically due to extra-embryonic (yolk sac and placenta) vessel remodeling defects246, 247.  

The process of Angiogenic sprouting involves loss of cell-cell junctions between 

endothelial cells, degradation of basement membrane by proteolysis followed by migration of 

‘tip’ endothelial cells in response to angiogenic stimuli. The other endothelial cells that trail the 

earliest migrating tip endothelial cells are known as ‘stalk’ cells and these stalk cells are 

responsible for proliferating and expanding the newly forming endothelial sprouts. The 

specification of ‘tip’ versus ‘stalk’ cells is regulated by VEGF and Notch signaling248. Tip cells 

are characterized by their expression of Notch ligand, dll4249. VEGF signaling regulates this 

expression of dll4 in tip cells250, which then reduces the expression of flk1 in adjacent 

endothelial cells through activation of Notch signaling in those cells. Reduction in flk1 

expression reduces the ability of the adjacent cells to respond to VEGF stimuli thus preventing 

them from acquiring tip cell fate and conferring them stalk cell identity251-253. Loss of dll4 and 

inhibition of Notch signaling results in increased angiogenic sprouting and hyper - 

proliferative endothelial cells251, 254.  To make matters more complex, the specification of tip- 
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versus-stalk identity within the sprouting endothelial cells itself has been shown to be a 

dynamic process. Through live imaging, it was shown that the sprouting endothelial cells are 

continuously in struggle to become the tip cells and at each point of time whichever cell 

expresses the dll4 ligand acquires the tip cell identity for that time period255.  

Apart from angiogenic sprouting, VEGF and Notch signaling cross-talk is also crucial 

for arterial and venous differentiation of endothelial cells. Mice lacking a copy of Notch 

receptor, dll4, exhibit smaller dorsal aorta and remodeling defects in yolk sac vessels and have 

complete loss of arterial identity256,257. On the other hand, overexpression of dll4 causes 

enhanced arterialization also leading to vascular defects245. Dorsal aorta development was also 

affected in hey1; hey2 double mutant embryos246 247. Loss of Rbpj, encoding a transcription 

factor downstream of Notch signaling, also results in defects in arterial endothelial cell 

development257, suggesting that Notch signaling pathway regulates arterial differentiation 

during endothelial cell development via RBPJ/HEY1-HEY2. VEGF signaling has also been 

suggested to have a role in arterio-venous differentiation of endothelial cells. In vitro VEGF 

induces expression of arterial markers in endothelial cells while morpholino knockdown of 

vegf in zebrafish embryos leads to sustenance of venous cell markers at the cost of arterial 

makers258, 259. Specification of venous cell identity, on the other hand, is under the control of an 

orphan nuclear receptor, COUPTFII, which is expressed in endothelial cells specific to veins 
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and lymphatic vasculature beginning E8.5260. Endothelial cell specific deletion of CouptfII 

(using Tie2re) leads to embryonic lethality and loss of venous identity. Overexpression of 

CouptfII in endothelial cells on the other hand also leads to aberrant vessel development due to 

fusion of artery-vein structures, a phenotype similar to notch- deficient embryos261, 262. 

COUPTFII, thus seems to be required for suppressing Notch activity (which is regulates arterial 

endothelial cell differentiation) and thereby regulate venous cell identity. This hypothesis is 

supported by the fact that double knock-out for CouptfII and Rbpj (downstream target for 

Notch signaling) partially restores venous identity for endothelial cells263.  

 

VEGF signaling in Vasculature development 

VEGF signaling has been shown to be important in regulating various aspects of 

endothelial cell function, including survival, proliferation and vessel permeability264, 265. 

VEGFA is the most extensively studied VEGF family member and is expressed its expression in 

the extra-embryonic visceral endoderm at E7.5 in mice correlates perfectly with blood island 

formation in yolk sac266. Loss of one or both copies of Vegfa leads to cardiovascular defects and 

embryonic lethality in mice267, 268. Over-expression of Vegfa also impairs cardiac development 

and results in mid-gestational embryonic lethality suggesting a dose-dependent crucial role for 

VEGF in heart and vascular development121. VEGFA signals mainly through two receptors, 
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VEGFR1 and VEGFR2 (or FLT1 and FLK1 respectively) but it has also been shown to interact 

with Neuropilin receptors 1 and 2 (NPN1 and NPN2). VEGFR1 (FLT1) has a higher affinity for 

VEGFA than VEGFR2 (FLK1), however VEGFR1 lacks the tyrosine kinase ability to signal 

downstream post- VEGFA binding event and hence has been considered to be a negative 

regulator (decoy receptor) of VEGFA269. In support of this, loss of flt1 results in increased 

number of hemangioblasts leading to an overgrowth of endothelial cells and vascular channels 

and eventually causes mid-gestational embryonic lethality in mice122. Role of VEGFR2 or FLK-1 

in endothelial cell generation and blood vessel development is very well established. Loss of 

flk1 does not affect formation of angioblasts but still results in complete lack of yolk sac blood 

islands and embryonic and extra-embryonic blood vessels leading to embryonic lethality119. 

Analysis of chimeric embryos generated from wild-type and flk1-null cells has shown that flk1 

is cell autonomously required for endothelial cell differentiation and suggests that the main 

role for FLK1 is to ensure that the mesodermal precursors of blood islands end up at the correct 

locations within the yolk sac270. This suggests that VEGFA signaling probably regulates survival 

and proliferation of endothelial cells and their precursors but not necessarily the differentiation 

of angioblasts from mesoderm.  

 

Angiopoeitin signaling in vascular development 
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Angiopoetin/Tie signaling pathway is unique such that it is almost exclusively 

endothelial cell specific and is crucial not for de novo endothelial cell differentiation (or 

vasculaogenesis) but for blood vessel remodeling and maturation (angiogenesis) during later 

stages of embryonic and postnatal development. Angiopoetins (ANG1, ANG2 and ANG4) are 

ligands that bind to tyrosine kinase receptor Tie2 (also known as Tek) and regulate endothelial 

cell survival and cell-cell junction stabilization. Deletion of tie2 in mice embryos leads to mid-

gestational embryonic lethality due to impaired cardiac development and reduced numbers of 

endothelial cells271, while loss of angiopoeitin-1 (ANG1) leads to vascular remodeling defects 

and a disruption of endothelial cell – extracellular matrix interaction272, 273. Tie1, a homolog of 

Tie2, on the other hand, does not directly bind to any Angiopoeitin ligands, but its loss still 

affects blood vasculature development, specifically angiogenic capillary growth and 

endothelial cell survival, leading to hemorrhage and death of mutant embryos274,275. 

 

Formation and Regulation of Endothelial cell-cell junctions 

Endothelial cell-cell junctions are critical to regulate vascular permeability. During 

development, regulation of junction formation is crucial for forming endothelial cell tubes 

(blood vessels) and regulated disruption of the junctions is required during angiogenic 

sprouting. Homotypic junctions between endothelial cells come in multiple flavors, two of the 
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well-studied ones are tight and adherens junctions (Figure 16). Adhesion via adherens 

junctions is mediated via VE-Cadherin, an endothelial specific member of the Cadherin family. 

Inside the cells, VE-Cadherin is linked to a large number of intracellular partners, one of them 

being the actin cytoskeleton, which can control the dynamic opening and closing of the cell- 

cell junctions. Adhesion in tight junctions is mediated by the Claudin family of membrane 

proteins. Multiple claudin family members are expressed in tight junctions of all cell types, 

such as occluding, nectin and others; Claudin-5 amongst these is specific to endothelial 

cells276. Disrupting VE-Cadherin in mouse embryonic stem cells does not affect differentiation 

of endothelial cells but affects their organization into a vessel like pattern277. Loss of VE-

Cadherin in embryos affects formation of capillary plexus within mouse allantois and leads to 

mid-gestational embryonic lethality following vascular defects278. VE-Cadherin association 

with another junctional protein β-catenin seems to be crucial for its vascular remodeling 

function279. Recently, it has been shown that VE-Cadherin is not required for formation of 

nascent blood vessels but is required for maintaining their vessel-like assembly by maintaining 

the endothelial cell-cell junctions280. Another cadherin, N-cadherin, has also been shown to be 

expressed in endothelial cells and its ablation within the endothelial cell lineage leads to loss of 

ve-cadherin expression, vascular development defects and mid-gestational embryonic 

lethality281. However, in vitro, embryonic stem cells deficient for N-cadherin were able to form  
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Figure 16: Endothelial cell-cell junctions 
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vessel like structures but showed defects in endothelial cell-support cell junctions (pericytes) 

suggesting a role for N-cadherin in maintaining heterotypic endothelial cell connections282. 

Loss of Claudin-5, which is an endothelial cell specific claudin, surprisingly does not disrupt 

overall morphology of blood vasculature and tight junction structure; however, it does affect 

the formation of blood brain barrier which leads to perinatal embryonic lethality in mutants283, 

284. Apart from adherens and tight junctions, endothelial cells also form homo- and heterotypic 

junctions via proteins like PECAM-1 (Platelet and Endothelial Cell Adhesion Molecule-1) and 

VCAM-1 (Vascular Cell Adhesion Molecule-1), which are expressed preferentially in 

endothelial cells and hence are usually used as markers of vasculature but are not 

indispensable for blood vessel development285, 286.  

Loss of MED23 results in mid-gestational embryonic lethality. Our initial analysis 

showed that med23sn/sn embryos display disruption in embryonic and extra-embryonic blood 

vascular network at E9.5. Here we are trying to characterize this blood vessel formation defect 

in more details. We see defects in expression of endothelial cell-cell junction markers in 

embryonic vasculature at E9.5 suggesting a disruption in vascular remodeling due to loss of 

med23. Whether these defects are sufficient to cause embryonic lethality has currently not 

been tested, but is in process with conditional deletion of med23 from endothelial cells.  

 



 

98 
 

Results 

I. flk1 expression is similar in wild-type and med23sn/sn littermate embryos  

PECAM-1 immuno-staining depicted the presence of disorganized blood vessel network in 

med23sn/sn embryos and yolk sac at E9.5. A microarray done on E9.5 wild-type and med23sn/sn 

embryos showed a 1.6fold increase in Vegfa transcript levels. Increasing Vegfa levels by 2-3 

folds in mice embryos result in disruption of cardiovascular development and mid-gestational 

lethality121. It has been hypothesized that in some mutants, lack of proper vasculature results in 

hypoxia-like conditions, which trigger an over-expression of Vegfa to compensate. Thus, the 

increase in Vegfa levels in med23sn/sn embryos could be the cause for or result of abnormal 

vascular development. To determine if this mis-regulation of Vegfa transcription is real, we 

analyzed the expression pattern of VEGFA receptor, FLK1. flk1 is known to be expressed in all 

endothelial cells from the time that they first differentiate from mesoderm and by E9.5; it 

should be expressed throughout the vascular network. Wild-type embryos in med23sn/sn 

embryos also, flk1+ cells are detected throughout the embryo (Figure 17). This is not surprising 

as we do see a vascular network being formed in med23sn/sn embryos by PECAM-1 immuno-

staining and not a complete lack of vasculature, which would be expected had we lost flk1 

expression.  
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Figure 17: flk1 expression in wildtype and med23sn/sn embryos. 

flk1 expression in the med23sn/sn embryo at late day E9.5 marks the blood vessel network. flk1+ 

cells are observed in the allantois, heart, intersomitic vessels and head and epibranchial regions 

of the mutant embryo similar to control littermate.   
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II. Formation of endothelial cell-cell junctions is affected in med23sn/sn embryos 

In our effort to characterize the defects in blood vessel development in med23sn/sn 

embryos we decided to analyze the expression of endothelial cell-cell junction markers in the 

mutant embryos. The two main Homotypic junctions formed between endothelial cells are 

adherens junctions (marked by VE-Cadherin) and tight junctions (marked by Claudin-5). Both 

VE-Cadherin and Claudin-5 are junction proteins exclusive to endothelial cells only.  

 

Adherens Junction 

 When analyzed at E9.0, a time point when med23sn/sn phenotype is first visible, 

expression of ve-cadherin seems to be normal in wild-type and mutant embryos alike (Figure 

18A, B). However, at E9.5, two out of three embryos analyzed displayed a mild disruption in 

ve-cadherin expression pattern throughout the embryo (representative image, Figure 18 C, D). 

Instead of the beautiful network of blood vessels observed in control embryos, mutant embryos 

display dispersed ve-cadherin+ cells lacking a tree-like vascular network. One of the three 

mutant embryos analyzed had a severe defect, where the ve-cadherin+ endothelial cells were 

dispersed and fewer in number, especially in the head and epibranchial region (Figure 18 E, F). 

Specifically the network around the otic vescicle in the epibranchial region is severely 

disrupted in both mutant embryos (Figure 18D, F). Since, ve- cadherin+ cells are present 
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Figure 18: Adherens junction marker; ve-cadherin expression is reduced in med23sn/sn 

embryos at E9.5 but not at E9.0 

A, B ve-cadherin ISH at E9.0 shows similar expression between wild-type and mutant embryos. 

C, D At E9.5, mild phenotype ve-cadherin ISH shows abnormal vascular network in med23sn/sn 

embryos reminding of Pecam-1 immunostaining phenotype.  

E, F In a severe phenotype, very few ve-cadherin+ cells are observed in the med23sn/sn embryos 

and vascular pattern of expression is lacking.   
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 in that region half a day earlier (Figure 17B), and PECAM-1 immuno-staining suggests the 

presence of a vascular network at E9.5, it seems that the expression of adherens junction 

marker is specifically affected at that stage and that MED23 might be required for its 

maintenance.  

 

Tight Junctions 

 Since we saw a disruption of adherens junction marker expression in E9.5 med23sn/sn
 

embryos, we also decided to analyze the expression of tight junction marker in the mutant 

embryos. claudin-5 is a tight junction marker exclusive to endothelial cells. claudin-5 is 

expressed in all endothelial cells however its role is specific to blood brain barrier formation. 

RNA in situ hybridization of wild-type and med23sn/sn embryos at E9.5, display a defect in 

claudin5 expression in mutant embryos (Figure 19 A, B). Similar to ve-cadherin, at E9.5, 

med23sn/sn embryos display a disrupted claudin-5 expression pattern in the epibranchial 

region (Figure 19C, D). Given that PECAM-1 immuno-staining shows the presence of a 

vascular network in the epibranchial region, it seems that tight junction marker claudin-5 

expression is specifically disrupted following loss of MED23.  
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Figure 19: Expression of tight junction marker, claudin5 is reduced in med23sn/sn embryos at 

E9.5 

Analysis of claudin5 expression in control and med23sn/sn embryos at E9.5 shows reduced 

claudin5+ cells in the epibranchial and head region of mutant embryos (A – D) and in the 

intersomitic vessels.  
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III. Early development of vascular smooth muscle cells is unaffected in med23sn/sn embryos 

The vascular defect observed in med23sn/sn embryos could be endothelial cell-

autonomous or non-autonomous. The loss of cell-cell junction markers in mutant embryos 

could also result from lack of support from mural cells. By E9.5, vascular smooth muscle cells 

have already begun to be recruited in the developing cardiac tissue and the developing aorta to 

surround and support the endothelial cell tubes. We utilized an antibody against SM22α 

(Smooth muscle 22 alpha), one of the earliest markers of vascular smooth muscle cells to 

analyze early stages of smooth muscle differentiation in mutant embryos. At E9.0, wild-type 

embryos express SM22α throughout out the developing heart as well as in yolk sac. SM22α 

expression in E9.0 med23sn/sn embryos is also detected in the heart and yolk sac at levels similar 

to its wild-type littermate (Figure 20A, B) suggesting that early differentiation of vascular 

smooth muscle cells does not require MED23.  

 

Discussion 

Loss of MED23 results in disruption of vascular network and also causes mid-

gestational embryonic lethality. We sought to figure out whether the embryonic and extra-

embryonic vascular defects of the mutant embryos are related to its lethality by analyzing the 

various aspects of vascular development in these embryos. Our analysis suggests that MED23 is  
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Figure 20: Early formation of vascular smooth muscle cells is not affected in control and 

med23sn/sn littermate embryos at E9.0.  

Analysis of Control and med23sn/sn embryos were immuno-stained for SM22α, a marker of 

vascular smooth muscles, showed similar staining in the developing heart of mutant and wild-

type embryos.   
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required for vascular remodeling and maintenance of endothelial cell-cell junction markers, 

ve-cadherin and claudin-5. 

In spite of an increase in transcript levels of Vegfa in med23sn/sn embryos, we do not see 

over-expression of VEGFA receptor flk1 in mutant endothelial cells, which matches with our 

PECAM-1 immuno-staining, where we do not see hyper-vascularization of the embryo. In 

vitro, the ability of VEGF to increase microvasculature permeability and cause vasodilation has 

been well known287, 288, 289.  VEGF signaling through its receptor VEGFR2 (or FLK1) induces 

phosphorylation of cell junction proteins (like ZO-1, Occludin and VE-Cadherin) leading to 

their destabilization resulting in increase in permeability290,291,292,293,294. Ultrastructural 

analysis has shown that VEGF signaling activation leads to a very rapid disruption of 

endothelial cell-cell junctions, including loss of both tight and adherens junctions295. What has 

not been investigated is if VEGF signaling has any role in regulating the formation of these 

endothelial cell-cell junctions via regulation of junctional protein transcription.  Interestingly, 

in our system we see a reduction in expression of endothelial cell-cell adherens and tight 

junction markers (loss of ve-cadherin and claudin-5 transcripts) as well as an increase in 

Vegfa transcript levels. It would be interesting to look at the protein distribution of VE-

Cadherin and Claudin-5 within the endothelial cells and see if their protein levels are reduced 

by loss of MED23. That would indicate that MED23 is required (directly or indirectly) to 
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suppress Vegfa transcript levels, mis-regulation of which affects endothelial cell junctional 

protein stability in med23sn/sn embryos. On the other hand, MED23 might just be directly 

required for maintenance of ve-cadherin and/or claudin-5 expression. VE-Cadherin itself has 

been recently shown to regulate the formation of tight junctions296 suggesting that loss of 

claudin-5 in E9.5 med23sn/sn embryos might also be an indirect effect of loss of MED23-

mediated VE-Cadherin expression. In my opinion, the loss of ve-cadherin and claudin-5 in 

med23sn/sn embryos is less of a direct effect of MED23 loss on their expression and more of an 

effect in disruption of endothelial cell-cell junction maintenance. Specific loss of claudin-5 

expression within the head region of med23sn/sn embryos suggests that if allowed to develop till 

birth, loss of MED23 may affect the formation of blood brain barrier in perinatal and postnatal 

animals, similar to what is observed after loss of claudin-5284. 

Recently, a study in zebrafish suggested that MED23 is required for regulation of 

adipogenesis and smooth muscle cell formation. Morpholinos against med23 resulted in 

zebrafish embryos with increased vascular smooth muscle cells along with an increased 

vasculature at the cost of adipocytes; specifically the expressions of vascular smooth muscle 

markers, like SM22α and α-SMA (smooth muscle actin) were both significantly increased in 

the med23 morpholino treated embryos in comparison to control embryos297. Our analysis 

with one of the vascular smooth muscle markers, SM22α, shows a completely opposite result. 
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Loss of MED23 in mice embryos does not affect early smooth muscle cell differentiation.   The 

major difference between the two studies is the time point of analysis. The increase in vascular 

smooth muscle cells, post-med23 morpholino treatment, was observed in fish at 48 hours-

post-fertilization (hpf) is way beyond the time point E10.5 in mice embryos when med23sn/sn 

embryos die. Thus, it might be that if somehow allowed to live longer, loss of MED23 might 

result in over-differentiation of vascular smooth muscle cells, a defect currently not observed 

in mutant embryos.  

Currently, we are focused on understanding whether the specification of arterial versus 

venous fate of endothelial cells is in any way affected by loss of MED23. Formation of 

endothelial cell-cell junctions is crucial to stabilize the proliferation of endothelial cells and 

thus stabilize the newly formed or sprouted endothelial tubes298. It would be interesting to see 

if such endothelial cell specific hyper-proliferation would be observed in med23sn/sn embryos 

due to loss of cell-cell junction markers. We are also working on understanding the endothelial 

cell specific role for MED23 in regulation of vascular development using Tie2cre; med23floxed 

mice, which will excise out med23 specifically from endothelial cells beginning E9.5. Together 

all of this information should provide us a better understanding into how MED23 regulates 

vascular remodeling, endothelial cell-cell junction marker expression and thus endothelial 

cell-cell junction formation.  
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Chapter 3 

MED23 is required for Peripheral Nervous system formation 

Parts of “Introduction” in this chapter (Trunk Sensory Nervous system and Autonomous Nervous system) have 

been adapted from a book chapter, Bhatt S., Diaz R., Trainor P. (2013) Signals and Switches in Mammalian Neural 

crest differentiation, published by Cold Spring Harbor Perspectives in Biology 
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Summary 

In our initial analysis, we observed a defect in peripheral nervous system formation in 

med23sn/sn embryos, specifically the cranial sensory nervous system. In amniotes, the cranial 

sensory nervous system is comprised of the three paired sense organs, eyes, nose and ear and 

four neurogenic cranial ganglia, trigeminal, petrosal, nodose and glossopharyngeal as well as 

all the cranial nerves (sensory and/or motor) associated with each of the paired sensory organs 

and cranial ganglia. DAPI immuno-staining showed the defects in the morphology of the 

paired sensory organs while TuJ1 (neuron specific β-tubulin) marker immuno-staining 

showed defects in formation of the cranial nerves and associated cranial ganglia. RNA 

expression analysis determined that the major defect underlying the abnormal development of 

neurogenic cranial ganglia in med23sn/sn embryos is in formation of cranial placodes. Cranial 

placodes form from the ectoderm at gastrulation as a single pre-placodal region (PPR) that then 

goes to segregate and differentiate into multiple placodes, which contribute to the various 

sensory organs and ganglia. Here, we show that in med23sn/sn embryos, cranial placode 

formation is affected at multiple steps. Although very early specification of PPR is relatively 

unaffected, med23 seems to be required for proper organization and neurogenic differentiation 

of the neurogenic cranial placodes.   
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Introduction 

 In multicellular organisms, the central nervous system (CNS) needs a way to sense and 

react to external stimuli. This function is carried out by the peripheral nervous system (PNS) of 

the body. PNS comprises of sensory and motor neurons that relay information back and forth 

from the viscera, smooth muscles, skin and the exocrine glands of the body to the brain and 

spinal cord of the central nervous system. In keeping with this function, PNS consists of nerves 

and ganglia located outside the brain and spinal cord which are grouped into two subsets, 1) 

Sensory nervous system: cranial and trunk sensory nervous system and 2) Autonomous nervous 

system (ANS): sympathetic, parasympathetic and enteric nervous system. The sensory nervous 

system, as the name suggests, is responsible for sensing external stimuli and consists of afferent 

fibers that transmit information from the “somatic” (skin, skeletal muscles, tendons and joints) 

and “visceral” (smooth and cardiac muscle and glands) structures to the CNS; while ANS 

consists of efferent motor neuron fibers which are responsible for transmitting information 

from CNS to the somatic and visceral structures.  

 

Sensory Nervous system 

Based on the location within the body, the sensory nervous system is divided into 

cranial and trunk sensory nervous systems. Cranial and trunk sensory neurons are pseudo- 
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unipolar; their cell bodies lie within the peripheral ganglia, cranial ganglia (for cranial sensory 

nervous system) and spinal or dorsal root ganglia (for trunk sensory nervous system) and their 

axons are split into two branches; one extending to the periphery while the other extending 

towards the CNS (brain for cranial and spinal cord for trunk sensory nervous system).  

 

Cranial Sensory Nervous System 

Cranial sensory neurons work in conjunction with cranial motor component to regulate 

the functions of paired sensory organs, eyes, ears and nose as well as movement of the 

craniofacial muscles including the muscles involved in facial expression and mastication 

(through the cranial ganglia) (Table 3). The sensory nerves are derived from two separate 

ectodermal-origin cell populations, neural crest and cranial placodes and associate with two 

anatomically distinct set of cranial sensory ganglia which have differential contributions from 

these two cell types (Figure 21). The proximal subset of cranial ganglia (dorso-medial region of 

trigeminal ganglion, a small portion of proximal geniculate ganglion, acoustic ganglion, 

superior ganglion and jugular ganglion associated with cranial nerves V (trigeminal), VII 

(facial), VIII (vestibulo-cochlear) and proximal portions of IX (glossopharyngeal) and X (vagal) 

respectively) is anatomically located closer to the central nervous system, and sensory neurons 

associated with these ganglia are derived from cranial neural crest, and trigeminal and otic  
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Table 3: Innervation of cranial nerves (human) 

Cranial Nerve 
Name 

 

Number 
Site of innervation 

Olfactory I Nasal cavity 

Optic  II Retina 

Oculomotor III Eye muscles 

Trochlear IV Eye muscles 

Trigeminal V Skin of the face and muscles of mastication 

Abducens VI Muscle of the eye orbit 

Facial VII Muscles of facial expression, anterior 2/3rd of the tongue 

Vestibulocochlear VIII Inner ear 

Glossopharyngeal IX Posterior 1/3rd of the tongue 

Vagal X Laryngeal and pharyngeal muscles, soft palate 

Spinal accessory XI  
Sensory component joins Vagal nerve, motor component 

innervates muscles of the neck 

Hypoglossal XII Muscles of the tongue 
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 Figure 21: Contribution of neural crest and cranial placodes to the cranial sensory ganglia in 

vertebrates 
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placodes. The distal subset of cranial ganglia (distal portions of geniculate (facial or cranial 

nerve VII), petrosal (glossopharyngeal or cranial nerve IX) and nodose (vagal or cranial nerve 

X) ganglia) is located further away from the central nervous system and neurons associated 

with these ganglia are derived from epibranchial placodes.  

 

Differentiation of cranial placodes into cranial sensory neurons 

The early development of cranial placodes and neural crest into cranial sensory neurons 

is independent of each other299,300 however once specified the placodal derived sensory 

neurons require input from neural crest cells to form proper axonal projections96, 300. Cranial 

placodes are first specified as a single pre-placodal region (PPR). This PPR region then 

segregates into separate cranial placodes (Introduction - pages 23-32). Four sets of genes are 

expressed in each placode during initial steps of differentiation in the following temporal 

manner, 1) six and eya, 2)sox, 3) pax and 4) bHLH (proneural determination and 

differentiation basic helix-loop-helix) genes (Figure 22). The temporal expression of genes in 

the developing cranial placodes has been reviewed in great details elsewhere301. Knock-outs of 

some of these genes in mice have suggested an important role in mammalian placode 

development; however mechanisms by which they regulate mammalian placodal development 

are understudied.  
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Figure 22: Hierarchy of genes expressed in placodal development from PPR to neuronal 

differentiation.  
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six and eya family genes are expressed during initial placodal development and 

continue to be expressed throughout the various stages of cranial placode differentiation, albeit 

with a slight variation between various placodes (reviewed in73). Their continued expression 

suggests a role in maintenance placodal identity and initiation of placodal differentiation. It has 

been suggested that six1 is involved in specification of PPR and maintenance of “stem-like” 

properties in placodal cells78 as timing of placodal differentiation correlates with down-

regulation of six1 expression302, 303 and its overexpression post-PPR establishment, diminishes 

expression of later placodal genes (reviewed by Sally Moody, Principles of Developmental 

Genetics, Book chapter, 2007). On the other hand, expression of other six family genes (six2, 

six4) and eya family genes (eya1 and eya2) persists into later stages of placodal development 

suggesting later roles in differentiation304, 305. Work in non-mammalian model organisms has 

shown a cranial placode specific expression of sox family genes, sox2 and sox3. Both sox2 and 

sox3 are known to be expressed in the developing neural plate and seem to have a similar role 

in maintenance of neural progenitor pool in cranial placodes as well306. However, the fact that 

sox2 and sox3 are also expressed in non-neurogenic lens placode and not expressed in 

neurogenic trigeminal placodes suggests that they may have non-neural roles as well306, 307. In 

mice embryos, expression of sox2 is specific to the cranial placodes giving rise to the paired 

sensory organs (eye and ear) while sox3 expression is not placode specific. 
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Segregation of PPR into specific cranial placodes is visualized by expression of placodal 

specifier genes of pax family (reviewed in73). pax3 is expressed in the ophthalmic branch of 

trigeminal placode, pax6 is expressed in olfactory and lens placodes and pax2/5/8 are 

expressed in the otic placode. Pre-placodal region (PPR) first segregates into anterior and 

posterior pre-placodal area (APA and PPA) and PPA then goes to form the otic and epibranchial 

placodes. pax2 has been shown to be expressed in the PPA and required for its maintenance308. 

Work in chick embryos suggests a role for pax2 in regulation of epibranchial neuron 

identity91, while in zebrafish pax2 acts synergistically and probably redundantly with pax8 in 

specifying the otic placode309, 310. Mice knock-outs of pax2 and pax8 individually, both show 

defects in formation of the inner ear and associated ganglion95, 311, 312. Loss of pax3 in mouse 

embryos leads to hypoplasty of all cranial ganglia including the trigeminal ganglion313, 94. 

However, given the important role played by pax3 in neural crest development and the 

contribution of neural crest to sensory neurons and glia within the cranial ganglia, it is difficult 

to conclusively pinpoint these defects as cranial placode formation defects and claim a role for 

pax3 in cranial placode development. These restricted patterns of pax genes right before the 

cranial placodes begin to separate92, 306and their observed requirement in maintenance of the 

various cranial placodes in which they are expressed, suggest existence of a “pax code” that 

provides the identity to each cranial placode. 
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Once specified, each cranial placode (except for the lens placode) differentiates into 

cranial sensory neurons. Mouse knock-out studies have shown that neuronal differentiation of 

proximal subset of cranial ganglia, which derive from both neural crest and some cranial 

placodes require expression of a basic helix-loop-helix (bHLH) transcription factor, 

neurogenin1314, while neuronal differentiation of distal subset of cranial ganglia that derive 

exclusively from cranial placodes, require expression of another bHLH transcription factor, 

neurogenin2315. The importance of bHLH transcription factors in neurogenesis was first 

identified in Drosophila (reviewed in316). In Xenopus, neurogenin (ngn1) expression is 

observed in prospective ganglion cells and is lost as the coalescing ganglion cells differentiate 

into neurons and glia. Both ngn1 and ngn2 directly regulate the expression of another bHLH 

transcription factor, neuroD whose expression correlates well with the acquisition of neuronal 

and glial characteristics. Loss of neuroD1 in mice affects formation of otic placode derived 

inner ear hair cells and in humans has been associated with Branchio-oto-renal disorder.  

 

Trunk Sensory Nervous system 

Trunk sensory nervous system comprises of a metameric string of Dorsal Root Ganglia 

(DRG) which consist of variety of sensory neuron cell bodies, axons of which innervate various 

parts of the body and enable us to sense touch, temperature, and pain and limb movements. 
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Each of these functions is attributed to a specific type of sensory neuron, all of which are 

derived from trunk NC cells. Each functional type of sensory neuron is characterized by its own 

unique set of ion channels and forms through interactions of unique sets of transcription 

factors. The different types of neurons within each DRG rely on separate neurotrophic factors 

for their survival and growth and hence express distinct neurotrophic receptors. The small 

diameter pain and thermal sensory neurons require NGF (Neurotrophic Growth factor) and 

express NGF receptor TrkA and Ret317, 318, 319 while the subpopulation of touch neurons require 

BDNF (Brain derived neurotrophic factor) and express BDNF receptor TrkB320, 321, 322. The 

larger diameter movement sensing neurons innervate skeletal muscles and depend on 

Neurotrophin-3 (NT-3) for survival and express NT-3 receptor TrkC319,  323. 

 

Differentiation of neural crest into trunk sensory neurons 

Similar to cranial sensory neurons, trunk sensory neurogenesis also requires expression 

of bHLH transcription factors, neurogenin1 (ngn1) and neurogenin2 (ngn2). Trunk sensory 

neurogenesis occurs in two waves. The first wave of neurogenesis, controlled by ngn2, occurs 

in the migrating neural crest cells and forms the large diameter propioceptive and 

mechanoreceptive neurons while the second wave, controlled by ngn1, occurs after DRG 

coalescence and produces both small nociceptive and large mechanoreceptor and 



 

123 
 

proprioceptor neurons. Similar to cranial neurons, neurogenin expression in trunk controls 

expression of another family of bHLH transcription factors (neuroD) which serve as neuronal 

differentiation factors. Combined loss of both ngn1 and ngn2 leads to complete loss of neuroD 

expression and lack of DRGs324, 325.  Analyses of ngn1 and ngn2 null mutations suggests a 

predominant role for ngn1 in formation of small diameter pain TrkA+ neurons and a lesser role 

in the formation of large diameter TrkB+ and TrkC+ neurons, and a transient role for ngn2 in 

formation of large diameter TrkB+ and TrkC+ neurons.  DRG formation in ngn2 mutant 

embryos is normal due to functional compensation by ngn1. ngn2+ cells also contribute to a 

small but significant fraction of TrkA+ nociceptive neurons326. A number of transcription 

factors, like POU domain transcription factor, POU4F1, Runt related transcription factors, 

RUNX1 and RUNX3, and homeobox transcription factor, SHOX2, have all been shown to 

regulate the differentiation of DRG sensory neurons into various subtypes.  

   Two major reports highlight the role of WNTs released from dorsal neural tube in 

trunk sensory neurogenesis39, 38. Activation of canonical WNT signaling causes stabilization of 

cytoplasmic protein, β-catenin, which then translocates into the nucleus and activates WNT 

responsive genes with the help of Lef/TCF factors. Genetic ablation of β-catenin in neural crest 

leads to a complete absence of dorsal root ganglia and loss of both waves of sensory 

neurogenesis39. Lack of active WNT signaling at the sites of post-migratory neural crest cells 
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and at DRG sites suggests that WNT signaling is not directly involved in the induction of the 

secondary wave of DRG neurogenesis327. Constitutive activation of canonical WNT signaling in 

the neural crest progenitor cells in the dorsal neural tube promotes sensory neuron 

differentiation in vivo, at the expense of other neural crest progeny. In vitro clonal analysis 

proved that this effect of canonical WNT signaling in sensory cell differentiation is not caused 

by WNT mediated “sensory progenitor” cell proliferation and expansion but is a true cell fate 

specification38.  

 

Autonomic Nervous system 

 ANS is a neural crest derivative that provides a way for the central nervous system 

(CNS) to send commands to the rest of the body and regulate the involuntary functions of the 

visceral organs. Functionally, ANS is divided into three major components, sympathetic nervous 

system (SyNS) and parasympathetic nervous system (PSNS) which function together to 

maintain body homeostasis and the enteric nervous system (ENS) which controls the gut 

motility amongst other things. Axons from pre-ganglionic neurons of the CNS (brainstem and 

spinal cord in this case) project and synapse with the post-ganglionic cell bodies located 

paravertebrally (for SyNS) or inside the target organs (in case of PSNS);  the post-ganglionic 

axons innervate the target site (organs and tissues throughout the body). In the gut, the nor-
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adrenergic and cholinergic ganglia form the enteric nervous system (ENS) which exclusively 

innervates the gastro-intestinal (GI) tract.  

 

Differentiation of autonomic neurons 

Within the ANS, formation of sympathetic neurons has been studied in most details. 

Anatomically, sympathetic nervous system is hallmarked by a ventrally located string of 

sympathetic ganglia (SG) aligned parallel to the vertebrae on both sides of the embryo. 

Formation of SGs requires coalescence of sympathetic precursor neural crest cells which is 

achieved by combinatorial action of Eph/ Ephrin, Semaphorin/Neuropilin and N-cadherin 

signaling328,  329, 330, 331.  

BMP signals emanating from the dorsal aorta have been shown to be the regulators of 

sympathetic neuron differentiation332. Over-expression of Bmp4 and Bmp7 in migrating 

neural crest cells leads to an increase in the size of sympathetic ganglia as well as formation of 

ectopic ganglia in chick embryos while blocking BMP signaling in vivo leads to prevention of 

sympathetic neuron generation hallmarked by the absence of sympathetic neuron marker gene 

expression. Bmp4 and 7332 and Bmp2 and 4333 are expressed at dorsal aortae, the site of 

primary SG chain formation of chick and mice respectively while neural crest cells express 

BMP receptors Bmpr1a and Bmpr1b334.  
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BMP signaling activates expression of a multitude of transcription factors, MASH-1, 

Phox2a/2b, Hand2, and Gata2/3, which co-regulate each other and form a network key for 

sympathetic differentiation. Together, they regulate expression of Noradrenaline synthesis 

enzymes like TH (tyrosine hydroxylase) and DBH (Dopamine beta hydroxylase) in sympathetic 

neurons. Phox2 genes are highly conserved paired-type homeodomain transcription factor, 

expressed in sympathetic, parasympathetic as well as enteric ganglia of the developing 

peripheral autonomic nervous system and are necessary and sufficient for specification of 

sympathetic neurons from trunk neural crest cells335, 336. PHOX2B is required to maintain the 

expression of MASH-1, another transcription factor involved in sympathetic differentiation 

which in turn regulates expression of another paired-type homeodomain transcription factor, 

phox2a 335,337,338,339.340,341. PHOX2A and PHOX2B can both, independently, induce 

transcription of adrenergic enzymes, TH and DBH342.343,344. The helix-loop-helix transcription 

factor HAND2 (also called dHAND) works synergistically with PHOX2A to induce dbh 

transcription345,346 and can also interact with MASH-1347. Over-expression of HAND2 in chick 

peripheral nerves leads to induction of pan-neuronal (SCG10 & NF160) and adrenergic 

marker (th and dbh) expression. Activation of PHOX2A/B, MASH-1 and HAND2 under active 

BMP signaling, is followed by activation of transcription of gata factors. GATA2 in chick and 
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GATA3 in mice embryos have been shown to be required for expression of th and dbh in 

sympathetic precursors348, 349.  

 

Cholinergic vs. Nor-adrenergic neuronal differentiation 

Trunk NC cells generate both noradrenergic and cholinergic neurons (in limited 

numbers) while mesencephalic crest predominantly form cholinergic parasympathetic neurons 

(of the ciliary ganglia). BMPs synthesized in the local microenvironment are essential for the 

differentiation of both noradrenergic and cholinergic neurons (reviewed in350, 351, 352. In the 

mesencephalic crest, phox2 but not hand2 genes are expressed under the influence of BMP 

signaling353 suggesting that HAND2 may be required for th and dbh expression353, 354. 

Recently, it has also been shown that trophic factors NGF and NT3 have differential 

requirements in cholinergic and adrenergic neuron differentiation respectively355.  

 

As described in Chapter 1, loss of MED23 results in a defect in peripheral nervous 

system development. We have determined that MED23 is required for cranial placode 

development, loss of which leads to cranial sensory nervous system formation defects. Fewer 

neuro-gliogenic neural crest cells are observed in med23sn/sn embryos but whether this leads to 
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a defect in formation of trunk sensory ganglia or the autonomic nervous system will be 

determined from conditional mutant analysis only. 

Results 

I. med23sn/sn embryos do not have drastic defects in neural crest development 

 Majority of the peripheral nervous system in vertebrates is derived from neural crest 

cells. Expression of sox10 is observed in all migrating neural crest cells at early stages but later 

on by E9.5 gets restricted to neuro-gliogenic fate neural crest only. We decided to make use of 

this specific expression pattern of sox10 at E9.5, to analyze the formation and migration of 

neuro-gliogenic neural crest. As can be seen in Figure 23A, in wild-type embryos, sox10 

expression is observed in the neural crest cells populating the cranial ganglia. med23sn/sn 

littermate embryos also display the presence of sox10+ neuro-gliogenic fate neural crest cells in 

the developing cranial ganglia; however the number of cells seems to be reduced (Figure 23B). 

Neural crest cells majorly contribute to the forming glia in the cranial ganglia. Given the 

presence of sox10+ cells in cranial, it seems neural crest cells are able to populate sites of 

cranial and trunk sensory ganglia in med23sn/sn embryos, their numbers are however reduced. 

 

II med23sn/sn embryos have drastic defects in cranial placode formation 
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Figure 23:sox10+ cells are reduced in med23sn/sn embryos 

Sox10 ISH of control (A) and med23sn/sn (B) embryos at E9.5 shows reduced sox10+ cells 

entering the cranial ganglia region near the 1st branchial arch and around the otic vesicle.   
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As described earlier, the major defect in the peripheral nervous system formation in 

med23sn/sn embryos seems to be in the formation of the cranial sensory nervous system. Cranial 

ganglia (ganglia of the cranial sensory nervous system) are derived from two separate 

populations of cells. All the neurons of epibranchial ganglia and a subset of the neurons of 

trigeminal ganglia come from cranial placodes. Since we did not see a drastic defect in 

formation and migration of cranial neural crest cells in med23sn/sn embryos, we decided to 

analyze the formation of the cranial placodes in these embryos.  

 

IIA Neuronal differentiation of cranial placodes is affected in med23sn/sn embryos 

 Our first hint that neuronal differentiation could be affected in med23sn/sn embryos 

came from analysis of microarray done on the wild-type and mutant littermate embryos at 

E9.5. neurod1, a gene involved in peripheral and central neuron differentiation was down-

regulated by 1.6fold on the microarray. In the peripheral neurons, neurod1 is expressed 

specifically during cranial sensory neuron differentiation. We confirmed the microarray data 

using RNA in situ hybridization. As expected, neurod1 transcripts are observed in the 

neurogenic trigeminal and epibranchial ganglia at E9.5 (Figure 24A).  On the contrary, 

littermate med23sn/sn embryos display an almost complete loss of neurod1 expression in the   
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Figure 24: neurod1+ cells are drastically reduced in the developing cranial ganglia of 

med23sn/sn embryos at E9.5 

Control (A) and med23sn/sn embryos were analyzed for neurod1 expression at E9.5. Trigeminal 

and epibranchial ganglia in control embryos (arrows) display neurod1+ cells while med23sn/sn 

embryos very few positive neurod1+ cells in the trigeminal ganglion and no neurod1+ cells in 

the epibranchial ganglia.   
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developing cranial ganglia (Figure 24B). Very few cells in the trigeminal ganglion still express 

neurod1. These few neurod1+ cells in the trigeminal ganglion co-relate with the few TuJ1+ cells 

observed in the trigeminal ganglion by immuno-staining, suggesting that lack of neurod1 

expression might be the cause for lack of TuJ1 marker expression.  

 As explained earlier in this chapter, cranial placode development follows a 

hierarchical pattern of gene expression. Thus, from beginning from specification of pre-

placodal territory to differentiation of cranial placodal cells, each stage of cranial placode 

development can be delineated using stage-specific gene expression as the marker. The lack of 

neurod1+ cells in the forming cranial ganglia region in med23sn/sn embryos could be a result of 

loss of neurod1 or loss of cranial placodal cells. In order to figure that out, we analyzed cranial 

placode formation by analyzing the hierarchical gene expression. Neurogenins are 

transcription factors which during cranial ganglia development have been shown to be 

upstream of neurod1 expression. ngn1 (neurogenin1) in trigeminal ganglion and ngn2 

(neurogenin2) in epibranchial ganglia have been shown to be directly upstream of neurod1 

and are crucial to the neuronal differentiation of trigeminal ganglion and epibranchial ganglia 

respectively. We analyzed the expression of both ngn1 and ngn2 in wild-type and med23sn/sn 

littermate embryos. At E9.5, we observe ngn1 expression mainly in the developing trigeminal 

ganglion and faintly in the developing epibranchial ganglia (Figure 25A). When analyzed in  
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Figure 25: neurogenin expression is affected in the cranial ganglia of med23sn/sn embryos  

A, B ngn1 is expressed in the trigeminal (arrow) and few epibranchial cells in control embryos 

(A) ngn1 expression in the trigeminal (arrow) and epibranchial regions is lost in med23sn/sn 

embryos.  

C, D ngn2+ cells are observed in the epibranchial ganglia of control embryos (arrows, C). 

ngn2+ cell number is drastically reduced in the epibranchial ganglia of med23sn/sn embryos 

(arrows, D).   
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med23sn/sn littermate embryos, very few cells in the developing trigeminal ganglion display 

presence of ngn1 transcript. No cells in the epibranchial ganglia/placode region are ngn1+ 

(Figure 25B). Similar results were observed with ngn2, ngn2 displays a temporally dynamic 

expression pattern. Although crucial for epibranchial ganglia development, ngn2 also has a 

brief time window during which it is expressed in the developing trigeminal ganglion. At E9.5, 

we observe ngn2+ cells present only in the epibranchial placodal cells in wild-type embryos 

(Figure 25C). The number of ngn2+ cells in the developing epibranchial placodes is drastically 

reduced in med23sn/sn embryos (Figure 25D). Interestingly, these few ngn2+ epibranchial 

placodal cells fail to turn on the expression of neurod1 and differentiate into TuJ1+ 

epibranchial neurons. 

 

IIB Cranial placodes are properly specified but loosely organized in med23sn/sn embryos 

 In our quest to understand what steps in cranial placode development require MED23, 

we further analyzed if cranial placodes are appropriately specified inmed23sn/sn embryos. Pax 

gene expression is an indication of newly specified cranial placodes. Specifically, pax2 and 

pax8 have been shown to be expressed in the newly specified otic and epibranchial placodes.   
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Figure 26: Coalescence but not specification of cranial placodes is affected in med23sn/sn 

embryos 

A, B pax2+ cells are present in the optic, otic and isthmus of both control and med23sn/sn 

embryos  

C, D pax8+ cells are present but loosely organized in the epibranchial region, otic placode and 

isthmus of med23sn/sn embryos (arrows, D) in comparison to control embryos (arrows, C).   
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At E9.5, pax2 expression is observed in the eye, nasal and otic placodes, in the epibranchial 

region and isthmus (Figure 26A). This expression pattern of pax2 persists in littermate 

med23sn/sn embryos (Figure 26B), however, the delineation between the optic and nasal placode 

is difficult in mutant embryos due to abnormal frontonasal morphology. The expression of 

pax2 in the epibranchial region seems to be expanded in med23sn/sn embryos,  implying either 

an expansion in the pax2+ territory or a persistence of pax2 expression. pax8 expression is 

more specific to the epibranchial placodes and the gene is known to have roles in regulating 

the segregation of otic and epibranchial placodes from the posterior pre-placodal ectoderm 

(PPA). Wild-type embryos show expression of pax8 in the isthmus as well as the otic and 

epibranchial placodes (Figure 26C). Similar to pax2, this expression ofpax8 is also maintained 

in the littermate med23sn/sn embryos, however the pax8+ cells in the developing epibranchial 

placodes do not seem to be as well coalesced in the mutants as in the wild-type embryos (Figure 

26D). This lack of coalescence within the epibranchial placodes may be the cause for neuronal 

differentiation defect in the med23 mutant embryos. 

 

IIC med23sn/sn embryos have defects in maintenance PPR markers 

 Cranial placodes begin as a single ectodermal-cell population called Pre-placodal 

region (PPR), which then segregates into anterior and posterior pre-placodal regions that  
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Figure 27: med23sn/sn embryos do not maintain the expression of PPR markers in cranial 

sensory ganglia 

A – D eya2 expression in control (A, C) and med23sn/sn (B, D) embryos shows proper formation 

of anterior pre-placodal area (arrows, A – D) in mutant embryos 

E, F control embryos at E9.5 (E) express eya2 in trigeminal placode and few epibranchail 

placode cells (arrows, E). Very few eya2+ cells are observed in the trigeminal and epibranchial 

regions of med23sn/sn embryos (arrow, F).  
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separate into specific placodes. six and eya family members, specifically six1 and 4 and eya1 

and 2, are expressed at the time of PPR specification and their expression is maintained as the 

PPR segregates into specific placodes and differentiates into various cell types. We analyzed the 

expression of one of these PPR genes, eya2, at two different stages of cranial placode 

segregation from PPR. At E8.5 (Figure 27A; lateral view & 27C; ventral view), eya2  expression 

is observed in the anterior pre-placodal region (that later separates into olfactory, optic and 

pituitary placodes) in both wild-type and mutant embryos. At E8.5 the expression of eya2 does 

not seem to be altered in the med23sn/sn embryos (Figure 27B, D) suggesting that the formation 

of anterior pre-placodal region is not affected by loss of med23. On the other hand, the 

expression of eya2 is more pan-placodal at E9.5 (Figure 27E). Cells in trigeminal and 

epibranchial placodes are positive for eya2 in wild-type embryos at E9.5 but med23sn/sn 

embryos display a reduction in the number of eya2+ cells in the developing trigeminal placode 

and no eya2+ cells are observed in the forming epibranchial placodes in the mutant embryos 

(Figure 27F). Thus, MED23 seems to be required for maintenance of placodal marker 

expression, suggesting that MED23 has a role in maintenance of placodal identity, loss of 

which may contribute to the neuronal differentiation phenotype observed in med23 mutants.  

 

Discussion 
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 Our initial analysis showed to us that loss of MED23 leads to fewer TuJ1+ neurons in 

the cranial sensory nervous system. med23sn/sn embryos display only a few differentiated TuJ1+ 

neurons in the trigeminal ganglion and no differentiated neurons in any of the epibranchial 

ganglia.  We sought out to determine the cause for this neurogenesis defect in med23sn/sn 

embryos. Our analysis has shown to us that there is a role for MED23 in development of neural 

crest and cranial placodes, the two ectoderm derived precursor of cranial sensory neurons. The 

extent of MED23 requirement, however, varies between the two. 

 Despite almost complete loss of neurogenesis, med23sn/sn embryos do display proper 

formation and migration of neural crest cells as observed by sox10 expression analysis, 

suggesting that MED23 is not required in the early steps of neural crest formation or in 

determining neural crest migratory pathways. By E9.5, expression of sox10 becomes restricted 

to neuro-gliogenic fated neural crest cells. In med23sn/sn embryos, the total number of sox10+ 

neural crest cells is reduced, which could mean a role for MED23 in neural crest survival or 

proliferation. Reduction in the number of sox10+ neural crest cells was observed both in 

cranial and trunk regions. Trunk neural crest cells differentiate into sensory (DRG) and 

autonomic (sympathetic, parasympathetic and enteric) neurons. Whether this reduction in the 

trunk neural crest cell numbers leads to defects in sensory and autonomic neurogenesis within 

the trunk of med23sn/sn embryos is not known. The timing of differentiation of trunk neural 
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crest cells into sensory and autonomic neurons is much later than that of cranial sensory 

neurons, and med23sn/sn embryos die before a comprehensive analysis of trunk sensory and 

autonomic neuron differentiation can be done. Future understanding of the role for MED23 in 

differentiation of trunk neural crest cells requires analysis of conditional mutant med23 alleles 

that will surpass the early embryonic lethality of complete med23 knock-out. In our lab, we 

also study another mouse model, tcof1+/-, which shows a reduction in neural crest numbers 

leading to defects in peripheral nervous system development as well. Similar to med23, tcof1 is 

also expressed in all cell types within the embryo. In tcof1+/- mouse model, the cause for 

reduced number of neural crest cells is reduced survival and increased cell death of crest 

precursors, neural plate cells. Such a possibility cannot be ruled out right now in med23sn/sn 

embryos. An analysis of the cell survival and proliferation within the distinct tissues of 

med23sn/sn embryos should be able to answer this question. 

 TuJ1 (β-tubulin III) is a neural specific cytoskeletal marker, whose expression 

coincides with acquisition of neural character. All differentiating neurons (central and 

peripheral) express TuJ1 as one of the final steps of neuronal differentiation. Work from 

various species supports a theory that cranial placodes originate as a single ectodermal cell 

population known as pre-placodal region (PPR) which segregates into different placodes that 

express neuronal determination genes and differentiate into neurons. Expression of TuJ1 
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happens during this final step of neuronal differentiation. In order to figure out which exact 

step(s) during cranial placodal differentiation require MED23, we analyzed the formation of 

cranial placodes all the way from pan-placodal region marker expression to neuronal 

differentiation. 

Our analysis of early pre-placodal region marker, eya2 suggests that formation of the 

anterior pre-placodal area (at E8.5) does not require MED23. Anterior pre-placodal area is 

fated to segregate and differentiate into optic, olfactory placodes and adenohypophysis of the 

pituitary gland. This fits in perfectly with our previous observation that a day later, med23sn/sn 

embryos have smaller and more ventrally located but still morphologically normal eye 

development. On the other hand, it is known that even though a marker of pre-placodal 

region, eya2 is expressed throughout cranial placode differentiation. This persistent expression 

of eya2 is required for maintenance of placodal identity and maybe even for differentiation of 

cranial placodes. At later stages, med23sn/sn embryos lose eya2 expression the developing otic 

and epibranchial ganglia as well as the number of eya2+ cells in the trigeminal ganglion of 

mutant embryos is reduced, thus suggesting in absence of MED23, the neurogenic cranial 

placodes are unable to maintain their placodal identity. MED23 however does not seem to be 

the ultimate authority for regulation of cranial placodal identity. PAX2 and PAX8 are both 

considered to be markers of otic and epibranchial placodal identity and their expression 
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usually follow that of eya genes. med23sn/sn embryos have pax2+ and pax8+ cells in the 

developing otic and epibranchial ganglia, suggesting that cranial placodal identities are 

established even in absence of MED23. The pax2+ or pax8+ cells however, do not coalesce well 

within the epibranchial placodes. Lack of coalescence due to loss of Slit-Robo and N-cadherin 

signaling has been shown to be responsible for defects in trigeminal ganglion98. It would not be 

surprising if similar compact three-dimensional arrangement is a requirement for 

differentiation of epibranchial placodes as well. It is possible that loss of MED23 affects intra-

placodal cell-cell adherence, lack of which affects the maintenance of pan-placodal marker 

(eya2) which may cause the loss of neuronal differentiation in epibranchial ganglia of mutant 

embryos. It would be interesting to see if coalescence of newly segregated pax3+ trigeminal 

placodal cells is also affected by loss of MED23.  

 The distal subset of epibranchial ganglia, geniculate, petrosal and nodose associate 

with the VIIth, IXth and Xth cranial nerves and are derived exclusively from epibranchial 

placodes. Neuronal differentiation of these distal epibranchial ganglia requires expression of 

neuronal determination gene, ngn2 which then turns on neurod1 and TuJ1 expression in these 

cells. Even though these placodal cells are specified for epibranchial fate in mutant embryos, 

loss of med23 leads to a complete loss of TuJ1+ and neurod1+ cells in the epibranchial region. 

Few cells expressing ngn2 are still observed in these distal epibranchial placode regions; this 
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reduction in ngn2+ cell number could be a result of a requirement for MED23 in maintenance 

of ngn2 expression, survival of ngn2+ cells or induction of ngn2 expression. Conversely, 

formation of a coalesced epibranchial placode could be required for neuronal differentiation of 

those cells and lack of such coalescence in med23sn/sn embryos, as observed by pax2 and pax8 

expression, could result in lack of ngn2 expression leading to defect in neuronal 

differentiation.  Current data suggests that any or all of these possibilities could be true; 

however, one thing is for sure, that those few ngn2+ cells are unable to turn on the expression 

of neurod1 and TuJ1 in the developing distal epibranchial placodes of med23sn/sn embryos, 

suggesting that MED23 is required (directly or indirectly) for acquisition of ultimate neuronal 

fate in epibranchial placode cells.  

 Neurons in proximal set of epibranchial ganglia and trigeminal ganglion have mixed 

origins, from neural crest and placodes. Developing trigeminal and proximal epibranchial cells 

express another bHLH transcription factor, ngn1 and rely on it for their neuronal 

differentiation. At E9.5, apart from the site of developing trigeminal ganglion ngn1+ cells are 

also observed at the sites of vestibulocochlear (cranial nerve VIII) and proximal geniculate 

(cranial nerve VII) ganglia. Interestingly, amongst all the cranial sensory ganglia analyzed at 

E9.5 in med23sn/sn embryos trigeminal ganglion is the only one that still shows some extent of 

neuronal differentiation, as observed by a few TuJ1+ cells. When we analyzed the expression of 
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neuronal determination genes in the cells (crest or placodal) destined for trigeminal fate, we 

observed that both ngn1 and its downstream gene neurod1 are expressed in the developing 

trigeminal neurons in med23sn/sn embryos. The number of neurod1+ or ngn1+ cells in the 

putative trigeminal neurons in mutant embryos is fewer than that in wild-type littermates 

similar to the fewer number of TuJ1+ neurons observed in mutant embryos. Unlike trigeminal 

ganglion, no ngn1+ cells are observed at the sites of putative otic and proximal geniculate 

ganglia in med23sn/sn
 embryos. Combining this with the results from distal epibranchial ganglia 

a theme emerges, where MED23 seems to be required for the neuronal determination of 

epibranchial ganglia in general (distal and proximal). The few TuJ1+, neurod1+ and ngn1+ 

cells in the trigeminal ganglion could be of neural crest origin or trigeminal placode origin. On 

the other hand there is a complete lack of TuJ1+, ngn1+ and neurd1+ cells in the crest- and/or 

placode- derived epibranchial ganglia. Given the normal formation and migration of neural 

crest cells we are tempted to hypothesize that in trigeminal ganglion the neuronal 

differentiation of cranial neural crest cells is unaffected but that of trigeminal placodal cells is 

affected in med23sn/sn embryos. Conversely, MED23 might have a small role in neuronal 

differentiation of neural crest cells at proximal epibranchial ganglia. Neural crest specific 

med23 knock-out studies are currently underway to determine whether MED23 has a role for 

neuronal differentiation of cranial neural crest cells in trigeminal and proximal epibranchial 
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ganglia. These studies will also help us understand if MED23 is required for the sensory and 

autonomic differentiation of trunk neural crest cells.  

Thus, overall, this analysis unequivocally states a role for MED23 in various stages of 

cranial placode development, including placodal identity maintenance, organization of newly 

segregated cranial placodes and neuronal differentiation of neurogenic placodes, all together 

leading to a defect in formation and differentiation of cranial sensory nervous system.  
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Chapter 4 

MED23 is important for the anterior development in 

mammalian embryos 
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Summary 

 Our initial analysis showed a defect in frontonasal process and branchial arch-1 

development in mice embryos following loss of MED23. Here, we are trying to understand 

what tissues and signaling pathways within the craniofacial apparatus are specifically affected 

by loss of MED23. Craniofacial defects can be identified in med23sn/sn embryos as early as E9.0. 

Craniofacial skeleton develops majorly from neural crest cells, and its patterning depends on a 

complex interaction network between FGF, WNT, BMP and SHH signaling. Here we show that 

med23sn/sn embryos display a reduction in the number of neural crest cells populating the 

frontonasal and branchial arch-1 mesenchyme; however this reduction is not due to reduced 

cell proliferation or increased cell apoptosis. Forebrain development (as assessed by expression 

of forebrain markers, otx2 and six3) and formation of zone of frontonasal ectoderm (FEZ) (as 

assessed by fgf8 expression and active SHH signaling) seems to be unaffected by loss of MED23. 

On the other hand, WNT signaling activity is up-regulated in the developing frontonasal 

process of med23sn/sn embryos, and this could be the underlying cause for craniofacial defects 

in embryos lacking MED23. 
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Introduction 

 All vertebrates share a common blueprint for facial development. A series of small buds 

of tissue called the facial prominences (or primordia) form around the primitive mouth 

(stomodeum) and are the basis for all structures of an adult face. These five prominences, single 

unpaired frontonasal prominence (FNP) and paired maxillary and mandibular prominences 

form the upper, lateral and lower borders of the stomodeum respectively. The paired maxillary 

and mandibular prominences are formed from the first pair of branchial arches on either side 

of the developing foregut and give rise to the cheek and sides of nose (maxillary) and lower lip 

and lower jaw structures (mandibular) of an adult face. All of these five prominences are filled 

with mesenchyme derived mostly from neural crest cells migrating from the fore-, mid- and 

hind- brain. As neural crest cells populate these prominences, they encounter signals from 

surrounding brain structures and covering surface ectoderm and differentiate into craniofacial 

skeleton. The mesenchymal core of each branchial arches also consists of some mesoderm 

derived cells which form the musculature of the head and is lined with ectoderm on the outside 

and endoderm on the inside.  

 Formation of the final craniofacial structure requires fusion of these various 

prominences. Before any fusion event occurs, the frontonasal prominence develops two sets of 

bilateral swellings, optic and nasal (olfactory) placodes (that respectively contribute to the 
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paired sensory organs, eyes and nose – see Chapter 3). Following this, the two (bilaterally 

located)   mandibular prominences fuse at the midline forming a contiguous base underneath 

the mouth opening, stomodeum. The maxillary prominences on each side then fuse with the 

frontonasal prominence, and the two lines of fusion form the nasolacrimal groove. At the same 

time, nasal placodes invaginate to form nasal pits which are surrounded by horse shoe shaped 

eminences. The lateral portion of these eminences is called lateral nasal processes and it lies 

exactly next to the nasolacrimal groove (also known as the naso-optic furrow). Later on as 

development proceeds, the lateral nasal processes fuse with the maxillary processes on both 

sides obliterating the nasolacrimal grooves. The medial portion of these eminences is called 

medial nasal processes. Growth of the maxillary processes pushes the two medial nasal 

processes towards each other where they fuse with each other in the center and with the 

maxillary processes on the sides extending the mouth cavity. The fusion of the medial nasal 

processes at midline forms the intermaxillary process which contributes to the primary palate. 

In mice embryogenesis, this fusion occurs by 12.5dpc. Failure of this fusion leads to cleft lip, a 

congenital defect observed in 1 in 1000 live births. Along with this, the frontonasal 

prominence and medial nasal processes also contribute to forehead and nasal ridge in midface. 

The sides of the nose and cheek have contributions from both lateral nasal processes and 

maxillary prominences while the lower jaw comes from the fused mandibular prominences. 
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Later in development the outgrowths from maxillary prominences fuse to form the secondary 

palate, failure of which leads to a human congenital defect, cleft palate.  

  

Cranial Neural Crest contribution to the developing Face 

The “face” is largely the product of cranial neural crest cells. Dorsolateral migration of 

neural crest cells mainly from the forebrain and anterior midbrain contribute to the 

frontonasal ectomesenchyme and form the cartilage, bone and connective tissue of the face; 

while the ventromedially migrating neural crest cells from midbrain proper and anterior 

hindbrain axial levels populate the branchial arches and contribute to the cranial ganglia  and 

branchial arch derived skeleton. Branchial arches made up of mesenchymal cores consisting of 

ectodermally derived cranial neural crest and some mesodermally derived cells, sandwiched 

between an outer ectodermal layer and the inner endodermal layer. Both the ectodermal and 

endodermal layers signal to the crest and mesoderm derived mesenchyme to regulate their 

differentiation into skeletal and muscular structures. 

 

Patterning the face  

 Face is unique as in it does not possess a single “facial organizer”, but instead multiple 

“organizing centers” have been identified that regulate development of distinct facial 
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structures. Facial morphogenesis is achieved by controlled outgrowth of the above-mentioned 

facial prominences which is regulated by specialized signaling centers that express known 

important signaling molecules, like, SHH, BMPs, FGFs and WNTs. Release of these signals first 

regulates the specification and growth of the craniofacial tissues and later their differentiation 

and skeletogenesis.  

Inhibition of WNT signaling is crucial for anterior specification in vertebrates 

(Introduction); however at later stages, activation of WNT signaling is required for proper cell 

proliferation, differentiation, patterning and survival of the cells forming the various facial 

structures. The indication that WNT signaling is important for craniofacial development comes 

from the fact that various WNT ligands are expressed within the facial prominences356, 357. 

Canonical WNT signaling stabilizes and enhances the function of β-catenin as a transcriptional 

co-activator and majorly all canonical WNT signaling target genes contain a β-catenin binding 

site in their promoter. Taking advantage of this, multiple WNT signaling reporter transgenes, 

TOPgal and BATgal have been constructed and their expression in facial prominences and their 

derivatives has been reported; further suggesting a role for WNT/β-catenin signaling in facial 

morphogenesis358, 359, 360, 361. WNT signaling has been shown to coordinate multiple epithelial 

signals during the formation of upper and lower jaw elements. Increasing β-catenin levels 

specifically in the branchial arch-1 epithelium supports lower jaw development and induces 
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molecular reprogramming of mesenchymal cells from maxillary to mandibular-like fate while 

deletion of β-catenin specifically in the branchial arch-1 epithelium causes severe truncation 

or absence of mandibular skeletal elements362. On the other hand, manipulation of canonical 

WNT signaling in frontonasal ectoderm363 or both frontonasal and branchial arch-1 

ectoderm364 suggests a role for WNT signaling in formation of both maxillary and mandibular 

derived structures. Ablation of WNT signaling co-receptor, lrp6, causes hypoplasia of facial 

processes and reduced cell proliferation in the nasal processes leading to a Cleft lip like 

phenotype365. Consistent with this, homozygous mutations in WNT ligands, wnt3 in both mice 

and humans and wnt9b in mice have been shown to cause cleft lip phenotype366,  367. 

Changing levels of canonical WNT signaling, through its regulation of cell proliferation, 

has been implicated to be the basis of facial morphogenesis variety in nature360, 368 For 

example, the increased cell proliferation in the maxillary processes while no cell proliferation 

in the frontonasal process in mice embryos correlates with presence of active WNT signaling in 

the maxillary processes whilst lack of active WNT signaling in the frontonasal process; 

resulting in a midline furrow that forms a snout or a muzzle in mice. On the other hand, in 

avian embryos which eventually form a beak, the frontonasal process undergoes higher cell 

proliferation than the maxillary process which is reflected by increasing WNT signaling 

responsiveness in the frontonasal process (vs. maxillary processes) in chick embryos360. 
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Hedgehog signaling from both foregut endoderm and overlaying ectoderm has been 

shown to regulate development of the upper face369, 370,  371,  372, 373, 374. The most anterior 

pharyngeal endoderm is necessary for formation of premaxilla (front-most bone of the upper 

jaw) as well as mesethmoid (the ventral midline bar in nasal capsule) in chicken embryos as 

surgical removal of this SHH releasing “endoderm zone” prevents mesethmoid development 

while grafting of supernumerary “endoderm zone” leads to ectopic formation of the 

mesethmoid cartilage371. The cause for disrupted mesethmoid cartilage development in 

ablation studies seems to be a massive apoptosis of the neural crest cells that populate the 

frontonasal mesenchyme and the 1st branchial arch which could be somewhat restored by 

exogenous supplementation of SHH369, suggesting a neural crest cell survival role for foregut 

endoderm and SHH signals released from it. Interfering with SHH signaling with a function-

blocking antibody inhibits facial primordia fusion while SHH signaling removal causes failure 

of frontonasal growth375. Hedgehog signaling is also required for proper patterning of 

stomodeum ectoderm which regulates neural crest condensation and formation of the anterior 

neurocranium (ANC)374.  

The role for FGF signaling in the development of craniofacial mesenchyme has long 

been established. Among 22 FGF genes, at least seven (fgf3, fgf8, fgf9, fgf10, fgf15, fgf17 and 

fgf18) are expressed in the ectoderm of facial processes between 9.5dpc to 10.5dpc in mice 
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embryos376. Mutations in FGF ligands, fgf3, fgf7, fgf10, fgf18 and FGF receptor, fgfr1 were 

recently shown to contribute to non-syndromic cleft lip and palate in humans377. During 

craniofacial development, fgf8 expression is first observed in the head mesenchyme, as early as 

8dpc. The frontonasal process and branchial arch-1 surface ectoderm specific expression is 

observed half a day later, 8.5dpc, which persists until later (10.5dpc) in the maxillary and 

mandibular ectoderm as well as ectoderm of nasopharynx and nasal pit ectoderm , in 

infundibulum, telencephalon, diencephalon and mesencephalon378, 379. Branchial arch-1 

ectoderm specific deletion of fgf8 reveals its dual role: promoting survival and differentiation 

of BA-1 mesenchyme during craniofacial morphogenesis380. Even reduction in FGF8 levels 

within the branchial arch-1 ectoderm leads to neural crest cell apoptosis381. On the other 

hand, too much FGF8 in cranial neural crest cell cultures increases cell proliferation and 

induces chondrogenesis382. Another FGF ligand, FGF18 has been shown to be important 

survival and osteogenic and chondrogenic differentiation craniofacial mesenchyme, but its 

requirement seems to be later in development383.  

 Within the facial ectoderm, the expression domains of shh and fgf8 are adjacent to each 

other. This molecular boundary in the frontonasal process ectoderm, known as the “Zone of 

Frontonasal Ectoderm (FEZ)” has now been shown to be a site that regulates dorso-ventral and 

proximo-distal patterning of the frontonasal mass. Studies done by ectopically transplanting 
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the FEZ within avian species and between avian and mammalian species (mice-chick chimera) 

suggest that the regulatory role for FEZ in proliferation of neural crest mesenchyme into 

maxillary and mandibular structures is conserved through evolution384, 385. Inhibition of FEZ 

formation leads to truncations in the developing upper jaw386, 387. FEZ does not repattern the 

mesenchyme, as the tissues retain their identity (as frontonasal or maxillary); however it does 

determine the dorso-ventral patterning of the forming upper jaw384. Formation of FEZ itself is 

not very clearly understood currently. The FEZ is established just prior to the outgrowth of the 

frontonasal prominence and regulates the three-dimensional expansion and orientation of the 

upper jaw. Expression of fgf8 has been shown to be required for initial FEZ activity, but its fgf8 

down-regulation is required later for normal development of FEZ388. Expression of shh, on the 

other hand, seems to be required for FNP outgrowth and ectopic expression of SHH leads to 

expansion of the FNP386, 387, 375. Shh signaling from the forebrain is important for the proper 

positioning of the FEZ385. Apart from fgf8 and shh, several genes encoding bone morphogenic 

proteins (bmp2, bmp4 and bmp7) are also expressed in the FEZ389, 390, 384, 387 and regulation of 

BMP expression in FEZ seems to be important for development of neural crest mesenchyme391. 

BMP signaling within the head is required for maxillary outgrowth389 and disruption of BMP 

signaling has been shown to affect formation of FEZ itself390. Fgf8 and shh signals themselves 

are not capable of replacing the FEZ in transplant experiments, suggesting that other factors 
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like the BMPs might be crucial for FEZ function. On the other hand, disruptions in WNT/β-

catenin signaling leads to defects in FEZ formation suggesting an upstream role for canonical 

WNT signaling in FEZ formation and craniofacial development. 

 Taking together all the work done on various vertebrate species, a picture emerges 

where cross-regulation between the crucial signaling pathways, like BMP, WNT, FGF and SHH 

and physical and molecular interactions between the various facial prominences and cell types 

is required for proper craniofacial development. As described in Chapter 1, loss of MED23 

leads to morphological defects in frontonasal prominence and branchial arch-1 development. 

Early embryonic lethality of med23sn/sn embryos prevents us from analyzing whether these 

defects translate into defects in craniofacial mesenchyme differentiation or not. In this chapter, 

I have tried to understand the underlying cause for the morphologically evident craniofacial 

defects in med23sn/sn embryos and have probed whether the development of the FEZ, neural 

crest cells and forebrain is affected by loss of MED23.  

 

Results 

I. Cranial neural crest cells are marginally reduced in med23sn/sn embryos 

The mesenchyme of the frontonasal prominence and branchial arch is majorly 

composed of cranial neural crest cells. Since we see a size difference in the frontonasal  
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Figure 28: Reduced contribution of crabp1+ neural crest cells to the craniofacial regions in 

med23sn/sn embryos.  

Control (A) and med23sn/sn embryos were analyzed for crabp1 expression. Med23sn/sn
 embryos 

display a reduced contribution of crabp1+ cells to the frontonasal process and 1st branchial 

arch (arrows). Migration of crabp1+ neural crest cells in the second arch stream seems to have 

halted before it can enter the arch (B).   
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prominence of med23sn/sn embryos at E9.5, we decided to analyze the contribution of neural 

crest cells to the developing FNP. crabp1 is an intracellular retinoic acid binding protein has 

been well utilized to characterize neural crest cell development392. Using RNA in situ 

hybridization technique, we analyzed the expression of crabp1 in the neural crest cells of wild-

type and med23sn/sn littermate embryos at E9.5 (Figure 28). Wild-type E9.5 embryos show 

beautiful crabp1+ dorso-ventral neural crest streams entering into the frontonasal process, 

branchial arches (Figure 28A). Littermate med23sn/sn embryos also display presence of crabp1+ 

neural crest cells following similar dorso-ventral trajectories and entering frontonasal process 

and branchial arches (Figure 28B). However, the number of crabp1+ crest cells is reduced in 

the mutant frontonasal process and 1st branchial arch, specifically the distal part which gives 

rise to the mandibular process, suggesting that this reduction in the number of neural crest 

cells could be the cause for smaller FNP and first branchial arch in med23sn/sn embryos.  

 

II. Neural crest cell reduction in frontonasal process of med23sn/sn embryos is not due to 

lack of cell proliferation or increased cell apoptosis 

There could be multiple causes for the reduction in crabp1+ neural crest cells entering 

the frontonasal process and branchial arch-1in med23sn/sn embryos. Since the crest cell streams 

were observed entering the frontonasal process and branchial arch-1 in med23sn/sn embryos  
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Figure 29: Cell proliferation and cell death are not altered in the frontonasal process of 

med23sn/sn embryos at E9.5 

Phosphohistone H3 immunostaining (red) and TUNEL (green) labeling show no difference in 

number of mitotic and apoptotic cells (respectively) in cryosections through the frontonasal 

process of wild-type (A), mild med23sn/sn (B) and severe med23sn/sn (C) phenotype embryos.   
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we wanted to know what happens to these cells once they populate the craniofacial region. We 

used phospho-Histone H3 (pHH3) and TUNEL to analyze for cell proliferation and cell death 

respectively in the frontonasal prominence (Figure 29). pHH3 marks for cells in their mitotic 

phase of cell cycle. Increased pHH3 immuno-staining would indicate either an increase in cell 

proliferation or a persistence of mitotic phase. TUNEL immuno-staining labels for nicks in DNA 

which occur following cell apoptosis or necrosis.  Frontal cryosections through the frontonasal 

prominences of E9.5 wild-type and both severe and mild phenotype med23sn/sn embryos were 

stained using antibodies against pHH3 and TUNEL and analyzed by confocal microscopy. 

Interestingly, no changes in cell proliferation or cell death were observed in frontonasal 

ectoderm or frontonasal mesenchyme between med23sn/sn embryos and its wild-type 

littermates at E9.5 (Figure 29A-C).  

 

III. Formation of FEZ seems to be unaffected in med23sn/sn embryos 

In order to understand the cause behind frontonasal process defect in med23sn/sn 

embryos, we also analyzed the formation of the signaling centers within the facial primordia. 

As explained above, the juxtaposition of shh and fgf8 expression and signaling within the facial 

ectoderm is crucial for proper dorsoventral expansion of frontonasal prominence, and this 

zone of juxtaposition is known as the “zone of frontonasal ectoderm” (FEZ). We looked at the 
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expression of fgf8 in wild-type and med23sn/sn embryos, at E9.5. At E9.5, fgf8 expression within 

the facial ectoderm is specific to the anterior frontonasal ectoderm (also known as anterior 

neural ridge) and branchial arch-1 ectoderm (Figure 30A). fgf8 transcripts in the developing 

midbrain-hindbrain junction (or isthmus) are also required for survival of cells in the 

developing midbrain and hindbrain). In med23sn/sn littermates at E9.5, fgf8 expression in the 

anterior neural ridge, branchial arch-1 ectoderm and midbrain-hindbrain junction is 

unaffected (Figure 30B). The role of FGF8 released from the facial ectoderm is to support cell 

survival and proliferation within the craniofacial mesenchyme. Similar levels of fgf8 

transcripts in med23sn/sn and wild-type littermate embryos, supports of our data where we do 

not see any changes in reduced cell proliferation or increased cell death within the med23sn/sn 

craniofacial mesenchyme as compared to littermate wild type embryos.  

The other half of FEZ is composed of shh expression. SHH signaling functions by 

binding to its membrane receptor PATCHED-1, hence patched-1 expressing cells are 

considered SHH signaling recipient cells. SHH signaling itself is known to regulate the 

expression of patched-1. We utilized a reporter mouse, patched-1lacZ in which one of the 

alleles for patched-1 has been replaced with lacZ sequence, thus the expression and activity of 

LacZ (as determined by the blue colored product formation post-X-gal staining) depicts the site 

of patched-1 expression and thus the site of active SHH signaling. We crossed med23sn mouse 
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line to patched-1lacZ mouse line, and analyzed the LacZ pattern in wild-type; patchedlacZ and 

littermate med23sn/sn; patchedlacZ embryos obtained from their offsprings. In both wild-type 

and mutant embryos at E9.5, lacZ expression and activity was observed to be the same in the 

endoderm and notochord region in the face and body respectively (Figure 30C, D), suggesting 

that SHH signaling activity is also unaffected in med23sn/sn embryos.  

 

IV. Forebrain development seems to be unaffected in med23sn/sn embryos 

Apart from FEZ, signals from the forebrain are also crucial for frontonasal process 

development. In our effort to understand the defects in anterior development in med23sn/sn 

embryos we analyzed if the forebrain itself is developed well in absence of MED23. One of the 

genes crucial for forebrain and midbrain development in mouse embryos is a homeodomain 

transcription factor, otx2. Loss of otx2 leads to disruption and complete absence of forebrain 

and midbrain structures in mice embryos393, 394. Another homeobox gene, whose expression in 

the craniofacial apparatus is restricted to forebrain, is six3395. Six3 has been shown to be 

important to regulate expression of shh within the forebrain which in turn is important for shh 

expression in FEZ and loss of six3 causes holoprosencephaly in mice embryos, due to mis-

regulation of SHH signaling396, 397. We analyzed the expression of both otx2 and six3 in the 

forebrain of wild-type and littermate med23sn/sn embryos at E9.5 and found no differences 
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between the two (Figure 31A-D), suggesting that patterning of forebrain is not affected in 

med23sn/sn embryos.  

 

V. WNT signaling is disrupted in the developing frontonasal process of med23sn/sn embryos  

One of the other crucial signaling pathways regulating cell growth, proliferation and 

patterning within the craniofacial mesenchyme is canonical WNT signaling. As explained 

above, WNT signaling has been proposed to correlate with zones of cell growth and 

proliferation in the developing embryos in avian and mammalian species. BATgal is a canonical 

WNT signaling transgenic reporter line that expresses LacZ under the regulation of β-catenin 

responsive sites. We crossed BATgal line with our med23sn line to generate a med23sn; BATgal 

strain, animals from which were intercrossed to get wild-type and med23sn/sn
 offspring that 

contained BATgal allele. In wild-type embryos, canonical WNT signaling has very regionally 

restrictive zones of activity. Within the craniofacial region of wild-type; BATgal embryos, at 

E9.5, strong WNT signaling activity was observed in the developing midbrain, hindbrain, and 

midline of frontonasal process, otic vesicle and 1st branchial arch (Figure 32A). Interestingly, 

left and right lateral zones of the frontonasal process were devoid of WNT signaling activity, 

and this has been suggested to be crucial for the proper snout formation in mice. LacZ staining 

pattern in med23sn/sn embryos at E9.5 had two key differences (Figure 32B). 
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Figure 32: WNT signaling is upregulated and ectopically expressed in the lateral nasal 

processes of med23sn/sn embryos at E9.5.  

Frontal images of control; BATgal and med23sn/sn; BATGal embryos stained for lacZ show an 

increase in WNT signaling in the frontonasal processes. Lateral nasal processes which are 

usually devoid of active WNT signaling (*, asterisk, control) show positive lacZ staining (WNT 

activity) in med23sn/sn embryos (*, asterisk, med23sn/sn).   
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Overall, the intensity of LacZ staining was highly up-regulated in the mutant embryos. And 

within the frontonasal process, we did not observe any zones (lateral) that were devoid of WNT 

signaling (Figure 32B). This result is supports an earlier observation made in the lab, where the 

levels of dkk-1 transcript, encoding for a WNT signaling inhibitor, were down-regulated in 

med23sn/sn embryos (observed by microarray and qPCR). Increased WNT signaling can affect 

frontonasal process development, and complete loss of dkk-1 has been shown to lead to 

complete absence of anterior structures in mice. Thus, this increased WNT signaling might 

underlie the frontonasal process defects in med23sn/sn embryos.  

(Disclaimer: The original med23sn; BATGal matings and analysis were done before I joined the 

lab, by Dr. Lisa Sandell). 

 

VI. Craniofacial defects in med23sn/sn embryos are evident at E9.0 

In whole mount, med23sn/sn embryos are indistinguishable from the wild type 

littermates before E9.0. At E9.0, most med23sn/sn embryos are of similar size in comparison to 

the wild-type littermates (Figure 33), however they have smaller first branchial arch (arrow, 

and their maxillary-mandibular furrow is reduced in depth. The frontonasal prominence of 

the control and med23sn/sn embryos is also slightly deformed at this time point.  
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Figure 33: Craniofacial defects inmed23sn/sn embryos are evident at E9.0. 

DAPI immunostaining of Control and med23sn/sn embryos at E9.0. med23sn/sn embryos are not 

smaller in size than their wild-type littermates at E9.0, but do display smaller and abnormal 

branchial arch-1 (arrow) at this stage.   
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Discussion 

Loss of MED23 leads to defects specific to the formation of frontonasal process and 

branchial arch 1 suggesting a specific role for MED23 in anterior development. Here, we tried 

to characterize the craniofacial defects in med23sn/sn embryos. Homozygosity of the ENU allele 

for med23 leads to mid-gestational embryonic lethality which precludes us from 

understanding the role for MED23 in skeletogenesis and musculogenesis during craniofacial 

development, but by E9.5 the frontonasal process and the first branchial arch are already filled 

with cranial neural crest cells and the blueprint for dorsoventral and proximo-distal 

patterning is already in place.  

We first analyzed if neural crest cells populate the developing frontonasal process and 

1st branchial arch in med23sn/sn embryos. Neural crest cells migrate into the frontonasal 

process and the 1st branchial arch as early as E8.5398. In our observation, when analyzed by 

neural crest marker expression, by E9.5, wild-type neural crest cells populate the frontonasal 

process, and 1st and 2nd branchial arches as well as the DRGs in trunk (data not shown). In 

absence of MED23, fewer neural crest cells are observed in the developing frontonasal 

prominence and branchial arch-1, but as we showed this reduction in neural crest numbers 

are not due to increased cell death or reduced cell proliferation. We currently do not know 

how early the neural crest cell defects in med23sn/sn embryos begin. The defects could be due to 
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a reduction in the number of crest cells emigrating out of the dorsal neural tube or could be 

caused due to a lack of survival of crest cells within the frontonasal prominence and branchial 

arch-1 at earlier stages. The first morphological phenotype of med23 loss is a very apparent 

smaller and deformed branchial arch-1 and a very slightly deformed frontonasal process at 

E9.0. Given this, we suspect that if analyzed we would already be able to see a reduction in 

crest cell numbers in the frontonasal process and 1st branchial arch of med23sn/sn embryos at 

this early stage as well. One thing to bear in mind is that expression analysis can never 

substitute for lineage tracing. Even though less likely in this case, it is always possible that the 

crest cells populating the frontonasal process and 1st branchial arch in med23sn/sn embryos are 

present but have turned down crabp1 expression. Smaller size of the frontonasal process and 

1st arch in mutant embryos argues against this possibility. Also, using RNA in situ hybridization 

for another neural crest cell marker, we observed a reduced number of sox10+ neural crest 

cells migrating out of the neural tube (Chapter 3), suggesting that loss of MED23 might truly 

affect the formation or migration of neural crest cells into the craniofacial regions. Lineage 

tracing of neural crest cells (using Wnt1cre or Pax3cre mouse lines) in presence or absence of 

med23 would be able to confirm this.  

 Genetic manipulation leading to loss of neural crest cell potential to respond to SHH 

stimuli leads to formation of smaller frontonasal process and branchial arch-1 in mutants399; 
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the occurrence of this phenotype however is later in time in comparison to med23sn/sn embryos. 

Similarly, loss of fgf8 from the facial ectoderm has been shown to lead to increased 

mesenchymal apoptosis in med23sn/sn embryos, which we do not observe at E9.5 and later 

stages. fgf8 expression in the facial ectoderm begins as early as E8.5, and neural crest cells have 

already migrated into the frontonasal process and 1st branchial arch by then, thus we need to 

analyze the expression of cell survival factor, fgf8 as well as cell proliferation and cell death 

markers, pHH3 and TUNEL at earlier time points to see if an early hit on neural crest cell 

population within the craniofacial mesenchyme would lead to smaller frontonasal and arch 

size in med23sn/sn embryos. Out of the four signaling pathways crucial for craniofacial 

development, we show that canonical WNT signaling pathway is mis-regulated in med23 

mutant embryos. Canonical WNT signaling affects  species specific facial morphogenesis by 

specifically activating cell proliferation in regionally restricted fashion. In med23sn/sn embryos, 

this regional restriction of WNT signaling activity is lost, specifically at E9.5 but not really at 

half a day earlier, E9.0 when the defect is first observed (see data in Chapter 5). The activity of 

WNT signaling during craniofacial development is very dynamic358, 400 WNT signaling up-

regulation following homozygous loss of dkk-1 is however also associated with some forebrain 

patterning defects (assessed by six3 expression)400, a feature that we do not observe in 

med23sn/sn embryos. However, it does seem that MED23 regulates WNT signaling in a unique 
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way that does not affect forebrain or facial ectoderm patterning, but still affects frontonasal 

prominence and branchial arch-1 development. Stabilizing β-catenin specifically in the facial 

ectoderm, leads to increased BATgal activity in the lateral nasal processes and maxillary and 

mandibular processes at E9.5, similar to our observation, however it also leads to defects in 

specification of FEZ and shows no overt morphological defects in frontonasal and 1st arch 

formation at this early stage364. This is contrary to what we observe; however, it has to be kept 

in mind that we currently have no evidence to conclude that WNT signaling is the only 

pathway affected during frontonasal and branchial arch-1 development in med23sn/sn  

embryos, as we have not yet analyzed downstream targets of FGF8 and BMP pathways in 

med23sn/sn mutants. Also, in our mouse line, med23 is lost in both facial ectoderm and 

mesenchyme, which would probably affect WNT signaling in both these populations, leading to 

a different phenotype than what is observed by stabilizing β-catenin in facial ectoderm only.   
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Chapter 5 

MED23 regulates WNT signaling during cranial ganglia 

development 
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Summary 

To understand the underlying mechanisms by which MED23 regulates craniofacial, 

vascular and neural development during mouse embryogenesis, our lab had performed a 

microarray on wild-type and med23sn/sn littermate embryos at E9.5. The microarray was 

already performed before I joined the lab and insights from med23sn/sn transcriptome data were 

crucial to my understanding of MED23 role. One of the crucial signaling pathways that seemed 

to be mis-regulated in mutant embryos was WNT signaling. WNT signaling has been shown to 

be crucial for anterior-posterior axis specification and head development, induction of neural 

crest cells, formation and differentiation of cranial sensory ganglia and endothelial cell 

remodeling and differentiation, some of which are disturbed by loss of MED23. The up-

regulation of WNT signaling observed in med23sn/sn embryos seems to be responsible for 

cranial sensory differentiation defects as manipulating the levels back to approximate normal 

partially restores neuronal differentiation in cranial ganglia. This, however, does not diminish 

craniofacial development or vascular remodeling defects in the mutants, suggesting that they 

might be WNT signaling-independent.  
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Introduction 

WNT proteins are a family of highly conserved secreted proteins that were first 

identified for their role in carcinogenesis and fly embryonic development401, 402. Mice boast 19 

secreted WNT ligands which bind to anyone of its 15 transmembrane protein receptors and 

co-receptors and activate three types of intra-cellular cascades, that have been historically 

classified as β-catenin dependent and β-catenin independent (Figure 34). Through these 

intracellular cascades, WNT signaling regulates a multitude of embryonic developmental 

processes, including specification of embryonic axis formation, body patterning as well as stem 

cell development403, 404. The complexity of WNT signaling is amplified by the presence of 

various antagonists, like dickkopf related protein 1 (Dkk1), secreted frizzled related proteins 

(sFRPs), WNT inhibitory factor (WIF), Sclerostin, other agonists like R-spondin family members 

and Norrin and the presence of WNT signaling modulators (context dependent activators or 

inhibitors) like Wise, all of which can bind to the various WNT signaling receptors and co-

receptors and influence WNT signaling. The various WNT ligands activate β-catenin 

dependent or β-catenin independent pathways depending upon their cellular and molecular 

context. Much work has been done over the past two decades to define a WNT ligand–receptor 

“combinatorial code” that can predict the intra-cellular cascade the ligand-receptor binding 

activates. Barring certain exceptional circumstances, it is generally believed that WNT ligands,  
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Figure 34: WNT signaling pathways 
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WNT1, WNT3A and WNT8 activate a β-catenin dependent signaling while ligands, WNT5A 

and WNT11 typically activate a β-catenin independent pathway.  

 

β-catenin dependent or Canonical WNT signaling 

The canonical WNT signaling or WNT/β-catenin pathway is one of the most studied 

pathways during mammalian embryonic development and is described in Figure 34A. β-

catenin is a multifactorial protein that interacts with cadherins to maintain apical junctions 

between cells405. Current understanding of subcellular localization of β-catenin suggests that 

cells have two pools of β-catenin molecules: one that is required for maintenance of cell-cell 

junctions while another that responds to canonical WNT signaling and translocates to the 

nucleus. Cross-talk between these two β-catenin pools has been observed but is not completely 

understood. In absence of WNT signaling ligands, the intracellular pool of β-catenin molecules 

gets targeted for proteasomal degradation by the ‘destruction complex’. The destruction 

complex comprises adenomatosis polyposis coli (APC), Axin2, casein kinase 1α and (β-catenin 

phosphorylating enzyme) GSK3β. Interaction between WNT ligands and its transmembrane 

receptor, Frizzled, along with WNT co-receptors, LRP5 and/or LRP6, leads to inhibition of 

GSK3β thereby preventing the degradation of β-catenin. Cytoplasmic β-catenin, hence, 

accumulates and can now translocate into the nucleus, where it serves as a transcriptional co-
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activator for transcriptional factors TCF (T-cell factor) and LEF (lymphoid enhancer binding 

factor) to regulate transcription of WNT signaling target genes406.  

 

β-catenin independent or Non-canonical WNT signaling 

Non-canonical WNT signaling encompasses all those pathways that do not use β-

catenin as their transcriptional effector (Figure 34B). Based on the intracellular cascades 

involved, non-canonical WNT signaling pathways are classified as WNT/JNK pathway (closely 

related to drosophila planar cell polarity (PCP) signaling), WNT/Ca++ pathway, WNT/ROR2 

pathway, WNT/PKA pathway, WNT/mTOR pathway, WNT/Rap1 pathway, WNT/GSK3MT 

pathway and WNT/αPKC pathway407. Signaling through non-canonical WNT pathways may or 

may not affect the transcriptome of the receiving cells. WNT/PCP signaling is one of the best 

characterized non-canonical WNT signaling pathways and involves activation of small 

GTPases of Rho family (including RACK, CDC42, RHO, JNK and RHO Kinase). Activation of 

WNT/PCP signaling is required for establishing cellular polarity and asymmetric distribution of 

polarized proteins within the cell. During embryogenesis, WNT/PCP signaling components are 

important during all processes that require polarized cell movements, for example, 

gastrulation, neural crest migration and cardiac outflow tract development. WNT/Ca++ 

signaling, on the other hand, has also been shown to be important during development for 
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establishment of dorsoventral polarity, convergent extension during gastrulation and 

organogenesis (liver, heart and kidney formation)408.  

 

Role of canonical WNT signaling during embryonic development 

 The role of WNT/β-catenin signaling during anterior-posterior axis specification in 

mice embryos has been described in earlier sections (Introduction-1). Briefly, WNT/β-catenin 

signaling is crucial for specification of mesendoderm in a gastrulating mouse embryo and 

inhibition of canonical WNT signaling is absolutely essential for anterior specification. Later 

on, however, WNT signals coming from dorsal neural tube influence survival and delamination 

of the newly formed neural crest cells as they migrate into the embryo to differentiate into 

craniofacial skeleton, peripheral nervous system derivatives and pigment cells.  During neural 

crest cell differentiation, canonical WNT signaling is absolutely essential at two points, one 

during differentiation of trunk neural crest cells into sensory neurons and later during 

differentiation of dorsolaterally migrating neural crest cells into melanocytes.  

As described earlier, cranial sensory ganglia develop from a mixed population of cranial 

placodes and cranial neural crest cells. The role for WNT signaling in regulation of cranial 

placode specification and development is multifaceted. Inhibition of WNT signaling early on is 

required for specification of the pre-placodal region (PPR) – a precursor tissue to all cranial 
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placodes79. Within the neural plate border (NPB) region, the level of WNT signaling determines 

if the NPB cell will adopt a neural crest fate or a PPR fate and sustained activation of canonical 

WNT signaling prevents expression of PPR specific gene markers76. On the other hand, 

WNT/β-catenin signaling which has been shown to be active in the ophthalmic branch of 

trigeminal placode is required by those cells to maintain their placodal identity and 

differentiate into trigeminal neurons409. Canonical WNT signaling has also shown to be 

required for determining otic placode versus epidermis fate as well as determine otic placode 

size and regulate otic placode cell survival410, 411, 412. Inhibiting canonical WNT signaling in 

pax2+ otic placodal cells, reverts their fate back to epidermis while activation of canonical 

WNT signaling increases the size of the otic placode. On the contrary formation of epibranchial 

placode is inhibited by persistent WNT/β-catenin signaling, suggesting that the segregation of 

PPA (posterior pre-placodal area) into otic and epibranchial placodal fates is WNT signaling 

dependent79. Canonical WNT signaling is also later required for both proliferation and 

differentiation of inner hair cells within the cochlea, which is a derivative of the otic 

placode413.  

BATGal is a transgenic canonical WNT signaling reporter mouse line, that expresses 

lacZ under the regulation of β-catenin responsive sites. LacZ staining in BATGal mice embryos 

has shown that canonical WNT signaling is active in endothelial cells359. Targeted mutations of 
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many canonical WNT signaling ligands, wnt2, wnt4, wnt7b and a canonical WNT signaling 

receptor, fzd5 show variable degrees of defects in vascular development414, 415, 416, 417, 418 . 

Specifically loss of wnt2 and fzd5 leads to embryonic lethality due to yolk sac and placental 

angiogenesis defects414, 418. Overexpression and inhibition of WNT signaling in chick paraxial 

mesoderm increases vascular density or inhibits angiogenesis respectively419, 420. Inhibition of 

WNT signaling also leads to decreased flk1+ cells421 and affects mesoderm specification while 

forced expression of stabilized β-catenin does not induce mesoderm marker expression, 

including expression of flk1422, suggesting that canonical WNT signaling is necessary but not 

sufficient for endothelial cell differentiation. Inactivating β-catenin specifically in the 

endothelial cell lineage (using Tie2cre) causes defects in vascular remodeling and 

cardiovascular cushion and valve development leading to embryonic lethality while sustained 

expression of β-catenin in endothelial cells leads to defects in arterio-venous fate specification 

through regulation of Notch signaling423, 424. WNT signaling is specifically important during 

CNS angiogenesis. Endothelial cells in the central nervous system form an elaborate network of 

tight junctions forming the blood-brain-barrier (BBB), which is essential for neural 

protection425. Canonical WNT signaling has been shown to be necessary and sufficient for 

inducing BBB-characteristics in endothelial cells426. Inactivation of β-catenin in flk1+ cells 

(flk1cre; β-cateninfloxed) induced defective angiogenesis in central nervous system with 
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phenotypically normal development in cardiac and hemovascular systems427 suggesting a 

crucial role for WNT/β-catenin signaling in maintenance of BBB.  

Here, we describe up-regulation of WNT/β-catenin signaling in med23sn/sn embryos. 

We questioned whether this up-regulation of canonical WNT signaling is the underlying cause 

for the various craniofacial, neural and vascular defects observed in med23sn/sn embryos by 

genetically suppressing WNT signaling in the mutant embryos and observing the phenotype of 

combined mutants. Interestingly, reducing canonical WNT signaling by loss of a copy of WNT-

co-receptor lrp6 or WNT signaling modulator, wise, resulted in a partial restoration of 

epibranchial neuron differentiation, but not in craniofacial development or embryonic 

lethality. This suggests to us that MED23 is crucial for regulating canonical WNT signaling 

during cranial ganglia development, loss of which affects cranial ganglia differentiation in 

med23sn/sn embryos.  

 

Results 

I. Canonical WNT signaling is up-regulated in med23sn/sn embryos at E9.5 

Microarray analysis of med23sn/sn embryos suggested a reduction in dkk-1 (canonical 

WNT signaling inhibitor) transcript levels at E9.5. Dr. Sandell, a previous post-doctoral fellow 

in our lab, confirmed these results by quantitative PCR analysis (Figure 35).            
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Figure 35 Expression of Dkk-1 (WNT inhibitor) is reduced in med23sn/sn embryos.  

qPCR analysis on cDNA obtained from E9.5 wild-type (greens) and med23sn/sn (oranges) 

littermate embryos shows a reduction in levels of dkk-1 .  
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To investigate the effect of loss of dkk-1 on WNT signaling in vivo in med23sn/sn 

embryos, we took advantage of the BATGal reporter mouse line that expresses lacZ under 

regulation of β-catenin responsive sites. med23sn; BATGal mouse line was generated and 

embryos from their intercrosses were analyzed for LacZ activity from E8.5 to E9.5 (Figure 36A-

H). As depicted in Chapter 4, lateral frontonasal processes display up-regulated and ectopic 

canonical WNT signaling in med23sn/sn embryos at E9.5. We also observe an overall up-

regulation of WNT signaling levels at E9.5 (Figure 36 G, H). At E8.5 however, the anterior 

regions of control and med23sn/sn embryos display similar pattern and levels of LacZ staining, 

suggesting that a normal pattern for canonical WNT signaling in med23sn/sn embryos at this 

stage. Lateral view also shows similar levels of WNT signaling overall in the embryo (Figure 

36A, B). Anterio-posterior patterning of WNT signaling however is affected by loss of med23 at 

this stage (Figure 36C, D). In order to find out how early the frontonasal process of med23sn/sn 

embryos shows aberrant WNT signaling, we analyzed med23sn/sn; BATGal  embryos at E9.0. 

Interestingly, lacZ staining levels in the frontonasal process and the rest of the med23sn/sn 

embryo were comparable to their wild-type littermates at this stage (Figure 36 E, F).  

 

II. Genetic modulation of WNT signaling in med23sn/sn embryos results in partial 

restoration of cranial sensory neuron differentiation 
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Figure 36: WNT signaling is up-regulated throughout the embryo specifically at E9.5.  

A – D, X-gal staining of E8.5 wild-type; BATGal (A, C) and med23sn/sn; BATGal  (B, D) shows 

ectopic WNT signaling in the hindbrain regions of mutant embryos (D) 

E, F X-Gal staining of E9.0 wild-type; BATGal (E) and med23sn/sn; BATGal  (F) embryos shows 

similar levels of WNT signaling between the two embryos 

G, H WNT signaling is overall up-regulated in med23sn/sn; BATGal embryos (H) at E9.5 in 

comparison to wild-type; BATGal embryos (G) 

  



 

185 
 

Proper dosage of canonical WNT signaling is crucial for many aspects of mammalian 

embryonic development. We hypothesized that up-regulation of canonical WNT signaling 

underlies the defects observed in med23sn/sn embryos. To test for this, we crossed med23sn 

mouse line to mutants of WNT signaling pathway genes, WNT co-receptor, lrp6 and WNT 

signaling modulator, wise. med23sn; lrp6+/- and med23sn; wise+/- mouse lines were generated 

and intercrossed to get med23sn/sn embryos that had lost one or both copies of lrp6 and/or wise 

and the double or triple knock-out embryos were then analyzed for neuronal differentiation 

using antibodies against neuron specific β-tubulin III or TuJ1.  

We first analyzed the lrp6+/- and wise+/- embryos themselves to confirm that loss of a 

copy of lrp6 or wise does not affect neuronal differentiation. As can be seen in Figure 37, 

embryos that have lost a copy of lrp6 or a copy of wise allele were able to generate and pattern 

TuJ1+ neurons similar to their wild-type littermates. We then analyzed the TuJ1 expression 

pattern in the double mutant embryos. Figure 38A – D shows the epibranchial region in wild-

type, med23sn/sn, med23sn/sn; lrp6+/- and med23sn/sn; wise+/- embryos at E9.5 respectively. As you 

can see in the boxed area, mutant embryos that have lost of a single copy of lrp6 or a single 

copy of wise show some TuJ1+ cells within the epibranchial region (while no  

 

    



 

186 
 

 

    

Figure 37: Formation of nervous system is not affected by losing a copy of lrp6 or a copy of 

wise 

TuJ1 immuno-staining of lrp6+/- and wise+/- embryos at late day E9.5 shows beautiful 

formation of trigeminal, epibranchial and trunk peripheral nervous system as well as midbrain 

neuron differentiation.    
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TuJ1+ is observed in epibranchial region of exclusive med23sn/sn embryos) (Figure 38B-D). 

Interestingly, the morphology of the epibranchial neuron ganglia is slightly different between 

med23sn/sn; lrp6+/- and med23sn/sn; wise+/- embryos (Figure 38C, D). Mutant embryos that have 

lost a copy of lrp6 seem to coalesce the TuJ1+ cells in a more ganglion like form while the 

restored TuJ1+ neurons in mutants that have lost a copy of wise are much more dispersedly 

organized, suggesting that LRP6 and Wise regulate WNT signaling and cranial ganglia 

differentiation with slightly different mechanisms and might be important for separate aspects 

of cranial ganglia development.  

Since WISE has been shown to be a canonical WNT signaling modulator, such that it 

can act both as a WNT signaling inhibitor or an activator depending on the cellular and 

molecular context, similar phenotype of loss of lrp6 and loss of wise in med23sn/sn embryos was 

intriguing and suggestive of a WNT signaling activator role in cranial neuron differentiation 

context. To confirm this, we analyzed the neuronal differentiation in triple mutants carrying 

med23sn/sn; lrp6+/-; wise+/- or med23sn/sn; lrp6+/-; wise-/- genotype (Figure 38A-D). Interestingly, 

the restoration of TuJ1 immuno-staining and cranial neuron differentiation in the triple 

mutants is similar to that of both double mutants indicating that in cranial neuron 

differentiation both WISE and LRP6 are required for positive canonical WNT signaling.  
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Figure 38: Modulation of canonical WNT signaling partially restores epibranchial ganglia 

development in med23sn/sn embryos.  

A)Wild-type E9.5 embryo, B) med23sn/sn E9.5 embryo, C) med23sn/sn embryo which has lost a 

copy of lrp6, and D) med23sn/sn embryo that has lost a copy of wise, were all immuno-stained 

for TuJ1. Losing a copy of lrp6 or wise restores neuronal differentiation in epibranchial region 

of med23sn/sn embryo (C, D).   
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Figure 39: Wise and Lrp6 activate WNT signaling during cranial ganglia formation. 

Combined loss of lrp6 and wise (C, D) gives similar phenotype to loss of lrp6 only (Figure 37, 

C) suggesting that in cranial ganglia formation Wise activates WNT signaling.   
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III. Partially restored cranial neurons in med23sn/sn; wise+/- embryos express neurod1 

Since loss of a copy of wise gave us much more widespread restoration of cranial 

neuron differentiation, we decided to do our further analysis with med23sn/sn; wise+/- double 

mutant embryos only. It was important for us to know whether manipulation of canonical 

WNT signaling by losing a copy of WISE (or LRP6) restored TuJ1 immuno-staining through 

restoration of neuronal differentiation of cranial placodal cells. To that effect we analyzed the 

expression of neurod1, neuronal differentiation marker of cranial placodal cells, in control 

andmed23sn/sn; wise+/- embryos at E9.5. As expected, similar to TuJ1 immuno-staining, double 

knock-out embryos, display neurod1+ cells in the epibranchial region at E9.5 (Figure 40), 

while no such cells were observed in this region in just med23sn/sn embryos (Figure 24). Also 

similar to TuJ1immuno-staining, the pattern of neurod1+ cells in the epibranchial region of the 

double knock-out embryos is very dispersed and not in a coalesced ganglion form.  

 

IV. Early placodal marker expression is still not maintained in med23sn/sn; wise+/- embryos 

Partial restoration of neuronal differentiation and neurod1 expression in med23sn/sn; wise+/- 

embryos suggests that WNT signaling regulation is crucial for cranial neuron differentiation. 

Our expression marker analysis has shown to us that MED23 is required at multiple steps 

during cranial placode development. However, the time-point during cranial placode  
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Figure 40: Epibranchial neurons restored by modulating of WNT signaling express neurod1 

Losing a copy of wise in med23sn/sn embryos restores neurod1 expression in the epibranchial 

region (Compare with complete lack of neurod1+ cells med23sn/sn embryos in Figure 24)
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Figure 41: Defects in maintenance of early PPR gene expression of med23sn/sn embryos are not 

restored by modulating the WNT signaling levels. 

Wild-type (A), med23sn/sn (B) and med23sn/sn; wise+/- embryos were analyzed for expression of 

PPR marker eya2. Fewer eya2+ cells are present in the trigeminal and epibranchial placodes of 

both med23sn/sn and med23sn/sn; wise+/- embryos when compared to wild-type eya2 expression.   
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development, when loss of a wise copy restores neuronal differentiation, was still unknown. To 

that effect, we decided to analyze the earliest marker of cranial placode development. As 

showed earlier, eya2 expression in cranial placode development begins as soon as pre-placodal 

region (PPR) is specified and is maintained and required throughout cranial placode 

development. At E9.5, eya2 expression can still be observed in the cells in olfactory, trigeminal 

and some epibranchial placodal cells of wild-type embryos (Figure 41A) while in med23sn/sn 

embryos only a few cells within the trigeminal placode are eya2+ (Figure 41B). Similar to 

med23sn/sn embryos, even the med23sn/sn; wise+/- embryos display a reduced number of eya2+  

in the trigeminal placode and absence of eya2+  cells in the epibranchial regions (Figure 41C), 

suggesting that even though the double mutants partially restore neurogenesis, loss of a single 

copy of wise does not completely restore cranial placode development in med23sn/sn embryos. 

 

V. wise expression itself is unaffected in med23sn/sn embryos 

Wise modulates WNT signaling by binding to WNT co-receptors, Lrp5 and Lrp6428, 429. In vitro, 

Wise has been shown to bind to WNT antagonist Lrp4430, transcript levels of which are 

reduced in med23sn/sn embryos as observed by the microarray done on wild-type and 

med23sn/sn E9.5 littermates. We wanted to analyze if similar to lrp4, Wise expression was  
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VI.  

 

 

 

Figure 42: Loss of med23 does not affect wise expression 

Using transgenic wiselacZ mouse line, we determined that wild-type and med23sn/sn embryos 

display similar wise expression pattern.    
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affected in med23sn/sn embryos. Dr. Youngwook in Krumlauf lab generously shared the WiselacZ 

transgenic mouse line with us which we then used to mate with med23sn to generate med23sn; 

wiselacZ line. Animals from this line were intercrossed and embryos were analyzed for LacZ 

activity (indicating wise expression) in wild-type and med23sn/sn embryos at E9.5. Earliest 

expression of Wise, as detected by lacZ staining, was observed at E8.5 in the trunk region (data 

not shown). At E9.5, wild-type embryos display lacZ activity specifically within the 

epibranchial region of the developing embryo. This epibranchial region specific expression of 

wise is maintained even in med23sn/sn embryos (Figure 42 A, B) suggesting that loss of MED23 

does not affect wise expression. 

 

VII. Manipulation of canonical WNT signaling does not restore Frontonasal process 

formation and embryonic lethality inmed23sn/sn embryos 

Loss of dkk1 affects anterior development in mice embryos due to aberrant increases in 

canonical WNT signaling16. Hence, our hypothesis was that the craniofacial defects observed in 

med23sn/sn embryos were due to reduced dkk1 transcript and aberrant WNT signaling in the 

frontonasal prominence. Interestingly, manipulating the levels of WNT signaling in the mutant 

embryos, by loss of a copy of lrp6 or a copy of wise did not restore frontonasal prominence 

defects observed in med23sn/sn embryos (Figure 43). Knock-out embryo phenotypes for lrp6 
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and wise are both milder than what is observed in med23sn/sn embryos. Mouse embryos null for 

lrp6 have a smaller skull with a crooked nose while complete loss of wise affects tooth 

development and results in palatal defects431, 432. Aberrant canonical WNT signaling might still 

be the cause for frontonasal prominence and first arch defects in med23sn/sn embryos; however 

these results suggest that aberrant WNT signaling in frontonasal process of med23sn/sn embryos 

is not mediated through LRP6 or Wise. Loss of a copy of lrp6 or a copy of wise is also unable to 

restore the embryonic lethal phenotype of caused by loss of MED23 as the double knock-out 

embryos die at around E10.5 as well.  

  

Discussion 

Mis-regulation of canonical WNT signaling seems to be at the heart of cranial ganglia 

defects in med23sn/sn embryos. Even though both loss and gain of canonical WNT signaling 

have been shown to affect cranial ganglia development and differentiation, the detailed role for 

WNT signaling during each step of cranial placode development and cranial sensory neuron 

differentiation is not clearly understood in mice or other model organisms. Here we show that 

MED23 is important for regulation of WNT signaling levels during mouse embryogenesis, and 

this dosage dependent regulation of WNT signaling is crucial for appropriate cranial ganglia 

development. WNT signaling activation is temporally regulated during mouse development, 
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and loss of MED23 is specifically crucial at E9.5. Currently, we do not know if there is a tissue 

specific up-regulation of WNT signaling within the med23sn/sn embryos in comparison to their 

wild-type littermates and whether MED23 is cell-autonomously required for regulation of 

WNT signaling. Analysis of conditional mutants should answer some of these questions. 

Regulation of WNT signaling by Mediator subunit is not unprecedented. Another Mediator 

subunit, MED12 has also been shown to regulate WNT signaling during mouse 

embryogenesis216. MED12 has been shown to bind to β-catenin in vivo, but whether this 

binding event is crucial to its regulation of WNT signaling is not known182. Such a binding has 

not been described for MED23, and right now we think that MED23-mediated regulation of 

WNT signaling might be through an indirect mechanism.  

Wise was identified as a conserved WNT modulator that interacts with WNT signaling 

co-receptors LRP5 and LRP6433, 428, 429. Animal cap experiments in Xenopus have shown that 

Wise can also act as a WNT signaling activator, where ectopic expression of Wise lead to an 

altered A/P patterning phenotype that was similar to the one observed by over-expression of 

canonical WNT signaling ligand, wnt8a433. On the other hand, the interaction between Wise 

and LRP5 and 6 has been shown to inhibit WNT signaling during tooth patterning434 and bone 

development428, 429. In our context, loss of lrp6 or wise or both together, in embryos already 

carrying a mutation for med23, lead to cranial neuron differentiation suggesting that they 
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might be acting in the same pathway. Loss of a wise allele seems to suppress WNT signaling 

levels similar to loss of alrp6 allele. In mice embryos, this is the first indication of Wise acting 

as a WNT signaling activator in vivo. The morphology of the cranial ganglia in med23sn/sn; 

lrp6+/- and med23sn/sn; wise+/- is slightly different. WNT signaling modulation through loss of 

lrp6 seems to confer a more ganglion like morphology in med23sn/sn embryos. Work in chick 

embryos has shown a role for wise in trigeminal ganglion coalescence435 suggesting that this 

loss of ganglion like morphology in med23sn/sn; wise+/- embryos could be a compound effect of 

aberrant WNT signaling and loss of wise. Overall, this suggests a possibility that LRP6 and 

Wise-mediated canonical WNT signaling might be required for coalescence of epibranchial 

ganglia. 

There are multiple possibilities as to why double knock-out embryos display a 

restoration of TuJ1+ and neurod1+ cells but not that of eya2+ cells in the epibranchial region. 

One possibility is that MED23 regulates the various steps of cranial placode development and 

differentiation via separate mechanisms and mis-regulation of canonical WNT signaling 

specifically affects only the neuronal differentiation of the cranial ganglia. On the other hand, 

this disparity in restoration might be more due to the specific pattern and timing of expression 

of wise itself; wise expression in the epibranchial region of mouse embryos does not begin until 

E9.5, a time point by which the various cranial placodes have already been specified. Thus loss 
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of wise in med23sn/sn embryos does not alter WNT signaling levels until after cranial placode 

specification and hence, the early defects in cranial placode development (like loss of eya2 

expression) can no longer be restored. Unlike wise, lrp6 is expression in the developing mouse 

embryo has been observed as early as E7.514. It would be interesting to see the expression 

pattern of eya2 in med23sn/sn; lrp6+/- embryos and compare it to that of med23sn/sn; wise+/- 

embryos. A lack of normal cranial placode eya2 expression pattern in med23sn/sn; lrp6+/- 

embryos would suggest that LRP6 mediated canonical WNT signaling does not regulate early 

steps of cranial placode development.  

Lack of frontonasal process defect or embryonic lethality rescue by the double mutants 

suggests that disruption of LRP6 and Wise mediated WNT signaling is not the cause for these 

defects in med23sn/sn embryos, but it does not rule out the involvement of other WNT signaling 

co-receptors and modulators. Overall, this work suggests that MED23 mediated regulation of 

canonical WNT signaling is required for multiple steps of cranial ganglia development.  

  



 

200 
 

 

 

 

 

 

Discussion 
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Mediator has been called an integrative hub of transcriptional regulation. The evidence 

for role of Mediator complex in embryonic development comes from mutation analysis. 

Specific Mediator subunits have been shown to regulate transcription of specific set of genes 

and control cell and tissue differentiation. This work describes the role for one such Mediator 

subunit, MED23, which seems to be required for regulation of craniofacial, vascular and 

neural development specifically.  

 

MED23 is a context dependent regulator of genes 

The human MED23 subunit was identified as a factor required for adenovirus E1A 

mediated transcription436. Over the past decade a role for MED23 in regulation of Insulin- and 

Ras- signaling mediated gene transcription has emerged175, 177, 297. Insulin signaling induces 

adipogenesis in wild-type mouse embryonic fibroblasts. This in vitro differentiation of 

adipocytes from MEFs was reduced in absence of med23 as MED23-deficient Mediator 

complex is unable to induce transcription of a crucial adipogenesis gene, egr2. Interestingly, 

egr2 gene activation requires binding of MED23 to phosphorylated form of ELK1, 

phosphorylation of which is regulated by Insulin signaling175. Alternatively, MAPK signaling-

mediated ELK1 phosphorylation and MED23-pELK1 interaction induces expression egr1140, 176. 

Epigenetic marks for active gene transcription as well as Pol II and general transcription factor 
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binding at egr1 locus in MAPK-induced med23-/- cells was equivalent or only slightly reduced 

in comparison to the MAPK induced wild-type cells; however the transcription of egr1 gene 

itself was drastically reduced in cells devoid of MED23140. Recently, it has been shown that 

MED23 regulated transcription of egr1 is also regulated at the transcript elongation step. 

med23-/- cells are unable to recruit CDK-9 and through it, the elongation factor, P-TEFb, and 

thus egr1 expression is inhibited437. Ras-signaling mediated MED23-pELK1 binding is crucial 

for proliferation and tumorigenicity of lung cancer cells438. Another transcription factor, 

C/EBPβ has also been shown to interact with MED23 and this interaction is capable of 

transcription activation, however the role for this interaction in vivo has not been 

established177.  

One important thing to bear in mind is that all the above studies have been performed 

in vitro and whether these interactions and gene transcription specific roles of MED23 hold 

true within a live animal or a developing embryo have not been analyzed.  In our system, 

microarray analysis shows that med23sn/sn embryos display a down-regulation of egr-1 

transcript levels by 9-fold compared to wild-type. This provides us a good validation that our 

med23sn mutation causes similar defects to the existent med23- allele. Along with many other 

developmental defects, egr1 mutation in mice also causes a defect in growth hormone levels, 

which might explain the smaller size of med23sn/sn embryos as compared to wild-type  
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Figure 44: egr2 (krox20) is expressed in the hindbrain of med23sn/sn embryos 

Wild-type and med23sn/sn embryos display hindbrain specific expression of egr2. Lack of egr2 

expression in r5 is due to the developmental delay in med23sn/sn embryos. Analysis of 

med23sn/sn embryos at a later stage displays egr2 expression in both r3 and r5 (data not 

shown).  
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littermates.  However, transcript levels of egr2, whose transcription has also been shown to be 

regulated by MED23 in vitro, do not seem to be altered in mutant embryos, by our microarray 

analysis. During early mouse development, egr2 (krox20) is an important marker of hindbrain 

patterning and has been shown to be crucial for maintaining the rhomobomere 3 and 5 

identities. Our analysis of egr2 transcription, suggests that during rhombomeres patterning, 

med23sn/sn embryos express egr2 in the right domains at E8.5 (Figure 44A, B; Note: med23sn/sn 

embryo in B is developmentally delayed than the wild-type embryo in A, hence the r5 specific 

expression of egr2 is not observed here, but I have observed it in late-stage med23sn/sn embryos 

(data not shown)). This suggests to us that the requirement of MED23 for egr2 expression is 

very specific to the developmental context; it is required during adipogenesis (as published) but 

does not seem to be required during hindbrain patterning. How this context specific role for 

MED23 is achieved can right now only be speculated. Since MED23 is ubiquitously present in 

all cells at all points of time, this context specificity could be achieved either by a spatial and/or 

temporal specific expression of a co-factor or by presence or absence of different signaling 

pathways at different contexts. It would be interesting to find out if ELK1 is expressed in the 

hindbrain tissues at the time of hindbrain patterning and see if MED23-ELK1 interaction is 

present at that time point.  
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This context dependent regulation of gene expression by MED23 is also evident in our 

analysis of vascular smooth muscle cells and could be species or time dependent as well. 

Morpholino injections inhibiting med23 displayed an amplification of vascular smooth muscle 

differentiation at the cost of adipogenesis in zebrafish embryos297. Mechanistically, MED23 

was shown to bind to ELK1-SRF complex at the smooth muscle cell differentiation genes (acta2, 

sm22alpha) and repress their expression directly and loss of med23 abrogated this repression.  

In contrast, my analysis on med23sn/sn embryos at E9.0 suggests that the expression of 

SM22alpha, in the developing vascular smooth muscle cells is unaffected in med23sn/sn 

embryos as compared to the wild-type littermates. If there were a way to extend the viability of 

med23sn/sn embryos beyond E10.5, then we might be able to analyze whether this smooth 

muscle cell versus adipocyte role of MED23 is conserved between zebrafish and mice embryos. 

Mis-regulation of anterio-posterior pattern of WNT signaling in med23sn/sn embryos at E8.5 

but not at E9.5 or up-regulation of WNT signaling levels in the frontonasal process of 

med23sn/sn embryos at E9.5 but not at E8.5 or E9.0 is yet another example of how the context 

influences the MED23 requirement.  

 

Summary of Results and Future experiments: MED23 is required for craniofacial, vascular and 

cranial placode development 
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 This work highlights the role of MED23 containing Mediator complex in various 

aspects of embryonic development. MED23 is specifically required in development of 

frontonasal process and branchial arches, vascular remodeling and peripheral nervous system. 

Through comprehensive analysis frontonasal process development, I have shown that the 

frontonasal process and branchial arch development defects observed in med23sn/sn embryos do 

not reflect any defects in forebrain patterning or SHH signaling or reduction in cell 

proliferation or increased cell apoptosis. There is however a reduction in the number of neural 

crest cells entering the frontonasal process and first branchial arch in mutant embryos in 

comparison to wild-type, which might be the cause for the smaller FNP and 1st arch in 

mutants. This lack of neural crest cells could be due a cell autonomous or a non-cell 

autonomous requirement of med23. Future experiments designed to excise med23 specifically 

out of neural crest cell lineage, using  Wnt1-Cre line should be able to tell us more about the 

cell-autonomous role of MED23 in neural crest cells and craniofacial development.  

During vascular development, MED23 seems to be required for vascular remodeling 

and not for de novo vascular development. Specifically there is a defect in the expression of 

genes encoding endothelial cell-cell junction markers. Knock-down of VE-Cadherin in human 

umbilical cord vein cells (HUVEC) leads to disruption in cell-cell junction formation, increased 

responsiveness to VEGF and failure to halt angiogenic sprouting439. Over-sprouting of 
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endothelial tubes is associated with increased vascular permeability and failure to suppress 

sprouting may lead to vascular remodeling defects. Electron microscopy has shown that 

redistribution of VE-Cadherin away from the endothelial cell-cell junctions of already formed 

blood vessels causes blebbing of endothelial cells and formation of gaps within the endothelial 

layer440. med23sn/sn embryos show normal expression of endothelial adherens junction marker, 

ve-cadherin at E9.0, but this expression is reduced compared to wild-type embryos at E9.5.  In 

future, I would like to analyze the endothelial cell-cell junctions in med23sn/sn embryos using 

electron microscopy to see if the reduced expression of junctional proteins at E9.5 results in 

disrupted endothelial cell-cell junctions. The initial the formation of vascular smooth muscle 

cells does not seem to be affected in mutant embryos. It is difficult to say right now whether the 

endothelial cell defects in med23sn/sn embryos underlie their embryonic lethal phenotype and to 

analyze for that I plan to use conditional deletion ofmed23 specifically within the endothelial 

cell lineage (by Tie2-Cre line). Endothelial cell specific stabilization of β-catenin leads to 

defects in vascular remodeling, elongation of intersomitic vessels and loss of venous identity424. 

Mutations in other canonical WNT signaling components (Frizzled-5, Norrin and Lrp) show a 

role for WNT signaling in vascular growth and endothelial cell-mural (support) cell 

interaction. Ectopic activation of Frizzled/Lrp signaling leads to defects in embryonic 

angiogenesis and mid-gestational embryonic lethality441,442. Keeping these in mind, I expect 
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Tie2-Cre; med23floxed/floxed embryos to have increased angiogenic sprouting, defects in cell-cell 

junction and disorganized vasculature which can be investigated by endothelial junction 

marker expression and ink injection. 

MED23 is important for multiple aspects of cranial ganglia development, from 

maintenance of early cranial placode markers to coalescence of segregated cranial placodal 

cells to neuronal differentiation. MED23-mediated regulation of WNT signaling seems to be 

crucial for the neuronal differentiation of cranial ganglia. We do not know whether this 

requirement for MED23 in cranial placode development is cell autonomous. Excising med23 

specifically out of pre-placodal ectoderm or ex vivo culture and differentiation of pre-placodal 

region from med23sn/sn embryos into cranial sensory neurons would be the best way to figure 

out the role for MED23 in cranial placode development. However, no such genetic tool or cell 

culture protocol is currently available for use. The Wnt1-Cre; med23floxed/floxed mice analysis 

can tell us if the cranial ganglia defect observed in med23sn/sn embryos are due to lack of 

support cells (glia) which differentiate from neural crest. Lack of cranial ganglia defect in 

Wnt1-Cre; med23floxed/floxed embryos would suggest (but not prove) a placode specific role for 

MED23. Reduction in WNT signaling levels in med23sn/sn embryos using genetic mutants can 

partially restore cranial neuron differentiation in med23sn/sn embryos; however, in future it 

would be interesting to see the actual extent of WNT signaling in the double mutant mice. 
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Crossing BATGal mouse line into med23sn/+; wise+/- or med23sn/+; lrp6+/- mouse line would 

display the spatiotemporal pattern of WNT signaling in the double mutants. In spite partial 

restoration of cranial neuron differentiation, the double mutants do not show any rescue of 

frontonasal process defect. Combining this with our knowledge that wise expression in the 

epibranchial placodes is seen only after E9.0, I expect WNT signaling levels in med23sn/sn; 

wise+/-; BATgal embryos to be more close to wild-type; BATgal embryos in the epibranchial 

region but still aberrant in the frontonasal process at E9.5. Alternatively, ubiquitous expression 

of lrp6 during mouse embryogenesis has been reported443,  but med23sn/sn; lrp6+/-embryos still 

do not display a restoration of frontonasal process development. med23sn/sn; lrp6+/- embryos 

might reduce WNT signaling at levels lower than med23sn/sn embryos, but not enough to 

restore frontonasal process development. Involvement of Lrp6 and Wise with pathways other 

than canonical WNT signaling has been suggested444. A rare possibility is that the double 

mutants restore cranial ganglia via modulation of signaling pathways other than canonical 

WNT signaling. In such a scenario no restoration of WNT signaling levels in triple mutants 

(med23sn/sn; lrp6+/-; BATgal 
  or med23sn/sn; wise+/-; BATgal ) would be observed. 

 

MED23 has a crucial requirement during the 12-hour E9.0 – E9.5 time window during mouse 

embryogenesis 
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 One of the salient features of the mutant embryos is their smaller size at E9.5, which 

could be result of reduced nutritional support indicating vascular defects. Lack of nutrition 

could also be indicative of lack of proper placental development, analysis of which in the 

med23sn/sn embryos would be really informative. Just half a day earlier, however, the size of 

mutant and wild-type littermate embryos is comparable, indicating that MED23 has a crucial 

requirement during that time window. This time window from E9.0 to E9.5 seems to be crucial 

not just for size determination and overall growth, but also for maintenance of cell-cell 

junctions in blood vessels. Immuno-staining for Pecam-1, marker of endothelial cell-cell 

junctions, suggests formation of abnormal but nevertheless present vascular network, however, 

the lack of other endothelial cell-cell junction marker gene expression (ve-cadherin and 

claudin5) suggests that this vascular network might not be robust. Interestingly, when analyzed 

half a day earlier, the expression of endothelial cell-cell junction marker, ve-cadherin was not 

reduced in mutant embryos compared to wild-type littermates. Whether this normal 

expression pattern of ve-cadherin at E9.0 is actually translated into normal adherens junction 

formation between endothelial cells remains to be analyzed. It can be speculated that loss of 

endothelial cell-cell junctions would result in leaky blood vessel formation which would not 

function properly to transport nutrients and oxygen to the developing tissues. Ink injection into 

the blood vessel network of wild-type and med23sn/sn embryos would be a simple yet 
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informative experiment to test their leakiness. This crucial requirement of MED23 from E9.0 to 

E9.5 is also observed in our analysis of WNT signaling activity. Our experiments suggest that 

MED23 might be specifically required for regulation of WNT signaling dosage between E9.0 to 

E9.5. Reporter activity experiments indicate that the levels of WNT signaling are up-regulated 

in med23sn/sn embryos at E9.5. However, the overall LacZ activity (indicative of active WNT 

signaling) at E9.0 does not seem to be up-regulated in mutant embryos in comparison to wild-

type littermates. This mis-regulation of WNT signaling leads to defects in cranial ganglia 

differentiation, which can be restored in med23sn/sn embryos by genetic inhibition of other 

WNT signaling pathway genes. Canonical WNT signaling has been shown to be important for 

cell adhesion while β-catenin (canonical WNT signaling effector) also has roles in cell 

adhesion and has been shown to interact with adherens junction proteins, suggesting that the 

up-regulation of WNT signaling at E9.5 and the aberrant expression of endothelial cell-cell 

junctions also observed at E9.5 could be related. 

It would be great if we could analyze the transcriptome of med23sn/sn embryos at E9.0 

and E9.5 and compare them to each other. One other way to understand this time critical role 

for MED23 during embryogenesis would be temporal excision of med23 at E9.0. We have 

already generated the ERT2-Cre; med23floxed mouse line, which will induce excision of med23 

following Tamoxifen oral gavage. It would be interesting to see the phenotype of ERT2-Cre; 



 

212 
 

med23floxed/floxed embryos and analyze if their frontonasal process, vascular development and 

WNT signaling levels are affected similar to med23sn/sn embryos.  

 

Mediator and WNT signaling 

 This work shows a requirement for MED23 in regulation of WNT signaling in mice 

embryos, a process that is critical for cranial ganglia development. Another Mediator subunit, 

MED12 has also been shown to regulate WNT signaling during embryonic development, which 

leads to severe defects in axis elongation, neural tube closure, somitogenesis and cardiac 

development216. Interestingly, in med12 loss of function mutants, activation of canonical WNT 

signaling pathway target genes is down-regulated suggesting that MED12 might be required 

downstream of WNT signaling to transcribe its target genes. This is supported by the fact that 

MED12 has been shown to bind to β-catenin, canonical WNT signaling effector protein182 and 

this MED12-β-catenin interaction might be required for recruitment of PIC to the WNT 

signaling target genes. The requirement of MED23 in WNT signaling regulation on the other 

hand seems to be quite different. MED23 might be required upstream of WNT signaling to 

regulate transcription of WNT ligands or receptors or inhibit transcription of WNT antagonists, 

or might be required downstream of WNT signaling to stabilize the β-catenin – Mediator 

binding, thereby increasing WNT signaling response. Such an interaction between β-catenin 
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and MED23 has not been reported yet, but it would be highly interesting to find out. The 

perfect experiment would be to screen through all WNT/β-catenin signaling effector proteins 

to check for their binding affinity to MED23 and the ability for the interaction complex to 

activate downstream WNT signaling target genes.  It is well established that the various WNT 

signaling pathways interact with each other, and it is known that some components of 

WNT/PCP signaling pathway are important for cranial ganglia coalescence; however we 

currently have no information to say whether PCP signaling is affected in our mutant embryos 

or not.  

 

MED23 interaction partners and downstream target genes 

 I would like to understand how a Mediator complex subunit, like MED23 which is 

ubiquitously expressed in all cell types, regulates formation of specific organs and tissues 

during development. Since MED23 is ubiquitously expressed in all the cell types within the 

embryo, my expectation is that its diverse binding partners are specifically expressed in the 

cells at specific times and that their transcription is regulated by the various signaling 

pathways required for tissue-specific differentiation. In the past decade, two main binding 

partners of MED23 have emerged, ELK1 and C/EBPβ and their interaction with MED23 has 

been shown to be regulated by Insulin and Ras signaling. Complete loss of ELK1 and C/EBPβ 
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during mouse embryogenesis however does not lead to drastic development defects and 

embryonic lethality as seen in med23sn/sn embryos, suggesting to us that other transcription 

factors might be interacting with MED23 and those interactions would be critical for the 

formation of frontonasal process, cranial ganglia and blood vasculature during development. 

In order to understand, what these factors might be, I used the help of screening facility at 

SIMR to design a mammalian two hybrid screen that would screen 1500 mouse and human 

transcription factors for their ability to bind MED23. Literature searches will help refine the list 

of identified candidates for further analysis. To understand what transcription factors bind to 

MED23 in vivo during embryonic development, we could also undertake MUDPIT analysis of 

MED23 interacting complexes isolated from wild-type embryos at different time points and 

from specific different tissues. Stoichiometrically, most of the interacting partners identified 

from MUDPIT would be other Mediator complex proteins. A lot of work done over the past 

decade argues in favor of the presence of a dynamic Mediator (See Introduction) whose 

composition varies based on the genes being activated and the tissue types undergoing 

differentiation. The MUDPIT data could be used to analyze Mediator complex composition in 

different cell types and at different times. Alternatively, a variant bioinformatics approach 

could be taken for the MUDPIT data analysis to identify the transcription factor binding 

partners of MED23.  To understand expression of what genes is regulated by MED23 
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containing Mediator complex, the ideal experiment to do would be MED23 ChIP-sequence 

analysis. Using a comprehensive comparison of the MED23 ChIP-Sequence data between 

different time points and different tissue types, we would then be able to come up with a 

scheme of MED23 activation during mouse embryonic development. However, MED23 not 

being a direct DNA binding protein makes this a difficult task.  

 

Concluding Remarks 

 In this work, I have attempted to understand the role of a Mediator complex subunit, 

MED23 during mouse embryonic development. Mediator complex, when originally identified 

was believed to a general transcription co-factor for RNA Polymerase II, however, work done 

over more than two decades has now drawn a picture in which the various subunits of 

Mediator are in constant conversation with all the other factors present in the nucleus. This 

crosstalk between cellular proteins and Mediator subunits creates a regulatory network which 

is essential for maintenance of proper gene expression. Mechanistically, the binding of 

Mediator subunits to the cellular proteins generates a structural change within the Mediator 

complex which allows or inhibits it from interacting with RNA Pol II machinery and thus 

regulate gene transcription. This, however, seems to be just one of the mechanisms of 

Mediator-mediated regulation of gene expression, as two recent reports show that Mediator 
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can regulate gene transcription through regulation of transcript elongation as well. Mediator 

itself has now been found to be a dynamic complex; multiple versions of it exist that consist of 

variable numbers of subunits. This has been termed as a “Mediator Code” where a Mediator of 

a specific composition is required for the expression of a specific set of genes only.  

 In this project, I have analyzed embryonic developmental defects in a mutant for 

med23, a gene that transcribes for a tail subunit of Mediator complex. Loss of med23 results in 

embryonic lethality and causes defects in craniofacial, vascular and cranial ganglia 

differentiation. MED23 is definitely required for expression of cranial neural crest markers in 

the frontonasal process and cell-cell junction markers in the endothelial cells. I show that 

MED23 is specifically required for regulation of WNT signaling during cranial ganglia 

development and restoration of WNT signaling levels to somewhat normalcy partially restores 

the cranial neuron differentiation in the med23 mutant embryos. The role for WNT signaling 

during formation of cranial ganglia is not very clear, neither is our understanding of how the 

Mediator subunits regulate tissue specific gene expression; hopefully this body of work, which 

highlights the role of Mediator subunit MED23 in various aspects of embryonic development, 

including the regulation of WNT signaling during cranial ganglia formation, will shed some 

light in both those areas.  
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Materials and Methods 
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Embryos used 

 Briefly, the male and female animals were time-mated at a suitable age (42d or older) 

and checked for plugs. The day when the female was plugged was considered to be E0.5 at 

noon (considering that the animals mated at midnight). 9 days after the plug date, at E9.5 noon, 

the pregnant females were sacrificed by Carbon dioxide (CO2) asphyxiation followed by 

cervical dislocation; both procedures are in compliance with the Stowers Institute of Medical 

Research (SIMR) IACUC protocol. The embryos were harvested and the yolk sacs are saved for 

genotyping. The yolk sacs were sent to Transnetyx, which already has the probes to detect for 

the multiple med23 alleles. 

 

Whole Mount Immunostaining 

Briefly, the embryos were harvested as described above. Following harvest, the embryos 

were immediately transferred to 4%PFA/PBS and fixed at 4`C overnight. The embryos were 

dehydrated through an increasing series of Methanol washes and stored in Methanol at (-

)20`C till use. To perform whole mount immunostaining, the embryos were bleached in Dent’s 

bleach (4:1:1 Methanol: DMSO: 30% Hydrogen Peroxide) for two hours at room temperature. 

The embryos were then rehydrated through a decreasing series of Methanol to PBS and blocked 

in 3%BSA/PBS for two hours at room temperature. The embryos were then incubated the 
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primary antibody (Mouse α βtubulin III (TuJ1) at 1:1000 dilution, Covance Research products, 

Catalog # MMS-435P) diluted in blocking solution for 12-16 hours (overnight) at 4`C. The 

following day, the embryos were washed 4-5 times for 1 hour each with PBS at room 

temperature, followed by overnight incubation at 4`C in secondary antibody (1:300 dilutions) 

diluted in blocking solution. On the third day, the embryos were washed thrice in PBS for 10 

minutes each and counterstained with DAPI (1:1000 dilutions in PBS for 20 minutes). The 

embryos were cleared in series of glycerol till 50%Glycerol/PBS and transferred to Vectashield. 

The embryos were mounted in Vectashield and imaged using an upright confocal microscope. 

 

Section Immunostaining 

 The embryos were harvested as described above. Following harvest the embryos were 

immediately fixed in 4%PFA/PBS for two hours at room temperature. Following fixation the 

embryos were equilibrated with an increasing series of sucrose solutions over the course of 

next 3 days (7.5% Sucrose/PBS to 15%Sucrose/PBS to 30%Sucrose/PBS to 1:1 OCT: 

30%Sucrose/PBS). For each equilibration step the embryos were left in the solution for 

overnight at 4`C. On the fifth day, the embryos were embedded in OCT for cryosectioning. The 

blocks were saved in (-)80`C until use. The embryo blocks were sectioned on a cryostat at 

10µm size. The sections were dried on a heat block for 90 minutes. Following drying, the slides 
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were saved in (-)80`C until use. For immunostaining, the slides were thawed to room 

temperature, followed by blocking in 10% Sheep serum/PBS for 20 minutes at room 

temperature. The sections were then incubated in primary antibody (Rabbit α pH3 at 1:500 

dilution, Upstate Biotechnology, Catalog # 06570 ; diluted in the blocking solution for two 

hours at room temperature. The sections were then washed thrice in PBS followed by 

incubation in secondary antibody (1:300 dilutions, Molecular Probes) diluted in the blocking 

solution. The sections were then washed thrice in PBS and mounted in Vectashield with DAPI. 

The sections were imaged immediately on an upright confocal microscope.  

 

TUNEL assay 

 TUNEL labeling on cryosections was done in conjunct with immunostaining. Post-

secondary antibody wash, the slides were incubated in permeabilization solution (freshly 

prepared 0.1% Triton X-100, 0.1% Sodium citrate), and then incubated in TUNEL reaction mix 

(10% Enzyme solution + 90% labeling mix) (In situ cell death detection kit, Fluorescein, Roche 

Applied labeling solution Science, Cat # 11684795910) and incubated for 1 hour at 37`C. Post 

TUNEL labeling, the slides were rinsed in PBS and mount with Vectashield with DAPI and 

imaged on upright confocal as quickly as possible.  
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RNA In Situ Hybridization 

 The embryos were harvested as above. The embryos were fixed in 4%PFA/depcPBS 

overnight at 4`C. The next day the embryos were dehydrated through an increasing series of 

Methanol and stored in 100% MeOH at (-) 20`C until use.  For RNA ISH, Digoxigenin labeled 

antisense mRNA probes were synthesized in the lab using a standard protocol. Constructs 

containing the selected genes were linearized and utilized in riboprobe synthesis reaction with 

the appropriate RNA polymerase. The following protocol is abridged for the sake of brevity. The 

protocol was performed over the course of 4 days and began with rehydrating the embryos, 

Proteinase K digestion, post-fixation and hybridization of the embryos with appropriate 

Digoxigenin labeled antisense mRNA probe overnight at 68`C on Day 1. On Day 2 the embryos 

were subjected to post-hybridization washes and incubated with Alkaline phosphatase labeled 

anti-Digoxigenin antibody overnight at 4`C. Day3 consisted of post antibody washes, followed 

by color development of the Alkaline phosphatase activity by substrates NBT/BCIP ( Nitroblue 

tetrazolium chloride / 5-Bromo-4-chloro-3-indolyl phosphate, toluidine salt) on Day 4. 

 

X-Gal staining 

 For whole mount X-Gal staining, the embryos were dissected in Tyrode’s solution and 

immediately fixed on ice in 2%PFA/0.2%Glutaraldehyde in PBS for time periods corresponding 
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to the embryonic stage (E8.5 – 30 min fix, E9.5 – 45min fix). Following fixation, the embryos 

were washed in Tissue solution A (Millipore corporation, Catalog # BG-6-B) for 30 minutes at 

room temperature. The embryos were then transferred to Tissue solution B (Millipore 

corporation, Catalog # BG-7-B) for 15 minutes at 37`C. The embryos were then incubated in 

1:40 dilution of X-Gal (40mg/ml X-Gal in DMF) in pre-warmed Tissue Stain Base solution 

(Millipore corporation, Catalog # BG-8-C) in dark at 37`C till complete staining was observed. 

Once stained, the embryos were post-fixed in 4%PFA for 2 hours at room temperature and then 

transferred to PBST (PBS + 0.1% Triton X-100) and imaged on brightfield microscope.   
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