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ABSTRACT 

ALC1, also known as CHD1L, was originally identified as a gene present on a human 

chromosome 1q21 region amplified in ~50% of human hepatocellular carcinomas (HCC). ALC1 

overexpressing cells form tumors in nude mice, and transgenic mice overexpressing ALC1 

develop several types of spontaneous tumors. ALC1 has also been proposed as a novel candidate 

gene for congenital anomalies of the kidneys and urinary tract (CAKUT). 

ALC1, a member of the SNF2 family of ATPases, has an N-terminal SNF2-like ATPase 

that is most closely related to that of ISWI, and a C-terminal macrodomain that binds selectively 

to poly(ADP-ribose) (PAR). Between the ATPase and the macrodomain is an evolutionarily 

conserved region with no clear homology to any known domains. This “linker” region can be 

further divided into three sub-regions of greatest conservation. It was previously shown that wild 

type ALC1 possesses DNA-dependent ATPase and ATP-dependent nucleosome remodeling 

activities that are strongly dependent on the presence of poly(ADP-ribose) polymerase PARP1 

(or the closely related PARP2) and its substrate NAD+.  Importantly, a point mutation in the 

ALC1 macrodomain that interferes with PAR binding prevents PARP1- and NAD-dependent 

ALC1 activation. 

In this work, we dissected the mechanism by which PARP1 and NAD+ activate ALC1 

nucleosome remodeling. We demonstrate that ALC1 activation depends on the formation of a 

stable ALC1·PARylated PARP1·nucleosome intermediate. In addition, by exploiting a novel 

PAR footprinting assay, we obtained evidence that the ALC1 macrodomain remains stably 

associated with PAR on autoPARylated PARP1 during the course of nucleosome remodeling 

reactions. Results of biochemical experiments described here argue (i) that stable binding of the 

ALC1 macrodomain to autoPARylated PARP1 is critical for ALC1 activation and (ii) that 
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activation of ALC1 depends on formation of a stable ALC1-autoPARylated PARP1-nucleosome 

intermediate. 

In the course of this study, we also find that apart from being regulated by PARP and 

NAD+, ALC1 possesses and additional mode of intradomain control via conserved domains in 

the linker region and the macrodomain. First, we identified a region, NMAC (N-terminal to 

Macrodomain ATPase Coupling) domain needed to couple ATP hydrolysis to nucleosome 

remodeling. Deleting NMAC led to a robust PARP and NAD+-dependent ATPase, which lacked 

appreciable remodeling activity. In addition, we identified an additional mode of control via the 

macrodomain when we replaced ALC1’s PAR binding macrodomain with another macrodomain 

from the variant histone macroH2A1.1 and discovered this chimeric protein was constitutively 

active independent of PARP and NAD+. Taken together our findings suggest a model of positive 

control of the SNF2 ATPase via the macrodomain and an additional level of control over its 

remodeling activities via the NMAC and other conserved linker elements. 
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INTRODUCTION 
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Chromatin Structure and Nucleosome Architecture 

Packaging of information and its appropriate retrieval is an evolving process in the 

physical world. If we take a look at the contemporary data management systems, we see that the 

first data collection systems were mere notches on a fine surface (punch cards/vinyl). As the 

need to store more data in a compacted format arose, the discs evolved and became laser discs 

and eventually DVD’s and Blu-ray’s. With the evolution of the data storage systems, the data 

reading systems had to grow in parallel in order to adapt to the compacted reading formats. The 

storage of data in biological systems is performed by chromosomes. In the search for transferable 

genetic materials in eukaryotic cells, histones, along with DNA were candidate transferable 

genetic material as they had mass very similar to that of DNA and were components of 

chromatin. Their universal presence with eukaryotic chromosomes further strengthened this 

notion. However, after the discovery of the structure of DNA and complementary base pairing, 

histones were soon regarded as inert packaging materials for DNA [1]. 

Electron microscopy by Joseph Gall in the early 1960’s helped describe the structure of 

chromatin in nucleated newt erythrocytes as highly flexible fibers of uniform diameter [2]. 

During this time, it was thought that eukaryotic DNA was composed of a linear strand of DNA 

coated with an evenly repeating rearrangement of 5 histone proteins forming 100Å fibers. The 5 

types of histones, namely, H3, H4, H2A, H2B, and H1, were thought to bind DNA and each 

other to serve as an insulation for DNA. However, in the next 15 years, DNAase digestion 

studies by Hewish and Burgoyne and electron microscopy on interphase nuclei by Olins and 

Olins in 1974, and Woodstock and Stanchenfield in 1976 suggested a periodic particulate 

structure of chromatin and pointed at the existence of multiple forms of chromatin, including 
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both 70 Å and 15 Å strands resembling “beads on a string” [3-5]. The above studies helped 

establish the nature of chromatin as a dynamic structure that changes with biological need. It can 

be envisioned as a polymeric fiber with a monomeric repeating unit.  

 

 

Figure 1: Multiple levels of chromatin folding. DNA compaction within the interphase nucleus 
(left) occurs through a hierarchy of histone dependent interactions that can be subdivided into 
primary, secondary, and tertiary levels of structure. Strings of nucleosomes compose the primary 
structural unit. Formation of 30nm fibers through histone tail-mediated nucleosome-nucleosome 
interactions provides a secondary level of compaction, whereas tail-mediated association of 
individual fibers produces tertiary structures (such as chromonema fibers). Figure adapted from 
Horn, PJ & Peterson, CL. Science 297(5588):1824 (2002) [6]. 

 

However, the monomeric unit of this fiber was not fully understood yet. It was thought to 

be some combination of DNA and histone proteins, but its precise composition was of great 
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interest in the 1970’s. In 1974, Kornberg and Thomas published a landmark paper that helped 

understand this monomeric unit and its organization in chromatin [7]. The histone proteins under 

mild extraction conditions, consisted of a tetramer of histone proteins H3 and H4, and two copies 

of a dimer formed between histone H2A and H2B [8]. They observed that a periodic pattern of 

205 bp of DNA repeats was obtained by nuclease digestion of rat liver chromatin and concluded 

that approximated 1 copy of each subunit per 100 base pairs of DNA given the observed ratio of 

histones [9, 10].  This along with chemical cross-linking of proteins followed by sedimentation 

analysis allowed Kornberg and Thomas to deduce that the fundamental unit of chromatin is 

composed of an octamer of histones, an H3/H4 tetramer and two H2A/H2B dimers, wrapped by 

about 200bp of DNA. This DNA thread wrapped around a spool of histone octamer was called 

the nucleosome, the basic fundamental repeating subunit of chromatin. This discovery of the 

nucleosome revolutionized our understanding of chromatin structure and opened doors for 

understanding gene regulation (Fig. 1). 

 

In 1997, Karolyn Luger and Tim Richmond obtained a high-resolution structure of the 

nucleosome particle using X-ray Crystallography [11]. Their 2.8 Å structure validated the 

nucleosome model proposed by Kornberg and Thomas. This model illustrated the globular 

nature of histone octamers and detailed interactions between histones and DNA. They discovered 

that 146 base pair of DNA are wrapped around an octamer of histones, making 14 histone-DNA 

contacts through the phosphodiester backbone of the inner surface of the DNA superhelix (Fig. 

2). Most importantly lack of any contact of the DNA bases with the histone suggested sequence 

independent binding of histones to DNA and explained the ability of histones to pack any piece 

of DNA. The stoichiometry of histones was the same as predicted by Kornberg’s and Thomas’s, 
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as it was found that a tetramer of histones H3 and H4 were flanked by two sets of dimers of 

histones H2A and H2B.  Interestingly, they found that a characteristic histone fold mediates both 

histone/histone and histone/DNA interactions.  Perhaps the most important observation was that 

the highly basic and flexible histone N-terminal tails pass over and between the gyres of DNA to 

contact neighboring particles. 

 

 

Figure 2: Nucleosome core particle structure. Nucleosome core particle: ribbon traces for the 
146-bp DNA phosphodiester backbones (brown and turquoise) and eight histone protein main 
chains (blue: H3; green: H4; yellow: H2A; red: H2B. Image adapted from Luger, K et al. Nature 

389(6648):231 (1997) [11]. 

These unstructured histone tails are the perfect candidates for reversible chemical 

modifications allowing them to carry information beyond the DNA. The highly flexible nature of 

these tails also suggest some of the N-terminal histone tails protrude from the nucleosomes and 



 

- 6 - 

can contribute to interactions with other nucleosomes and presumably lend a role in the 

formation of higher order structures. Various permutations and combinations of post-

translational modifications on these tails gave rise to the “histone code” that creates various 

nucleosomal interfaces, downstream interaction with various chromatin proteins including 

neighboring histones and other regulatory enzymes. Many studies throughout the recent decades 

have supported this histone code hypothesis and suggested that these N-terminal tails play an 

important role in regulating a variety of nuclear processes. 

Packaging of DNA by histones still does not explain the extent to which DNA is 

packaged in the eukaryotic cell. In mammalian cells, roughly 2 meters of linear DNA is packed 

into a nucleus of approximately 10 µm in diameter. Thus, packaging by histones alone does not 

satisfy the degree of compaction observed in cells. To achieve this, a system of higher level 

packaging of the nucleosomes into chromatin is necessary. Chromatin exists as an intricate 

assembly of protein and nucleic acids. The basic architectural unit of chromatin is the 

nucleosome, composed of roughly two turns of DNA wrapped around an octamer of histones. 

Nucleosomes are further folded into a series of higher order structures that make up 

chromosomes. This tight packaging not only compresses DNA but also occludes the DNA 

adding a layer of regulatory control for gene expression. To explain the hierarchical nature of 

chromatin compaction, we need to look at the organization of the nucleosome structure. The 

most simple chromatin structure consists of nucleosomes evenly spaced across DNA with 

roughly 50 base pairs of linker DNA separating them. This structure has been shown to appear as 

11nM “beads on a string” structure by electron microscopy under conditions of low ionic 

strength. This 11nM fiber, under high salt conditions and with the help of linker histones, such as 

histone H1 [12] and other non-histone proteins, becomes more compact as nucleosomes are 
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folded into higher order arrays to form chromatin fibers of roughly 30nm in diameter [13]. The 

structure of this 30 nM fiber is not known in detail, but it is thought to be a two start helix as 

concluded from the crystal structure of the tetra nucleosome. This 30 nm chromatin fiber 

constitutes the second level of chromatin compaction. These chromatin fibers woven together 

form chromosomes (Fig. 1). A further level of chromatin and DNA compaction can be attained 

in the metaphase chromosome. The most important contributor to this second level of 

compaction is Histone H1, also called the linker histone, as it promotes coiling or folding of the 

30nM fiber into a helical assembly of zigzagging nucleosomes [14, 15]. In addition, histone tails 

can contact neighboring nucleosomes and lead to further compaction as suggested by the Luger 

crystal structure where H4 tails may contact a patch on the H2A-H2B dimer of the neighboring 

nucleosome. This opens the opportunity to reversibly control the level of compaction and 

accessibility of chromatin by modifying the histone tails of the nucleosomes. 
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Nucleosomal Packaging 

From the above discussion, we gather that chromatin can be envisioned as a highly 

efficient compaction system that organizes DNA. While this packaging of nucleosomes offers a 

great opportunity to compact and protect DNA, the wrapping of DNA around the nucleosome 

and subsequent superstructures of the octamer occlude the sequence of DNA to any external 

proteins. The wrapping of DNA around histone octamers occlude one face of the DNA double 

helix and was initially hypothesized to interfere with many nuclear transactions, including 

transcription, replication, DNA damage repair and recombination. Nucleosomes packaging 

promoter sequences inhibit transcription initiation events by both bacterial and eukaryotic RNA 

polymerases in vitro [16]. Transcription activities in vivo are also inhibited by nucleosomes in a 

similar manner as concluded from genetic experiments in yeast [17]. It may appear that 

nucleosomes are needlessly preventing transcription as if there is a cost to pay for efficient 

packaging and compaction. However, the cell utilizes this property of the nucleosome based 

inhibition. The packaging of eukaryotic DNA into chromatin provides a means to partition the 

genome into transcriptionally active and transcriptionally repressed regions. Different patterns of 

partitioning allow diverse transcriptional programs to arise from a single genetic blueprint. 

Transcriptional repression is achieved at the level of the chromatin fiber by histone tail 

modifications. Histone tail interactions and their specific modifications allow for different levels 

of compaction and access to the DNA. For example, increase in histone acetylation levels 

catalyzed by histone acetyltransferases (HATs) relieves condensation of the chromatin fiber. 

This can be easily reversed by histone deacetyltransferases (HDACs) (Fig. 3).  Additionally, at 
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the level of a single nucleosome, contacts between DNA and the histone fold pose a significant 

hindrance for transcription machinery to access the DNA. 

 

 
Figure 3: Chromatin remodeling complexes in the dynamic regulation of transcription: In 
the presence of acetylated histones (HAT mediated) and absence of methylase (HMT) activity, 
chromatin is loosely packaged. Additional nucleosome repositioning by chromatin remodeler 
complex, SWI/SNF opens up DNA region where transcription machinery proteins, like RNA Pol 
II, transcription factors and co-activators bind to turn on gene transcription. In the absence of 
SWI/SNF, nucleosomes cannot move farther and remain tightly aligned to one another. 
Additional methylation by HMT and deacetylation by HDAC proteins condenses DNA around 
histones and thus, make DNA unavailable for binding by RNA Pol II and other activators, 
leading to gene silencing. Figure adapted from [18]. Davis P.K., Brackmann, R.K. Chromatin 
remodeling and cancer (2003). 

 

Information in this form is inaccessible and of no potential benefit to the cell. Highly 

compact chromatin structure presents a structural barrier for cellular proteins to engage any DNA 

on nucleosomes in biochemical processes. DNA wound on a nucleosome is inaccessible to 

transcription or gene regulatory machinery as well as enzymes that function in replication 

(needed for cell proliferation) and repair (needed to maintain genome integrity). In order to read 
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this compacted information, eukaryotes have evolved a highly sophisticated system of proteins 

that include histone modifiers, histone chaperones and chromatin remodelers, that work together 

to alter the chromatin landscape and allow or inhibit access to the DNA as the need may arise. 

The establishment of specific chromatin states during the course of development as well as their 

maintenance through the disruptive events of transcription, DNA replication, and DNA repair 

require rapid rearrangements of chromatin structure. ATP-dependent chromatin-remodeling 

enzymes – one of which (Amplified in Liver Cancer 1 (Alc1)) is the main focus of this thesis, 

provide a means of generating such changes in chromatin structure. 
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Histone modifying enzymes and their roles 

Nucleosome packaging presents a significant barrier for cellular processes. The fact that 

access to DNA wrapped around a nucleosome is essential to life processes, suggested that the 

nucleosomes had to be more dynamic in nature than thought. Nucleosomes by themselves are 

stable and show very limited mobility on their own, appearing to be ideal spools for wrapping 

DNA, but have function outside of packaging DNA by the virtue of the histone tails. Kornberg 

and collegues were the first to show in 1987 that the promoters assembled with nucleosomes 

were refractory to transcriptional initiation by both SP6 polymerase and the mammalian RNA 

polymerase II complex in vitro. However, both the polymerases were able to read through the 

nucleosome once transcription initiation was permitted [16]. Additionally there was a 

concomitant loss of nucleosomes as the polymerase transcribed through, suggesting a hitherto 

unknown displacement mechanism. In further support, Han and Grunstein showed loss of 

nucleosomes at select promoters upon H4 depletion [17]. This resulted in transcriptional 

activation of multiple genes. These findings suggested that nucleosome occupancy was a key 

regulator of transcription machinery and many other downstream biological processes. 

 The next obvious question was to probe the precise nature of regulation exercised by 

nucleosomes. The mechanism by which packaging and compaction work in tandem to provide a 

precise level of control was a major question in the field. Grunstein and collegues made a major 

breakthrough in this field when they found that deletions within the hydrophobic core of the 

histone H4 were lethal and blocked chromosomal segregation [17]. The N-terminus was found to 

be dispensable for growth, but essential for repressing the silent mating loci in S. cerevesiae. In a 

later study in the same organism, they found that loss of a region in the H4 N-terminus 
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encompassing a number of highly conserved lysine residues resulted in drastic reduction of 

GAL1 and PHO5 [19]. Taken together these findings clearly indicated the unique biological 

functions of histones and their highly conserved tails that had specific biological roles. These 

findings also established the major role of conserved residues on histone tails that play a major 

role in regulation.  

Research over the past two decades has revealed that covalent modifications of histone 

proteins and DNA can fundamentally alter the organization and function of chromatin, and that 

they have a crucial role in the regulation of all DNA-based processes, such as transcription, DNA 

repair and replication. These modifications are dynamically laid down and removed by 

chromatin-modifying enzymes in a highly regulated manner. N-terminal tail of histones along 

with defined positions of the globular domain can carry several post-translational modifications 

such as acetylation, methylation, phosphorylation, ubiquitination, sumoylation, and ADP 

ribosylation (Fig. 4) [16, 20-26]. All the 4 canonical histones have been reported to be reversibly 

acetylated, each acetylated location bearing a different biological function. Acetylation of 

histones leads to a more “relaxed” form of chromatin that is permissible to transcription 

machinery, and deacetylation of chromatin leads to a more “packed” and transcriptionally 

inactive region of chromatin [27]. This is supported by the finding that histone deacetylation 

caused by HDACs (Histone DeACtylase) can repress transcription. HDAC activity is a common 

feature of several corepressor complexes such as RPD3, and HDAC1. Yeast and mammalian 

RPD3s can be directly fused with a heterologous DNA-binding domain and are sufficient to 

mediate transcription repression, sensitive to HDAC inhibitors [28].  
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Figure 4: Histone modifications involved in chromatin reorganization. Histone N-tails are 
post-translationally modified, and certain combinations of histone modifications appear to 
generate a “histone code” defining the chromatin state. Histone modifications occur at selected 
residues and some of the patterns shown have been closely linked to a biological event (for 
example, acetylation and transcription). Emerging evidence suggests that distinct H3 (red) and 
H4 (black) tail modifications act sequentially or in combination to regulate unique biological 
outcomes. How this hierarchy of multiple modifications extends (depicted as 'higher-order 
combinations') or how distinct combinatorial sets are established or maintained in localized 
regions of the chromatin fiber is not known. Relevant proteins or protein domains that are known 
to interact or associate with distinct modifications are indicated. The CENP-A tail domain (blue) 
might also be subjected to mitosis-related marks such as phosphorylation; the yellow bracket 
depicts a motif in which serines and threonines alternate with proline residues. Figure adapted 
from C. David Allis et al Nature 403: 41-45 (2000) [29]. 

 

Active transcription is found to be usually associated with acetylation of multiple 

residues in H3 and H4, and with di- or tri-methylation of H3 at lysine 4 (K4) position. 
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Condensed heterochromatin and intergenic regions of the genome are often transcriptionally 

inactive and are commonly associated with H3 K9 methylation and H3 K27 methylation [24]. 

 The histone modifications on individual histone tails and their combinations seemed to 

hold encoded information for transcriptional regulation, but it was still unclear how these effects 

were imparted. It was speculated that charge-neutralization of highly basic histone N-terminal 

tails via modifications would change local chromatin structure ultimately leading to disruption of 

histone-DNA contacts. This explains the effects of acetylation, but methylation of lysine groups 

has no effect on overall charge, indicating that there is a more complex mechanism at play than 

simple charge-charge interactions [30]. 

 The more complex mechanism was supported by the discovery of many transcription 

regulatory proteins possessing functional domains that bind to specific histone modifications. 

Grunstein and Gasser labs in 1995 discovered that silent information regulator 3 (Sir3) and Sir 4, 

previously known to be required for repression of yeast silent mating-type loci, associated with 

methylated histone tails through a chromodomain [31]. This binding event was required for 

targeted recruitment of SIRs within the genome. Importantly, when the histone tails were 

acetylated, Sir3 and Sir 4 failed to bind, suggesting the regulatory nature of histone 

modifications. Zhou and collegues solved the crystal structure of a bromodomain, a domain 

commonly found in transcriptional activators known to bind acetylated histone residues [32]. 

Identification of these binding domains fueled the search for additional histone reader molecules 

(Fig. 5). Biophysical and biochemical methods have uncovered a vast number of histone reader 

domains with two-fold recognition – residue specific and chemical modification specific. These 

domains bind to modified histones and serve as multi-purpose platforms for integrating various 
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chromatin modifying complexes based on the modification imparted on the histone tail.  These 

chromatin modifiers and chromatin remodelers influence import processes such as transcription, 

replication, DNA repair and cell cycle progression [33].  

 

 

Figure 5: Histone tail modifications and their binding partners. Left: Stick models of 
different classes of post-translationally modified amino acid residues, highlighting small 
chemical group side chains on histone tails. Yellow, carbon; blue, nitrogen; pink, polar 
hydrogen; red, oxygen; orange, phosphorus; green, methyl groups of post-translational 
modifications. Background is shaded by charge of side chains at physiological pH: light blue, 
positive; pink, negative; light green, uncharged. Right: Reading the histone (protein) code. 
Shown grouped by domain family are known chromatin-associated modules and the histone 
marks they have been reported to bind. Parentheses denote examples where structural 
information is known about related family members and their interactions with non-histone 
PTMs. Figure adapted from [34]. 
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Chromatin remodeling – How and Why? 

All DNA-dependent processes require selective and controlled access to DNA sequences. 

With the evolution of highly compact and efficient packaging of DNA around nucleosomes and 

their modified histone tails, the need for selective and regulated exposure of DNA to nuclear 

factors is necessary.  Regulatory sequences, such as promoters and enhancers, of actively 

transcribing genes are shown to be hypersensitive to nuclease digestion. One interpretation of 

this observation could be that these cis regulatory DNA sequences have unrestricted access to 

transcription machinery and are to be devoid of nucleosomes. If indeed this is the case, then it is 

highly suggestive of an active mechanism to regulate nucleosome occupancy in these key 

regions of the eukaryotic genome. A mechanism to regulate nucleosome occupancy also 

provides an opportunity to regulate gene expression via chromatin structure. In addition to that, 

this mechanism and its effectors need to be functioning in a reversible or complimentary fashion, 

as an essential feature of regulating the DNA sequences via nucleosome occupancy involves 

deposition and packaging of nucleosomes on exposed DNA sequences (Fig. 6). 

Histone tail modifications provide a potential marker for regions that are targeted to be 

rendered nucleosome free for greater access or packaged tightly to limit accessibility. Although 

histone tails play an important role in higher order packaging, they have a very minor impact on 

nucleosome core structure and do not influence any histone core-DNA interactions – key 

interactions that need to be disrupted for unrestricted access to DNA.  

The solution to this problem of restricted DNA access is a broad class of proteins and 

their assemblies that function as chromatin remodelers. Remodelers are DNA-translocating 

motors that utilize the energy derived from ATP hydrolysis to change the contacts between 
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histones and DNA. Remodelers function to fully package the genome, specialize chromatin 

regions by allowing histone modifying enzymes access to histone tails, and provide regulated 

access to DNA sequences. [35-41]. Remodelers can 1) mediate nucleosome sliding, in which the 

position of a nucleosome on the DNA changes, 2) induce the creation of a remodeled state, in 

which the DNA becomes more accessible but histones remain bound, 3)cause the complete 

dissociation of DNA and histones, or 4) histone replacement with a variant histone. ATP-

dependent remodelers work in conjunction with other factors, most notably histone chaperones 

and histone modifying enzymes. Remodelers play very important roles in essential cellular 

processes such as gene expression and its regulation, DNA repair, replication and recombination, 

and nucleosome deposition.  

Two functions that are common among all protein remodeling complexes are 1) a 

functional ATPase, and 2) the ability to manipulate DNA as a helicase. The first point is quite 

intuitive as energy is needed for these activities and ATP provides an ideal energy source for 

these reactions. The second point relates to the diverse functionality the helicase domain has 

achieved by surrounding itself with a) accessory proteins to guide its functions and/or b) an 

accessory domain(s) often present within the same protein sequence that can target and 

manipulate the helicase functionality. 

In order to be exhaustive, five basic common properties of remodelers include: (a) an 

affinity for the nucleosome, beyond DNA itself; (b) domains that recognize covalent histone 

modifications; (c) a similar DNA dependent ATPase domain required for remodeling and to 

serve as a DNA-translocating motor to break histone-DNA contacts; (d) domains and/or proteins 

that regulate the ATPase domain; and (e) domains and/or proteins for interaction with other 
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chromatin or transcription factors. Together, these shared properties allow nucleosome 

engagement, selection, and remodeling. However, distinctive targeting and tasks require 

remodeler specialization. 

Currently, four different classes of remodeling complexes are recognized: SWI/SNF, 

ISWI, CHD or Mi-2 and Ino80. Each class is defined by a unique subunit composition that often 

works in distinct assemblies. Common to all the classes is the presence of a distinct ATPase that 

is discussed in the following section [35, 36, 42]. 

 

 

Figure 6: The different outcomes of chromatin remodeling. Remodelers (green) can assist in 
chromatin assembly by moving already deposited histone octamers, generating room for 
additional deposition (a). Remodeler action on a nucleosome array results in various products 
that can be classified in two categories: (b) site exposure, in which a site (red) for a DNA-
binding protein (DBP), initially occluded by the histone octamer, becomes accessible by 
nucleosomal sliding (repositioning), or nucleosomal eviction (ejection), or localized unwrapping, 
and (c) altered composition, in which the nucleosome content is modified by dimer replacement 
[exchange of H2A-H2B dimer with an alternative dimer containing a histone variant (blue)] or 
through dimer ejection. Figure adapted from [43]. 
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The RecA-like ATPase of SNF2 remodelers 

In 1988, Gorbalenya and Koonin discovered a large group of proteins that shared a series 

of short ordered motifs [44, 45]. The majority of members with known function were nucleic 

acid strand separating helicases. As a result these sequences became known as helicase motifs 

and were labelled sequentially I, Ia, II, III, IV, V and VI (Fig. 7). A number of additional 

conserved blocks with broad distributions within these helicase-like proteins were identified, 

such as the TxGx and Q motifs [46, 47] (Fig 8).   

 

 

Figure 7: Conserved blocks contribute to distinctive structural feature of Snf2 family 

proteins. Schematic diagram showing location of structural elements and helicase motifs. 
Conserver blocks are shown as white boxes. Figure adapted from [48]. 
 

The latest bioinformatics approaches have subdivided proteins containing helicase motifs 

into several superfamilies based on the primary sequence similarity [48]. Overall, helicases can 

be grouped into six helicase-like superfamilies SuperFamily 1-6 (SF1-SF6). Among these 

superfamilies, SF1 and SF2 are closely related by sequence similarity in their common core of 

highly conserved two RecA-like domains [49]. SF3-SF6 are ring-forming helicases. Proteins 
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with a helicase-like region of similar primary sequence to Saccharomyces cerevisiae Snf2p make 

up the Snf2 family within SF2 [48] (Fig. 8).  

 

Figure 8: Schematic diagram illustrating hierarchical classification of superfamily, family 

and subfamily levels. Figure adapted from [48]. 
 

The mechanical motion required to fulfil the general function of a helicase is achieved by 

a change in the relative orientation of the highly conserved two recA-like domains. These 

helicase-like enzymes hydrolyze ATP in an active site cleft located between the two recA-like 

domains to derive the energy for this change in orientation [50]. Structural and mutagenesis 

studies have shown that each of the conserved helicase motifs in the active site cleft between the 

recA-like domains plays a role in the transformation of chemical energy from ATP hydrolysis to 

mechanical motion. This enzymatic process has been suggested to represent one application of a 

more general mechanism used in many proteins containing a recA-like domain [51] (Fig. 9).  

The two recA-like domains adopt a bi-lobular structural fold with a central opening cleft 

as its active site (Fig. 9).  It is known that Motif I contains the “Walker A” motif, responsible for 

binding the triphosphate tail of ATP [47].  Being a helicase, binding to DNA is thought to be 

mediated via Motif Ia that forms the edge of a shallow groove across the surface of the protein 

and may be involved in binding to DNA. Motif II contains part of the “Walker B” motif and is 
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Figure 9: Conserved blocks contribute to distinctive structural features of Snf2 family 

proteins. Structural components of Snf2 family proteins relevant to the conservation are 
illustrated on the zebrafish Rad54A structure [pdb 1Z3I [52]]. (A) core recA-like domains 1 and 
2 including colouring of helicase motifs (I in green, Ia in blue, II in bright red, III in yellow, IV 
in cyan, V in teal and VI in dark red). (B) Q motif (pink). (C) antiparallel alpha helical 
protrusions 1 and 2 (red) projecting from recA-like domains 1 and 2, respectively. (D) Linker 
spanning from protrusion 1 to protrusion 2 (middle blue). (E) Major insertion region behind 
protrusion 2 (light green). (F) triangular brace (magenta). Figure adapted from [48]. 
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the DEAD box motif, implicated in binding Mg2+ which is a necessary requirement for ATP 

hydrolysis by both DNA and RNA helicases [53, 54]; Motif III is thought to be involved in the 

coupling of  ATP hydrolysis to helicase activity [47], Motif IV forms the linkage between the 

two recA like domains by running underneath and then becoming a part of the ATP binding site. 

Motifs V and VI flank both sides of the ATP binding site and provide important interfaces 

suspected to be regulating the helicase activity of the protein [49].  

 As stated earlier, within the helicase-like 2 superfamily (SF2), there are a group of 

proteins with high primary sequence similarity to S. cerevisiae SNF2p.  These proteins are 

classified into the SNF2-like subfamily (Fig. 10).  As with SNF2p, they bear two recA-like 

helicase domains at their core, and many of the members of this family were first identified as 

ATPases residing within chromatin remodeling complexes. Today, it is widely recognized that 

SNF2-like proteins serve as a core subunit of chromatin remodeling multi-subunit complexes and 

are the engine that is required for ATP-dependent chromatin remodeling processes [41].  The 

SNF2-like family is ubiquitous in eukaryotes and is also present to a lesser extent in both eu- and 

archaeabacteria. Comprehensive bioinformatic analysis of completed genomes has allowed 

researchers to catalogue SNF2-like members [55]. Guided by primary sequence similarity in the 

helicase-like regions, 24 distinct SNF2-like subfamilies can be recognized.  Many of the 

subfamilies correlate with known biological function.  Despite the similarity of the core ATPase 

motor of these enzymes, there is profound diversity within the SNF2-like family with each 

family having its own set of distinct functions. The human SNF2-like proteins are genetically 

non-redundant in vivo, suggesting that the SNF2-like family helicase–like region has specifically 

evolved to execute distinct functions unique to each subfamily [56]. 
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Figure 10: Tree view of SNF2 family. (A) Unrooted radial neighbor-joining tree from a 
multiple alignment of helicase-like region sequences excluding insertions at the minor and major 
insertion regions from motifs I to Ia and conserved blocks C–K for 1306 Snf2 proteins identified 
in the Uniref database. The clear division into subfamilies is illustrated by wedge backgrounds, 
colored by grouping of subfamilies. Subfamilies DRD1 and JBP2 were not clearly separated, as 
discussed in text. (B) In order to illustrate the relationship between subfamilies, a rooted tree was 
calculated using HMM profiles for full-length alignments of the helicase regions. Groupings of 
subfamilies are indicated by coloring as in (A). Figure adapted from [48]. 
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SNF2 ATPases – a brief history  

The ability of nucleosomes to alter chromatin structure via their histone tails suggested 

that proteins capable of influencing nucleosome structure may be important regulators of gene 

expression.  The first chromatin remodeling factor identified was the yeast SWI/SNF protein 

complex. Genes encoding SWI/SNF subunits were originally identified in two independent 

screens for mutants affecting either mating type switching or growth on sucrose, hence the 

names Switching defective (SWI) and Sucrose nonfermenting (SNF) [57-59]. Further genetic 

studies revealed that mutations in the histone genes suppressed swi/snf phenotypes, providing a 

direct connections between chromatin and SWI/SNF function. The Winston Lab provided the 

first evidence to functionally link transcriptional activators and chromatin [60]. Previous reports 

in literature has been established that Snf5 affected transcription of a large number of genes 

including the glucose repressible gene SUC2 that codes for the enzyme invertase. Mutations in 

Snf5 caused transcriptional repression of SUC2. However, these effects could be reversed by 

mutating the genes encoding for H2A and H2B. Furthermore, localized structural changes in the 

SUC2 gene of snf2 and snf5 mutant yeast could be rescued by a deletion of one of the two sets of 

genes encoding histones H2A and H2B, (hta1-htb1) delta, but not by mutating the TATA box to 

inhibit specific transcription initiation from the SUC2 promoter. These findings provided the first 

link between changes in local chromatin structure induced by transcriptional activators Snf2 and 

Snf5 and its subsequent effect on transcription. 

Several proteins encoded by SWI/SNF genes (such as SNF2 and SNF5) have been 

reported to physically associate with each other during immunoprecipitation and 

chromatographic separation (SWI1/ADR6, SWI2/SNF2, SWI3, SNF5, and SNF6). Multiple 
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groups independently purified the 10 subunits of the SWI/SNF complex from both yeast and 

mammalian cells [61-64]. This multisubunit SWI/SNF complex was able to remodel 

nucleosomes in an ATP-dependent manner in vitro, as evidenced by the altered nuclease 

cleavage pattern and DNA topology. Yeast SWI/SNF complexes were subsequently shown to be 

required for transcription by DNA-specific activator proteins such as yeast GAL4 and the 

glucocorticoid receptor expressed in yeast [65, 66]. Workman and Peterson provided a 

mechanistic explanation by showing that the binding of GAL4 to nucleosomal DNA could be 

dramatically enhanced by SWI/SNF complexes in the presence of the catalytically active SWI2 

subunit and ATP hydrolysis [62]. Additionally, SNF2, SNF5, and SNF6 that were fused with a 

LexA DNA binding domain were found to be sufficient to activate transcription when tethered to 

DNA [67]. Thus, the SWI/SNF remodeling complex, was proposed to be a transcriptional 

coactivator complex that alters structure of promoter chromatin in an ATP-dependent fashion,. 

A few years later, a new ATP-dependent chromatin remodeler that exhibited greatly 

enhanced activity in the presence of GAGA factor was discovered.  The new chromatin 

remodeler was determined to be a complex of 4 proteins was named NURF (Nucleosome 

Remodeling Factor) and had a 140kDA catalytic subunit named ISWI [68]. The ATPase domain 

of Iswi had a high degree of homology to SNF2, the catalytic subunit of the Swi/Snf complex.  

The high degree of homology between the Snf2 and Iswi ATPase domains provided a link 

between these two complexes and began the hunt for other chromatin remodeling assemblies. 
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SNF2 sub families 

Members of the SNF2 superfamily of ATPases serve as catalytic subunits of ATP-

dependent chromatin remodeling enzymes. All SNF2 family ATPases share a conserved ATPase 

domain. The SNF2 superfamily of ATPases can be further subdivided into subfamilies that have 

unique collections of functional or structural domains that fall outside of their catalytic domains.  

However, each family has unique flanking domains that allow further subdivision based on 

protein motifs and domains outside of the ATPase. These domains and other accessory subunits 

allow the cell to repurpose this ATPase motor for specific biological processes (Fig. 11). 

 

 

Figure 11: Remodeler Families, defined by their ATPase. All remodeler families contain a 
SWI2/SNF2-family ATPase subunit characterized by an ATPase domain that is split in two 
parts: DExx (red) and HELICc (orange). What distinguishes each family are the unique domains 
residing within, or adjacent to, the ATPase domain. Remodelers of the SWI/SNF, ISWI, and 
CHD families each have a distinctive short insertion (gray) within the ATPase domain, whereas 
remodelers of INO80 family contain a long insertion (yellow). Each family is further defined by 
distinct combinations of flanking domains: Bromodomain (light green) and HSA (helicase-
SANT) domain (dark green) for SWI/SNF family, SANT-SLIDE module (blue) for ISWI 
family, tandem chromodomains (magenta) for the CHD family, and HSA domain (dark green) 
for the INO80 family. Figure adapted from [43]. 
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SWI/SNF family remodelers 

Although first discovered in yeast, the SWI/SNF family of remodelers is evolutionary 

highly conserved, and homologous complexes have been identified in insects and vertebrates. 

The budding yeast Snf2 protein is the founding member of the SWI/SNF subfamily and indeed 

of all SNF2 family remodeling factors. Most eukaryotic cells contain two subclasses of 

SWI/SNF remodelers, each characterized by the presence of a unique but related catalytic 

subunit. Human cells contain two distinct SWI2/SNF2-like ATPase subunits, named hBRM 

(human Brahma) and BRG1 (Brahma-Related Gene 1), which are analogous to yeast 

SWI2/SNF2 and STH1 [69].  Drosophila happens to be an exception to this rule as it contains 

only a single protein corresponding to yeast SWI2/SNF2 or STH1, called Brahma (BRM) [70, 

71]. The evolutionary emergence of multicellularity was accompanied by the loss of some of the 

subunits that are present in yeast SWI/SNF complexes (SNF6, SNF11, SWP29 and SWP82) and 

the gain of others. Unlike in yeast, there are two D. melanogaster SWI/SNF complexes — the 

Brahma (BRM)-associated proteins (BAP) complex and the polybromo-containing BAP (PBAP) 

complex, and these can mediate transcriptional activation and transcription repression. In the 

transition to vertebrates, there is a large increase in the number of possible complexes as a result 

of vertebrates gaining the ability to combinatorially assemble several subunits encoded by gene 

families (Fig. 12) [72]. 

The catalytic SNF2 ATPase of the SWI/SNF subfamily remodelers contain HSA 

(helicase-SANT), a post-HSA domain and a C-terminal bromodomain. A pair of actin related 

proteins (ARP7 and ARP9) is present in yeast SWI/SNF complexes, whereas a dimer of actin 

and Arp4 (also known as Baf53a or b) are present in higher orthologs [73, 74]. A number of 
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studies have reported additional subcomplexes in which the SWI/SNF-type remodelers are 

associated with other factors, such as BRCA1 or components of the histone deacetylating Sin3 

complex [75, 76]. Additional conserved domains present in other conserved subunits add another 

layer of functionality to the already versatile catalytic ATPase. For example, human polybromo 

subunits have multiple bomodomains, hBAF155/170 has SANT and SWIRM domains and 

hBAF60 has a SwiB domain. This family has many activities, and is capable of sliding and 

ejecting nucleosomes at many loci for diverse processes. However, a role of SWI/SNF sub-

family in chromatin assembly has yet to be described. 

 

 

Figure 12: Evolutionary diversification of SWI/SNF complexes. BRD, bromodomain-
containing protein; BRG1, brahma-related gene 1; MOR, Moira; PHD, plant homeodomain; 
PtdIns(4,5)P2, phosphatidylinositol-4,5-bisphosphate; SAYP, supporter of activation of yellow 
protein; SNR1, Snf5-related protein 1; Brahma (BRM)-associated proteins (BAP) complex; 
polybromo-containing BAP (PBAP) complex; brahma-associated factor (BAF). Figure adapted 
from [72]. 
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ISWI family remodelers 

The Iswi (Imitation switch) family of remodelers is comprised of chromatin remodeling 

complexes containing the ISWI ATPase—including NURF, CHRAC and ACF (2 to 4 subunits) 

(Fig. 13). They were first identified using in vitro assays for nucleosome-remodeling activities in 

Drosophila melanogaster embryo extracts (dNURF, dCHRAC, dACF, hWICH and hNoRC 

complexes) [68, 77-79]. A characteristic set of domains reside at the C-terminus of ISWI family 

ATPases: a SANT domain (ySWI3, yADA2, hNCoR, hTFIIIB) adjacent to a SLIDE domain 

(SANT-like ISWI), which together form a nucleosome recognition module that binds to an 

unmodified histone tail and DNA [80]. All ISWI remodeling factors require a particular region 

of the histone H4 tail that is positioned near the DNA surface and presumably functions as an 

allosteric effector [81, 82]. 

ISWI family complexes are utilized by most eukaryotes in multiple assemblies, using one 

or two different catalytic subunits with specialized attendant proteins. Specialized attendant 

proteins impart many domains, including DNA-binding histone fold motifs (in hCHRAC 15-17), 

plant homeodomain (PHD), bromodomains (hBPTF and hACF1), and additional DNA-binding 

motifs [HMGI(Y), for dNURF301]. Many ISWI family complexes (ACF, CHRAC) optimize 

nucleosome spacing to promote chromatin assembly and the repression of transcription. 

Attendant proteins can diversify function as seen in NURF, which can randomize spacing and 

may assist RNAPII activation. All of these complexes function in vitro predominantly by 

relocating histone octamers without disruption. This supports the idea that ISWI complexes 

reposition, rather than remove, nucleosomes thus modulating the spacing of a nucleosome array. 

[83, 84]. All three fly complexes are known to have homologs in humans [77-79, 85-88]. 
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Although in mammals two ISWI-homologs exist, SNF2H and SNF2L, so far only SNF2L has 

been found in the human NURF complex (Barak et al., 2003). ISWI-containing remodeling 

complexes commonly share subunits related to Acf1, which contain plant homeo (PHD)- and 

bromodomains [89, 90]. Budding yeast also expresses two forms of ISWI - Isw1p and Isw2p. 

Yeast CHRAC and ACF resembling complexes contain Isw2p [91, 92]. Isw1p on the other hand 

resides in two functionally distinct complexes [93]. Functions for ISWI-containing complexes 

are diverse, ranging from transcriptional regulation of RNA polymerase II and RNA polymerase 

I to replication [90, 94-99]. It is also well established that Iswi complexes have roles in 

assembling chromatin and formation of nucleosome arrays with uniform ordered spacing. This 

ordered spacing of nucleosomes occludes transcription factors and other transcription machinery 

from promoters, thereby causing repression [99-102]. 

 

Figure 13: ISWI family of chromatin remodeling complexes. Figure adapted from [101]. 
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CHD family remodelers 

A CHD (chromodomain, helicase, DNA binding) family ATPase is the catalytic ATPase 

core of the CHD family of remodelers. Members of the CHD family are characterized by a 

tandem arrangement of two chromodomains on the N terminus of the catalytic subunit [103, 

104]. The most prominent member of this family is Mi-2, which resides in NuRD complexes that 

also have histone deacetylase activity [105]. The CHD family ATPase CHD1 is monomeric in 

lower eukaryotes such as S. cerevisiae. However, in  vertebrates, CHD1 can be present in large 

multi-subunit complexes (Fig. 14) [106]. Associated proteins often bear functional domains such 

as DNA-binding domains and PHD, BRK, CR1-3, and SANT domains. Certain CHD remodelers 

are known to slide or eject nucleosomes in a chromodomain-dependent fashion to promote 

transcription, but they can also have repressive roles. Vertebrate Mi-2/NuRD (nucleosome 

remodeling and deacetylase) complex, which contains histone deacetylases (HDAC1/2) and 

methyl CpG-binding domain (MBD) proteins, provides a link between histone deacetylation, 

chromatin remodeling and DNA methylation [107].  

 

Figure 14: NURD Complexes.  NURD complexes (which are members of the CHD family of 
chromatin-remodelling complexes) incorporate different products of the MTA (metastasis-
associated) gene family, and these complexes have distinct, and even opposing, functions in 
regulating the development and tumorigenesis of mammary tissues. Figure adapted from [72]. 
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INO80 family remodelers 

The INO80 subfamily includes the INO80 remodeling complex (INO80.com) and the 

SWR1 remodeling complex (SWR1.com), which are characterized by split ATPase domains 

(Ino80 and Swr1 respectively) and the presence of two RuvB-like proteins, Rvb1 and Rvb2 

(Fig.15) [37, 108]. The large insertion region is located at the major insertion site of Snf2-like 

ATPases between helicase motifs III and IV, where the helicase-related (AAA-ATPase) Rvb1/2 

proteins (resemble the E. coli Holliday junction resolvase) and ARP4 protein bind. Both yeast 

INO80 and yeast SWR1 complexes contain actin and Arp4. The most well know remodeler of 

the INO80 subfamily is the Ino80 ATPase from budding yeast, which was identified in a genetic 

screen for genes involved in transcriptional activation upon inositol starvation, hence the name 

Ino80 (Inositol requiring 80) [109]. The INO80.com was purified from budding yeast as a 15 

subunit complex including the INO80 ATPase [108]. Yeast INO80 has been shown to catalyze 

ATP-dependent nucleosome sliding activity, DNA-stimulated ATPase activity, and separate 

DNA strands in a primer-displacement assay, making the INO80 complex the only known Snf2 

family remodeling complex to exhibit helicase activity in vitro. Higher orthologs include 

hINO80, hSRCAP (SNF2-related CREB-activator protein), and p400, which also contains HAT 

activity. 

The Conaway lab purified and defined the subunit composition of human INO80-like 

chromatin remodeling complexes from human cell lines as a 9 subunit complex that is 

evolutionarily conserved in all eukaryotes [110, 111]. Apart from the 9 conserved subunits, Snf2-

like INO80 ATPase, actin, actin-related proteins ARP4, ARP5, and ARP8, AAA+ ATPases RvB1 

and RvB2, IES2, and IES6, there are several species specific subunits for the Ino80 complex. For 

example, yeast have specific subunits: TATA-binding-protein-associated factor 14 (TAF14), 
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high mobility group (HMG) domain-containing non-histone protein 10 (NHP10) and four 

additional IES (INO Eighty Subunits): 1, 3, 4, and 5. In contrast, there are different metazoan-

specific subunits, including Gli-Kruppel zinc finger transcription factor Ying-Yang 1 (YY1), 

nuclear factor related to κB (NFRKB), ubiquitin protease UCH37, forkhead domain associated 

(FHA) domain-containing MCRS1, pre-B cell acute lymphoblastic leukemia fusion protein 

TFPT/Amida, and proteins with unknown function FLJ20309 (INO80D), FLJ90652 (INO80E) 

[112].  

INO80 complex is reported to have involvement in multiple processes in vivo. INO80 

directly occupies several genomic targets in yeast, and mutant strains display transcriptional 

defects [108, 109]. In human cells, INO80 also contributes to transcriptional regulation of at least 

some genes regulated by the transcription factor YY1, which is tightly associated with human 

INO80. Mutation of genes encoding INO80 subunits also interferes with efficient progression of 

replication forks during DNA synthesis and with maintenance of telomere structure [113-115]. 

INO80 and Swr-1 have well documented roles in transcription and DNA damage and 

recombination [37, 108, 109, 111, 116-121]. The inclusion of Ruv-B like helicases as subunits in 

the complex is highly indicative of the possibility that Ino80 and Swr-1 remodelers evolved to 

maintain genetic integrity in organisms. This is further supported by the observation that when 

subunits of Ino80 complex are mutated, it leads to impaired DNA damage response in humans, 

flies, plants and yeast [108, 122-126]. Ino80 plays an active role in the eviction of nucleosomes 

proximal to double strand breaks (DSB) and chromatin of the homologous donor locus in an 

ATP-dependent manner. 
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Although highly related to INO80, SWR1 does not affect nucleosome eviction at DSBs 

(Double Strand Break) and is unique in its ability to restructure the nucleosome by removing 

canonical H2A-H2B dimers and replacing them with H2A.Z-H2B dimers, thereby inserting the 

histone H2A variant H2A.Z at sites of DNA damage [127].  Histone H2AZ is known to be 

responsible for sustained recruitment of DNA repair factors such as Rad51, Mec1, and Ku80, to 

DSBs. These factors are required for non-homologous end joining (NHEJ) [128, 129].   

 

 

Figure 15: Schematic model of subunit interactions of the INO80 and SWR1 complexes. (A) 
INO80 subunits and their interactions. (B) SWR1 subunits and their interactions. The known 
interactions between subunits and ATPases are shown by arrows, while the question marks 
indicate unknown interactions. Figure adapted from [130] 
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Accessory domains of SNF2 ATPase 

Chromatin modifiers and remodelers change chromatin structure and direct nucleosome 

dynamics to regulate gene expression. Accessory proteins explain the diverse functionality of the 

same core ATPase subunit repurposed in several gene regulatory processes. Interestingly, the 

recognition of which nucleosome needs to be modified and in which direction is dependent on 

the recognition of the covalent modifications and other epigenetic marks on those nucleosomes. 

In order to recognize these modifications, the ATPase domain of these catalytic subunits is 

flanked by binding domains that recognize specific modifications (Fig. 16) [43]. These domains 

act to target the ATPase and in some cases even regulate the ATPase activity. Whether these 

domains act in a concerted fashion with other domains and subunits or act as independent 

modules, is an area of active research. 

Binding domains on SNF2 ATPases associate with specific chemical modifications on 

peptides that are present either on the histone tails or other nuclear proteins (Fig. 17). The 

bromodomain, a characteristic feature at the C-terminal region of the ATPase of SWI/SNF 

family of remodelers, binds acetylated lysines in histones and other proteins [131]. The 

bromodomain is present in both the versions of SWI/SNF complexes present in yeast, flies and 

humans. The yeast RSC contains multiple bromodomains on several proteins, while the 

Drosophila PBAP and the human PBAF possess multiple bromodomains on a single protein 

(polybromo). The existence of multiple bromodomains may suggest to the co-operative ATPase 

targeting functions of these domains to their substrates. 
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Figure 16: Domains, proteins, and modifications that regulate remodelers. Remodeler 
regulation is an area of increasing complexity. Depicted here is the ATPase domain itself (blue) 
along with the proteins, domains, and modifications that are involved in remodeler regulation. 
Regulatory (Reg.) modifications and proteins that positively impact remodeling activities are in 
green, those negatively affecting remodeling activities are in red, and those contributing to 
targeting are in purple. Yellow is used for features with unclear or unknown effect. Objects 
implicated in both activation and targeting are depicted as objects with a green-purple gradient. 
CHD remodelers can be monomeric or multimeric, with italicized text only for the monomeric 
form. Figure adapted from [43]. 
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Whether bromodomains are simply involved in targeting or have an impact on remodeler 

efficiency, or both remains to be understood. Histone acetylation has been linked with increasing 

remodeling efficiency by SWI/SNF complexes and RNAPII elongation by yRSC [132, 133]. The 

bromodomains also play a key recognition role, as they can interact with specific acetylated 

residues. The yRSC4 interacts with the histone tail modification H3K14ac (Lysine14 acetylation 

on histoneH3) in vitro and promotes gene activation in vivo [134]. Bromodomains are also 

present on some ISWI remodelers but have yet to be shown to associate with any particular 

histone or protein substrate. 

The chromodomains, characteristic tandem repeats present on the C-terminal region of 

the ATPase of CHD family, bind one methylated lysine. The tandem repeat chromodomains 

function as a single structural unit for binding their substrate. hCHD1 tandem chromodomains 

bind H3K4me2 or me3, histone tail marks correlated with active chromatin [135, 136]. The 

tandem chromodomains of Mi-2 are implicated in the recognition of DNA rather than methylated 

histone tails [137]. Mi-2 mutants lacking the chromodomains fail to bind or remodel 

nucleosomes. Importantly, to note that the tandem chromodomains of CHD1 are separated by a 

small patch of highly basic residues known as the “chromo-wedge”. This region of the protein 

has been shown to directly regulate the ATPase by splaying open the two lobes of the ATPase 

and competitively inhibiting substrate (DNA) binding of the SNF2 ATPase motor [138]. Another 

methyl-lysine interacting motif present in several remodelers is the PHD finger or the Plant 

HomeoDomain. The PHD finger of dNURF stabilizes its interaction with active chromatin that 

has been marked with H3K4me3 tail modifications [139]. The PHDs have also been implicated 

in binding the globular domain of core histones and improve the effectiveness of nucleosome 

mobilization as in the case of dACF1 [140].  
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Figure 17: Chromatin remodeling enzymes have specific domains that bind histone 

modifications. (a) Bromodomains bind acetylated lysines. The bromodomain of Gcn5 bound to 
an H4 tail peptide acetylated at K16 (PDB: #1E6I). The bromodomain is in gray, the histone 
peptide in blue, and the modified lysine in red. (b) Chromodomains bind methylated lysines. The 
chromodomain of HP1 protein Swi6 bound to an H3 tail peptide methylated at K9 (PDB: 
#1KNA). The chromodomain is in gray, the histone peptide in blue, and the modified lysine in 
red. (c) PHD fingers bind methylated lysines. The PHD finger domain of ING2 bound to an H3 
tail peptide methylated at K4 (PDB: #2G6Q). The PHD finger is in gray, the histone peptide in 
blue, the modified lysine in red, and the zinc ions are in green. Figure adapted from [131]. 

 

The ISWI family is accessorized with three tandem domains, HAND-SANT-SLIDE 

(HSS), C-terminal to the SNF2 ATPase, that form an extended dumbbell-like structure with two 

globular domains connected by a spacer helix [141]. The SANT domain (SWI3, ADA2, N-CoR, 

TFIIIB B”) was recognized to be structurally similar to the DNA binding tandem repeats of 

homeodomain helix-loop-helix motifs of c-myb DNA binding domain (c-myb DBD) [142]. The 

minimal myb DBD is composed of two repeats and thus a single SANT domain was thought to 

contribute to general DNA affinity. Recent crystal structure data and SANT’s lack of key 

residues that contact DNA in c-Myb suggested that SANT domains function not as a DNA 

binding domain but rather as a domains that bind unmodified histone tail motif [80, 141, 143]. In 
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conjunction with HAND and SLIDE (SANT-like domain), the HSS motif binds 

extranucleosomal DNA that flanks the nucleosome. The C terminus of Isw2 remodeling complex 

of the ISWI family, comprising the SLIDE (SANT-like domain) and HAND domains, was found 

to be associated with extranucleosomal DNA and the entry site of nucleosomes [144]. Together, 

the HSS domain of Isw2 is involved in anchoring the complex to nucleosomes through their 

interactions with linker DNA and they facilitate the movement of DNA along the surface of 

nucleosomes. dISWI ATPase mutants with a SLIDE domain deletion have no appreciable 

remodeling or ATPase activities, whereas the SANT domain deletion retains low activity [141]. 

Thus this unique combination of tandem HAND, SANT and SLIDE domains, which is exclusive 

to the ISWI family of remodelers, cooperatively achieves nucleosome recognition and 

stimulation of ATPase activity. 

In addition to the above, there are other domains which bind non-histone substrates, such 

as the macrodomain. The SNF2ATPase Alc1 possesses a macrodomain C-terminus to the 

ATPase. At the time of Alc1’s discovery, its substrates were not well characterized. This 

changed with the recognition of the macrodomain present at the C-terminus of the proteins. The 

macrodomain has been shown to bind poly-ADP ribose (PAR) and the monomeric ADP 

(Adenosine diphosphate)-ribose (ADPR) in vitro and in vivo [145]. This discovery directly 

connected Alc1, a SNF2 ATPase remodeler, with NAD+, PAR and effector proteins such as Poly 

ADP-ribose Polymerase 1 (PARP1) that modify nuclear proteins including histones with ADP 

ribosylation or Poly (ADP-ribosyl)ation (PARylation) modifications. 
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PAR – Poly ADP-ribose 

 PAR is a homopolymer of ADP-ribose (derived from NAD+ in vivo) units linked by 

glycosidic ribose-ribose 1’-2’ bonds [146-149] (Fig. 18). These polymers are synthesized both in 

vitro and in vivo and can be extremely heterogenous, reaching lengths of 200-400 units [150]. 

Long polymers are speculated to form helicoid secondary structures similar to the structures of 

DNA and RNA, which may be of biological significance [151, 152]. The polymers are not 

strictly linear and irregularly branch after every 20-50 ADP-ribose units [150, 153-156].  

 PARylation, in the cell comes in two flavors. First, it can occur as free poly ADP-ribose, 

which has been suggested to play an important role in stress-dependent signaling processes [157-

160]. The large majority of poly-ADP-ribose species are covalently attached to acceptor proteins. 

Protein ADP-ribosylation can be divided into two subtypes: mono-ADP-ribosylation 

(MARylation), where only mono-ADP-ribose (MAR) is transferred to an amino acid of a target 

protein, and poly-ADP-ribosylation (PARylation), which involves the transfer and elongation of 

the initial ADP-ribose moiety to generate PAR. In both reactions, the acceptor site is initially 

MARylated, followed by an elongation reaction in the case of PARylation. MARylation is more 

prevalent in cells than modification by PARylation [161-163].  

 Schiff base formation with the ε-amine of lysines, and ester formation with carboxyl 

groups of  aspartic acid and glutamic acids is the primary mode of covalent PAR attachment to 

these acceptor residues. Protein-bound PAR and MAR can be completely hydrolyzed by 

different enzymes, thus generating free ADP-ribose and free PAR. Most stress-induced free or 

protein-associated PAR in cells is degraded to ADP-ribose within minutes, accounting for its 

transient nature in living cells [162]. Of all the PAR found in cells, greater than 90% of it is 
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found in the nucleus, covalently attached to PARP1 [164]. Lysine, glutamic acid and aspartic 

acid are the most frequently PARylated residues. However, there is a lack of consensus on the 

precise residue that is PARylated, making it difficult to predict PARylation patterns among 

acceptor proteins [165]. This might be largely due to the nature of this modification as there is 

varibality in the acceptoe residues or the inability to detect it in mass spectrometry due to PAR’s 

heterogeneity; or due to the instability of the ester bond between aspartic and glutamic acid 

residues under basic pH [166]. 

 

Figure 18: Poly(ADP-ribosyl)ation. PARPs cleave the glycosidic bond of NAD+ between 
nicotinamide and ribose followed by the covalent modification of acceptor proteins with an 
ADP-ribosyl unit. PARPs also catalyze an adduct elongation, giving rise to linear polymers with 
chain lengths of up to 200 ADP-ribosyl units, characterized by their unique ribose (1′′→2′) 
ribose phosphate-phosphate backbone. At least some of the PARP family members also catalyze 
a branching reaction by creating ribose (1′′′→2′′) ribose linkages. Figure adapted from [167] 
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 MARylation or PARylation are the products of the same multi step enzymatic process. 

The reaction steps are as follows 1) Initiation:  Covalent modification of the acceptor protein by 

Parp. 2) Elongation: Addition of ADPR units to the previously attached mono-ADP-ribose. 

Whether this elongation is bimolecular, in trans, is debatable. 3) Branching: Polymer can be 

branched due to the nature of the reaction or the enzyme catalyzing the reaction. 4) Release of 

covalently bound PAR chains from the acceptor protein by the enzymatic activity of Poly-ADP-

Ribose Glycohydrolase (PARG), the only known human enzyme to catabolize PAR [168]. Parp1 

and Parp2 can facilitate autonomous initiation, elongation and branching of PAR.   The strongest 

stimulation of PARP1 activity is mediated by its binding to DNA strand breaks, which induces 

its catalytic activation as a monomer or dimer by several hundred-fold [169-172], under these 

conditions PARP1 accounts for >75% of the overall cellular poly(ADP-ribosyl)ation capacity 

[173, 174]. Apart from direct DNA damage-dependent PARP1 activation, its activity is also 

regulated by posttranslational modifications such as phosphorylation, acetylation, and 

sumoylation and direct protein-protein interactions [175-182]. It has been shown that most of the 

PAR generated upon genotoxic stimuli is rapidly degraded, with a half-life of 40s to 6 min [169, 

183, 184]. This efficient PAR turnover is mediated by poly(ADP-ribose) glycohydrolase 

(PARG). PARG hydrolytically cleaves PAR chains and releases mono(ADP-ribose) as the main 

reaction product [183, 185]. Substrates reported to be PARylated include PARP family members 

(through auto-modification), histones (H1, H2A, H2B, H3, H4), HMG and LMG (High/Low 

Mobility Group) proteins, p53, PCNA, CTCF, DNA polymerase alpha, telomeric repeat binding 

factor-1, Centromeric-binding proteins such as CENPA, CENPB, Bub3, MARCK5, F52/GAP43 

and Topoisomerases I and II amongst more than 200 nuclear proteins proposed to be covalently 

modified by PAR in vitro [186]. 
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PAR binding Domains 

  Poly(ADP-ribosyl)ation is involved in cellular signaling via specialized protein domains 

that specifically recognize and bind to different forms of ADP-ribose and/or a part of the PAR 

polymer.  This binding is mediated via at least four evolutionary conserved PAR-binding 

modules that have been discovered within numerous proteins with various function different 

PAR binding motifs [154, 156, 187-190]. Those include 1) a 20 amino acid PAR binding motif 

(PBM); 2) distinct macrodomains; 3) WWE domain and 4) a PAR-binding zinc finger (PBZ). 

The 20-aa motif has been identified in several hundred human protein sequences. This weakly 

conserved motif consists of 1) a cluster rich in basic amino acids and 2) a pattern of hydrophobic 

amino acids interspersed with basic residues [187, 190]. The PAR-binding macrodomains simply 

referred to as the macrodomain and PAR binding zinc fingers are quite rare and have been found 

on less than fifty human proteins to date. 

 

PAR Binding Motif (PBM) 

The PBM was the first discovered protein motif with the ability to recognize and bind 

PAR and consists of only 8 amino acids with the following sequence: [HKR]xx[AIQVY]-[KR]-

[KR]-[AILV]-[FILPV] [191, 192]. Given the loose definition of PBM, it is difficult to predict 

this motif from genome sequences with a high degree of certainty. Genome-wide scans reveal 

that the PBM is predicted to be present in more than 800 proteins. Such broad presence of the 

PBM implies its general role in PAR mediated processes, although the majority of its roles are 

yet to be confirmed experimentally. The PBM is postulated to form an electro-positive surface 
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using its basic residues that allows it to bind the negatively charged PAR polymer in a non-

specific manner [193]. 

 

Poly(ADP-Ribose)-Binding Zinc Finger (PBZ) 

The PBZ is a specific and high affinity PAR-binding module using the motif consensus 

sequence [K/R]xxCx[F/Y]GxxCxbbxxxxHxxx[F/Y]xH [194]. The PBZ is restricted to only 

eukaryotic proteins (excluding yeast) and only three mammalian proteins have been identified to 

possess the PBZ domain (APLF, CHFR and SNM1A). In mammals, PAR recognition by the 

PBZ motifs of CHFR and APLF has been shown to be indispensable for their function in mitosis 

and DNA repair, respectively [194, 195]. APLF possesses tandem PBZ domains that could 

independently bind PAR, but the presence of both functional PBZ domains results in more than a 

1000 fold increase in PAR binding affinity [196, 197]. The solution structure of the APLF PBZs 

also revealed that this family of zinc fingers are the most similar in structure to ssRNA-binding 

C3H1 Tandem Zinc Fingers (TZF). Both the PBZ and TZF fingers largely lack secondary 

structure, and the recognition of the substrate is achieved through main-chain-base hydrogen 

bonding and the interaction with highly conserved aromatic residues [196] (Fig. 19). The 

structures of the APLF and CHFR PBZs suggest that a single PBZ module contains two binding 

sites that can simultaneously recognize adenines in two neighboring ADP-ribose units of the 

PAR polymer. This recognition makes the PBZ a highly specific PAR binding module [198]. 
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Figure 19 Structure and alignment of APLF PBZ domains. APLF PBZ domains comprise 
unique zinc finger folds. (A) Schematic representation of APLF and all other known tandem 
PBZ-containing proteins with domain organization, and alignment of PBZ amino acid sequences. 
(B) NMR-derived structure of the APLF PBZ domains (ZF1 and ZF2) and linker region. Figure 
adapted from [196]. 

 

WWE Domain 

The WWE domain contains two conserved tryptophan residues and a glutamate residue. 

This domain was first noted in proteins related to either ubiquitination or poly(ADP-ribosyl)ation 

[199]. RNF146 ubiquitin ligase E3, or Iduna, contains a functional PAR binding WWE domain 

that helps binding to proteins targeted for proteosomal degradation through PAR recognition and 
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their subsequent polyubiquitination by RNF146 [200-202].The interaction between RNF146 and 

poly(ADP-ribosyl)ated proteins such as PARP1, XRCC1, DNA ligase III, KU70, KU86, histones 

and axin promotes their degredation [201]. RNF146 does not bind mono-(ADP-ribose), but 

interacts with iso-ADP-ribose with high affinity. Iso-ADP-ribose represents a minimal PAR 

fragment that contains a specific 2',1''-O-glycosidic ribose-ribose bond unique to the PAR 

polymer. The phosphate groups on each side of the iso-ADP-ribose molecule interact with the 

highly positively charged edge of the WWE domain binding site, while the adenine ring is 

inserted in the binding pocket formed by the half β-barrel and the α-helix. This mode of binding 

explains the specificity of the WWE domain for iso-ADP-ribose and consequently PAR [200]. 
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Figure 20: Regions of PAR recognized by different domains. Schematic representation of 
poly(ADP-ribosyl)ation (PAR) metabolism. The first ADP-ribose is attached via an ester linkage 
to the glutamate on the target protein. The subsequent transfer of additional ADP-ribose 
molecules through the 2',1''- and 2'',1'''-O-glycosidic bond leads to the synthesis of linear and 
branched PAR polymers, respectively. PARG cleaves PAR chains and releases mono(ADP-
ribose), whilst the proximal ADP-ribose is removed by ADP-ribosyl protein lyase. Regions of 
PAR recognised by Poly(ADP-Ribose)-Binding Zinc Finger (PBZ), WWE and macrodomain 
PAR-binding modules are boxed. Figure adapted from [203] 
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Macro domain 

The macro domain (also referred to as the macrodomain) is an ancient, highly 

evolutionarily conserved structural module of 130-190 amino acids capable of binding 

metabolites of NAD+ including PAR [204] (Fig. 21). Unlike the PBZ and WWE domains, the 

presence of macrodomains are widely distributed across all kingdoms of life, including 

prokaryotes, archaea and some single-stranded RNA viruses that replicate in animal cells. Three 

are currently >300 proteins in the SMART database that contain a macrodomain [205]. 

Macrodomains were first discovered in 1992 with the cloning and isolation of macroH2A1, a 

histone variant highly similar to canonical histone H2A except for the presence of a C-terminal 

macrodomain [206]. MacroH2A1 has been shown to have alternatively spliced forms that either 

bind (macroH2A1.1) or do not bind (macroH2A1.2) NAD+ metabolites [207]. There are 10 

genes that encode 11 members of the macrodomain family in humans. These proteins include the 

macro H2A1.1 and its splice variant macroH2A1.2, MacroD1, MacroD2, C6orf130, MacroD3, 

Alc1, and macroPARPs Parp9, Parp14 and Parp15 (Fig. 22) [208]. The crystal structure of the 

macrodomain of Af1521, found in the thermophilic archaebacterium Archaeoglobus fulgidus, 

and macroH2A revealed the general structural fold and the ligand binding pocket of this PAR 

binding module [145, 207, 209-211] (Fig. 22). The Af1521 macrodomain containing protein, 

found in the thermophile Archaeoglobus fulgidus, exhibits a high affinity for ADP-ribose, as 

isothermal titration calorimetry suggests an equilibrium dissociation constant (KD) of 126 nM.  

The macrodomain affinity for ADP-ribose was nearly 45-fold greater than observed for ADP 

[145] (Fig. 23). 
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Figure 21 ADP-ribose binding is a conserved feature among macro domains. (A) Sequence 
and structure conservation in the macro domain family of proteins. Regions with the highest 
sequence conservation among macrodomain proteins are shown in blue. These include residues 
(19–22), (29–34), (40–43), (98–103), (136–146) and 176. (B) Structure-guided alignment 
between select macro domain proteins. The alignment was generated using the output of a Blast 
search, and refined manually on the Af1521–ADP-ribose complex structure. Residues shown in 
blue correspond to the region colored in blue of panel (A). (C) Pulldown assays for the binding 
of ADP-ribose to yeast and human macro domains. Distinct macro domain proteins (A. 

fulgidus Af1521, S. cerevisiae YBR022W, human Alc1, human macroH2A and human 
BAL/PARP9) were fused to either GST protein or to a histidine-tag. In all, 30 nmol of fusion 
proteins was immobilized to a solid support, including two control proteins that should not 
interact with ADP-ribose (GST and a GST-fusion of the TAFII250 (hTAF1) double 
bromodomain module, and incubated with 30 nmol of ADP-ribose in solution. Following the 
incubation, the samples were centrifuged and the amount of ADP-ribose that remained in the 
supernatant was estimated by absorbance measurements. The graphs show the percentage 
retention on the beads (calculated by subtracting the percentage of ADP-ribose that remained in 
the supernatant from 100%). The pulldown assay shows that all tested macro domain proteins 
retain some ADP-ribose. Figure adapted from [145]. 
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Figure 22 Macrodomain-containing proteins in humans. The human genome has at least 10 
genes encoding 11 macrodomain-containing proteins (including the known splice variants of 
macroH2A1), with a total of 15 distinct macrodomains. Macrodomains are often combined with 
other functional domains in proteins, including the following: an H2A histone fold domain 
(H2A) that allows assembly into nucleosomes; an SNF2 helicase-ATPase domain that confers 
ATP-dependent nucleosome-remodeling activity; an SEC14 domain that may allow lipid 
binding; a PARP-homology domain that confers PARP enzymatic activity; and a WWE domain 
that functions as a common protein-protein interaction module in protein-ubiquitylation and 
ADP-ribosylation reactions. Figure adapted from [208]. 
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Figure 23: Structure of the complex formed between Af1521 and ADP-ribose. (A) The 
ADP-ribose molecule binds the Af1521 macro domain in an L-shaped cleft. The ADP-ribose 
ligand is shown as a ball-and-stick model. (B) Structure of the complex between Af1521 and 
ADP. The structure is highly similar to that of the complex between Af1521 and ADP-ribose, but 
a number of interactions that contribute to ADP-ribose specificity and affinity cannot occur. The 
ADP ligand is shown as a ball-and-stick model. Figure adapted from [145]. 
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The ‘macro fold’ is roughly 25 kDa in size and is composed of a globular mixed α-

helix/β-sheet structure, with similarity to the P loop-containing nucleotide triphosphate 

hydrolases with a deep L-shaped ligand binding pocket [212]. There is a high degree of sequence 

similarity within this family, particularly for residues that might be involved in catalysis or 

substrate binding. However, it is likely that the sequence variation that exists among macro 

domains is responsible for the specificity of function of individual proteins (Fig 24). Despite the 

high structural conservation, the sequence variation between macrodomains directs their 

preferences for binding specific forms of ADP-ribose. Histone H2A variant MacroH2A1.1 

contains a macrodomain through which it is able to bind PAR, mono(ADP-ribose), as well as O-

acetyl-ADP-ribose [207, 209]. The structure of histone macroH2A1.1 in complex with ADP-

ribose suggests that the macrodomain is only able to bind the terminal ADP-ribose units of the 

PAR polymer [209]. Selectivity for ADP-ribose binding by macrodomains, determined through 

crystallographic studies, is in part due to coordinated interactions of aspartic acid residues with 

the distal ribose group in ADP-ribose [145, 207]. 

 Macrodomains are unique among PAR binding modules, as some have been shown to 

exhibit catalytic activity and can hydrolyze phosphate groups from nucleotides or ADPR 

derivatives, suggesting that the domain may be evolving to provide new functions. The first 

reported catalytically active macrodomains which dephosphorylate ADP-ribose-1’’-phosphate, 

are viral macrodomains including the severe acute respiratory syndrome coronavirus (SARS-

CoV) protein and the yeast homolog Poa1p (YBR022) [213-215]. The eukaryotic MacroD 

proteins (orthologues of human MacroD1 and MacroD2 proteins and the human C6orf130 

protein deacetylate O-acetyl-ADP-ribose in vitro [210, 211]. Recently crystal structures have 
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revealed that the PAR hydrolyzing enzyme PARG, has a catalytically active macrodomain fold 

for the binding and hydrolysis of PAR [216].  

 

 

Figure 24 Macrodomain are ancient and highly conserved structural domains that bind 

metabolites of NAD+. X-ray crystal structures of the macrodomains from Archaeoglobus 

fulgidus (Archaea) AF1521 protein (PDB 2BFQ) and human macroH2A1.1 bound to ADP-
ribose (PDB 3IID). The two views are rotated 90° relative to each other. Figure adapted from 
[208]. 
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The PARP superfamily and its roles 

The PARP family of proteins consists of 17 PARPs in humans (PARP-1–17) [217]. 

PARPs are composed of functionally distinct domains, such as 1) a DNA-binding domain that 

enables PARPs to bind to RNA and damaged DNA 2) a catalytic domain that is responsible for 

polymerization of ADP-ribose and 3) accessory domains to support interaction with proteins or 

NAD+ metabolites (for detailed overviews see 2, 4 and 5). PARPs are involved in DNA repair 

processes, transcriptional regulation, cell death in oxidative stress related pathologies, and 

metabolic and immune regulation [218]. 

PARP-1 is the founding member of the PARP family and has been the most extensively 

studied. PARP1 uses NAD+ as a substrate to catalyze the covalent attachment of ADP-ribose 

units on the -carboxyl group of Glu residues of either acceptor proteins that are usually 

associated with DNA transactions (heteromodification) or on PARP-1 itself (automodification), 

in response to DNA-strand breaks. PAR produced by PARP1 can be linear or branched and of 

variable size that can interact in a selective manner with a number of protein targets that are 

involved in the cellular response to DNA damage and DNA metabolism. Both Parp1 and its 

close relative Parp2 play a significant biological role in response to distinct stress response 

pathways [219, 220] 

Crystal structures of the catalytic domains of chicken PARP-1 and mouse PARP-2 show 

remarkable structural homology with the active site of the ADP-ribosylating Corynebacterium 

diphtheria toxin [221, 222]. The most conserved region in Parp1 orthologues is the - -loop- -

 NAD+ fold, and this fold is considered the PARP signature. This signature was used to search  
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Figure 25: The domain architecture of the 17 members of PARP superfamily and PARG. 
Protein domains that are illustrated by colored boxes were defined according to the Pfam 19.0 or 
CCD v2.06 (National Center for Biotechnology Information) databases. Within each putative 
PARP domain, the region that is homologous to the PARP signature (residues 859–908 of 
PARP-1) as well as the equivalent of the PARP-1 Glu988 catalytic residue (when present) are 
darkened. Accessory domains present on PARP are also shown. Figure adapted from [223]. 
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for other human PARP homologues and new putative PARPs were identified, thus increasing the 

number of PARP-family members to 17 (Fig. 25) [219]. 

The conservation in the PARP signature varies significantly among the PARP-family 

members. The catalytic residue, Glu988 of PARP-1, is replaced by a non-conserved residue in 

some members (PARP7, PARP-9/BAL1, PARP-10, PARP-13 and PARP-16). Whether these 

proteins have poly- or mono-(ADP-ribosyl)ating activities or may not possess PARylating 

activity is an area of active research. To date, only PARP-9/BAL1 has been reported to be 

inactive, whereas poly (ADP-ribosyl)ating activity has been reported for PARP-7 and PARP-

10 [224-226].  

The PARP domain is located at the C terminus of all the PARP proteins, except in the 

case of PARP-4 where it is located close to the N-terminus and is adjacent to various domains 

that are involved in DNA or RNA binding, protein–protein interactions or cell signaling. PARP 

family members can be divided into subgroups according to their putative functional domains, 

sequences of their catalytic domains, and their enzymatic activities.  

The PARP superfamily can be divided into four groups; 1) DNA-damage-dependent 

PARP subfamily that comprises the founding member of the family Parp1 and Parp2 [220, 227], 

2) the Tankyrase subfamily consisting Parp-5a and Parp-5b, which are characterized by an 

Ankyrin repeat domain, are involved in telomere homeostasis, and are both reported to be 

components of the telomeric complex [219, 228, 229], 3) the CCCH-type zinc-finger Parp 

subfamily consisting of tiPARP, PARP-12 and PARP13 that share similar domain organization 

comprising CX8CX5CX3-like zinc fingers, a WWE domain and a catalytic PARP domain [225, 
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230-232] 4) the MacroPARP subfamily including PARP-9/BAL1, PARP-14/BAL2/CoaSt6 and 

PARP-15/BAL3, belonging to the subfamily of macroPARPs, which link 1–3 macro domains to 

a PARP domain. Macro domains of PARP-9/BAL1 have been shown to bind ADP-ribose and 

PAR [145]. 

In addition to the above mentioned classification, a few PARPs are unique enough to 

have their own classification. One such example is PARP4 or vault-PARP/vPARP, the largest 

member of the PARP family. PARP-4/vPARP is a catalytic component of vault particles, barrel-

shaped ribonucleoprotein complexes that are involved in multidrug resistance of human tumours 

thought to function in intracellular transport [233]. Parp4 knockout mice display normal vaults 

but are susceptible to carcinogen-induced colon tumourigenesis, suggesting PARP-4’s role in the 

response to genotoxins [234]. PARP-3 preferentially associates with the daughter centriole 

within centrosomes and is implicated in the maturation of daughter centriole until the G1-S 

restriction point [235]. PARP-10 is a partner of the proto-oncoprotein c-Myc, a key 

transcriptional regulator that controls cell proliferation [224]. PARP-10 PARylates histone H2A, 

suggesting that it has a role in chromatin regulation [224]. No known domains have been found 

in PARP-6, PARP-8, PARP-11 and PARP-16 so far (except a WWE domain in PARP-11), 

which makes it difficult to speculate on their possible functions. 

Despite sequence similarity in the catalytic domains between PARP family members, 

only PARP-1, PARP-2, and tankyrases are known to produce long PAR polymers. Other PARP 

enzymes are defective in elongation or are inactive [165]. Hence, the majority of both basal and 

stimulated cellular PARP activity is attributed to PARP-1 (85–90%) and PARP-2 (10–15%). 

PARP-1 and PARP-2 can inhibit themselves through self-PARylation, also known as 
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autoPARylation. These two proteins can also modulate the biochemical activity of a plethora of 

proteins through trans-PARylation [236]. While all members of the PARP family are reported to 

have autoPARylation activity, PARP1 has the strongest such activity in vitro [174, 227-229, 

235].  Both PARP1 and PARP2 have been shown to be automodified within their DNA-binding 

domains, and PARP1 has further been shown to be automodified within its “automodification 

domain” (AD) [237, 238].  Recently, there has been some disagreement within the field 

regarding the identity of Parp1 residues targeted for automodification.  The earliest reports 

suggested that 25 to 30 glutamic acid residues within the automodification domain were targeted 

for poly-ADP-ribosylation. However, it was shown that loss of these glutamic acid residues had 

no effect on automodification of Parp1 in vitro [190].  Lysine to arginine mutations of residues 

K498, K521, and K524 within the AD of Parp1 strongly reduced the automodification of the 

enzyme, suggesting these residues may be acceptors for PAR [190].  Interestingly, these residues 

are in close proximity to the catalytically active site. It has been proposed that the 

automodification of Parp1 on lysine residues is catalyzed by its NADase activity and results in a 

glycation linkage to the lysine residue and formation of Lys-ADP-ribose ketamine[186].  It is 

this Lys-ADP-ribose ketamine intermediate that has been proposed to serve as an acceptor for 

the elongation reaction catalyzed by glutamic acid residue E998 in human Parp1 [186].     
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PARP1 and its roles in the nucleus 

PARP1 is a versatile enzyme involved in many processes in the cell. PARP1 was first 

found to play a very active role in DNA damage repair. Using PARP1 inhibitors, researchers 

were able to establish a firm link between PARP1 activation, NAD+ depletion and PARylation in 

cells suffering from DNA damage [239-241]. Inhibition of PARP1 has been shown to increase 

cytotoxicity through an increase in the half-life of DSBs [242-246].  Inhibition of PARP1 results 

in accumulation of single and double-strand breaks that are normally repaired through 

homologous recombination (266-269), or sister chromatid exchange [247-249].  Inhibition of 

PARP1 has also been shown to promote carcinogenic induced gene amplifications, increased rate 

of apoptosis and resulting decrease of cellular necrosis [250-254]. 

   PARP1 is actively associated with repair of DNA damage by the base excision repair 

(BER) pathway and has been shown to interact with multiple components of the BER pathway, 

including XRCC1, DNA ligase III, and DNA polymerase β [255, 256]. XRCC1 and other 

proteins such as CHFR and APLF are recruited and can bind directly to PAR, suggesting that 

PARylation activity itself could contribute to the recruitment of required machinery [194]. 

Another piece of evidence that indirectly supports the role of PARP1 in the repair of SSBs 

(single strand break) is that the presence of NAD+ both in vivo and within cell-free DNA BER 

(base excision repair) assays is necessary for proper repair [257].  PARP1-/- mice are known to be 

extremely sensitive to γ-irradiation. PARP1-/- mice are also extremely sensitive to exposure to N-

methylnitrosurea and cell lines derived from these PARP1-/- mice have difficulty proceeding 

through mitosis after being treated with DNA-damaging agents and rapidly undergo apoptosis 

[258, 259].   
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PARP1 is thought to bind electrostatically with DNA ends, SSB lesion and DSB lesions.  

Binding of PARP1 to DNA ends covers a region of seven nucleotides on each side of the lesion, 

suggesting that PARP1 binds to DNA strand breaks as a dimer [260, 261].  PARP1 activity is 

differentially induced by SSBs and DSBs. The amount of PAR synthesized by PARP1 bound to 

DSBs is far less than SSBs [262, 263]. This indicates that the level of PARylation can directly 

have an effect on the DNA repair pathway that is subsequently induced.  It is important to note 

that PARylation activity is not required for excision of damaged bases and the subsequent 

resynthesis of DNA [264-266].   

Extensive modification of PARP1 itself and of surrounding chromatin may act as a signal 

to downstream effectors, such as p53, which are involved in cellular responses to DNA damage 

but do not participate directly in repair reactions [267].  p53 function is regulated through 

cellular PARylation as PARP1 inhibition with chemicals significantly suppresses the 

accumulation of p53 in response to ionizing radiation [268-270].  Moreover, PARP-/- cells have 

considerably lower levels of p53 in the absence of genotoxic stress [271, 272].  Modification of 

chromatin allows PARP to be involved in gene regulatory processes. Histones are PARylated in 

response to DNA damage, suggesting PARP1 may play a role in DNA repair through its activity 

on chromatin [273-275]. Extensive PARylation of chromatin has been shown to yield greater 

accessibility of DNA to nucleases  

Perhaps the most interesting roles of PARP1 and its associated enzymatic activities are 

their regulation of chromatin structure in both the presence and absence of DNA damage.  

PAPR1 can covalently modify histones in vivo and the subsequent PARylation of histones is 

thought to contribute to destabilization of nucleosomes and, in turn, to affect higher-order 
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chromatin structure by decondensation [276-278].  Highly charged PAR moieties have been 

proposed to strip DNA off basic proteins like histones [277, 279, 280]. It has been reported that 

all histones can be modified [267] and  histones H1 and H2B act as the major acceptors for 

modification by PARP1 and PARP2 [276, 278].   

Recent studies have attempted to characterize the effects of PARP1 on chromatin 

structure using various techniques. The Kraus lab reported that PARP1 incorporates into 

chromatin by virtue of its inherent nucleosome binding properties and, in the absence of NAD+, 

promotes the formation of compact, transcriptionally repressed chromatin structures highly 

similar to chromatin structure formed in the presence of histone H1 [281, 282].  However, in the 

presence of NAD+, PARP1 automodifies itself and promotes the decondensation of chromatin 

structures in vitro, allowing transcription to occur.  These studies show that PARP1 activation 

can be achieved independent of DNA damage. PARP1 modification of chromatin does not need 

PARylation of chromatin.  

The regulation of chromatin structure by PARP1 has been show to contribute directly to 

transcriptional regulation [267, 283, 284].  PARP1 is speculated to be recruited to target 

promoters via DNA-binding transcription factors. Once recruited to the target promoter, PARP1 

can contribute to transcriptional regulation by acting as a promoter-specific coregulatory factor. 

Several DNA-binding transcriptional regulators such as NF-κB, nuclear receptors, Hes1, B-Myb, 

HTLV Tax-1, Sp1, NFAT and Elk1 have been reported to be involved in this process [220, 282, 

284-289].   

The interplay between PARP1 and histone H2 is very interesting as histone H2 is the 

only histone with variants that bear a functional PAR binding macrodomain. PARP1 is enriched 
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at promoters correlated with depletion of histone H2, and those promoters with high 

PARP1/histone H1 ratio were found to be mostly actively transcribed genes. A PAR binding 

variant of macroH2A, known as macroH2A1.1 is suppressed in cancer and can interact with 

PAR generated by PARP1.  This macroH2A1.1 protein was recently shown to promote the CBP-

mediated acetylation of H2B K12 and K120 that positively or negatively regulate the expression 

of macroH2A1-target genes in a PARP1 dependent manner. This macroH2A1-regulated H2B 

acetylation regulation is intact in primary cells, but typically lost in cancer cells [290].  

The macroH2A1.1 protein associates with PARP1 through its PAR binding 

macrodomain in vivo and in vitro and has been shown to block PARP1 enzymatic activity in 

vitro [291]. Recent studies have demonstrated that macrodomain of macroH2A can promote 

recruitment of PARP1 to the Xist RNA.  The macrodomain of macroH2A1.1, is among the 

several macrodomain-containing proteins like ALC1 and macroH2A1.2, is recruited to sites of 

PARP1 activation induced by laser-generated DNA damage (Fig. 26). It has been shown that 

histone macroH2A1.1 senses PARP1 activation, transiently compacts chromatin, reduces the 

recruitment of DNA damage factor Ku70–Ku80 and alters γ-H2AX patterns. Whereas the splice 

variant macroH2A1.2, which is deficient in poly-ADP-ribose binding, does not mediate 

chromatin rearrangements upon PARP1 activation. This suggests that the chromatin modification 

achieved by PARP1 and macroH2A1.1 are directly dependent on a catalytically active PARP1 

and a functioning PAR binding macrodomain [291]. 
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Figure 26 The macroH2A1.1 macrodomain is recruited to in vivo PARylation sites. 
(a) HeLa cells transfected with enhanced yellow fluorescent protein (EYFP)-tagged 
macroH2A1.1 macrodomain and mCherry-tagged PARP1 were microirradiated (delimited by 
two yellow arrows). PARP1 and macrodomain relocalize to PARylated sites (above), with 
recruitment depending on PARP activity (middle). (b) Mutation of ADPR-binding residues in the 
macroH2A1.1 macrodomain disrupts recruitment. (c) Catalytically active PARP1 is necessary 
for macrodomain recruitment. Human AGS cells treated with a PARP1-specific shRNA do not 
recruit the macroH2A1.1 macrodomain (above). This can be rescued with a wild-type PARP1 
construct (middle), but not with the catalytically inactive PARP1 E988K point mutant (below). 
Scale bar is 5 µm. Figure adapted from [209]. 
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ALC1: A SNF2 ATPase remodeler with a macrodomain 
 

Amplified in Liver Cancer 1 or ALC1; Gene Bank accession number AF537213) has 

been identified as an oncogene located at Chr1q21 (genomic coordinate: chr 1:146,714,292-

146,767,443, strand (+)) [292]. Amplification of 1q21 is one of the most frequent genetic 

alterations in many solid tumors [246, 293-298].  ALC1 is also known as CHD1L 

(Chromodomain helicase/ATPase DNA binding protein 1-like) and is encoded by the CHD1L 

gene. Overexpression of CHD1L protein in tumors is considered to be a biomarker of poor 

prognosis and short tumor-free survival time. 

ALC1 exhibits an oncogenic role that is frequently amplified in hepatocellular carcinoma 

(HCC) and exhibits an oncogenic role during malignant transformation [292] (Fig. 27). ALC1 

was found to be amplified in 58%-78% of HCC patients by comparative genomics hybridization.  

Hepatocellular Carcinoma (HCC) is one of the most frequently diagnosed human cancers 

affecting more than 1 million individuals annually [299] and has a poor prognosis, with an 

overall 5-year survival rate of less than 5% [299-301]. Using fluorescent in situ hybridization, 

amplification of ALC1 was detected in ~50% of HCC cases.  ALC1 mRNA was overexpressed in 

greater than half of tumor samples taken from HCC patients when compared with their 

respective non-tumor liver samples.  Overexpression of full length ALC1 cDNA in LO2 human 

liver cell line promoted an increase in colony formation in soft agar assays [292], demonstrating 

its tumorigenic abilities. Tumor xenograft experiments in nude mice suggested that ALC1 could 

dramatically increase tumorigenicity of immortalized liver cell lines.  Further, transgenic ALC1 

expression in mouse induces spontaneous tumors.  Nearly 25% of transgenic mice had cancerous 

lesions while no lesions were found in control mice. These findings strongly suggest that ALC1 
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acts as an oncogene and could be instrumental in the pathogenesis of HCC and other cancers 

(Fig. 28).   

 

Figure 27 Genomic information of human CHD1L gene (chromodomain helicase/ATPase 

DNA binding protein 1-like gene). The genomic locus of CHD1L gene is located on the long 
arm q21 of Chromosome 1 with 53,152 base pairs in length. It is downstream of FMO5 gene 
(flavin containing monooxygenase 5) and upstream of LOC10030018 (prostaglandin reductase 1 
pseudo gene) and LINC00624. CHD1L contains 23 exons (green boxes), which may be 
transcribed with six transcript variants. The full-length transcript (NM_004284.2) and encoded 
protein structure is illustrated. CHD1L protein is comprised of two helicase domains (yellow 
color), a C-terminal macro domain (blue color) and nuclear localization sequence (NLS, purple 
color). There are two putative phosphorylation sites at the relative C-terminus of the protein: 
phospho-serine at 636 and 891 amino acids, respectively. Figure adapted from [302]. 
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Figure 28 Oncogenic ability of ALC1 (A) A representative example of ALC1 amplification in 
HCC detected by FISH with the BAC clone containing ALC1. (B) A 98-kD protein was detected 
by anti-ALC1 antibody. (C) Expression of ALC1 in ALC1-transfected LO2 and QGY-7703 cells 
detected by northern blot hybridization. Blank vector–transfected cells were used as controls. 
Left panel shows rates of colony formation in soft agar detected in ALC1-transfected and blank 
vector–transfected LO2 and QGY-7703 cells (**P < 0.05). (D) Representative examples of 
tumors formed in nude mice following injection of ALC1-expressing LO2 cells (left) and QGY-
7703 cells (right). ALC1-expressing cells and mock cells were injected into the right and left 
dorsal flanks, respectively. Figure adapted from [292]. 
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Six alternatively spliced transcript variants have been described for the ALC1 gene, the 

largest of which, consists of 3036 base pairs with an open reading frame coding an 897aa protein 

[292]. 64 different mutations on ALC1 have been reported in the catalogue of somatic mutations 

in cancer (COSMIC). Among these mutations, the substitution missense mutations that change 

amino acid residues and may have an effect on function account for 66.67% [302]. Recently, 

ALC1 mutations have been detected in congenital anomalies of the kidneys and urinary tract 

(CAKUT) patient [303]. It is speculated that these mutations have an effect on the functional 

outcomes of ALC1 in cancer cells. All ALC1 mutations found in CAKUT patients lead to amino 

acid substitutions in or near the CHD1L macro domain (Fig. 29). Further, these mutants showed 

decreased interaction with PARP1 by pull-down assay of transfected cell lysates. A recent study 

that analyzed the coding exons of the 17 known dominant CAKUT-causing genes in a cohort of 

749 individuals from 650 families with CAKUT, reported that several mutations previously 

reported to be disease-causing are most likely benign variants. 

 

Figure 29 Identification of ALC1 variants in CAKUT patients. Genomic location of the three 
missense variants within the CHD1L gene: CHD1L,c.2098G>A;p.Gly700Arg (exon 
18),CHD1L,c.2295A>G;p.Ile765Met (exon 19) and CHD1L,c.2479A>G;p.Ile827Val (exon 21) 
relative to the functional Snf2 family N-terminal domain (SNF2_N), the helicase superfamily C-
terminal domain (Helic_C) and the macro domain (Macro) of the CHD1L protein. Note that all 
variants are localized close to or within the macro domain. Figure adapted from [303]. 
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 Apart from binding PAR via its macrodomain, ALC1 is also able to bind the protein 

Nur77, a critical member of a p53-independent apoptotic pathway. This binding subsequently 

inhibits the nucleus-to-mitochondria translocation of Nur77, a key step of Nur77-mediated 

apoptosis. This binding causes retention of Nur77 protein in the nucleus and results in prevents 

release of cytochrome c from mitochondria thereby blocking the initiation of apoptosis [304]. 

There is remarkable sequence homology between the SNF2 domains of ALC1 and its 

close relative chromodomain helicase DNA binding protein 1 (CHD1). Thus, ALC1 was given 

the alternative name CHD1L (Chromodomain helicase DNA binding 1-like) [292].  This 

alternative name is misleading, as unlike CHD1 and all other Chd-type subfamily remodelers, 

ALC1 is lacking an identifiable chromodomain. Instead of the chromodomain found in CHD-

type remodelers, ALC1 has a C-terminal macrodomain. The first preliminary biochemical 

characterization of ALC1 was achieved simultaneously by the Conaway Lab and the Boulton 

Lab. 

Gottschalk et al. showed that ALC1 possesses a PAR-dependent chromatin remodeling 

and ATPase activity. They showed that the ATPase and chromatin remodeling activities of 

ALC1 are strongly activated by PARP1 and its substrate NAD+ through their interaction between 

an intact macrodomain and PARylated PARP1. They also showed that ALC1 was rapidly 

recruited to nucleosomes in vitro and to chromatin in cells when PARP1 catalyzes PAR synthesis 

[305].  

Ahel et al. reported ALC1’s ATPase activity was increased markedly in the presence of 

nucleosomes. This enhanced activity was, however, less pronounced with nucleosomes 

containing histone H4 mutated at residues 16 to 19 [H4(16-19)A], suggesting that the ALC1 
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ATPase activity required the histone H4 N-terminal tail. They also showed that the ability of 

ALC1 to reposition nucleosomes is dependent on the histone H4 tail, as it was not observed with 

the mutant nucleosome H4 (16-19). To assess the possible consequences of ALC1 

overexpression, Ahel et al analyzed induction of H2AX phosphorylation (γH2AX, a DNA 

damage marker) in ALC1-overexpressing and control cells after phleomycin treatment. They 

found no measurable differences in γH2AX profiles in ALC1-overexpressing cells before 

phleomycin treatment. However, 80 to 93% of ALC1-overexpressing cells exhibited H2AX 

phosphorylation upon phleomycin treatment as compared to 44 - 50% in control cells. 

Phleomycin treatment also showed more damage in alkaline Comet assay in ALC1-

overexpressing cells as compared with control cells. This effect was negated by the K77R ALC1 

mutation, which renders the enzyme catalytically dead, and was unaffected by PARP inhibitor 

treatment, suggesting that the phenotype required ALC1 chromatin-remodeling activity but not 

its recruitment to the sites of DNA damage [306]. 

The focus of the remaining chapters revolves around ALC1, its interaction with PARP1 

and PAR, and domains within ALC1 that can regulate the SNF2 ATPase and associated 

chromatin remodeling activities.  By performing a rigorous biochemical characterization of 

ALC1, we hoped to gain an insight into the mechanisms that control its activities. Through our 

work, we find that ALC1 is a unique chromatin remodeler with intrinsic and extrinsic points of 

control that could functionally repurpose it in different cellular contexts. 
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CHAPTER II 

ACTIVATION OF THE SNF2 FAMILY ATPASE ALC1 BY POLY (ADP-RIBOSE) IN A 

STABLE ALC1∙PARP1∙NUCLEOSOME INTERMEDIATE 
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Abstract: 

The human ALC1/CHD1L oncogene encodes an SNF2 family ATPase with a 

macrodomain that binds poly(ADP-ribose) (PAR). We and others previously showed that ALC1 

possesses a cryptic ATP-dependent nucleosome remodeling activity that is potently activated in 

the presence of PARP1 and NAD+, its substrate for PAR synthesis. In this work, we dissected the 

mechanism by which PARP1 and NAD+ activate ALC1 nucleosome remodeling. We 

demonstrate that ALC1 activation depends on the formation of a stable ALC1·PARylated 

PARP1·nucleosome intermediate. In addition, by exploiting a novel PAR footprinting assay, we 

obtained evidence that the ALC1 macrodomain remains stably associated with PAR on 

autoPARylated PARP1 during the course of nucleosome remodeling reactions. Taken together, 

our findings are consistent with the model that PAR present on PARylated PARP1 acts as an 

allosteric effector of ALC1 nucleosome remodeling activity. 

 

 

 

 

 

 



 

- 72 - 

Introduction 

The human ALC1 (amplified in liver cancer 1; also known as CHD1L (chromodomain-

helicase-DNA-binding protein 1-like) gene encodes a member of the SNF2 (sucrose non-

fermenter 2) superfamily of ATPases. ALC1 was originally identified as a gene present on a short 

human chromosome 1q21 region that is amplified in hepatocellular carcinomas [292]. 

Overexpression of the ALC1 protein was found to transform human cells and to be oncogenic in 

mice [292, 307]. More recently, the ALC1 gene was found to be mutated in patients with 

congenital anomalies of the kidney and urinary tract [303]. Although the mechanism of ALC1 

action in these processes is not known, ALC1 has been reported to have roles in DNA repair and 

in controlling the expression of several genes implicated in tumorigenesis and metastasis [292, 

306-308]. 

ALC1 is unique among SNF2 family members because it includes a macrodomain that is 

capable of binding selectively to poly(ADP-ribose) (PAR). Previous studies from our laboratory 

and elsewhere revealed that ALC1 possesses cryptic DNA-dependent ATPase and ATP-

dependent nucleosome sliding activities that are strongly activated in the presence of the 

catalytically active PARP1 and its substrate NAD+ [305, 306]. Suggesting that binding of the 

macrodomain to PAR is essential for ALC1 activation, ALC1 macrodomain mutations that 

prevent PAR binding abolish ALC1 DNA-dependent ATPase and ATP-dependent nucleosome 

sliding. Nevertheless, we observed that binding of free PAR chains to the macrodomain is not 

sufficient to activate DNA-dependent ATPase and nucleosome remodeling activities, suggesting 

that the ALC1 activation process is more complex [305]. 

In this study, we explored the mechanism by which PARP1 and NAD+ function together 

to activate ALC1 nucleosome remodeling and the role of PAR in this process. As described 
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below, we demonstrate that ALC1 activation proceeds via formation of a stable 

ALC1·PARylated PARP1·nucleosome intermediate. In addition, through development and 

application of a novel PAR footprinting assay, we obtained evidence that ALC1 activation 

results from a direct and stable interaction of the ALC1 macrodomain with PAR conjugated to 

PARylated PARP1. Below, we present these findings, which are consistent with the model that 

PAR conjugated to PARP1 functions as an allosteric effector that activates ALC1 nucleosome 

remodeling activity. 

 The results presented in this chapter result from a collaboration between Dr. Aaron 

Gottschalk and myself. We each performed reproductions of the experiments performed in Figs 

30-32.  Dr. Gottschalk and I developed the PARG protection assay used in Fig. 32, and I 

performed the example shown in the figure.   
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Results 
 

ALC1 Activation Is Preceded by Rapid Formation of a Benzamide-resistant Intermediate 

To begin to investigate the mechanism by which PARP1 and NAD+ function together to 

activate ALC1, we sought to isolate and define intermediates in the process. Previous studies 

using the PARP1 inhibitor benzamide, which prevents PAR synthesis by PARP1, have provided 

information about the nature of the essential PARP1- and NAD+-dependent step(s) in ALC1 

activation [309]. In these experiments, benzamide was found to block ALC1 DNA-dependent 

ATPase and ATP-dependent nucleosome remodeling activities when added at the beginning of 

reactions [305, 306]. This observation, together with evidence that free PAR is not sufficient to 

activate ALC1, argued that ALC1 activation depends on PARylation of one or more components 

of the nucleosome remodeling reaction. Indicating that ALC1 PARylation is not essential for 

ALC1 activation, preincubation of PARP1 and NAD+ with nucleosomes or with naked DNA 

prior to addition of benzamide and ALC1 rendered reactions resistant to benzamide [305, 306]. 

Arguing that histone PARylation does not play an essential role in formation of this benzamide-

resistant intermediate, we observed that either nucleosomes or naked DNA can support PARP1- 

and NAD+-dependent ALC1 DNA-dependent ATPase activity [305]. Taken together, these 

findings indicate that a benzamide-resistant intermediate capable of supporting ALC1 activation 

and containing PARylated PARP1 can form in the absence of ALC1. 

To extend our understanding of ALC1 activation, we carried out similar benzamide 

challenge experiments to explore the kinetics of formation of the benzamide-resistant 

intermediate. To do so, we preincubated nucleosomes with PARP1 and NAD+ for varying 

lengths of time before adding benzamide and ALC1 and assayed for nucleosome remodeling by 
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monitoring deprotection of a HhaI site located near the nucleosome dyad (diagrammed in Fig. 

30A). Consistent with our previous results, addition of benzamide at the beginning of the 

reaction completely blocked ALC1 activity (Fig. 30B, lane 3). Under the conditions of these 

assays, a benzamide-resistant intermediate that supports ALC1-dependent nucleosome 

remodeling formed very rapidly in the presence of PARP1 and NAD+, reaching near maximal 

levels within 2–4 min (Fig. 30B, compare lanes 5, 7, 9, 11, and 13 with lanes 6, 8,10, 12, and 14, 

respectively, and Fig. 30C, which shows quantitation of the data from the experiment of Fig. 

30B). 

To estimate the length of PAR chains synthesized during formation of the benzamide-

resistant intermediate in the experiment of Fig. 30B, we performed a parallel experiment in 

which nucleosomes and PARP1 were incubated for varying lengths of time in the presence of 

[32P]NAD+. Reaction mixtures were then treated with proteinase K, and PAR chains were 

cleaved from the remaining PARP1 protein fragments by base treatment, ethanol-precipitated, 

and analyzed on denaturing polyacrylamide gels. As shown in Fig. 30D similar amounts of PAR 

species migrating more rapidly than the position of the asterisk (estimated length of 12–15 ADP-

ribose units) were synthesized after 0.5 min, a time point at which only a small amount of 

benzamide-resistant intermediate had formed, and after 4 min, a time sufficient for formation of 

enough intermediate to support near maximal nucleosome remodeling (compare lanes 4 and 7). 

In contrast, longer species continued to accumulate during this time period (lanes 4–7), 

suggesting that formation of the benzamide-resistant intermediate that supports ALC1 activation 

requires synthesis by PARP1 of these longer PAR chains. 
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Figure 30 Rapid formation of a benzamide-resistant intermediate in ALC1 activation. 

A, diagram describing the protocol and positioned nucleosome substrate with an HhaI site on 
216-bp 601-lat Gal4 DNA fragment used for benzamide challenge nucleosome remodeling 
assay. The asterisk indicates 32P-labeled DNA end. B, Naked DNA (lane 1) or positioned 
nucleosomes (lanes 2–14) were incubated with HhaI in the absence (lane 1) or presence (lanes 

2–14) of PARP1. Where indicated, PARP1 inhibitor benzamide was added to reactions at the 
times shown in the figure. One minute later, ALC1 was added, and remodeling reactions 
proceeded for an additional 60 min, and DNA or nucleosomes were monitored for HhaI 
restriction enzyme accessibility. C, quantitation of experiment shown in B. D, kinetics of PAR 
synthesis. Reactions with [32P]NAD+ were performed according to the protocol shown in A, 
except that ALC1 was omitted. PAR synthesized during the reactions was purified, analyzed on 
denaturing polyacrylamide gels, and visualized on a phosphorimager (left panels). Marker lane 
(M) contains [γ-32P]ATP. The graph on the right shows traces of lanes 4–7 generated using 
ImageQuant TL software. 
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Cooperative Binding of PARP1 and ALC1 to Nucleosomes 
 

We previously showed that that the binding of ALC1 to immobilized DNA or 

nucleosomes depends on PARP1 and NAD+ [305]. These experiments did not, however, address 

the fate of PARP1 during ALC1 activation. If PARylated PARP1 contributes to both ALC1 

activation and subsequent ATP-dependent nucleosome remodeling or DNA-dependent ATP 

hydrolysis, PARylated PARP1 might be predicted to remain as an integral component of an 

activated ALC1·nucleosome or ALC1·DNA intermediate throughout reactions. Alternatively, 

PARylated PARP1 might be required for the initial activation of ALC1, but then be displaced 

upon the binding of ALC1 to its substrates and/or hydrolysis of ATP. 

To address this issue, immobilized nucleosomes or DNA was incubated with PARP1 and 

NAD+ with or without ALC1 and ATP. Excess competitor DNA was added as a sink for 

unbound or disassociated PARP1 and ALC1 after a time sufficient for formation of the 

benzamide-resistant intermediate. At varying times after addition of competitor, the amounts of 

PARP1 and ALC1 remaining bound to immobilized nucleosomes and DNA or released were 

measured by western blotting. As shown in Fig. 31A, PARP1 could be detected in the bound 

fraction after incubation with immobilized nucleosomes or DNA. Notably, retention of PARP1 

on nucleosomes or DNA increased significantly in the presence of ALC1 (compare lanes 1–

3 with lanes 4–6), suggesting that the binding of PARP1 and ALC1 to nucleosomes or DNA is 

cooperative. ALC1·PARP1·nucleosome or ALC1·PARP1·DNA complexes were stable, as they 

exhibited no apparent dissociation during a 30 minute incubation following addition of 

competitor. Furthermore, the amount of bound PARP1 was not decreased when binding assays 
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included ATP (compare lanes 4–6 with lanes 7–9), suggesting that PARP1 is not displaced from 

ALC1·PARP1·nucleosome or ALC1·PARP1·DNA intermediates upon ATP hydrolysis. 

PARylation of PARP1 has been shown to decrease its affinity for DNA or nucleosomes 

[267, 310]. To investigate the relationship between PAR synthesis and formation of the stable 

ALC1·PARP1·nucleosome intermediate, we manipulated the extent of PARP1 PARylation by 

varying the concentration of NAD+ included in the binding assays. Consistent with previous 

evidence that the binding of ALC1 to DNA or nucleosomes depends on PARP1 and NAD+, the 

amount of ALC1 binding depended on NAD+ concentration; at the lowest concentration of 

NAD+, less ALC1 remained associated with immobilized nucleosomes than when NAD+ was 

present at the highest concentrations used (Fig. 31B, lanes 6–9). There was little NAD+-

dependent change in the amount of bound PARP1 when the binding reactions included ALC1 

(lanes 6–9). However, when ALC1 was not included in the binding reactions, substantially less 

PARP1 remained associated with immobilized nucleosomes at high NAD+ concentrations, where 

the extent of [32P]NAD+ incorporation into PARylated PARP1 was greater (Fig. 31B, upper 

panels, compare lanes 2–5 with lanes 6–9). The NAD+-dependent decrease in PARP1 bound to 

nucleosomes depended on PAR synthesis because it was mitigated when benzamide was added 

to reactions along with competitor DNA (Fig. 31B, lower panels). We similarly observed that 

enhanced binding of PARP1 to DNA in the presence of ALC1 was most pronounced when 

reactions contained NAD+ (data not shown). Taken together, our findings are consistent with the 

model that ALC1 and PARylated PARP1 bind cooperatively to nucleosomes or DNA to form an 

intermediate that is stable in the presence or absence of ATP. 
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Figure 31 Cooperative binding of PARP1 and ALC1 to nucleosomes. A, biotinylated DNA or 
mononucleosomes reconstituted with HeLa cell histones were immobilized on streptavidin beads 
and incubated for 5 min with PARP1 and NAD+, with or without ALC1 and ATP. After addition 
of competitor DNA, reactions were incubated for the indicated times. PARP1 and ALC1 in 
bound and unbound fractions was detected by western blotting. B, nucleosome binding reactions 
were performed with the indicated concentrations of NAD+ and with or without benzamide as 
diagrammed in the figure. PARP1 and ALC1 in bound and unbound fractions was detected by 
Western blotting, and 32P-PARylated PARP1 was detected by phosphorimaging of the same 
membrane used in the Western blots. 
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ALC1 protects PAR chains from ~ 3 to more than 20 ADP-ribose units from 

digestion by poly(ADP-ribose) glycohydrolase (PARG).   
 

We previously observed that the DNA-dependent ATPase and nucleosome remodeling 

activities of ALC1 were abolished by an ALC1 macrodomain point mutation (D723A) that 

interferes with its binding to free PAR, suggesting that binding of PAR to the ALC1 

macrodomain is likely to play a role in ALC1 activation.  To investigate potential ALC1-PAR 

interactions under nucleosome remodeling conditions, we developed a novel PAR footprinting 

assay in which we exploited the ability of poly(ADP-ribose) glycohydrolase (PARG) to degrade 

PAR.  PARG catalyzes hydrolysis of α(1′′-2′) O-glycosidic linkages in PAR and can act as both 

an endo- and exoglycosidase [311, 312]. 

PAR footprinting assays were performed as diagrammed in Fig. 32A. Bead-bound 

nucleosomes were incubated with PARP1 and 32P-NAD+ in the presence or absence of ALC1 for 

a time sufficient to allow formation of stable benzamide-resistant intermediates, and benzamide 

was added to block further PAR synthesis. After treatment of reaction mixtures with increasing 

concentrations of PARG, beads were washed, and residual PAR associated with ALC1• 

PARylated-PARP1•nucleosome or PARylated-PARP1•nucleosome complexes was isolated and 

analyzed by denaturing gel electrophoresis. As shown in Fig. 32B, 32P-PAR chains in the 

PARylated-PARP1•nucleosome complex were digested to near completion by PARG.  In 

contrast, a nearly constant fraction of 32P-PAR chains in the ALC1•PARylated-

PARP1•nucleosome complex was resistant to digestion at all PARG concentrations used; 

notably, the size distribution of these protected digestion products (from ~3 to more than 20 

ADP-ribose units) was very similar over a 10-fold range of PARG concentrations. Whereas 

ALC1 carrying a mutation in its ATP binding site behaved very similarly to the wild type 
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enzyme, PAR was not protected from digestion by ALC1 containing a macrodomain point 

mutation that prevents it from binding free PAR (Fig. 32C). These results argue that PAR 

binding by the ALC1 macrodomain is required for the observed PAR protection. 
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Figure 32 The ALC1 macrodomain protects PAR chains from ∼∼∼∼ 3 to more than 20 ADP-

ribose units from digestion by PARG. A, diagram showing the protocol used for PAR 
footprinting assays. B, reactions performed as diagrammed in A contained no PARG (lanes 

1 and 5) or 1.5 ng (lanes 2 and 6), 5 ng (lanes 3 and 7), and 15 ng (lanes 4 and 8) PARG. C, 
reactions performed as diagrammed in A contained PARP1 and wild-type or mutant ALC1 
without or with 5 ng of PARG. Marker lanes (M) show the total reaction products synthesized in 
a reaction containing nucleosomes and PARP1. Free ATP runs at the position indicated by 
the asterisk. 
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Discussion 
 

ALC1 is an SNF2 family ATPase with a macrodomain. We and others previously 

demonstrated that ALC1 possesses cryptic DNA-dependent ATPase and ATP-dependent 

nucleosome remodeling activities that are activated in the presence of PARP1 and NAD+, its 

substrate for PAR synthesis [305, 306]. Several lines of evidence argued that autoPARylation of 

PARP1, rather than PARylation of nucleosomal histones or ALC1, is the essential NAD+-

dependent step in ALC1 activation. First, either nucleosomes or naked DNA can support 

PARP1- and NAD+-dependent ALC1 DNA-dependent ATPase activity, indicating that histone 

PARylation is not essential. Second, an intermediate that activates ALC1 and that is resistant to 

the PARP inhibitor benzamide can be formed by preincubation of PARP1 and NAD+ with 

nucleosomes or with naked DNA in the absence of ALC1 [305, 306]. 

In this work, we have applied a combination of approaches to dissect in more detail the 

mechanism by which ALC1 nucleosome remodeling activity is activated by PARP1 and NAD+. 

In the course of our investigation, we considered two possible models for the mechanism of 

ALC1 activation. First, ALC1 activation might occur via a direct physical interaction between 

ALC1 and autoPARylated PARP1, leading to formation of a stable intermediate capable of 

catalyzing ATP-dependent nucleosome remodeling. Alternatively, given that PARylation of 

PARP1 has been shown to reduce its affinity for DNA or nucleosomes, it seemed possible that 

ALC1 might be activated by a different mechanism, perhaps by interacting transiently with 

autoPARylated PARP1 in a way that renders ALC1 competent to bind and remodel nucleosomes 

[267, 310, 311]. 



 

- 84 - 

Our findings are most consistent with the model that activation of ALC1 occurs through 

direct and stable binding of ALC1 to autoPARylated PARP1. Our biochemical dissection of the 

mechanism of ALC1 activation argues that it proceeds with the formation of multiple 

intermediates: an initial complex of PARP1 bound to a nucleosome; a benzamide-resistant 

intermediate that contains nucleosome-bound PARylated PARP1; and a stable ternary 

intermediate that is composed of ALC1, autoPARylated PARP1, and nucleosome and that is 

capable of catalyzing nucleosome remodeling (Fig. 33). Importantly, the results of PAR 

footprinting assays argue that in the ternary intermediate, the ALC1 macrodomain is bound to 

PAR. Taken together with our evidence that ALC1 containing a macrodomain point mutation 

that abolishes its binding to PAR is inactive in nucleosome remodeling, our findings argue that 

PAR on PARylated PARP1 plays a unique role as an allosteric effector of ALC1 DNA-

dependent ATPase and ATP-dependent chromatin remodeling activities. 

 

 

Figure 33 Proposed pathway for ALC1 activation by PARP1 and NAD+. Unmodified 
PARP1 binds nucleosomes with high affinity. NAD+-dependent PARylation of PARP1 decreases 
its affinity for nucleosomes or DNA; thus, in the absence of ALC1 the nucleosome-PARylated 
PARP1 intermediate tends to dissociate. ALC1 and PARylated PARP1 bind cooperatively to 
nucleosomes, leading to formation of a stable, activated intermediate that can catalyze ATP-
dependent nucleosome remodeling. PARP1*, PARylated PARP1; Nuc, nucleosome. 
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Although a structure of the ALC1 macrodomain is not yet available, the structure of the 

macroH2A1.1 macrodomain in complex with ADP-ribose predicts that macrodomains bind at the 

distal ends of PAR chains and could, in principle, bind stably to polymers containing just two or 

three ADP-ribose units. Our data suggest, however, that such short PAR chains may not be 

sufficient to recruit ALC1 to PARylated PARP1 and support ALC1 activation, because 

formation of the benzamide-resistant intermediate correlates with synthesis of PAR chains longer 

than ∼12–15 ADP-ribose units. In the ALC1·PARP1·nucleosome intermediates, PAR chains 

ranging in size from ∼3 to more than 20 ADP-ribose units are protected from endo- and exo-

glycolytic digestion by PARG. Although the size of the smallest of these corresponds with what 

might be expected based on the model for PAR binding by macroH2A1.1, the largest are 

considerably longer, likely reflecting interactions between PAR and ALC1 that fall outside of the 

ADP-ribose binding pocket in its macrodomain and that contribute to ALC1 activation. 
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CHAPTER III 

THE MACRODOMAIN OF HISTONE MACROH2A1.1 IS AN ACTIVATOR OF THE 

ALC1 CHROMATIN REMODELER 
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Abstract 

 The human ALC1 oncogene encodes a SNF2 family DNA-dependent ATPase with a 

macrodomain that binds poly (ADP-ribose) (PAR).  ALC1 possesses cryptic ATP-dependent 

nucleosomal remodeling and ATPase activity that is potently activated via macrodomain 

dependent interactions with Poly ADP-ribosylated PARP1. In the course of this study, we find 

that apart from PARP and NAD+, Alc1 possesses and additional mode of internal control via 

conserved domains in the linker region and the macrodomain. First, we identified a region, 

NMAC (N-terminal to Macrodomain ATPase Coupling) domain needed to couple ATP 

hydrolysis to nucleosome remodeling. Deleting NMAC led to a robust PARP and NAD+-

dependent ATPase, which lacked appreciable remodeling activity. An additional mode of control 

via the macrodomain was discovered when we replaced ALC1’s PAR binding macrodomain 

with another macrodomain from the macrohistoneH2A1.1. We discovered this chimeric protein 

was constitutively active independent of PARP and NAD+. These results suggests a model of 

positive control of the SNF2 ATPase via the macrodomain and an additional level of control 

over its remodeling activities via the NMAC and other conserved linker elements. 
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Introduction 

 The human ALC1 (Amplified in Liver Cancer 1) protein (also referred to as CHD1L or 

Chromodomain-Helicase-DNA-binding protein 1-like) is a member of the SNF2 (Sucrose Non-

Fermenter 2) superfamily of DNA-dependent ATPases and is capable of catalyzing ATP-

dependent nucleosome remodeling.  The ALC1 gene on chromosome 1q21 gene is amplified in a 

subset of hepatocellular carcinomas, and overexpression of the ALC1 protein was found to 

transform cultured cells and lead to appearance of spontaneous tumors in mice.  More recently, 

the ALC1 gene was found to be mutated in individuals suffering the genetic disorder CAKUT 

(Congenital Anomalies of the Kidney and Urinary Tract).  Although it is presently not clear how 

ALC1 overexpression or mutation leads to these disorders, it has been reported that ALC1 has 

roles in both DNA repair and the transcription of genes implicated in tumorigenesis and 

metastasis. 

ALC1 is unique among SNF2 family chromatin remodelers because it includes a 

macrodomain that has been shown to be capable of binding selectively to poly (ADP-ribose) 

(PAR).  Previous studies from our laboratory and elsewhere revealed that ALC1 possesses 

cryptic DNA-dependent ATPase and ATP-dependent nucleosome sliding activities that are 

strongly activated in the presence of the poly(ADP-ribose) polymerase PARP1 and its substrate 

NAD+. These studies also revealed that ALC1 macrodomain mutations that abolish PAR binding 

block ALC1 ATPase and nucleosome remodeling, arguing that the ALC1 macrodomain is 

important for ALC1 activation.  In a more recent study, we obtained evidence (i) that activation 

of ALC1 nucleosome remodeling activity by PARP1 and NAD+ requires assembly of a stable 

ALC1-PARP1-nucleosome intermediate and (ii) that PAR chains on autoPARylated PARP1 are 
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the target of the ALC1 macrodomain.  Taken together these findings argued that physical 

interaction of the ALC1 macrodomain with autoPARylated PARP1 is critical for activation of 

ALC1 DNA-dependent ATPase and nucleosome remodeling activities. 

In this report, we explore several possible models for how interaction of the ALC1 

macrodomain with autoPARylated PARP1 might lead to activation of the ALC1 SNF2 ATPase.  

In particular, we present a series of experiments aimed at distinguishing between the possibilities 

(i) that ALC1 activation occurs via a “de-inhibition” mechanism through release of an 

intrinsically active ALC1 ATPase from inhibition by sequences outside the SNF2 domain and 

perhaps including the macrodomain or (ii) that ALC1 activation depends upon a tethering 

function of the macrodomain or (iii) that ALC1 activation occurs via positive regulation of an 

intrinsically inactive ATPase.   As described below, our findings are consistent with the model 

that the ALC1 macrodomain functions, in concert with autoPARylated PARP1, as an allosteric 

activator of an intrinsically inactive ALC1 ATPase.  A role for the ALC1 macrodomain as an 

activator of ALC1 is bolstered by our discovery that replacement of the ALC1 macrodomain 

with the macrodomain of histone macroH2Afurthermore renders the ALC1 ATPase 

constitutively active in the absence of PARP1 and NAD+.  Taken together, our findings shed new 

light on the mechanism of ALC1’s allosteric activation, and they reveal that ALC1 can be a 

target for regulation by more than one cellular macrodomain 
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Results 
 

Deletion mutants lacking the ALC1 macrodomain are inactive. 

ALC1's N-terminal SNF2 ATPase has been classified as a member of the Snf2-like 

subfamily of SF2 ATPases. The Snf2-like subfamily includes a number of related ATPases, 

including CHD1. CHD1, ALC1, and other members of this family share sequence similarity 

throughout the two lobes of their ATPase domains and an additional region of approximately 50 

amino acids that extends C-terminal from the second ATPase lobe (shown in green in Fig. 34). 

The crystal structure of yeast CHD1 reveals that this C-terminal portion of the ATPase bridges 

ATPase lobes 1 and 2, packing against one face of each lobe in a way that might allow it to sense 

and/or influence motions of the two ATPase lobes (Fig. 35) [138].  A model of ALC1's SNF2 

ATPase domain and C-terminal bridge region generated using Phyre2 

(www.sbg.bio.ic.ac.uk/phyre2/) suggests that ALC1 is likely to adopt a very similar structure 

(Fig. 35). 

Hauk et al. previously presented evidence that the human CHD1 SNF2 ATPase domain is 

intrinsically active, but is negatively regulated by amino acid sequences lying outside the SNF2 

ATPase domain and the C-terminal Bridge [138]. This inhibitory region, referred to as the 

chromo-wedge, is located between the tandem N-terminal chromodomains of CHD1. The 

chromo-wedge appears to bind to the CHD1 SNF2 ATPase domain and sterically interfere with 

the binding of the SNF2 ATPase to effector DNA. These authors showed that deletion of CHD1 

amino acid sequences outside of the CHD1SNF2 ATPase domain led to constitutive activation of 

the ATPase, and they proposed that binding of the CHD1 chromodomain to methylated 

nucleosomal histones acts to “de-inhibit” the CHD1 SNF2 ATPase by releasing it from steric 
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inhibition. Similarly, the ATPase of ISWI, which is also predicted to adopt a structure similar to 

that of ISWI is an intrinsically active ATPase that is regulated by inhibitory modules that are 

antagonized by nucleosomal epitopes [313]. Thus, the ATPase activities of both CHD1 and ISWI 

can be regulated by a combination of intramolecular interactions, in which domains outside of 

their ATPase domains affect their activities, and by intermolecular interactions with external 

factors, such as nucleosomal histones. 

 

 

Figure 34 High degree of structural similarity between Chd1, Iswi and Alc1. Comparison of 
structure of CHD1 SNF2 ATPase and bridge regions (residues 871-922, PDB accession number 
3MWY) [138] with a model of the corresponding region of ALC1 (residues 515-566). The 
ALC1 model was generated using Phyre2 (www.sbg.bio.ic.ac.uk/phyre2/) and depicted with 
PyMol. These proteins bear remarkable homology in their SNF2 ATPase lobes and the 
subsequent section of amino acids called the C-terminal Bridge in Chd1. Alc1 also has a 
predicted C-terminal bridge like fold at the C-terminus of its ATPase. 

 

In light of the similarity between ALC1, CHD1, and ISWI, we considered the possibility 

that the ATPase domain of ALC1 might also be intrinsically active.  If that were the case, we 

predict that removing potential inhibitory region(s), including the macrodomain and the portion 



 

- 92 - 

of the protein between the SNF2 ATPase and the macrodomain, might generate a constitutively 

active enzyme. To test this hypothesis, we generated a series of ALC1 C-terminal deletion 

mutants.  These mutants all contained the ALC1’s annotated SNF2 ATPase (residue 1-515) and 

varying amounts of ALC1 extending through the bridge and continuing until the beginning of the 

macrodomain (residue 666).  As diagrammed in Fig. 35A, these ALC1 mutants included ALC1 

[1-515], ALC1 1-527], ALC1[1-551], ALC1[1-584], ALC1[1-606], ALC1[1-617], ALC1[1-

635], ALC1[1-666] which extend the annotated Alc1 SNF2 [1-515] construct by ~18 amino acid 

increments.  Wild type ALC1 and ALC1 mutants were expressed in baculovirus-infected insect 

cells with an N-terminal FLAG epitope tag, purified by sequential anti-FLAG agarose 

immunoaffinity and DEAE-NPR ion exchange chromatography (Fig 35).  Each was then assayed 

for ATP-dependent nucleosome remodeling and DNA-dependent ATPase activities, using 

concentrations of DNA or nucleosomes 20-fold greater than needed for maximal activation of 

wild type ALC1.  
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Figure 35 Purification of ALC1 C-terminal deletion mutants. All proteins were purified by 
FLAG immune-purification and DEAE-NPR HPLC. A, Diagrammatic representation of Alc1 
truncation constructs indicated by residue number. B, Colum purified protein was quantified 
using Imperial™ Protein Stain. 

 

Like the full-length ALC1 protein, all of these ALC1 mutants lacked detectable ATPase 

activities in the absence of PARP1 and NAD+. In parallel experiments, we assayed each ALC1 

mutant for DNA and nucleosome-dependent ATPase in the presence of PARP1 and NAD+.  

Unlike the wild type ALC1, none of the ALC1 mutants that lacked the macrodomain exhibited 

any detectable activity in either the presence or absence of PARP1 and NAD+ ((Fig. 36 and data 

not shown), arguing that the macrodomain is strictly required for ALC1 activity.  In addition, we 

found that the macrodomain did not activate ALC1's ATPase in trans, since addition of free 
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purified macrodomain to ALC1 [1-666] did not restore PARP1/NAD+-dependent ATPase 

activity (data not shown). Thus, activation of ALC1's ATPase by the macrodomain requires a 

covalent linkage between the SNF2 ATPase domain and the macrodomain. 

 

 

Figure 36 ATPase activity of ALC1 C-terminal deletion mutants. ATPase activity of ALC1 
and ALC1 C-terminal deletion mutants containing the residues shown on the X axis. ATPase 
activity is represented as pmols hydrolyzed during 20 min reactions.  Assays contained 1 pmol 
ALC1 and 2.5 µg of a 215 bp DNA fragment containing the core 601 nucleosome positioning 
sequence (A) or 1 µg of Hela cell mononucleosomes (B).  WT, wild type ALC1. All experiments 
were performed three or more times. Error bars are ± standard deviation. 

 

The observation that none of the panel of ALC1 mutants that lacked the macrodomain 

exhibited detectable activity in either the absence or presence of PARP1 and NAD+ is consistent 

with the possibility that, unlike CHD1’s and ISWI’s SNF2 ATPase, the ALC1 SNF2 ATPase is 

not intrinsically active and is unlikely to be regulated by a simple “de-inhibition” mechanism, in 

which the ALC1 macrodomain or other region of the protein serves an inhibitory function similar 

to the chromo-wedge of CHD1. We also considered the possibility that in the absence of the 
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macrodomain, the ALC1 SNF2 ATPase may be inactive because it has a very low affinity for 

DNA or nucleosomes and that a major function of the macrodomain is to aid in recruiting the 

enzyme to its substrate. Arguing against this possibility, even though assays were performed at a 

very high DNA concentrations, we were still not able to measure any detectable ATPase, in 

either the presence or absence of PARP1 and NAD. 

 

NMAC functions as an ATPase Coupling domain 

Although the data presented thus far argues that neither the macrodomain nor the linker, 

region between the SNF2 and the macrodomain, functions alone as a negative regulator, it did 

not rule out the possibility that all or part of the region linking ALC1’s annotated SNF2 domain 

and the macrodomain might cooperate with the macrodomain to negatively regulate the enzyme. 

If this were the case, one might expect to be able to generate a constitutively active enzyme by 

deleting some or all of the linker region. As shown in the multiple sequence alignment in Fig. 

37b, the linker region includes several blocks of sequence highly conserved throughout 

evolution, including a block of sequence that immediately follows the SNF2 ATPase and falls 

within the predicted bridge region, a second block of sequence that extends beyond the predicted 

bridge, and a third, highly charged region, which we refer to as NMAC (N-terminal to the 

macrodomain ATPase Coupling) and which is conserved in most species but is missing from 

green pufferfish.  



 

- 96 - 

 

Figure 37. NMAC is an ATPase Coupling domain. A region of ALC1 immediately N-terminal 
to its macrodomain couples ATPase to nucleosome remodeling activity.  (b) Diagram showing 
ALC1 internal deletion mutants. SNF2 ATPase, bridge-like region, and macrodomain are 
colored as in Fig. 1a. A region N-terminal to the macrodomain (NMAC) is highlighted in cyan. 
Deleted regions are indicated by thin lines. (c) DNA- and nucleosome-stimulated ATPase 
activities of ALC1 internal deletion mutants. All experiments were performed three or more 
times. Error bars, ± standard deviation. (d) Mono-nucleosomes containing HeLa cell histones 
were assembled on a 215 bp DNA fragment containing the core 601 nucleosome positioning 
sequence (diagrammed at bottom) and monitored for restriction enzyme accessibility after 
incubation with ATP, NAD+ and either no ALC1 (-ALC1), ALC1 or ALC1Δ618-665, with or 
without PARP1. nuc, undigested nucleosome. (e) Quantitation of remodeling assays shown in 
panel (d). 
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Based on this observation we designed three deletion mutants, ALC1Δ515-551, ALC1 

551-617, ALC1ΔNMAC (lacking residues 618-665), each missing a different conserved part of 

the linker (Fig. 37a).  As shown in Fig. 37c, like the full-length ALC1 protein, none of the ALC1 

deletion mutants had any ATPase activity in the absence of PARP1 and NAD+. Hence, deletion 

of these regions failed to generate a constitutively active enzyme. In the presence of PARP1 and 

NAD+, ALC1Δ515-551 and ALC1Δ552-617 had no detectable ATPase activity (Fig. 37c) or 

nucleosome remodeling activity (data not shown), indicating that sequences within the predicted 

bridge region and perhaps extending beyond are required for ALC1 activity. In contrast ALC1Δ 

NMAC had DNA and nucleosome stimulated activity comparable to that of wild-type ALC1, 

arguing that there is not a strict requirement for a specific length of sequence between the SNF2 

ATPase and macrodomain of ALC1.  

To determine if deletion of NMAC had any impact on remodeling activity, we performed 

a time-course comparing the nucleosome remodeling activities of ALC1 and ACL1ΔNMAC.  As 

shown in Figs 37d and 37e, nucleosome remodeling by both wild type ALC1 and ALC1ΔNMAC 

was strongly dependent on PARP1 and NAD+.  Notably, however, while wild type and 

ALC1ΔNMAC had indistinguishable ATPase activities, the nucleosome remodeling activity of 

ALC1ΔNMAC was much lower than that of its wild type counterpart. All the three constructs 

generated above were able to bind PAR through their macrodomain. An additional construct with 

the double deletion of residues 552-617 and NMAC showed no ATPase activity or PAR binding 

(data not shown). This could be due to poor folding of the truncated construct of steric clashes 

that do not allow the ATPase lobes and the macrodomain to be in a functional conformation. We 

suspected that although all the three constructs deletion constructs had a functional PAR binding 
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macrodomain, their association with the nucleosome may be affected, thereby generating their 

respective ATPase outcomes. 

We used the immobilized nucleosome template binding assay to see if the ALC1Δ515-

551 and ALC1Δ551-617 constructs were able to interact with nucleosomes (Fig. 38). As shown 

in Fig. 38, the ALC1Δ515-551 construct was recruited to the nucleosome independently in 

absence of PARP1. The ALC1Δ552-617 construct also behaved similarly albeit with lower 

recruitment. In presence of PARP1 and NAD+, ALC1Δ515-551 and ALC1Δ552-617 recruited to 

the nucleosome at levels similar to that of wild-type ALC1. In case of ALC1ΔNMAC, 

recruitment to the nucleosome was less than wild-type ALC1’s but still showed dependence on 

PARP1 and NAD+ for recruitment to the nucleosome. 

 

 

Figure 38 Immobilized nucleosome template binding assay of ALC1 and Linker deletion 

constructs. Mononucleosomes reconstituted with HeLa cell histones on biotinylated DNA and 
immobilized on streptavidin beads were incubated with wild-type or mutant Alc1, NAD+, ATP, 
with or without PARP1. Bound fractions were analyzed by anti-Flag western blotting. All 
experiments were performed three or more times. 
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Although we did not succeed in identifying a constitutively active internal deletion 

mutant of ALC1, we did gain a number of important insights from analysis of these mutants.  In 

particular, our results argue that activation of the SNF2 ATPase of ALC1 depends on (i) 

sequences that fall within and extend beyond the predicted bridge region and (ii) a functional 

macrodomain.  In addition, they identify a region immediately N-terminal to the macrodomain, 

NMAC, that is required to couple the energy of ATP hydryolysis to nucleosome remodeling. 

Taken together, our results argue that the ALC1 macrodomain does not function simply as a 

tether that brings ALC1 to PARP1-bound nucleosomes.  In addition, they argue that the 

macrodomain does not act as a negative regulatory domain whose effect is relieved upon binding 

to poly-ADP-ribosylated PARP1. Instead, they suggest that the macrodomain and the region 

between the SNF2 ATPase and macro-domains might participate more directly as an “allosteric” 

activator of the ALC1 ATPase. 

 

Macrodomain of macroH2A1.1 is an activator of ALC1’s SNF2 ATPase 

Although the data presented thus far is most consistent with the idea that the 

macrodomain is not needed simply for recruitment but instead may have a positive regulatory 

role in ALC1’s activation, we wished to test this model using an independent approach. If the 

major function of the ALC1 macrodomain is to enhance recruitment of ALC1 to its substrate, 

one would predict that an ALC1 chimeric construct in which the normal macrodomain is 

replaced with another PAR binding macrodomain, but not with a PAR non-binding 

macrodomain, would exhibit PARP1- and NAD+-dependent activity (Fig 39a). We chose to 

replace ALC1’s macrodomain with the PAR binding macrodomain from the histone variant 
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macroH2A1.1, and the macrodomain from its non-PAR binding splice variant macroH2A1.2. As 

controls, we generated two more ALC1-macrodomain chimeras, one containing a point mutant 

of the macroH2A1.1 macrodomain (G224E) that renders it PAR non-binding, and the other 

containing the non-PAR binding macrodomain from another histone variant, macroH2A2 (Fig 

39a). As expected, ALC1 containing the PAR binding macrodomain of Macro1.1 was able to 

bind PAR in a similar fashion to wild type ALC1 (Fig 39b), while the remaining ALC1-

macrodomain chimeras showed no detectable PAR binding under the reaction conditions. In 

addition, in the presence of PARP1 and NAD+, the PAR binding ALC1-Mac1.1 bound 

immobilized nucleosomes similarly to ALC1 while its PAR non-binding version ALC1-

Mac1.1G224E did not. 

To test the effect of the new macrodomains on the activities of the ALC1-macrodomain 

chimeras, we first performed ATPase assays. As expected, the PAR non-binding ALC1Mac1.2 

and ALC1Mac2A2 had no ATPase activity in absence or presence of PARP1 and NAD+ (Fig. 

40a and data not shown). To our surprise, however, both PAR-binding ALC1-Mac1.1 and PAR 

non-binding ALC1-Mac1.1G224E were constitutively active, showing strong ATPase activity in 

the presence of DNA, with or without PARP1 and NAD+ (Fig. 4a and data not shown).  We 

performed two kinds of assays to rule out the possibility that the PARP- and NAD+ independent 

activity was due to some contaminating ATPase. First, we generated ATPase dead versions of 

the ALC1-Mac1.1 and ALC1-Mac1.1G224E enzymes by introducing a Walker B mutation, 

which interferes with ATP binding. ATPase dead versions of the enzyme had no activity in 

presence or absence of PARP1 and NAD+ (Fig. 40a).  Second, we showed that NAD+-dependent 

ATPase activity co-purified with ALC1-Mac1.1G224E protein during high resolution HPLC on 

a DEAE-NPR column (Fig. 40b). 
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Figure 39.  PAR binding activities of ALC1-macrodomain chimeras. (a) ALC1-macrodomain 
chimeras include ALC1 residues 1-666 fused to the macrodomains of histone H2A variants 
macroH2A1.1 (ALC1-Mac1.1), macroH2A1.2 (ALC1-Mac1.2), or macroH2A2 (ALC1-Mac2). 
An additional chimera, ALC1-Mac1.1G224E, contains the macroH2A1.1 macrodomain with an 
point mutation that prevents binding to ADP-ribose and ADP-ribosylated PARP1 (b) PAR 
binding was assayed using nitrocellulose filter binding assays.  Binding reactions contained 
~100ng (1x) or 200ng (2x) of wild-type ALC1 or ALC1-macrodomain chimeras and 32P-labeled 

PAR. (c) Nucleosome binding activities of ALC1-macrodomain chimeras. Mononucleosomes 
reconsituted with Hela cell nucleosomes on biotinylated DNA and immobilized on streptavidin 
beads were incutated with NAD+ and wild type ALC1 or ALC1-macrodomain chimeras, with or 
without PARP1. 

 We also tested ALC1Mac1.1 and ALC1Mac1.1G224E for their abilities to support 

nucleosome remodeling.  Both of these ALC1-macrodomain chimeras were able to robustly 

remodel nucleosomes in the presence or absence of PARP1 and NAD+ (Fig. 40 d and e and data 
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not shown). This suggested that unlike ALC1ΔNMAC, the two constitutively active mutants 

were able to engage the nucleosome productively and remodel them.  

Taken together, these observations provide strong support for the idea that the 

macrodomain does not serve simply as a tether that increases the affinity of the ALC1 SNF2 

ATPase domain for its substrate by interacting with DNA- or nucleosome-bound, PARylated 

PARP1, since replacing ALC1's macrodomain with PAR or non-PAR binding versions of the 

macrodomain of macroH2A1.1 renders the enzyme constitutively active.   Instead, they suggest 

that the macrodomain plays some more active role as a positive activator, most likely via 

intramolecular interactions with the SNF2 ATPase or other conserved domain of the enzyme. 

This highlighted the fact that the Macro1.1 had a specific interaction with the SNF2 ATPase and 

the other conserved domains that was able to render it constitutively active. More importantly, 

this interaction that rendered it constitutively active was independent of a PAR-binding event. 
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Figure 40: Macrodomain of macroH2A1.1 is positive activator of ALC1’s SNF2 ATPase (a) 
ATPase activity assay of Alc1 chimeric constructs represented as pmols of ATP hydrolyzed. 
Construct names are indicated on the x-axis. Assays are performed with a 2.5 µg of a 215 bp 
DNA fragment containing the core 601 nucleosome positioning sequence at one end. (b) Alc1-
Mac1.1 column fractions from a DEAE-NPR HPLC on a coomassie stained protein gel. (c) 
ATPase activity assay of Alc1-Mac1.1 column fractions represented as pmols of ATP 
hydrolyzed. Fraction numbers listed on the x-axis show activity coincides with the fractions 
containing the purified protein. (d) Nucleosome sliding activities of Alc1 fusion/chimeric 
proteins. Nucleosomes reconstituted with purified HeLa cell histones were monitored for 
restriction enzyme accessibility after incubation with ATP and wild-type or mutant Alc1, Parp1 
and NAD+. (e) Quantitation of nucleosome sliding shown in fig 4d. The percent shifted was 
calculated as the ratio of the intensity of the larger cleaved band relative to the sum of intensities 
of the intact and cleaved fragments. All experiments were performed three or more times. Error 
bars, ± standard deviation. 
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ALC1 ATPase activation with different nucleic acid substrates 

In addition to the above mentioned points of intradomain control in the protein, we also 

wished to investigate in more detail the kinds of DNA effectors that can affect ALC1 activity. 

We tested ATPase activity with DNA that had different cytosine modifications. As shown in Fig. 

41 we observed that there was no significant difference between the ATPase activity of Alc1 

using different types of DNA under the conditions of our assay. Methylated cytosines and 

hydroxymethylated cytosines had no effect on enhancing or diminishing the ATPase activity of 

Alc1. 

 

Figure 41 Alc1 ATPase activity with different Cytosine modified DNA. ATPase activity is 
represented as pmols hydrolyzed during 20 min reactions.  Assays contained 1 pmol ALC1 and 
100 ng of a 215 bp DNA fragment containing the core 601 nucleosome positioning sequence that 
has modified cytosines incorporated wherever indicated. C-DNA, unmodified DNA; 5mC DNA, 
5-methylated cytosine labelled DNA; 5-hmC DNA, 5-hydroxymethylated cytosine labelled 
DNA. 
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In particular, we asked whether ALC1’s ATPase could only be activated by dsDNA, or 

whether ssDNA or RNA would also activate the ATPase. Double-stranded DNA and ssDNA of 

varying lengths were able to stimulate the Alc1’s ATPase, but ssRNA was unable to accomplish 

the same result. (Fig. 42). 

 

 

Figure 42 Stimulating Alc1’s ATPase with different lengths and types of nucleic acids. 
Graph shows the activity of Alc1 ATPase in presence and absence of PARP1 with ds and ssDNA 
and ssRNA. ATPase assays were performed with 100ng of DNA. 
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Having observed that single stranded DNA that contained all four bases stimulated 

ATPase, we wished to determine whether a homopolymer ssDNA which cannot form transient 

secondary structures, could stimulate the ATPase. In these experiments we used 50 bp PolydA 

and 50bp PolydT to activate ALC1. As shown in Fig 43, PolydA and PolydT were not sufficient 

to stimulate ALC1, suggesting that truly single stranded DNA is unable to stimulate ALC1’s 

ATPase in presence or absence of PARP1 and NAD+. 

 

 

Figure 43 Stimulating Alc1’s ATPase with PolydA and PolydT. Graph shows the activity of 
Alc1 ATPase in presence and absence of PARP1. ATPase assays were performed with equimolar 
amounts of nucleic acid substrate. 
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To determine whether single stranded DNA failed to activate ALC1 because the SNF2 

ATPase cannot use it or whether it does not activate PARP1, We used the constitutively active 

chimera of ALC1 that we had generated (ALC1-Mac1.1) to test the above. As shown in Fig. 44, 

the constitutively active ALC1-Mac1.1 chimera was not able to show any appreciable ATPase 

activity in presence or absence of PARP1 providing further support for the idea that ALC1’s 

SNF2 ATPase functions only with dsDNA. 

 

 

Figure 44 Alc1Mac1.1 ATPase stimulation with PolydA and PolydT. Graph shows the 
activity of Alc1 ATPase in presence and absence of PARP1. ATPase assays were performed 
with equimolar amounts of nucleic acid substrate. 
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To further reassert out observation that Alc1’s SNF2 ATPase can be stimulated only by 

dsDNA, we performed an experiment where we mixed the PolydA and PolydT in the same tube 

to generate dsDNA structures in vitro. We discovered that the mixture of PolydA and PolydT 

was able to stimulate the ATPase of ALC1 suggesting that homopolymeric DNA, if double 

stranded, was sufficient to stimulate ALC1’s ATPase (Fig. 45). 

 

 

Figure 45 Alc1 ATPase stimulation with mixture of PolydA and PolydT. Graph shows the 
activity of Alc1 ATPase in presence and absence of PARP1. ATPase assays were performed 
with equimolar amounts of nucleic acid substrate. 

 



 

- 109 - 

 We also tested the constitutively active Alc1Mac1.1 chimera to make sure that this 

activity can be attributed solely to the SNF2 ATPase of ALC1 and is not a result of any 

modification in the activation of PARP1 or subsequent PAR formation using ss or ds DNA. As 

shown in Fig. 46, we discovered that the chimera was stimulated by the mixture of PolydA and 

PolydT. 

 

Figure 46 Alc1Mac1.1 stimulation with mixture of PolydA and PolydT. Graph shows the 
activity of Alc1 ATPase in presence and absence of PARP1. ATPase assays were performed 
with equimolar amounts of nucleic acid substrate. 
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Discussion 

In the previous chapter we show that our findings are most consistent with the model that 

activation of ALC1 occurs through direct and stable binding of ALC1 to autoPARylated PARP1. 

Our new findings suggest that there are multiple modes of control for ALC1’s SNF2 ATPase. 

Comparing CHD1 regulation to ALC1, we see some striking similarities and also some salient 

and unique features of ALC1. CHD1 has a Snf2 ATPase that has been shown to be the minimal 

active unit of CHD1. CHD1 possesses a pair of chromodomains that bind methylated histones 

and regulate its activity in an allosteric fashion. The regulation is not directly mediated by the 

chromodomains, but by a linker domain present between the tandem chromodomains known as 

the chromo-wedge (Fig. 47) [138].  

 

Figure 47. Domain Organization of Chd1. Top: Schematic representations of CHD1. Bottom: 
The two ATPase lobes of CHD1 are flanked by the double chromodomains (yellow) and the 
extended C-terminal bridge (green). Figure adapted from [138]. 
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The chromo wedge is a highly acidic patch of residues that directly interacts with a DNA-

binding surface on the ATPase motor and interferes with DNA binding to the ATPase, thus 

negatively inhibiting the CHD1 ATPase. This inhibition by the chromodomains splays the two 

ATPase lobes wide open in a conformation that is not conducive to ATP hydrolysis. In the 

CHD1 crystal structure, the double chromodomains are clearly visible interacting with both 

ATPase. The interaction of the chromodomains with both ATPase lobes suggests that 

chromodomains would likely stabilize this open conformation, reducing the likelihood of 

ATPase closure and hydrolysis (Fig 48). 

 

 

Figure 48 Electrostatic surface representation of CHD1 and a close-up of the chromo-

wedge. Electrostatic surface representations of the ATPase motor, and a close-up of the contact 
between the helical linker of the chromodomains and the second ATPase lobe, with the Cα atoms 
of acidic residues shown as red spheres. Figure adapted from [138] 
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 This mode of regulation allows CHD1 to control its ATPase activity in a manner such 

that its ATPase is only engaged once the chromodomains are out of the way and this solves the 

problem of abberant activation of this chromatin remodeler. A similar model is also seen in the 

case of ISWI where the ATPase is highly regulated by two accessory domains called the AutoN 

and NegC that negatively inhibit the SNF2 ATPase. Their inhibition is removed only in presence 

of the histone H4 tail, which counteracts the activities of both the AutoN and the NegC. Given 

that AutoN and NegC are also inhibitory elements that need to be inhibited to achieve an active 

ATPase, this model of governing the ATPase is called “inhibition of inhibition” (Fig. 49) [313]. 

 

 

Figure 49 Inhibition of inhibition model of regulation in ISWI. Logic of ISWI ATPase 
regulation. The ISWI ATPase activity is positively regulated by DNA in the ATPase cleft. ISWI 
is also negatively regulated by two intrinsic domains: AutoN and NegC. AutoN inhibits the ATP 
hydrolysis rate, and is relieved by the basic patch (R17-R19) of the H4 tail, whereas NegC 
inhibits ATPase coupling to DNA translocation, and is relieved by the HSS domain binding to 
sufficient extranucleosomal DNA: defining the ‘inhibition of inhibition’ mode of ISWI 
regulation. Note: an additional lysine (H4K12) also promotes coupling. Figure adapted from 
[64]. 
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 Further, regions on CHD1 and the canonical SNF2 enzyme have been shown to play an 

active role in coupling the ATPase domain with their remodeling activities [138, 313-318]. The 

canonical SNF2 enzyme bears a region named SnAC (SNF2 ATPase Coupling) domain C-

terminal to its Snf2 ATPase. This region has been shown to bind histone H3 and is highly 

conserved from yeast to humans. Deleting this region has no effect on the ATPase activity of the 

enzyme, but has a deleterious effect on the nucleosome remodeling capability [314]. A similar 

phenomenon occurs in CHD1, where deletion of the region C-terminus to the SNF2 ATPase 

renders the nucleosome remodeling activities to negligible and severely hampers the DNA 

stimulated ATPase activity as well (Fig. 50). 

ALC1 has been shown to possess cryptic DNA-dependent ATPase and ATP-dependent 

nucleosome remodeling activities that are activated in the presence of PARP1 and NAD+, its 

substrate for PAR synthesis. Second, an intermediate that activates ALC1 and that is resistant to 

the PARP inhibitor benzamide can be formed by pre-incubation of PARP1 and NAD+ with 

nucleosomes or with naked DNA in the absence of ALC1 [305, 319]. Lastly, our studies have 

shown that activation of ALC1 occurs through direct and stable binding of ALC1 to 

autoPARylated PARP1. This activation was dependent on interactions between PAR and ALC1 

that fall outside of the ADP-ribose binding pocket in its macrodomain and that contribute to 

ALC1 activation [319]. 

In the work described in this chapter, we have applied a combination of approaches to 

determine in more detail the mechanism by which ALC1 nucleosome remodeling activity and 

ATPase activity is regulated by its domains. In particular we used assays that separate 

recruitment to the nucleosome, ATPase, and remodeling activity in an attempt to discover 

specific regions of the protein responsible for such regulatory effects In the course of our  
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Figure 50 Region of CHD1 responsible for coupling ATPase with remodeling. Deletion of 
residues 932-955 results in complete loss of nucleosome remodeling and significant reduction of 
ATPase activity Figure adapted from [317]. 
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investigation, we considered three possible models for the regulation of ALC1’s SNF2ATPase. 

First, ALC1’s ATPase might be a constitutively active ATPase that is negatively regulated by  

In the work described in this chapter, we have applied a combination of approaches to 

determine in more detail the mechanism by which ALC1 nucleosome remodeling activity and 

ATPase activity is regulated by its domains. In particular we used assays that separate 

recruitment to the nucleosome, ATPase, and remodeling activity in an attempt to discover 

specific regions of the protein responsible for such regulatory effects. In the course of our 

investigation, we considered three possible models for the regulation of ALC1’s SNF2ATPase. 

First, ALC1’s ATPase might be a constitutively active ATPase that is negatively regulated by 

internal domains including the macrodomain. This hypothesis could be consistent with the fact 

that a functional and covalently attached PAR-binding macrodomain is necessary for ALC1’s 

activation. Alternatively, ALC1’s ATPase could be a poor ATPase, unique amongst its family, 

and the conserved regions might play a role in its regulation while the macrodomain is merely a 

device to recruit the ATPase to its substrate. A third formal possibility is that ALC1’s SNF2 

ATPase is indeed an inactive ATPase that needs to be postively activated by its interaction with 

the macrodomain and other conserved regions.  

Our findings are most consistent with the model that the SNF2 ATPase of ALC1 is 

positively regulated by the region between the SNF2 ATPase and the macrodomain and by the 

macrodomain itself. According to this model, these ALC1 regions work in a co-operative manner 

to yield a properly recruited, remodeling capable, ATPase active SNF2ATPase. Our data argues 

that in isolation, ALC1’s SNF2 ATPase has no ATPase activity, at least under the reaction 

conditions we have used. Even with saturating concentrations of DNA or nucleosomes, we 

observe no activation of the SNF2ATPase in any mutant that lacks the macrodomain. These 
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observations are consistent with the idea that there are no negative regulatory elements in the 

conserved regions of the protein or in the macrodomain that inhibit an otherwise active SNF2 

ATPase motor. This is in stark contrast to its close relatives CHD1 and ISWI, both of which 

follow a model where the SNF2 ATPase is inherently active and is inhibited by domains flanking 

the SNF2 ATPase [138, 313]. 

An important discovery of this study was the definition of NMAC (N-terminal to 

Macrodomain ATPase Coupling) region. Our study has shown that this region is actively 

involved in coupling the ATPase activity of ALC1 with its remodeling capabilities. In addition, 

we have evidence to suggest that it may functions as a putative DNA binding domain (data not 

shown). In that sense, NMAC is analogous to the SnAC domain of the canonical SNF2 enzyme. 

CHD1 also has a region analogous to the NMAC C-terminal to its SNF2 ATPase [314, 317]. 

This region plays a role in coupling the ATPase with its remodeling activity. However, unlike 

NMAC, deleting the coupling region of CHD1 reduces the ATPase activity of CHD1 drastically, 

whereas deleting NMAC has virtually no effect on the ATPase activity of ALC1. This robust and 

specific coupling role of NMAC could be due to a role of NMAC as a “hinge” that latches onto 

the nucleosome and gives the ATPase motor traction to successfully slide nucleosomes. 

We believe regions predicted to be similar to the CHD1 C-terminal Bridge, are likely to 

be extensions of the SNF2 domain of ALC1. These could play a crucial role in guiding the 

conformation in which the SNF2 ATPase is held. Deletion of Bridge1 (ALC1 residues 515-551), 

which encompasses much of the bridge, causes association with the nucleosome independent of 

PARP1 and NAD+. This domain appears to be analogous to the alpha-27 helix of Rad54 and an 

analogous region in INO80 that splay the two ATPase lobes in an open confirmation that does 

not allow it to engage its substrates [320]. The ATPase activity of INO80 increases dramatically 
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after the deletion of this region, but deleting Bridge1 renders the ATPase of ALC1 inactive 

[321]. However, we speculate the Bridge1 splays the ATPase lobes of ALC1 in a confirmation 

incapable of engaging the nucleosome. Upon interaction with autoPARylated PARP1, a 

conformational change allows it to interact with the nucleosome and engage the ATPase as well. 

We suspect that deletion of Bridge1 allows the ATPase lobes of ALC1 to engage the 

nucleosome, but disrupts the communication to the ATPase to process ATP. Bridge2 (ALC1 

residues 552-617) has a similar effect on ALC1 but to a much lesser degree. Taken together, our 

observations suggest that Bridge1, Bridge2 and NMAC play an important role in inter-domain 

communication that positively regulates ALC1’s SNF2 ATPase. 

Lastly, replacing the ALC1 macrodomain with new macrodomains shed further light on 

the positive regulation of the ATPase by this accessory binding domain. The constitutively active 

nature of ALC1Mac1.1 and its PAR non-binding mutant version ALC1Mac1.1G224E is 

indicative of a greater role of the macrodomain in activating the ATPase of ALC1. Biologically, 

ALC1 plays an active role in DNA damage in conjunction with PARP1. It has also been shown 

that PARP1 recruits ALC1 and macrohistoneH2A1.1 via their PAR binding macrodomains to 

sites of DNA damage [290]. It is tempting to speculate that at sites of DNA damage, interaction 

of ALC1’s SNF2 ATPase with the macrodomain of macroH2A1.1 may render it active 

independent of autoPARylated PAR. However, if this were the case, then any macrodomain with 

similar surface residues might be able to activate ALC1’s ATPase. However, the macrodomain 

of macroH2A1.2 is almost identical to macroH2A1.1, differing only in a few residues 

(macroH2A1.2 has an E-I-S insertion at the mouth of the PAR binding pocket) that sterically 

block the interaction of PAR with the binding pocket [207]. If the surface interactions were the 

only crucial factor in this activation, then ALC1Mac1.2 would also be constitutively active. Our 
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observation that ALC1Mac1.2 is inactive suggested that there is a particular confirmation of 

Mac1.1 that allows it to activate the ATPase. Our experimental data further suggests that the 

conformation of the PAR binding pocket of Mac1.1 is able to constitutively activate the SNF2 

ATPase. Not surprisingly, ALC1Mac2A2 did not have any detectable ATPase activity, as it 

shares neither the surface residues nor a PAR-binding pocket to activate the ATPase. The PAR 

binding, constitutively active mutant ALC1-Mac1.1 was recruited to nucleosomes in a PAR-

dependent manner, while its PAR-non binding version ALC1-Mac1.1G224E, which is also 

constitutively active, is not recruited to the nucleosomes. This suggested that neither PAR 

binding or nucleosome recruitment is essential in the activation of ALC1, but that a 

conformational change induced in the ALC1 macrodomain after the PAR biding event might be  

crucial for ALC1’s activation. 

Taken together our observations allow us to conclude that ALC1 SNF2 ATPase may be 

inherently inactive and is positively regulated by conserved regions in the protein and the 

macrodomain conformation. In addition, we discovered a new region in the protein – NMAC that 

is able to couple ATPase and nucleosome remodeling activities. The bridge regions and 

sequences downstream also play an important role in relaying the communication to the SNF2 

ATPase and are necessary for its activation. Their role in recruitment also highlights that the 

SNF2 ATPase may be in an inactive conformation in its resting state. This hypothesis is 

plausible as it has been observed that in the crystal structure of CHD1, the ATPase lobes are 

splayed open in an inactive conformation by a feature called the chromo-wedge [138]. More 

importantly the ATPase active nature of ALC1ΔNMAC, which is poorly recruited to the 

nucleosomes and PARP1 independent ATPase activation of the chimeric construct 

ALC1Mac1.1G224E, which is also poorly recruited to the nucleosome is indicative of the 



 

- 119 - 

independence of nucleosomal recruitment and SNF2ATPase activation, suggesting that ATPase 

activation does not require stable nucleosomal interaction. Transient interactions with the 

nucleosome and/or DNA are sufficient and necessary to activate the SNF2ATPase of ALC1. 

The invention of a constitutively active Alc1 SNF2 enzyme by replacing its macrodomain 

with a macrodomain from macrohistoneH2A1.1 is also informative. Primarily, it tells us that the 

macrodomain is not just a tethering domain that increases the local concentration of the 

reactants. Instead, it plays an active role in activating the SNF2ATPase of Alc1. The constitutive 

active nature of ALC1Mac1.1 and ALC1Mac1.1G224E as opposed to the ATPase inactivity of 

ALC1Mac1.2, indicate that the PAR binding pocket of Mac1.1 has a specific confirmation that 

allows it to trigger the SNF2 ATPase activity. This interaction is independent of a PAR-binding 

event and is possibly relevant in vivo due to the inv lvement of macrohistoneH2A1.1 and Alc1 in 

PARP guided DNA damage repair. This also suggests that the Mac1.1 is able to activate the 

Alc1’s SNF2ATPase by some very specific interactions. The Macro1.1 and Macro1.2 are splice 

variants and differ only by 30 amino acids. A prominent insertion of E-I-S residues in the PAR 

binding pocket of Macro1.2 renders it PAR non-binding. Further mutagenesis studies can shed 

light on the precise nature of the interaction between Alc1’s SNF2 ATPase and the macrodomain 

of macrohistoneH2A1.1. With a thorough mutagenesis, it might be possible to mutate the 

macrodomain of ALC1 to mimic the macrodomain of macrohistone2A1.1 and produce another 

constitutively active version of the enzyme which may help understand the mechanism of its 

activation in further detail. Given the important biological roles of ALC1 and its involvement in 

several cancer pathogenesis, understanding its mechanistic control would be valuable 

information to design specific drug screens against ALC1. 
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 I would like to close by presenting a composite view of all the information we have 

gained about the regulation of ALC1 (Fig. 51). The interplay of intermolecular and 

intramolecular interactions control the ATPase of ALC1 and may potentially be able to 

repurpose it in different cellular contexts. The fact that macroH2A1.1 can activate ALC1, 

suggests that there might a greater interplay between PARP, PAR, macrodomain containing  

histones and ALC1 in the context of DNA damage repair and transcription. 

 

 

Figure 51 Working model for Alc1’s ATPase activation. Logic of ALC1 ATPase regulation. 
The ALC1 ATPase activity is positively regulated by dsDNA or dsDNA with overhangs in the 
ATPase cleft. ALC1 is also positively regulated by two intrinsic domains: macrodomain and the 
linker between the ATPase and the macrodomain. NMAC couples ATPase activity with 
remodeling and also serves as an accessory DNA binding site. 
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Expression of Flag-ALC1 and ALC1 derived mutants used in the study. 

Expression of Recombinant Proteins in Insect Cells. For expression of recombinant 

proteins in insect cells, wild-type human ALC1 (Accession NP_004275.4 | GI:373428660) and 

ALC1 mutants used in the study (ALC1 C-terminal and internal deletion mutants, ALC1 point 

mutants and ALC1-macrodomain chimeras) containing N-terminal FLAG epitope tag were 

subcloned into pBacPAK8 [322].  All ALC1-macrodomain chimeras included ALC1 residues 1-

666. These were fused to residues 162-369 of histone macroH2A1.1 (Accession NM_138609.2 | 

GI:93141010) or a histone macroH2A1.1 with G224E mutation or residues 161-371 of histone 

macroH2A1.2 (Accession NM_004893.2 | GI:20336744) or residues 162-372 of histone 

macroH2A2 (Accession AF336304.1 | GI:14028706). Between the ALC1 residues and the 

macrodomains, are an additional two residues (Arg and Ile) encoded by an in frame EcoR1. 

Recombinant baculoviruses were generated with the BacPAK expression system (Clontech). Sf9 

cells were cultured at 27°C in Sf-900 III SFM, supplemented with 100 units/ml penicillin and 

100 µg/ml streptomycin. Flasks containing 1x108 Sf9 cells were infected with the recombinant 

baculoviruses. Forty-eight hours after infection, cells were collected and lysed in 15 ml of ice-

cold buffer containing 50 mM HEPES-NaOH (pH 7.9), 0.5 M NaCl, 5 mM MgCl2, 0.2% Triton 

X-100, 20% (vol/vol) glycerol, 0.28 mg/ml leupeptin, 1.4 mg/ml pepstatin A, 0.17 mg/ml PMSF, 

and 0.33 mg/ml benzamidine. Lysates were centrifuged at 100,000 X g for 30 min at 4°C. 

 

Purification of Recombinant Proteins. 

FLAG-tagged proteins were purified from Sf9 cell lysates by anti-FLAG agarose 

immunoaffinity chromatography. Lysates from 1x108 cells were incubated with 0.5 ml anti-
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FLAG (M2) agarose beads for at least 8 h at 4°C. The beads were washed at least six times with 

Tris-buffered saline [50 mM Tris-Cl, pH 7.5] (TBS), which contained 0.8 M NaCl. Bound 

proteins were eluted from the beads with TBS containing 10% (vol/vol) glycerol and 0.3 mg/ml 

FLAG peptide. Where indicated, anti-FLAG agarose eluates prepared from Sf9 cells expressing 

recombinant FLAG-Alc1 proteins were further purified by ion exchange HPLC. Eluates were 

adjusted to a conductivity equivalent to that of 0.1 M NaCl and applied to a 0.6 ml TSK DEAE-

NPR HPLC column (TosohBioSep) pre-equilibrated in buffer A [40 mM TrisHCl, pH 7.91 mM 

EDTA1 mM DTT 10% (vol/vol) glycerol] containing 0.1 M NaCl. The column was eluted with a 

6-ml linear gradient from 0.1 to 1 M NaCl in buffer A, and 0.2-ml fractions were collected. 

Protein concentrations were estimated by comparing the intensities of Imperial™ Protein Stain 

(Thermo Scientific) bands with that of BSA in SDS-polyacrylamide gels scanned using an Image 

Studio® imaging system (LI-COR Biosciences). 

 

PARP1 and PARG 

PARP1 (high specific activity, >95% pure) and PARG (high specific activity, >95% 

pure) was obtained from Trevigen. 

 

Generation of 32P labelled 601-DNA Fragment 

A 216 bp DNA fragment, "601" DNA32P-labeled fragment, containing an end-positioned 

601 nucleosome positioning sequence was amplified in a PCR reaction from pGEM-3Z-601 

[323] in the presence of 6000Ci/mmol [α-32P] dCTP. The forward and reverse primers used were 

a) 5′-ACAGGATGTATATATCTGACCGTGCCTGG and b) 5′-AATACTCAAG 

CTTGGATGCCTGCAG respectively. The 601 DNA fragment was amplified using 100 μl PCR 
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reaction that were set up by mixing, 67.5 μl deionized H2O, 10 µl 10X PCR reaction buffer 

(Roche), 1µl pGEM-3Z-601 (10 ng/μl), 5 µl of 10 µm forward primer (a), 5 µl of 10 µm of 

reverse primer (b), 0.5 µl of dNTP stock solution containing 10 mM of each of the 4 dNTPs 

(dATP, dCTP, dGTP and dTTP), 1 µl Roche Taq DNA polymerase and 10 µl of [α-32P] dCTP 

(6000 Ci/mmol, 3.3 μM). The PCR reactions were performed in a thermal cycler (MJ Research, 

PTC 200) using the following program: Step 1: 1 min @ 96 ⁰C; Step 2: 45 sec @ 94 ⁰C; Step 3: 

30 sec @ 57 ⁰C; Step 4: 60 sec @ 72 ⁰C; Step 5: Go to step 2 for 29 additional cycles Step 6: 7 

min @ 72 ⁰C; Step 7: forever @ 4 ⁰C. Upon reaction completion, unincorporated nucleotides 

were removed by passing twice sequentially through NucAway™ spin columns (Ambion®, Cat. 

# AM10070) according to the manufacturer’s instructions. To confirm the success of the PCR 

reaction, 5 μl of the reaction product was run on a 2% agarose gel. Detection of a single ~216 bp 

DNA band by ethidium staining confirmed a successful PCR reaction. DNA concentration was 

measured using a UV spectrophotometer. 

 

Preparation of nucleosomes: 

Nucleosomes were prepared from HeLa cells and transferred onto the 32P-labeled or non-

labelled 601 DNA by a serial dilution method essentially as described by Owen-Hughes et al. 

[324]. 50 pmol of 32P-labeled 601 DNA fragment are mixed with 225 µg of HeLa nucleosomes 

in 1000 µl of a buffer containing 1.0 M NaCl, 10 mM Tris-HCl, pH 8.0, 1 mM EDTA, 0.1 mM 

PMSF, and 1 mM DTT. After incubation at 30 °C for 20 minutes, the mixture was sequentially 

adjusted to 0.8, 0.6, and 0.4 M NaCl by dilution with 250 µl, 416 µl, and 832 µl, respectively, of 

10 mM Tris-HCl (pH 8.0), 1 mM EDTA, 0.1 mM PMSF, and 1 mM DTT, with a 30 min 

incubation at 30 °C after each dilution. Finally, the mixture was sequentially diluted to 0.2 M and 
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0.1 M NaCl by addition of 2.5 ml and then 5 ml of the same buffer containing 0.1% Nonidet P-

40, 20% glycerol, and 200 µg/ml BSA. After reconstitution, the mononucleosome substrate can 

be stored at 4 °C for up to 3 months. 

 

Poly ADP ribose Binding Assays. 

Recombinant proteins (100 ng or 200 ng as indicated in the figure) were incubated for 30 

min at 30 °C in 20 μL 40 mM HEPES-NaOH, pH 7.9, 0.1 M NaCl, 0.1 mM EDTA, 10% 

glycerol, and 32P-labeled PAR, purified as described [145]. Reaction mixtures were applied to 

nitrocellulose and washed overnight with TBS-T (TBS and Tween 20), which contain 100 mM 

NaCl. Bound 32P-labeled PAR was detected using a Typhoon phosphorimager. 

 

DNA Binding Assays 

Recombinant proteins (1 pmol) were incubated for 30 min at 30 °C in 15 μL 40 mM 

HEPES-NaOH, pH 7.9, 0.1 M NaCl, 0.1 mM EDTA, 10% glycerol, and 32P-labeled 601 DNA 

fragment. Reaction mixtures were applied to nitrocellulose and washed overnight with TBS-T 

containing 100 mM NaCl. Bound 32P-labeled 601 DNA fragment was detected using a Typhoon 

phosphorimager. 

 

ATPase Assays. 

ATPase assays were performed essentially as described [322]. Where indicated in figure 

legends, reaction mixtures contained ≈100 ng (1 pmol) DEAE-NPR fraction of Flag-Alc1 (wild-

type or mutants) from Sf9 cells. Unless indicated otherwise, reactions contained 100ng of DNA, 
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~115 ng (1 pmol) Parp1 (Trevigen), 34 μM nicotine adenine dinucleotide, and 150 ng 

nucleosomes. Nucleosomes were prepared by salt dialysis as described above, except that 601 

DNA was not radiolabelled [324]. Nucleic acid sequences used in the assays, wherever indicated, 

are as follows: 

50 base pair dsDNA: 

5’-CCGGCGCATAGAGCTCGTAGCCTCCTGTCAGGAGGCGCCTGGACG-3’ 

50 base pair ssRNA 

5’-AUCCGCGUAUCUCGAGCAUCGGAGGACAGUCCUCCGCGG-3’ 

20 base pair dsDNA 

5’-AGTGTCATATGCCTGAGATA-3’ 

20 base pair ssDNA 

5’-TATCTCAGGCATATGACACT-3’ 

18 base pair ssDNA 

5’-TATCTCAGGCATATGACA-3’ 

 

Nucleosome Remodeling Assays 

Mononucleosomes were reconstituted by dilution transfer from HeLa cell 

oligonucleosomes on a 32P-end-labeled 216-bp DNA fragment (601-lat Gal4) generated by PCR 

from pGEM3Z-601-Gal4 as described above [324, 325]. 1 pmol of ALC1 was incubated at 30 °C 

for 30 min with mononucleosomes (0.01 pmol of labeled mononucleosome and 0.25 pmol of 

unlabeled oligonucleosomes) in 20 mM HEPES-NaOH (pH 7.9), 50 mM NaCl, 4.5 mM MgCl2, 

2 mM DTT, 0.5 mM PMSF, 100 μg/ml BSA, 10% glycerol, 0.02% Triton X-100, and 0.02% 

Nonidet P-40. 2 µM ATP, 34 µM NAD+, and benzamide were included in reactions as indicated. 
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Reaction products were incubated for a further 30 min with 10 units of HhaI and resolved on gels 

containing 7% polyacrylamide (19:1 acrylamide:bisacrylamide), 7 M urea, 45 mM Tris borate, 

and 1 mM EDTA (pH 8.3). 

 

Immobilized Nucleosome and DNA Binding Assays 

50 pmol of 5′-biotinylated 601 DNA fragment or mononucleosomes assembled on the 

same DNA fragment were bound to 500 μl of streptavidin-coupled Dynabeads® (Invitrogen), 

washed, and resuspended in a final volume of 500 μl (100 fmol of DNA or mononucleosome/μl 

of beads). 0.5 pmol of PARP1, with or without 1 pmol of ALC1, was incubated with 0.5 pmol of 

immobilized nucleosomes or DNA in 50 μl of buffer containing 20 mM HEPES (pH 7.9), 50 

mMNaCl, 0.5% Nonidet P-40, 10% glycerol, 5 mM MgCl2, 1 mM DTT, 0.5 mM PMSF, 1 

mM ATP, 100 μg/ml BSA, and 34µM NAD+ as indicated in the figures or figure legends. 

Nucleosome- or DNA-bound intermediates on Dynabeads® were collected using DynaMagTM 

magnets (Invitrogen), washed with 200 μl of the same buffer, and transferred to a fresh 

microcentrifuge tube, and bound proteins were eluted with 1× SDS sample buffer. Template-

bound intermediates were fractionated by SDS-PAGE gel and transferred to PVDF membranes, 

and visualized using a Typhoon PhosphorImager (Molecular Dynamics) to detect 32P-PARylated 

proteins or by Western blotting using an Image Studio® imaging system. 

 

Isolation and Analysis of PAR 

ALC1·PARylated PARP1·nucleosome or PARylated PARP1·nucleosome intermediates 

were assembled in the presence of [32P]NAD+ (PerkinElmer Life Sciences) as described in the 

previous section. To isolate radiolabeled PAR, reaction products were digested in 60 μl of 20 
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mM EDTA, 0.1% SDS, 200 mM NaCl, 20 μg of GlycoBlue (Ambion), and 10 μg of proteinase 

K (Sigma) at 60 °C for 12 h. Following proteinase K digestion, reactions were brought to 

0.08 M KOH and incubated for a further 3 h at 60 °C to remove any remaining peptides bound to 

the PAR species. PAR was precipitated with 70% ethanol; resuspended in loading buffer 

consisting of 6 M urea, 0.02% bromphenol blue, and 0.02% xylene cyanol; and analyzed on gels 

containing 20 or 25% polyacrylamide (19:1 acrylamide:bisacrylamide), 7 M urea, 45 mM Tris 

borate, and 1 mM EDTA (pH 8.3). Reaction products were visualized using a Typhoon 

PhosphorImager and analyzed using ImageQuant TL software (Molecular Dynamics). 
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