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ABSTRACT 

Effective interventions that improve traumatic brain injury (TBI) outcomes are lacking, 

and concerns remain with current surgical and pharmacological treatments.  Consequently, there 

is a significant need for identifying novel non-surgical and non-pharmacological interventions 

that improve TBI outcomes.  Increasing production of neuroprotective molecules such as 

neuroglobin, vascular endothelial growth factor-A (VEGF-A), erythropoietin (EPO), and heme 

oxygenase-1 (HO-1) in the brain prior to TBI, or early after injury, may improve outcomes.  The 

purpose of this dissertation was to determine whether gene therapy (i.e., overexpression of the 

neuroglobin gene) and/or pre-TBI exercise could improve post-TBI sensorimotor and cognitive 

function in adult mice by increasing brain expression of neuroglobin, VEGF-A, EPO, and HO-1.  

Additional objectives included determining what cell types and brain regions demonstrated 

endogenous production of neuroglobin, VEGF-A, EPO, and HO-1 after gene therapy, exercise, 

and TBI.  The central hypothesis of this dissertation is that improved post-TBI sensorimotor and 

cognitive function are linked to gene therapy and/or pre-TBI exercise increasing the production 

of these neuroprotective proteins in brain regions responsible for movement (i.e., sensorimotor 

cortex) and memory (i.e., hippocampus).  Study results indicated significantly improved post-

TBI sensorimotor function in transgenic mice that overexpressed neuroglobin, and mice that 

engaged in 6 weeks of voluntary pre-TBI exercise.  Improved post-TBI sensorimotor function 

(i.e., reduction in sensorimotor deficits while walking) was associated with increased 

neuroglobin production in neurons and glial cells throughout the brain of transgenic neuroglobin 

overexpressing mice, and increased VEGF-A and EPO in sensorimotor cortex neurons of pre-

TBI exercise mice.  Pre-TBI exercise mice also showed improved post-TBI cognitive function 

(i.e., reduction in spatial learning memory errors), and increased VEGF-A production within 
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hippocampal neurons.  These findings suggest that improved post-TBI sensorimotor and 

cognitive function are linked to gene therapy and/or exercise increasing the expression of 

neuroglobin, VEGF-A, and EPO in brain regions responsible for movement and memory.  An 

increased production of these neuroprotective proteins was observed within brain neurons before 

TBI, or early after injury during the acute recovery phase.  Interventions that increase 

neuroglobin, VEGF-A, and EPO production in brain neurons prior to TBI, or early after injury, 

may improve outcomes by optimizing neuroprotection.  
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1.1. TRAUMATIC BRAIN INJURY (TBI) BACKGROUND: 

1.1.1. Definition, Mechanism of Injury, and Classification 

Traumatic brain injury (TBI) is a significant public health concern and major cause of 

death and disability.  A TBI occurs when an external mechanical force (e.g., direct impact to the 

head, rapid acceleration/deceleration of the head, blast waves, or penetration by a projectile) 

causes temporary or permanent brain damage and dysfunction.  TBI can be classified according 

to the anatomical involvement (i.e., diffuse or focal), injury mechanism (i.e., closed head trauma 

or open/penetrating head trauma), and the severity of injury (i.e., mild TBI or concussion, 

moderate TBI, or severe TBI) [1].  A neurological examination, assignment of a Glasgow Coma 

Score, and neuroimaging assist with the diagnosis and classification of TBI.  The Glasgow Coma 

Scale (GCS) is frequently used to classify the severity of injury by assessing the level of 

consciousness in a patient following head trauma.  The GCS is a 3-15 point grading scale used to 

evaluate verbal, motor, and eye-opening reactions to stimuli.  Higher GCS scores (i.e., 13-15) are 

representative of a mild TBI, while lower GCS scores (i.e., 3-8) are associated with severe TBI 

[1].  Another TBI classification model was developed by the Department of Defense and 

Department of Veteran Affairs which includes the GCS score, duration of post-traumatic 

amnesia, duration of loss of consciousness, and findings from neuroimaging to establish severity 

of injury [2].  Neuroimaging techniques including computerized tomography scanning and 

magnetic resonance imaging, are useful for visualizing structural brain damage, swelling, and 

hemorrhage resulting from moderate to severe TBI [3].  However, neuroimaging usually does 

not reveal any structural brain damage after mild TBI even though brain function is still impaired 

at the cellular and molecular level [3, 4].  A goal of current and future research is to identify and 

investigate potential TBI biomarkers in serum, cerebrospinal fluid, and urine [1, 5-7].  The 
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identification of TBI biomarkers may supplement existing tools (i.e., neurological examination, 

GCS, and neuroimaging) and further aid in injury classification and determining prognosis 

following TBI.      

1.1.2. Epidemiology 

Approximately 1.7 million TBIs occur in the United States annually, of which 1,365,000 

people are treated as emergency outpatients, 275,000 people are hospitalized, and an estimated 

52,000 people die [8].  Diffuse TBI is more common than focal TBI, and diffuse TBI is highly 

prevalent in closed head trauma cases [9].  70%-90% of all treated TBIs are diagnosed as a mild 

TBI [10, 11], and TBI rates are higher for males when compared to females in all age categories 

[12].  Children aged 0-4 years, older adolescents aged 15-19 years, and adults aged 75 years or 

older are more likely to sustain a TBI when compared to persons in other age groups [12].  

Adults aged 75 years or older have greater hospitalization and mortality rates in comparison to 

younger TBI patients [13].  Older aged adults also display worse functional outcome and long-

term recovery after TBI in comparison to younger patients [14, 15].  The most common causes of 

TBI are motor vehicle accidents, domestic violence, assault, and falls [10, 12].  In addition, 

participation in sporting events is a primary cause of TBI.  Approximately 1.6-3.8 million cases 

of sports-related concussion occur in the United States annually [12].  However, this estimation 

may be low since many sports-related head injuries are not recognized and medical treatment is 

not received [16].  Firearm usage and blast injuries from explosions in war zones are the main 

factors contributing to high TBI rates in active duty military personnel [17].  Child abuse is an 

unfortunate reason infants sustain a TBI.  The violent shaking of a baby can result in “shaken 

baby syndrome” and may lead to permanent brain damage or death [18, 19].  The incidence of 
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TBI remains high, and the numerous causes of TBI lead to increased mortality rates and poor 

recovery in certain populations.    

1.2. CLINICAL PICTURE: 

1.2.1. Signs and Symptoms of TBI 

TBI signs and symptoms are dependent on the type of injury sustained (i.e., diffuse or 

focal), region(s) of the brain affected, and injury severity.  Some signs and symptoms are 

instantly obvious after TBI, while others may appear during the hours, days, or weeks that 

follow.  Mild TBI is often underdiagnosed, difficult to define, and the symptoms are highly 

variable [20].  An individual may initially lose consciousness for a few seconds or minutes as a 

consequence of mild TBI.  Loss of consciousness has been suggested to occur due to rotational 

forces applied at the connection of the upper midbrain and thalamus [21].  These rotational 

forces cause a temporary disruption of the electrophysiological and intracellular activities of 

reticular activating system neurons that are important for maintaining alertness [21].  In addition, 

loss of consciousness may also result from self-limited cortical seizures, or rapid increases in 

intracranial pressure [21].  In many cases, a loss of consciousness does not occur after mild head 

trauma [16].  However, many other symptoms of mild TBI including blurred vision, tinnitus, 

headache, confusion, mood changes, trouble concentrating, amnesia, dizziness, impaired motor 

coordination, difficulty balancing, fatigue, and alterations in sleep patterns may be evident [10, 

16, 22].   

A patient diagnosed with moderate or severe TBI may display many of the 

aforementioned mild TBI symptoms in conjunction with nausea, vomiting, convulsions, aphasia 

(i.e., word-finding difficulty), slurred speech, dysarthria (i.e., disordered speech due to facial 

muscle weakness), weakness, numbness, paralysis, behavioral issues, alexithymia (i.e., difficulty 
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identifying and describing the emotions of others), mydriasis (i.e., dilated pupil), and anisocoria 

(i.e., unequal pupil size) [4, 23-26].  Hematoma, hemorrhage, and edema combine to exacerbate 

swelling of the brain and increase intracranial pressure [4, 23, 24, 27].  Increased intracranial 

pressure may decrease the level of consciousness in a TBI patient, and cause weakness or 

paralysis on one or both sides of the body [4, 23, 24].  Other classic signs of increased 

intracranial pressure include unequal pupil size, or a dilated pupil that does not constrict in 

response to light [4, 23, 28].  These phenomena occur as increased intracranial pressure damages 

the optic and oculomotor nerves involved in controlling the diameter of the pupil [28].  In 

addition, Cushing’s triad of hypertension, respiratory depression, and bradycardia may manifest 

in the terminal stages of severe TBI as a result of increased intracranial pressure [4, 29].  

Persistent increases in intracranial pressure greater than 20 mm Hg, or decreases in cerebral 

perfusion pressure to less than 50-60 mm Hg, have been associated with herniation, cerebral 

infarction, and death after severe TBI [30, 31].   

1.2.2. TBI Complications 

A host of medical complications may arise after TBI.  The risk for and duration of 

complications is increased with more severe head trauma.  A prolonged state of unconsciousness 

(i.e., coma and vegetative state), and abnormal posturing (i.e., involuntary flexion or extension of 

the arms and legs) may be evident following severe TBI [4, 26, 32].  Diffuse axonal injury (i.e., 

widespread damage to axonal tracts projecting to and from the cerebral cortex) is a main cause of 

coma [33] and persistent vegetative state [34], and lesions in the corpus callosum and brainstem 

are frequent post-mortem neuropathological findings within the brain of TBI patients that 

survived for extended periods of time in altered states of consciousness [34].  Prolonged bed rest 

in conjunction with vascular damage can lead to the development of thrombi and emboli, which 
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increases the risk of stroke after TBI [35].  Cardiac arrhythmias are frequent [36, 37], and 

mechanical ventilation may be required to manage primary respiratory failure in severe TBI 

patients [38].  Head trauma increases the risk of seizures which may ensue during the weeks, 

months, or years after TBI [4], and patients may experience temporary or permanent alterations 

in vision, hearing, smell, taste, and touch [4, 22].  Skull fractures and penetrating head wounds 

tear the meninges that surround and protect the brain.  As a result, bacteria may enter the brain 

causing meningitis and systemic infection [39].  Another consequence of TBI is disrupted 

pituitary gland function, which can cause transient hypopituitarism [40].  Hypopituitarism 

occurring secondary to TBI creates systemic hormonal imbalances that are obvious immediately, 

and have the potential to last for up to one year after injury [40].  TBI survivors may have trouble 

communicating with, and understanding family, friends, and care providers [41].  Behavioral 

problems (e.g., risky behavior, verbal and physical outbursts, lack of awareness, and difficulty 

with self-control) and emotional changes (e.g., altered self-esteem, irritability, anger, anxiety, 

depression, and suicidal thoughts) are common following TBI [42, 43].  Cognitive and motor 

dysfunction are devastating long-term complications resulting from TBI.  Many human studies 

have reported reduced long-term (i.e., >3 months) cognitive performance after TBI on tasks that 

evaluate attention [44-46], memory [47, 48], executive function [46, 49], and information 

processing [50, 51].  Ataxia (i.e., uncoordinated muscle movements), myoclonus (i.e., 

involuntary muscle twitching), and reduced range of movement and motor control are movement 

disorders that may develop due to TBI [52, 53].  TBI is associated with the development of 

neurological disorders and neurodegenerative diseases later in life.  A history of head trauma has 

been linked to an increased risk of developing psychiatric disorders [54], epilepsy [12], and 

Parkinson’s disease [55].  The incidence of Alzheimer’s disease is significantly higher in 
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individuals previously diagnosed with TBI [56], and sustaining multiple concussions has been 

correlated to the development of chronic traumatic encephalopathy (CTE) in athletes [8, 57, 58].  

The progressive neurological deterioration observed in CTE is due to several brain changes 

including; atrophy of the cerebral hemispheres, medial temporal lobe, thalamus, mammillary 

bodies, and brainstem, and enlargement of the ventricles [57, 58].  In addition, post-mortem 

examination of CTE brain tissue has often revealed an abnormal aggregation of various proteins 

including; tau, alpha-synuclein, beta-amyloid, transactive response DNA binding protein 43, 

presinilin-1, and beta-site amyloid precursor protein cleaving enzyme-1 throughout a number of 

brain regions [57-60].  An abnormal accumulation of these proteins compromises neuronal and 

synaptic function, impairs axonal transport, and promotes the formation of neurofibrillary 

plaques and tangles in the brain [57].  These neuropathological findings have been associated 

with many physical, cognitive, emotional, and behavioral changes in individuals with a history of 

TBI [57-59]. 

1.3. TBI PATHOPHYSIOLOGY: 

1.3.1. Primary and Secondary Injury Responses 

Debilitating post-TBI outcomes can be attributed to the combination of primary and 

secondary injury responses.  Primary injury responses (e.g., contusion, laceration, hemorrhage, 

axon transection, and diffuse axonal injury) are defined by the immediate mechanical damage 

occurring at the moment of impact, and secondary injury responses (e.g., glutamate 

excitotoxicity, disturbed ionic gradients, metabolic disruption, mitochondrial dysfunction, 

reactive oxygen species formation, neuroinflammation, and hypoxic-ischemic damage) progress 

over hours, days, and months following the initial trauma [20, 61-63].  These secondary injury 

responses can exacerbate damage caused by the primary injury, and negatively affect recovery 
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from TBI [20].  The combination of secondary injury responses is the main cause of death in 

hospitalized TBI patients [23].  For those patients that survive a TBI, the progression of 

secondary injury responses is what primarily determines the extent of brain damage, neurological 

dysfunction, and disability.  Therefore, TBI should not be thought of as just an acute event, but 

rather a prolonged series of pathophysiological responses that ultimately cause neurological 

dysfunction and poor outcome following injury.     

1.3.2. Neurometabolic Cascade of Secondary Injury Responses 

A cascade of molecular, biochemical, and cellular events in multiple intracellular 

pathways promotes neuron death and dysfunction within the brain post-TBI.  TBI induces a 

widespread and massive depolarization of neurons, glial cells, and cerebral vascular endothelial 

cells.  The extensive depolarization of neurons throughout the brain promotes the release of the 

excitatory neurotransmitter glutamate from pre-synaptic cells.  Extracellular concentrations of 

glutamate increase as stored glutamate is released from pre-synaptic vesicles into the synaptic 

cleft [64, 65].  Excessive extracellular glutamate contributes to neuron death and dysfunction 

after TBI [64].  Binding of glutamate to post-synaptic N-methyl-D-aspartate (NMDA) and alpha-

amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors leads to further 

neuronal depolarization, ionic fluxes (i.e., efflux of potassium [K
+
] and influx of calcium [Ca

2+
]), 

and adaptations in cellular physiology [64, 65].  As a result of damage to neuronal membranes 

and axons, voltage-dependent K
+ 

channels open which substantially increases extracellular K
+ 

levels [65, 66].  In addition, Ca
2+

 enters the cell as glutamate continues to activate post-synaptic 

NMDA receptors [67].  Continued neuronal depolarization causes calcium to accumulate in 

neurons and axons for 2 to 4 days post-TBI [67].  Excessive intracellular calcium may activate 

apoptotic genetic signals, and initiate neuron death through an over-activation of phospholipases, 
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plasmalogenase, calpains, protein kinases, nitric oxide synthase, and endonucleases [66].  The 

widespread and massive depolarization of neurons in the brain is subsequently followed by a 

wave of neuronal suppression (known as spreading depression) [68].  Various symptoms may be 

noticeable during a spreading depression state including; loss of consciousness, amnesia, and 

cognitive dysfunction after sustaining a TBI [66].   

Whole brain metabolism is also altered following TBI.  Initially, a rapid increase in 

glucose metabolism is observed as adenosine tri-phosphate dependent sodium-potassium (ATP-

Na
+
/K

+
)
 
pumps are activated in an effort to restore normal intracellular and extracellular ionic 

balance [65, 66].  This initial acceleration in glucose uptake has been shown to persist for 

approximately 30 minutes after TBI in the injured cerebral cortex and hippocampus of rats [69].  

However, after the initial period of increased glucose uptake, a period of depressed glucose 

utilization occurs creating a cellular energy crisis [65].  In humans, positron emission 

tomography scanning has shown that cerebral glucose metabolism decreases for 2-4 weeks after 

TBI [70].  This decrease in metabolism transpires because TBI diminishes cerebral blood flow, 

and the supply of glucose cannot meet the cellular demand for glucose within the traumatized 

brain [66].  When glucose supply is low, cognitive function is impaired [71, 72].     

Mitochondrial dysfunction further contributes to the cellular energy crisis after TBI.  

Mitochondria produce energy (i.e., ATP) in cells via oxidative phosphorylation that occurs in the 

electron transport chain.  After TBI, mitochondrial damage inhibits oxidative phosphorylation, 

and cells fail to generate ATP aerobically from the catabolism of glucose [73, 74].  Impaired 

mitochondrial function causes cells to rely more on anaerobic glycolysis for the generation of 

ATP.  When anaerobic glycolysis is accelerated, lactate production increases and lactate 

accumulates.  This phenomenon of increased lactate production and accumulation has been 
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observed following both ischemic [75] and concussive brain trauma [76].  Accumulation of 

lactate can disturb neuronal function by promoting acidosis, cell membrane damage, altered 

blood-brain barrier (BBB) permeability, and cerebral edema [65, 66].  However, lactate may also 

be beneficial for energy starved cells.  It has been suggested that excess lactate produced by glial 

cells may be transported into neighboring neurons as an alternative fuel source to glucose [77].  

A decreased reliance on oxidative metabolism and energy failure also transpire due to excessive 

intracellular calcium being sequestered in mitochondria [73].  Increased mitochondrial calcium 

concentrations facilitate the formation of reactive oxygen species (ROS) such as peroxynitrite 

and superoxide anion [65, 66, 78].  An increased production of ROS disrupts amino acid 

formation, increases lipid peroxidation, triggers DNA fragmentation, and leads to secondary 

neuron death [78].   

Another component of TBI pathophysiology is neuroinflammation.  Post-TBI cerebral 

inflammatory responses include leukocyte recruitment, up-regulation and release of various 

cytokines and chemokines, and microglial cell activation [79].  The BBB is damaged following 

TBI, and circulating neutrophils, monocytes, and lymphocytes infiltrate into the brain 

parenchyma during the acute post-TBI period [80-83].  These activated blood-borne immune 

cells secrete a variety of mediators including; prostaglandins, free radicals, complement factors, 

and pro-inflammatory cytokines and chemokines (e.g., tumor necrosis factor-alpha [TNF-α], 

interleukin-6 [IL-6], interleukin-one beta, monocyte chemoattractant-one protein, regulated on 

activation normal T-cell expressed and secreted, and inducible nitric oxide synthase) [84, 85].  

These mediators are involved in the communication between resident and peripheral immune 

cells, which results in the mobilization of more immune cells and glial cells to the injury site(s) 

[62].  As time passes, increased production of anti-inflammatory cytokines and chemokines 
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eventually suppresses both humoral and cellular immune activation.   Another response that 

occurs as a result of inflammation after TBI is the activation of resident microglial cells within 

the brain.  Microglial cells are activated to remove cellular debris, inhibit inflammatory 

processes, and promote tissue remodeling [62].  However, some activated microglial cells release 

neurotoxic substances including glutamate, and reactive oxygen and nitrogen species [86].  The 

combination of leukocyte infiltration, increased expression of pro-inflammatory cytokines and 

chemokines, and exacerbated activation of microglial cells and astrocytes contributes to 

neuroinflammation, neuron death, and poor outcome following TBI [62, 83, 84].   

Endogenous neuroprotective mechanisms are altered after TBI due to hypoxia and 

ischemia within the brain [87].  Hypotension, hypoxia, and ischemia are common secondary 

injury responses that have been associated with poor outcome and increased mortality rates post-

TBI [87-89].  Cerebral hypotension and hypoxia have been reported to occur with a frequency of 

44% in TBI patients [90].  Cellular damage resulting from secondary cerebral ischemia has been 

observed in more than 90% of patients that died from TBI [89].  Hypoxia and ischemia occur 

following the initial head trauma (i.e., primary injury response) that disrupts the BBB [91].  

Disruption of the BBB allows for penetration of neurotoxic substances into the brain, resulting in 

vasogenic edema and increased intracranial pressure [89, 92].  Increased intracranial pressure 

reduces cerebral blood flow leading to secondary hypoxia and ischemia [88, 89].  Active neurons 

in the brain require an abundant amount of oxygen [93].  When oxygen supply is insufficient, 

significant stress is placed on cells within the brain since oxygen is required for glucose 

combustion, ATP production, and cell survival in aerobic organisms [93].  As a result of hypoxic 

stress, intracellular signal transduction pathways are activated to protect neurons and minimize 

cellular damage occurring post-TBI.  In humans and other mammals, the transcriptional response 
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to hypoxic stress is regulated via hypoxia inducible factor-1 alpha (HIF-1α) [87, 94, 95].  HIF-1α 

is a transcription factor that directly activates many genes involved in translating proteins that 

enhance neuroprotection and brain repair; including, vascular endothelial growth factor – A 

(VEGF-A), erythropoietin (EPO), and heme oxygenase – 1 (HO-1) [87, 95, 96].  Although the 

molecular mechanisms are unclear, HIF-1α is also involved in production of the protein 

neuroglobin, which is thought to supply oxygen and protect neurons during periods of hypoxia 

[97-100].  An understanding of HIF-1α pathway activity and the functions of potentially 

neuroprotective proteins following TBI is important since pO2 monitoring has demonstrated that 

hypoxia is a common secondary injury response in TBI patients [18]. 

1.4. NEUROPROTECTIVE PROTEINS AND TBI: 

1.4.1. Hypoxia Inducible Factor (HIF) 

Hypoxia Inducible Factor (HIF) is a heterodimeric protein consisting of an alpha subunit 

(HIF-α) and a beta subunit (HIF-β) [94, 95, 101].  Within the HIF family, three HIF-α subunits 

(HIF-1α, HIF-2α, and HIF-3α) have been identified [102].  HIF-2α and HIF-3α are only 

expressed within certain cells (e.g., endothelial cells, type II pneumocytes, renal interstitial cells, 

and liver parenchymal cells) [94].  In contrast, HIF-1α is known to be expressed throughout the 

body in all cell types, including neurons and glia within the brain [94, 103].  Nuclear factor-

kappa beta (NF-κβ) and early growth response protein-1 (Egr-1) are transcription factors that 

directly regulate HIF-1α expression [104, 105].  HIF-1α is controlled post-translationally by a 

group of enzymes (prolyl hydroxylase 1 [PHD1], prolyl hydroxylase 2 [PHD2], and prolyl 

hydroxylase 3 [PHD3]) collectively known as prolyl hydroxylases (PHDs) [94, 101, 104, 106].  

When oxygen is sufficiently available to cells (i.e., normoxia), PHDs degrade HIF-1α in the 

cytoplasm [94, 101, 106].  HIF-1α degradation occurs when PHDs catalyze the hydroxylation of 
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proline residues within the alpha sub-unit [94, 101, 104].  Following hydroxylation of the proline 

residues, von-Hippel Lindau (VHL) protein binds to HIF-1α.  VHL binding marks the HIF-α 

sub-unit for proteosome degradation [106].  However, when oxygen supply is low during 

hypoxic stress, a reduction in the hydroxylation activity of PHDs occurs, and HIF-α accumulates 

in the cytoplasm of the cell [101, 106].  HIF-1α heterodimers are then formed when HIF-α sub-

units escape proteosomal degradation by binding to HIF-β sub-units [101, 104].  HIF-1α may 

then translocate into the nucleus of cells and bind to hypoxia-response elements in the promoter 

region of downstream target genes [107].  The binding of HIF-1α to hypoxia-response elements 

initiates the transcription of many genes (e.g., VEGF-A, EPO, and HO-1) involved in supporting 

cell survival, neurogenesis, and angiogenesis [87, 95, 96].  In addition, several studies have 

reported that HIF-1α is required in conjunction with other proteins for inducing the up-regulated 

transcription of the neuroglobin gene during hypoxic conditions such as TBI [97-100].  HIF-1α 

has also been shown to increase the expression of cellular glucose transporters (GLUT-1 and 

GLUT-3), and the glycolytic pathway enzyme phosphofructokinase (PFK) [108-110].    

Mouse models of TBI have demonstrated an endogenous increase in HIF-1α expression 

at 3 days post-TBI in the injured cortex of adult mice [87].  This post-TBI increase in HIF-1α is 

suggested to be a neuroprotective response [87].  Research has shown that neurons are protected 

when HIF-1α expression is increased by selectively inhibiting the activity of PHDs [111].  In 

contrast, inactivating HIF-1α within neurons further aggravates cellular deterioration following 

hypoxic brain injury [87, 103]. 

1.4.2. Vascular Endothelial Growth Factor-A (VEGF-A) 

Vascular Endothelial Growth Factor-A (VEGF-A) is an important neuroprotective 

homodimeric glycoprotein in the HIF-1α pathway [94, 112-115].  HIF-1α is the transcription 



14 
 

factor that stimulates the production and release of VEGF-A from many cell types (e.g., 

endothelial cells, neurons, glial cells, macrophages, and cancer cells) during hypoxic cellular 

conditions [115-117].  Upon release from hypoxic cells, circulating VEGF-A proteins bind to the 

tyrosine kinase receptors (i.e., vascular endothelial growth factor receptor-1 [VEGFR-1] and 

vascular endothelial growth factor receptor-2 [VEGFR-2]), which are located on the surface of 

cells [118].  VEGFR-1 receptors are located on endothelial cells, neurons, hematopoietic stem 

cells, monocytes, and macrophages [118-120].  VEGFR-2 receptors are expressed on vascular 

and lymphatic endothelial cells, megakaryocytes, hematopoietic stem cells, and neurons [118, 

119].  Dimerization and phosphorylation occur after VEGF-A binds to its receptor, and a number 

of intracellular signaling pathways (e.g., phosphatidylinositol-3-kinase/protein kinase B 

[PI3K/AKT], p38 mitogen-activated protein kinase [p38MAPK], and extracellular signal-

regulated kinase [Raf/MEK/Erk]) are activated to promote the proliferation, migration, and 

survival of endothelial cells [118].  VEGF-A exerts these effects on endothelial cells to facilitate 

brain repair [87] and angiogenesis when cells are not receiving enough oxygen [114, 121].  In 

addition to the angiogenic effects of VEGF-A, studies also show that VEGF-A stimulates the 

growth of new neurons and inhibits neuronal apoptosis [122, 123].   

An up-regulation in VEGF-A expression occurs within the brain following stroke [117] 

and TBI [87] due to cerebral hypoxia and ischemia.  At 3 days post-TBI, significant increases in 

VEGF-A mRNA and protein expression have been observed in the cerebral cortex of mice [87].  

Significant increases in VEGF-A protein levels have also been noted in the dentate gyrus of the 

hippocampus after TBI [124].  The increased production of VEGF-A in response to TBI is 

critical for promoting neuron survival, neurogenesis, and the development of new blood vessels 

in and around the lesion site [125, 126].  A VEGF-A mediated increase in angiogenesis restores 
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the supply of oxygen rich blood to damaged brain tissues, thus enhancing neuronal survival and 

accelerating healing [117].  Blocking the endogenous VEGF-A response with antibodies has 

been demonstrated to inhibit brain repair by impeding revascularization and astroglial 

proliferation [127].  Furthermore, inhibition of VEGFR-2 receptors prior to, and after TBI, leads 

to significantly larger lesion areas in the cerebral cortex and increased neuronal and glial cell 

death [128]. 

1.4.3. Erythropoietin (EPO) 

Erythropoietin (EPO) is a glycoprotein comprised of four glycans that are attached to a 

single 165 amino acid chain [129].  The main site of EPO production is the kidneys [129, 130].  

However, various cell types (e.g., neurons, astrocytes, oligodendrocytes, and microglial cells) in 

the brain also express EPO and its receptor [130-132].  EPO is vital for erythropoiesis, and the 

protein also has anti-apoptotic, anti-inflammatory, antioxidative, and angiogenic properties [129, 

130, 132-134].  In addition, EPO appears to target neural stem cells, and thus has been suggested 

to play a role in neurogenesis [135].  In hypoxic and ischemic organs and tissues, EPO synthesis 

is up-regulated via HIF-1α [87, 131-133, 136].  The production of EPO is directly correlated 

with blood and oxygen supply in brain tissue. When the brain is lacking blood or oxygen, HIF-

1α initiates an increased production of EPO to protect neurons [137].  To confer neuroprotection, 

EPO binds to the extracellular EPO receptor causing its homodimerization.  Once EPO is bound 

to its receptor, Janus Kinase-2 (JAK2) is phosphorylated which leads to the subsequent 

activation of several downstream neurotrophic and neuroprotective signal transduction pathways 

including; NF-κβ, Ras-mitogen activated protein kinase (MAPK), phosphatidylinositol-3-

kinase/protein kinase B (PI3K/AKT), and the transcription factor signal transducers and 

activators of transcription-5 (STAT-5) [130].  The JAK-STAT pathway plays a critical role in 
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EPO induced neuroprotection, and in vivo studies have shown that administration of a JAK2 

inhibitor eliminates the neuroprotective effects of EPO [138, 139].   

A large increase in EPO expression occurs in the brain of rodents following TBI [87, 140, 

141].  Significant increases in cerebral cortex EPO mRNA and protein expression have been 

observed 3 days after inducing TBI in mice [87].  EPO has been shown to be neuroprotective in 

animal models of TBI [142], spinal cord injury [143], stroke [144], and autoimmune 

encephalomyelitis [145].  EPO is known to elicit anti-apoptotic actions through inhibition of 

caspase activity, up-regulation of Bcl-2 family proteins, and by decreasing glutamate 

excitotoxicity [87].  In ischemic tissue, EPO diminishes the production of pro-inflammatory 

cytokines [146], and inhibiting the endogenous EPO response has been shown to worsen 

neuronal injury resulting from hypoxia and ischemia [147]. 

1.4.4. Heme Oxygenase-1 (HO-1) 

Heme oxygenase-1 (HO-1) is an anti-oxidative and anti-inflammatory enzyme 

responsible for converting heme to biliverdin, carbon monoxide, and iron [148, 149].  These 

products of the HO-1 reaction have several important biochemical roles.  Iron is an important 

substrate involved in the synthesis of new heme, and carbon monoxide and biliverdin function as 

signaling molecules and antioxidants [150].  HIF-1α, NF-κβ, MAPK, PI3K, and nuclear factor 

erythroid-2 related factor-2 (Nrf2) are transcription factors capable of inducing expression of the 

HO-1 gene [150-152].  High concentrations of HO-1 are found in the liver and spleen [153, 154].  

During normoxic conditions, HO-1 is not expressed in the brain [150].  However, production of 

HO-1 occurs within the brain in response to heat shock, oxidative stress (e.g., hypoxia), cerebral 

ischemia, or glutamate excitotoxicity [150].  Acting as antioxidants, HO-1 and its products 

protect cells from oxidative stress, hypoxia, and ischemia [87].  It has been suggested that HO-1 
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protects neurons in the brain from ischemia/reperfusion injury by increasing production of brain 

derived neurotrophic factor (BDNF), and through up-regulation of the PI3K/AKT anti-apoptosis 

signal transduction pathway [155].  Additionally, HO-1 prevents cellular apoptosis by 

suppressing the activation of caspase-3 [155]. 

The expression of HO-1 increases in the injured cortex of mice after TBI [87].  HO-1 is 

induced in microglia and astrocytes subsequent to brain hemorrhage, which is a hallmark feature 

of TBI [156, 157].  Increased expression of HO-1 in microglia and astrocytes may aid in 

improving resistance to oxidative stress and secondary injury after TBI [157].  HO-1 is 

neuroprotective in many other pathophysiological conditions including; 1-Methyl-4-phenyl-

1,2,3,6-tetrahydropyridinium (MPP+) neurotoxicity [149] and stroke [158].  Disruption of 

endogenous HO-1 responses has been linked to worse outcomes in many central nervous system 

disorders [148].  However, pharmacological induction of HO-1 has elicited beneficial effects in 

many pathologic states including; inflammatory processes, atherosclerosis, carcinogenesis, 

ischemia-reperfusion injury, and degenerative diseases [152].  In addition, the neuroprotective 

effects of antioxidants including resveratrol and sulforaphane depend on induction of HO-1 [159, 

160].         

1.4.5. Neuroglobin 

Neuroglobin is the most recently characterized member of the globin family (e.g., 

hemoglobin, myoglobin, cytoglobin, and neuroglobin) of genes that maintain cellular oxygen 

homeostasis.  Neuroglobin is an intracellular monomeric hypoxia-inducible protein that binds 

and delivers oxygen to brain tissue [161].  In vertebrates, neuroglobin is widely expressed 

throughout the peripheral and central nervous systems [161-164].  Neuroglobin is present in the 

cytoplasm of neurons and astrocytes in distinct brain regions including the cerebral cortex, 
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hippocampus, amygdala, thalamus, hypothalamus, cerebellum, and medulla oblongata [162, 165, 

166].  The expression of neuroglobin in neurons and astrocytes is low under normal 

physiological conditions [161].  However, neuroglobin expression increases in hypoxic neurons 

[100], and in reactive astrocytes located within regions of the brain near pathologies in mouse 

models of TBI, cerebral malaria, and experimental autoimmune encephalitis [166].  The 

mechanisms by which neuroglobin is induced have not been fully elucidated, although 

correlative evidence suggests that HIF-1α is involved in the induction of neuroglobin in response 

to hypoxic stress.  In vitro research has shown that decreasing HIF-1α reduces neuroglobin 

protein expression, while forced overexpression of HIF-1α increases neuroglobin levels in 

cultured neurons [98].  An in vivo study demonstrated that endogenous HIF-1α suppression 

significantly attenuates hypoxia-induced increases in neuroglobin protein expression [99].  How 

HIF-1α modulates neuroglobin gene expression remains unclear because unlike VEGF-A and 

EPO, there are no conserved hypoxia-response elements for HIF-1α binding in the promoter 

region of the neuroglobin gene [98].  However, NF-κβ is known to interact with the neuroglobin 

promoter in mice [99], and it has been proposed that HIF-1α may form a complex with NF-κβ to 

initiate the transcription of neuroglobin indirectly during hypoxic conditions [97].  Egr1 and 

specificity protein-1 (Sp1) are other transcription factors capable of regulating neuroglobin 

expression [99].  Once translated, intracellular neuroglobin protein exerts many neuroprotective 

effects via different molecular mechanisms which are not completely understood.    

An increased endogenous production of neuroglobin is observed after hypoxia and 

ischemia, and this response augments neuron survival [167].  Thus, neuroglobin is believed to be 

neuroprotective in experimental models of stroke [100, 168] and TBI [164, 169].  During 

hypoxic and ischemic conditions, neuroglobin plays a key role in the detoxification of reactive 
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oxygen and nitrogen species, and apoptosis protection [161, 170-172].  An enhanced formation 

of reactive oxygen and nitrogen species is known to occur when cytochrome c is released into 

the cytosol from the mitochondrial electron transport chain [170].  The release of cytochrome c 

leads to activation of caspase enzymes that interact with apoptotic protease-activating factor 1 

(APAF-1) and initiate apoptosis [170].  Neuroglobin protects neurons from reactive oxygen and 

nitrogen species damage, and inhibits intrinsic apoptosis pathways by preventing the release of 

cytochrome c from mitochondria [170, 171, 173].  In addition, elevating neuroglobin 

concentrations in cultured human neuronal cells has been shown to decrease oxidative stress via 

activation of phosphoinositide-3 kinase (PI3K), and increase ATP levels by activating 

mitochondrial ATP sensitive potassium channels [174].  Neuroglobin also positively modulates 

metal homeostasis in hypoxic neurons that exhibit increased intracellular calcium, iron, copper, 

and zinc levels [175].  Increased concentrations of these metals causes inflammation, 

mitochondrial dysfunction, uncontrolled reactive oxygen species formation, altered 

neurotransmitter release, neurotoxicity and cell death [175].  Neuroglobin prevents calcium 

influx and decreases the cellular uptake of iron, copper, and zinc which ultimately enhances cell 

viability and inhibits necrosis and apoptosis [175].   

1.4.6. Brain-Derived Neurotrophic Factor (BDNF)  

Brain-derived neurotrophic factor (BDNF) is an intracellular protein manufactured by the 

endoplasmic reticulum of cells located within the brain, retina, motor neurons, heart and spleen 

[176-179].  In the brain, BDNF is highly active in regions that are important for learning and 

memory including; the cerebral cortex, hippocampus, and basal forebrain [180, 181].  An influx 

of intracellular Ca
2+

, and the ensuing membrane depolarization, induces the transcription of 

BDNF via activation of cyclic adenosine monophosphate response element-binding protein 
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(CREB) family transcription factors [182].  Furthermore, HO-1 was recently shown to up-

regulate BDNF protein production in the hippocampus, although the exact signaling pathway 

involved in the activation of BDNF via HO-1 remains unknown [155].  Once translated, BDNF 

proteins can bind to tyrosine kinase B (TrkB) receptors, and several intracellular signaling 

pathways (i.e., PI3K/AKT and MAPK) are triggered which facilitates neurogenesis, 

synaptogenesis, neuronal survival, and neuroprotection from trauma and disease [183-185].  In 

addition, the BDNF protein is involved in nervous system development, and regulating synaptic 

plasticity in the brain of adults by stimulating the movement of axons in conjunction with 

adjusting the size and number of dendrite spines projecting from neurons [186].      

Rodent models of TBI demonstrate that BDNF mRNA expression is increased in the 

cerebral cortex and hippocampus hours after brain injury [187, 188].  Increases in BDNF protein 

have also been observed within the cerebral cortex and hippocampus for several days after TBI 

[187, 189].  A study by Rostami et al., revealed an even longer period of increased BDNF 

protein expression in brain regions contralateral to the injury site for up to 2 weeks following 

penetrating TBI [190].  The up-regulation of BDNF after injury is thought to be a 

neuroprotective and neuroregenerative response, as BDNF is involved in repairing neurons and 

restoring neural connectivity in damaged regions of the brain [185, 191]. 

1.4.7. Insulin-Like Growth Factor-1 (IGF-1) 

Insulin-like growth factor-1 (IGF-1) is a growth factor that is structurally related to pro-

insulin, and has been shown to be a neuroprotective protein that is involved in brain development 

and neuron survival [192-194].  The liver, brain, muscles, and skin all produce IGF-1 in response 

to growth hormone release from the anterior pituitary gland [195, 196].  However, 70% of the 

total circulating IGF-1 within the body is produced by the liver hepatocytes [195].  Circulating 
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IGF-1 can enter the brain and bind to both neuronal IGF-1 receptors and insulin receptors [195].  

Once IGF-1 is bound to its receptor, multiple intracellular signal transduction cascades involved 

in cell proliferation, cell survival, and metabolism are activated including the PI3K/AKT 

pathway, ERK/MAPK pathway, and the c-Src non-receptor tyrosine kinase [197].   

There is a direct correlation between a low concentration of circulating IGF-1 and 

decreased cognitive function in healthy elderly individuals [198].  Gunnell et al., conducted a 

longitudinal study of children and found that there is a positive correlation between serum IGF-1 

concentration and intelligence quotient [199].  The results from this study suggest that IGF-1 is a 

critical player in brain development and cognitive function.  Relationships also exist between 

IGF-1 levels and cognitive function after TBI.  Head trauma can disrupt pituitary gland function, 

resulting in hypopituitarism, which reduces the secretion of growth hormone into the blood and 

significantly decreases circulating levels of IGF-1 [40, 200].  The concentration of IGF-1 in both 

serum and cerebrospinal fluid is decreased in adult patients with severe TBI [201], and 

hippocampal neuron loss and cognitive dysfunction have been associated with a decreased 

concentration of circulating IGF-1 after TBI in rats [194].  However, in contrast to the decrease 

observed in circulating IGF-1 levels post-TBI, the expression of IGF-1 in the brain increases as a 

neuroprotective response to head injury [194]. 

1.5. PROGNOSIS: 

Prognosis for recovery from TBI is highly dependent upon the severity of injury.  Mild 

TBI symptoms typically resolve within a few weeks or months after injury, and permanent or 

long-term disability rarely results [202].  Athletes and younger individuals may recover from 

mild TBI within a few days [22].  Outcomes are worse in patients diagnosed with moderate and 

severe TBI.  After these patients have been discharged from the hospital, a Glasgow Outcome 
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Scale (GOS) score is generally determined by a clinician at one or multiple time points during 

the recovery process.  The GOS is a five level scale often used to objectively evaluate recovery 

in patients that sustain more severe head trauma [203, 204].  The GOS also assists with 

predicting the course of rehabilitation, and return to activities of daily living and work.  Possible 

outcomes on the five level GOS are good recovery (i.e., return to previous level of function), 

moderate disability (i.e., patient is capable of self-care), severe disability (i.e., patient is 

incapable of self-care), persistent vegetative state (i.e., no cognitive function), and death.  An 

eight level extended version of the GOS was also developed to further classify global outcome in 

TBI survivors [205].  The risk of death or severe disability after moderate TBI is estimated to 

occur in 10%-20% of cases [27].  The mortality rate for patients diagnosed with severe TBI is 

approximately 25%-33% in the United States [4].  However, greater than 50% of adults 

diagnosed with severe TBI return to their previous level of function or have moderate disability 

[4].  Severe TBI patients that are older than 65 years have a 72% increased risk of death in 

comparison to younger patients [206].  Severe TBI mortality rates are lower in children over the 

age of 5 years when compared to adults, and children display better immediate and long-term 

recovery irrespective of injury severity [207].  In TBI survivors, 85% of recovery from moderate 

and severe TBI occurs during the initial 6 months after injury [63].  Small improvements in 

neurological function continue over the course of several years [4].  During recovery from TBI, 

cognitive deficits (e.g., impaired attention, concentration, and memory) are a more common 

cause of disability in comparison to sensory impairments or motor dysfunction [4].  Finnanger et 

al., observed significant deficits in cognitive function among moderate and severe TBI patients 1 

year after injury [208].  This study also reported that motor function was reduced only in severe 

TBI patients at 1 year post-injury [208].  Rehabilitation is important for recovery of cognitive 
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and motor function in TBI patients with persistent deficits.  In addition, non-pharmacological 

and pharmacological treatments aimed at minimizing secondary injury responses can improve 

overall prognosis. 

1.6. POST-TBI TREATMENT: 

1.6.1. Treatment Goals and Concerns 

Unfortunately, with the exception of routine medical intervention and care, no successful 

treatment options are currently available for promoting functional recovery from TBI in humans 

[209].  Preventing the progression of secondary injury responses is the main goal of treatment 

during the acute stage of TBI since damage occurring from the initial head trauma is not 

reversible [209].  The primary concerns during this stage are controlling raised intracranial 

pressure, maintaining adequate cerebral blood flow, and ensuring proper oxygen supply to the 

brain [4].  Once a patient is medically stable, rehabilitation may be needed if neurological 

deficits persist.  Major persistent neurological deficits have been observed in 50% of TBI 

patients whose coma exceeds 24 hours, and a prolonged period of rehabilitation is often required 

for these individuals [4].  Early onset and continuous rehabilitation is critical for optimizing 

long-term improvements in cognitive and motor function in TBI patients [210].  A 

multidisciplinary team (e.g., neurologist, neuropsychologist, physical therapist, occupational 

therapist, and speech and language pathologist) provides the best approach toward rehabilitation.  

Minimizing the extent of brain injury, preventing complications, and promoting functional 

recovery through stimulating mental and physical activities are primary rehabilitation goals 

[210].  Numerous therapeutic approaches including the use of hyperventilation, hypothermia, 

surgery, pharmacological agents, and physical therapy are currently utilized or being investigated 
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for TBI management, treatment, and rehabilitation.     

1.6.2. Hyperventilation 

Hyperventilation may be used initially to decrease rising intracranial pressure [4].  An 

increase in the rate of breathing results in more carbon dioxide (CO2) being expired, and this 

increase in expiration reduces blood CO2 levels (hypocapnia) and promotes blood vessel 

constriction.  Vasoconstriction decreases blood flow to the brain, which in turn, reduces 

intracranial pressure.  Hyperventilation is only used briefly to treat TBI because hypoxia and 

ischemia occur if brain blood flow is reduced for an extended period of time [4].   

1.6.3. Hypothermia 

Between 1980 and 2009, 27 large phase III clinical trials were published for TBI, but the 

only studies reporting a significant treatment effect involved the use of hypothermia (cooling to 

32 °C) and surgery (e.g., decompressive craniectomy) to relieve brain swelling and control 

increased intracranial pressure [211].  Hypothermia protects the brain through several 

mechanisms, including; reduction of brain thermopooling, preservation of protein synthesis, 

blockade of excitotoxic mechanisms, calcium antagonism, reduction in brain metabolic rate and 

demand for oxygen, altered cerebral blood flow and inflammatory responses, a decrease in 

edema, neuroprotection of white matter, and inhibition of cell death via apoptosis [209].  

Mortality risk is reduced, and neurological outcomes are better when hypothermia is maintained 

for 48 hours [212].  However, this extended period of hypothermia significantly increases the 

risk of pneumonia [212].  Therefore, optional and cautious use of hypothermia for adult TBI 

patients has been recommended by The Brain Trauma Foundation/American Association of 

Neurological Surgeons guidelines task force [212].   
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1.6.4. Surgery  

In addition to hypothermia, decompressive craniectomy may be performed to reduce 

dangerously increased intracranial pressure in more severe TBI cases.  A bone flap is surgically 

removed from the skull (bone flap is replaced later) during this procedure which allows for 

outward brain swelling, and a subsequent reduction in intracranial pressure [4].  Although 

decompressive craniectomy is effective for managing TBI during the acute stage, one study 

found that patients who received this surgical intervention had worse extended GOS scores at six 

months post-TBI when compared to patients who received standard care (i.e., use of barbiturates 

and mild hypothermia) [213].  In addition, this study reported that patients undergoing 

decompressive craniectomy had a significantly greater risk of having unfavorable outcomes 

following TBI versus patients receiving non-surgical treatment [213].  Other surgical procedures 

may be performed to eliminate large hematomas causing a shift in brain structures, or to remove 

objects from the brain following a penetrating head injury [27].     

1.6.5. Pharmacological Agents 

Pharmacological interventions have been used to manage TBI during the acute stage.  

Although many pharmacological agents have shown beneficial treatment effects in animal 

models of TBI, no Food and Drug Administration approved drugs currently exist that have been 

conclusively proven to alleviate secondary injury responses and improve outcomes in TBI 

patients.  Preclinical studies aimed at targeting secondary injury responses in animal models of 

TBI have investigated the efficacy of various pharmacological agents, including; NMDA 

antagonists, excitatory amino acid inhibitors, corticosteroids, free radical scavengers, magnesium 

sulfate, calcium channel blockers, mannitol, and progesterone [214].  The corticosteroids 

dexamethasone and methylprednisolone were used for three decades in an effort to reduce 
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intracranial pressure following TBI [209].  However, a randomized clinical trial reported a 

significantly increased risk of death or severe disability among TBI patients treated with 

corticosteroids [215].  The results of this study support the conclusion that corticosteroids should 

no longer be administered to TBI patients [215].  Pharmacological treatment with the osmotic 

diuretic mannitol is sometimes effective at reducing brain swelling after TBI [209].  However, 

TBI causes blood-brain barrier (BBB) disruption [91], which can magnify the effects of 

mannitol, leading to rebound edema and increased intracranial pressure [216, 217].  Research 

investigating progesterone for the treatment of TBI appears more promising.  Animal studies 

show that progesterone administration decreases brain edema, enhances antioxidant responses, 

and reduces excitotoxicity after injury, and clinical trials provide evidence that progesterone 

administration reduces disability and mortality rates post-TBI [218].     

Positive effects have been noted in rodents following exogenous VEGF-A treatment for 

ischemic brain injury and TBI.  Intracerebroventricular infusion of recombinant human vascular 

endothelial growth factor (rhVEGF-A) reduces infarct volume and brain edema in rats 

subsequent to brief cerebral ischemia [117].  After TBI, research has confirmed significant 90 

day improvements in recovery rate and functional outcome in mice treated exogenously (i.e., 

intracerebroventricular infusion) with rhVEGF-A [122].  Delivering VEGF-A to the central 

nervous system through other exogenous methods (i.e., intravenously) is very difficult due to the 

large molecular weight, limited BBB permeability, and extremely short half-life of the protein in 

plasma [219].  One study did demonstrate that intranasal administration allowed VEGF-A to 

bypass the BBB and reach many cortical and sub-cortical regions in the rat brain [219]. 

Exogenous administration of EPO is showing promise as a neuroprotective and 

neurorestorative treatment approach for brain injuries.  Following intraperitoneal injection, 
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recombinant human erythropoietin (rhEPO) has been shown to cross the BBB via active 

transport and protect against brain injury [209].  Rats injected with rhEPO after TBI have 

exhibited a significant decrease in brain edema, and a reduction in the number of infiltrating 

apoptotic monocyte chemotactic protein-1
+
 and CD68

+
 cells in comparison to saline injected 

controls [137].  A single dose injection of 5,000 IU/kg of rhEPO administered at 1 and 24 hours 

post-TBI significantly improved sensorimotor and cognitive recovery, reduced white matter 

damage, attenuated neuroinflammation, and increased the expression of the EPO receptor in a rat 

model of diffuse TBI and hypoxia [220].  In addition, neurogenesis within the hippocampus and 

cortex of mice has been shown to significantly increase following post-TBI rhEPO injections 

[209].  Exogenous rhEPO treatments have improved histological (i.e., reduced contusion volume 

and decreased neuron cell death post-TBI) and functional (i.e., improved sensorimotor and 

spatial learning memory scores) outcomes following TBI in mice [133].  Bouzat et al., 

determined that intravenous rhEPO administration provided at 30 minutes post-TBI, improved 

local brain oxygen saturation in rats by reopening collapsed capillaries and redistributing blood 

flow [221].  In clinical trials, the administration of EPO has been demonstrated to improve 

neurological outcomes in patients with a variety of neurological conditions including; ischemic 

stroke [222], multiple sclerosis [223], schizophrenia [224], and out-of-hospital cardiac arrest 

[225].  Clinical trials are continuing to investigate exogenous EPO administration for treatment 

of TBI [209, 226].  One phase III clinical trial revealed that a 40,000 IU dose of EPO injected 

subcutaneously once per week for a duration of three weeks, significantly reduced mortality rates 

compared to placebo in intensive care unit trauma patients (including many diagnosed with 

severe TBI) [226].  In contrast to these positive findings, it has been suggested that exogenous 

EPO administration may increase the risk of thrombosis in TBI patients [227].  Unfortunately, 
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evidence is lacking regarding the safety and efficacy of exogenous EPO treatments in TBI 

patients.                

Neurological damage may be minimized, and recovery improved, through the use of 

exogenous pharmacological interventions that up-regulate neuroglobin post-TBI.  Unfortunately, 

direct exogenous administration of neuroglobin is an impractical treatment option because 

neuroglobin is an intracellular protein that is not capable of crossing cell membranes [228].  

However, administration of the iron chelator deferoxamine has been reported to increase 

endogenous neuroglobin production in previous research [228].  Deferoxamine enhances 

neuroglobin production by increasing levels of hemin, an oxidation product of heme [228].  

Hemin operates as a transcription factor for neuroglobin production through the soluble 

guanylate cyclase-protein kinase G (sGC-PKG) pathway [229].  Deferoxamine also increases the 

expression of hypoxia-inducible transcription factors (i.e., HIF-1α and HIF-2α) that play a role in 

up-regulating neuroglobin production in cortical neurons [228-230].  Although deferoxamine is 

frequently prescribed to treat iron poisoning in children [231], several studies suggest that the 

drug may be neuroprotective in animal models of TBI [232-234].  Deferoxamine has been shown 

to significantly attenuate brain atrophy, improve spatial learning and memory, and down-regulate 

expression of proteins (i.e., ferritin L, ferritin H, transferrin, and transient receptor potential 

canonical channel 6) associated with the metabolism of iron after TBI in rats [232].  These pre-

clinical studies demonstrate positive results for the use of deferoxamine in TBI treatment.  

However, none of these studies investigated neuroglobin gene and protein expression after 

treatment with deferoxamine, and clinical TBI studies need to be conducted.   

Cinnamic acid and valproic acid are other chemical compounds that have been previously 

shown to up-regulate neuroglobin production [228].  Cinnamic acid is obtained from cinnamon 
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oil, and valproic acid is used as an anti-epileptic drug, and for treating early post-traumatic 

seizures in TBI patients [235].  In vitro studies have demonstrated that cinnamic acid and 

valproic acid induce neuroglobin protein production in cultured neurons [228].  No in vivo TBI 

studies have been conducted to determine whether exogenous administration of cinnamic acid or 

valproic acid induces neuroglobin production in the brain, and the mechanisms involved in the 

induction of neuroglobin after administration of these compounds have not been elucidated.  

Cinnamic acid has been shown to reduce glutamate toxicity in rat cortical neuron cultures [236], 

and valproic acid is neuroprotective in animal models of cerebral ischemia [237].  However, 

neither of these studies determined whether or not induction of neuroglobin was directly 

responsible for the neuroprotective effects of cinnamic acid and valproic acid.  The intracellular 

production of neuroglobin is increased in response to hypoxia and ischemia, and neuron survival 

is augmented as a result [167].  Therefore, post-TBI pharmacological interventions that increase 

intracellular neuroglobin production in the brain may enhance neuroprotection and improve TBI 

outcomes.  More research is needed to identify safe and effective pharmacological treatments 

that increase endogenous neuroglobin production and improve recovery from TBI. 

1.6.6. Physical Therapy 

In conjunction with cognitive rehabilitation therapy, speech and language therapy, and 

treatment of neuropsychiatric symptoms (e.g., emotional distress and clinical depression), 

physical therapy is an important part of TBI recovery.  One hour of physical therapy performed 

up to three times per week is common during the post-acute phase of TBI recovery [238].  Due 

to the heterogeneity of TBI symptoms experienced between individuals, a variety of physical 

therapy approaches are used in rehabilitation.  Physical therapy sessions typically include 

individualized training of gross motor skills, strength, flexibility, and endurance training [238].  
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The majority of post-TBI physical therapy interventions target specific impairments, 

including; balance, gait kinematics, spasticity, flexibility, muscle force production, and 

functional skills [238, 239].  Gait training is an important part of restoring walking ability, and it 

is imperative that TBI patients train walking ability under everyday conditions.  Patients should 

practice conventional over-ground gait training by walking on a variety of different surfaces; 

uneven ground, over obstacles, in different lighting conditions, in crowds of people, and up and 

down slopes [240].  Research has demonstrated that conventional over-ground gait training is 

more effective than partial body weight supported treadmill training for improving gait 

symmetry in persons with TBI [241].  However, high intensity partial body weight supported 

treadmill training is a unique exercise intervention that can improve the often overlooked 

cardiorespiratory fitness of TBI patients with severe balance and gait deficits [242].  A 20% 

average increase in aerobic capacity has been reported in TBI patients that performed partial 

body weight supported treadmill training 2-3 times per week at an intensity approximating 60-

75% of age-predicted maximal heart rate [242].  In addition to the use of partial body weight 

supported treadmill training, virtual reality training is another novel rehabilitative approach that 

can improve outcomes in TBI patients [243, 244].  Gait and balance training performed in a 

virtual reality environment has been shown to significantly improve balance and mobility in TBI 

patients to a greater extent than traditional gait and balance training in a non-virtual reality 

environment [243].  A study conducted by Grealy et al., revealed that the use of virtual reality 

and exercise improved cognitive function following TBI in adults ranging from 17-60 years of 

age [244].  Limited physical therapy options are available for severe TBI patients in a coma or 

persistent vegetative state.  However, sensory stimulation programs may be initiated for these 

individuals [240].  The goal of sensory stimulation is to accelerate the rate at which a patient 
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returns to consciousness, although evidence is lacking regarding the efficacy of this method 

[240].  Currently, there are no standardized physical therapy recommendations for individuals 

with TBI.  More evidence based research needs to be conducted in order to identify viable 

physical therapy interventions that have the potential to minimize impairments and improve TBI 

outcomes. 

1.7. GENE THERAPY AND TARGETING NEUROGLOBIN TO IMPROVE TBI 

OUTCOMES:  

Neuroglobin is an intracellular protein that is unable to cross cell membranes [228].  

Therefore, direct administration of neuroglobin is not a viable treatment approach for TBI and 

other hypoxic conditions.  However, overexpression of the neuroglobin gene is an alternative 

strategy for stimulating increased intracellular protein production and activity.  This form of gene 

therapy shows potential for enhancing neuroprotection, and improving stroke and TBI outcomes.  

In a mouse model of ischemic stroke, mice that overexpressed neuroglobin showed a 30% 

reduction in cerebral infarct volume after middle cerebral artery occlusion when compared to 

wild type mice [245].  Only a few studies have investigated neuroglobin overexpression and TBI 

outcomes [164, 169].  Transgenic mice and rats that overexpressed neuroglobin have displayed 

significantly smaller cortical lesion volumes, and reduced neuron necrosis and apoptosis after 

TBI in comparison to controls [164, 169].  Interestingly, in TBI patients, genetic polymorphisms 

in neuroglobin have been shown to positively affect recovery from injury as indicated by better 

GOS scores at 3, 6, 12, and 24 months post-TBI [246].  In addition to identifying 

pharmacological interventions that up-regulate intracellular neuroglobin expression, more gene 

therapy studies are needed to determine whether neuroglobin overexpression improves TBI 

outcomes.  Little is known regarding the regulatory mechanisms of neuroglobin expression 
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during hypoxic conditions such as TBI.  Consequently, transgenic mouse models should be used 

to further explore neuroglobin, and the molecular mechanisms involved in promoting 

neuroprotection and improved TBI recovery.          

1.8. EXERCISE AND TBI:  

1.8.1. Exercise and Brain Fitness                   

Exercise participation has been associated with the reduction of numerous physical (e.g., 

cardiovascular disease, obesity, type II diabetes, osteoporosis, colon cancer, and breast cancer), 

and mental disorders (e.g., depression and anxiety) throughout life [238, 247].  However, 

members of the scientific community have just begun to understand the benefits of exercise on 

brain health over the past couple of decades.  Exercise positively affects the central nervous 

system, and displays great potential for enhancing brain fitness throughout life [247].  Humans 

participating in regular exercise programs exhibit brain volume increases in the supplementary 

motor area, right inferior frontal gyrus, left superior temporal gyrus, anterior cingulate, and 

hippocampus [248, 249].  Routine exercise improves cognition, prevents cognitive decline, and 

improves motor function [250-253].  Previous studies have demonstrated that exercise increases 

hippocampal neurogenesis and vascularization, elevates growth factors in areas of the brain 

responsible for memory, enhances neuronal survival following brain insults, and promotes 

functional recovery from central nervous system diseases and injuries including TBI [184, 253-

260].  In addition, exercise reduces neuroinflammation [261, 262] and markers of oxidative 

stress after TBI [263, 264].  Depending on the intensity, exercise can increase cerebral blood 

flow [265] and tissue oxygenation [93, 266] while simultaneously improving cerebral glucose 

metabolism [267].  These adaptations and responses to exercise may protect neurons in the brain, 

enhance brain function, and improve overall outcomes after TBI.     
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Since all clinical trials have failed to find a safe and effective treatment for TBI, 

questions have been raised regarding the interventions currently used for TBI treatment.  

Exercise may be the most practical non-invasive measure for modulating secondary TBI 

responses, increasing neuroprotection, minimizing post-TBI complications, and improving 

overall outcome.  However, many of the mechanisms underlying the beneficial effects of 

physical activity on promoting recovery from TBI remain poorly understood due to a lack of 

research in this area. 

1.8.2. Exercise and TBI Complications 

It is clear that many long-term health benefits are derived from routine exercise 

participation throughout life.  Therefore, emphasis should be placed on increasing physical 

activity to prevent the development of complications and chronic disease after TBI.  Patients 

admitted to the hospital with moderate to severe head injuries endure a period of bed rest and 

immobility which increases stroke risk due to the development of thrombi and emboli [35].  

However, there is evidence that exercise reduces the risk of thrombi and emboli formation [268].  

Prolonged bed rest has major negative consequences on the cardiovascular, pulmonary, and 

muscular systems that are involved in oxygen delivery and utilization [269].  Bed rest decreases 

the efficiency of these systems to deliver and utilize oxygen, and studies have indicated that the 

peak aerobic capacity of TBI patients is typically between 65-74% of normal [270-272].  In 

contrast to bed rest, chronic exercise enhances the organ systems involved in oxygen delivery 

and utilization.  Chronic aerobic exercise improves cardiovascular and pulmonary function by 

decreasing resting heart rate, and increasing stroke volume, cardiac output, pulmonary 

ventilation, and maximal oxygen consumption (VO2max) [238].  In addition, long-term aerobic 

exercise training also increases skeletal muscle capillary density and skeletal muscle oxygen 
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extraction.  These peripheral adaptations combine with cardiovascular and pulmonary 

adaptations to further improve physical and metabolic work capacity [238].  Exercise training 

adaptations have the potential to reverse or minimize the negative effects observed on oxygen 

delivery systems as a result of prolonged post-TBI bed rest.  Furthermore, an improved fitness 

level may enable patients to resist fatigue that is common after TBI.   

It is important to consider post-TBI endocrine responses and adaptations to exercise since 

hypopituitarism has been reported in 16-56% of patients diagnosed with moderate to severe TBI 

[273].  Growth hormone and testosterone levels are known to be deficient in TBI patients [238], 

but both aerobic endurance exercise and resistance training increase the production of growth 

hormone and testosterone [274-276].  Long-term exercise training may minimize the effects of 

hypopituitarism after TBI by positively influencing endocrine system function.   

Various psychiatric conditions (e.g., depression, generalized anxiety disorders, and 

aggressive behavior) are often evident in TBI survivors [42, 43].  However, performing routine 

aerobic exercise has been associated with reductions in stress, cynical distrust, anger, and 

depression in a study of over 3200 healthy adults [277].  In TBI patients, it has been suggested 

that improvements in mood and emotion occur with consistent exercise training [278].  Poor 

sleep is another common TBI complication [279].  Nonetheless, regular aerobic exercise has 

been shown to increase self-reported sleep quality scores in older adults [280], but exercise and 

sleep studies have not been conducted in the TBI population.   

TBI is a risk factor for the accelerated onset and development of neurodegenerative 

diseases including Alzheimer’s and Parkinson’s [55, 56].  On the other hand, being more 

physically active is associated with reduced Alzheimer’s [281] and Parkinson’s [282] disease 

risk.  Cognitive and motor deficits resulting from the post-TBI onset of these neurodegenerative 
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diseases may be diminished by increasing physical activity since exercise has been shown in 

many studies to enhance cognition, prevent age-related declines in cognitive function, and 

improve motor function [250-255].  Exercise appears to be a viable non-pharmacological 

approach for minimizing many post-TBI complications and improving overall outcome. 

1.8.3. Exercise and Secondary TBI Responses  

Glutamate excitotoxicity and the concomitant rise in intracellular calcium contribute to 

neuron cell death and dysfunction after TBI [64, 66].  However, studies have shown that chronic 

exercise preconditioning protects the brain from excitotoxic events in various experimental 

animal models of ischemia and epilepsy [283-285].  In a recent study, chronic exercise (i.e., 

swimming performed for 30 minutes/day, 5 days/week, for 8 weeks) group rats displayed 

decreased glutamate release and percentage of cell death in comparison to sedentary group rats 

after rat hippocampal sections were submitted to in vitro oxygen and glucose deprivation [285].  

In addition, exercise group rats demonstrated a significant decrease in the hippocampal 

production and release of pro-apoptotic markers including; caspase-8, caspase-9, caspase-3, and 

apoptosis-inducing factor (AIF) [285].  This decrease in the production and release of pro-

apoptotic markers was associated with the decreased percentage of hippocampal cell death 

observed in exercise group rats [285].  It is possible that exercise preconditioning enhances the 

ability of neurons to endure post-TBI disturbances in glutamate production, release, and uptake.  

No research has been conducted with the purpose of understanding the mechanisms involved in 

exercise induced neuroprotection and alterations in post-TBI glutamatergic transmission within 

the brain. 

Animal models of TBI demonstrate that cerebral blood flow may be reduced to 50% of 

normal after injury [66, 286].  As mentioned previously, diminished cerebral blood flow 
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contributes to hypoxia and ischemia, decreased glucose metabolism, and increased cell death or 

injury post-TBI [66, 87, 89].  In contrast to TBI, exercise can positively affect cerebral blood 

flow, oxygenation, and glucose metabolism.  Low and moderate intensity (i.e., < 60% VO2max) 

exercise has been shown to increase cerebral blood flow in humans [265].  One major factor 

contributing to alterations in cerebral blood flow during exercise is carbon dioxide.  During low 

and moderate intensity exercise, an increased partial pressure of carbon dioxide (pCO2) in the 

blood causes vasodilation, and cerebral blood flow is concurrently increased [265].  The uptake 

of oxygen in the brain is important for maintaining cerebral neuronal activity, and exercise has 

the potential to improve tissue oxygenation within the brain [266].  Significant elevations (i.e., 

10-20% above resting level) in regional tissue oxygen pressure (pO2) within the rat hippocampus 

have been observed during and after low intensity (i.e., 52% of VO2max) swimming [93].  In 

addition, exercising rats have shown significantly increased cerebral glucose metabolism in 

comparison to non-exercising controls [267].  In this study conducted by Kinni et al., exercise 

rats exhibited significant increases in mRNA and protein expression of GLUT-1 and GLUT-3, 

glycolytic enzymes (i.e., lactate dehydrogenase and PFK), and phosphorylated adenosine 

monophosphate kinase (AMPK) activity when compared to sedentary rats [267].  Moreover, 

cerebral bio-energetic improvements due to exercise training have been noted in animal models 

of stroke.  Rats performing three weeks of treadmill exercise prior to induction of ischemic 

stroke have displayed significantly increased rates of post-stroke cerebral glucose metabolism 

accompanied with a more rapid and substantial increase in ATP production when compared to 

non-exercising rats [287].  Results from this study revealed that cerebral AMPK and HIF-1α 

mRNA and protein expression were increased in response to both exercise and hypoxia [287].  

AMPK is known to play a role in cellular energy homeostasis, and AMPK has been shown to 
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increase PFK and HIF-1α expression after being induced by exercise or hypoxia [288, 289].  

HIF-1α is known to increase the expression GLUT-1, GLUT-3, and PFK [108-110].  GLUT-1 

and GLUT-3 are responsible for the uptake of glucose into cells, and PFK plays a key role in 

regulating glycolysis and ATP production by breaking down glucose into pyruvate [110, 287].  

The combined changes occurring in this pathway are an adaptation to exercise that ultimately 

leads to increased oxidative phosphorylation and ATP production in neurons.  Increased cerebral 

blood flow, tissue oxygenation, and improved glucose metabolism are positive responses to 

exercise that may lead to greater neuron survival during hypoxic and ischemic conditions such as 

stroke and TBI. 

Mitochondrial function is negatively altered as a result of TBI.  Increased reactive oxygen 

species formation and the impaired antioxidant capacity of damaged mitochondria combine to 

promote oxidative stress and neurodegeneration after injury [78].  Mitochondrial dysfunction 

also compromises ATP production in the brain, which ultimately increases neuronal death via 

apoptotic signaling [73, 74].  However, exercise elicits many beneficial mitochondrial 

adaptations that oppose TBI responses and lead to neuroprotection and improved brain function.  

Regular long-term exercise performed at a moderate intensity is known to reduce markers of 

oxidative stress in the rat brain [290, 291].  Aging rats engaged in long-term (i.e., 15 weeks) 

aerobic exercise displayed a 28% reduction in the hippocampal level of ROS, and less oxidative 

damage, when compared to sedentary controls [291].  In this study, the reductions in ROS and 

oxidative stress following exercise training were attributed to decreased protein carbonyls and 

increased intracellular levels of the antioxidant enzymes; superoxide dismutase-1 (SOD-1), 

superoxide dismutase-2 (SOD-2), and glutathione peroxidase [291].  These positive exercise 

effects have also been noted in TBI studies.  Several TBI studies have revealed chronic aerobic 
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exercise training decreases markers of oxidative stress in the brain post-injury, and protects 

against TBI induced reductions in antioxidant activity [263, 264].  The AMPK/peroxisome 

proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) pathway may be responsible 

for exercise induced activation of antioxidant enzymes and long-term resistance to oxidative 

damage [291].  AMPK is known to initiate the transcription of PGC-1α in visual cortical neurons 

[292], and exercise enhances AMPK activity and increases PGC-1α levels in the brain and 

skeletal muscles [287, 291, 293, 294].  Bayod et al., demonstrated that long-term exercise 

training activated AMPK, increased PGC-1α expression, and stimulated mitochondrial 

biogenesis in the dentate gyrus of rats [294].  These results are consistent with other rodent and 

human studies showing exercise promotes mitochondrial biogenesis, and energy metabolism is 

augmented in the brain and skeletal muscles via increased PGC-1α expression [295-298].  

Furthermore, rats engaged in 7 days of post-stroke exercise have displayed increased PGC-1α 

levels and improved mitochondrial biogenesis in the brain [299].  The exercise induced changes 

observed in this study were associated with smaller cerebral infarct volumes and a decrease in 

neurological deficits post-stroke [299].  It is likely that exercise mitigates hypoxic and ischemic 

damage to neurons by increasing the overall number, and improving the function, of 

mitochondria in the brain [299].  Moreover, exercise may improve recovery from TBI by 

decreasing ROS formation, increasing antioxidant enzymes, and up-regulating molecular 

pathways involved in triggering mitochondrial biogenesis and enhanced energy metabolism.                   

Neuroinflammation is a common post-TBI secondary injury response.  Extravasated 

blood products, increased leukocyte recruitment, release of pro-inflammatory cytokines and 

chemokines, and microglial cell activation are hallmark features of the post-TBI 

neuroinflammatory response [79].  Although TBI promotes neuroinflammation, regular exercise 
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seems to have an anti-inflammatory effect [300].  Exercise is known to decrease inflammation by 

altering cytokine production and release.  IL-6 is released from contracting muscles during 

exercise, and IL-6 stimulates the appearance of other anti-inflammatory cytokines (e.g., 

interleukin-1 receptor antagonist [IL-ra] and interleukin-10 [IL-10]) into circulation [300, 301].  

Voluntary exercise also increases the expression of IL-6 in the brain, and this response has been 

demonstrated to protect hippocampal neurons from chemical-induced injury [302].  In addition 

to increasing anti-inflammatory cytokines, exercise suppresses the production of pro-

inflammatory cytokines such as TNF-α [300].  Exercise preconditioning has been shown to 

protect against brain damage in a model of ischemia/reperfusion injury via TNF-α pathway 

down-regulation and inhibition of the TNF-α receptor [303].  Furthermore, the exercise induced 

down-regulation of TNF-α signaling has been linked to improved cognitive function in aged 

mice [304].  Studies with the purpose of understanding how exercise alters the inflammatory 

response within the brain following TBI are limited.  However, a 2012 study conducted by Mota 

et al., demonstrated that rats who performed 4 weeks of pre-TBI exercise displayed reduced 

brain inflammation and better motor function scores at 24 hours post-TBI when compared to 

sedentary controls [261].  In this study, significantly increased IL-10, and significantly reduced 

IL-1β and TNF-α protein levels were noted in the injured hemisphere of exercise group rats 

[261].  Results from this research also revealed significantly reduced plasma fluorescein 

extravasation, and myeloperoxidase (MPO) activity (i.e., markers of BBB disruption) in exercise 

group rats when compared to control rats [261].  In addition to pre-TBI exercise, 4 weeks of 

delayed post-TBI exercise training (i.e., voluntary wheel running initiated at 5 weeks after 

injury) has been shown to minimize the inflammatory response by attenuating microglial 

activation, decreasing IL-1β accumulation, and increasing IL-6 and IL-10 cytokine production 
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[262].  The positive alterations observed in this study were associated with reduced cognitive 

deficits and brain lesion volumes, and enhanced neuronal survival in the dentate gyrus at three 

months after TBI in exercise group mice [262].  Post-TBI neuroinflammatory responses coupled 

with the secretion of various neurotoxic immune mediators exacerbate brain injury.  Yet, 

exercise appears to be an effective non-pharmacological intervention for controlling the acute 

inflammation that leads to long-term neuron death and disability after TBI. 

1.9. NEUROPROTECTIVE PROTEINS AND EXERCISE: 

1.9.1. Hypoxia Inducible Factor-1α (HIF-1α)  

Exercise alters endogenous HIF-1α activity.  Previous studies have demonstrated that 

exercise increases HIF-1α gene and protein expression in human skeletal muscle [96], and in 

ischemic skeletal and cardiac muscle tissues of rats [121, 305].  Furthermore, performing three 

weeks of exercise has been reported to significantly increase HIF-1α gene expression within the 

cerebral cortex [267].  More studies are needed to determine whether exercise increases HIF-1α 

protein production in the brain.  An increased production of HIF-1α protein in the brain 

subsequent to exercise may enhance neuroprotection and improve TBI outcomes by initiating the 

transcription of downstream target genes including; VEGF-A, EPO, HO-1, and neuroglobin.    

1.9.2. Vascular Endothelial Growth Factor-A (VEGF-A) 

Interventions aimed at increasing the endogenous production of VEGF-A may offer a 

more practical alternative for improving TBI outcomes than exogenous approaches.  Exercise is 

known to augment endogenous VEGF-A production in both non-neural and neural tissues.  The 

lungs, skeletal muscles, and brain are all exercise responsive organs involved in oxygen 

transport, and performing just one acute bout of exercise has been shown to increase VEGF-A 

mRNA expression and protein levels in these organs [306].  Furthermore, Gustafsson et al. 
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reported that 10 days of endurance exercise training significantly increased VEGF mRNA and 

protein expression in human skeletal muscle [307].  Exercise has also been shown to increase 

circulating VEGF-A protein in humans [308].  The production of VEGF-A in response to 

exercise is a complex process that can ensue independent of the HIF-1α induction that occurs 

during hypoxia [293].  First, exercise increases nerve activity via β-adrenergic stimulation, and 

β-adrenegic stimulation induces the production of PGC-1α [293].  Next, PGC-1α coactivates the 

transcription factor estrogen-related receptor alpha (ERRα) on multiple binding sites found 

within the promoter region of the VEGF gene [293, 309].  Finally, the VEGF-A protein is 

translated and angiogenesis is initiated [293, 309].  Several studies have revealed that exercise 

induces increased VEGF-A protein production, capillary density, and blood flow in the skeletal 

muscles and brain [310-312].  A 31% increase in skeletal muscle VEGF-A protein expression, in 

conjunction with a significant increase in muscle capillary density, has been observed in mice 

that performed voluntary treadmill running for seven days [310].  In addition, male Wistar rats 

engaged in a swimming protocol (i.e., 60 minutes per day, 5 days per week, over a period of 8 

weeks) have demonstrated significantly increased VEGF-A protein levels, and a greater 

percentage of capillary density in the cerebral cortex when compared to sedentary controls [311].  

In a mouse model of focal cerebral ischemia, VEGF-A gene and protein expression were 

significantly increased within the brain after treadmill training, and cerebral blood flow was 

enhanced in the ischemic lesion at 16 days post-stroke [312].  Increases in brain capillary 

density, and improved cerebral blood flow, are favorable circulatory system adaptations to 

exercise that may aid in promoting functional recovery from TBI by minimizing cellular damage 

and facilitating brain repair via an enhanced supply of blood to neurons.  In addition to these 

vascular responses, VEGF-A exerts direct positive effects on neural tissue as a result of exercise.  
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In exercising mice, peripheral VEGF-A is necessary for increased hippocampal neurogenesis, 

and blocking peripheral VEGF-A eliminates neurogenesis resulting from exercise [113].  Zhang 

et al., demonstrated that treadmill training increased brain levels of VEGF-A, promoted axon 

regeneration of newborn corticonigral and striatonigral neurons, and improved motor function 

after transient middle cerebral artery occlusion in a rat model of ischemic stroke [313].  Although 

much research has been conducted in animal models of stroke, no research has investigated links 

between exercise, VEGF-A, and TBI outcomes. 

1.9.3. Erythropoietin (EPO) 

EPO gene and protein expression are known to be altered in various tissues following 

acute and chronic bouts of exercise.  Interestingly, the response of EPO after exercise is not the 

same in all tissues.  Long-term endurance exercise training has been shown to significantly 

decrease EPO mRNA and protein levels in the kidneys of mice [314].  In contrast to these 

findings, previous research in humans has demonstrated a significant increase in intramuscular 

EPO mRNA expression at 360 minutes after a single exercise bout [96].  Chronic exercise (i.e., 

10 weeks of progressive treadmill training) has been shown to significantly increase 

intramuscular EPO mRNA expression in exercising mice when compared to sedentary controls 

[314].  However, no significant changes in intramuscular EPO protein production were observed 

between exercising and sedentary mice in this study [314].  Serum EPO protein levels have been 

shown to significantly increase when exercise is performed in a hypoxic environment [315].  In 

order to elevate serum EPO protein levels, increase red blood cell production, and improve 

oxygen carrying capacity, competitive endurance athletes often choose to live at higher altitudes 

where the partial pressure of oxygen is lower [316].  In addition, competitive endurance athletes 

have tried to illegally improve aerobic capacity and endurance by administering rhEPO [317].  



43 
 

This exogenous misuse of rhEPO increases production of red blood cells, and enhances oxygen 

delivery and uptake in working muscles in a manner similar to the endogenous EPO response 

that results from living in hypoxic conditions at high altitude [317].  Studies to determine the 

endogenous response of EPO in the brain following long-term exercise training have not been 

performed.  Since the safety and efficacy of exogenous rhEPO treatment for TBI has not been 

fully elucidated, exercise may be a more practical non-pharmacological approach for increasing 

EPO production endogenously.  However, no research currently exists exploring whether 

exercise may improve TBI outcomes by increasing the endogenous production of EPO within the 

brain. 

1.9.4. Heme Oxygenase-1 (HO-1) 

HO-1 mRNA and protein expression have been shown to increase in human lymphocytes 

harvested from the blood after an acute bout of prolonged exercise (i.e., running for 75 minutes 

at 70% of VO2max) [318].  This acute increase in post-exercise HO-1 is thought to protect cells 

against oxidative stress and inflammation occurring subsequent to exercise [318].  Depending on 

the duration and intensity, acute exercise also affects HO-1 transcriptional regulation in skeletal 

muscles [319].  In a study of rats, greater increases in gastrocnemius HO-1 expression were 

observed following prolonged low-intensity exercise (i.e., treadmill exercise for 180 minutes at 

50% of VO2max) or reduced duration high-intensity exercise (i.e., treadmill exercise for 45 

minutes at 75% of VO2max) when compared to rats performing reduced duration low-intensity 

exercise (i.e., treadmill exercise for 45 minutes at 50% of VO2max) [319].  Steensberg et al., 

suggested that nitric oxide is responsible for the exercise induced expression of HO-1 in skeletal 

muscle [320].  It has been demonstrated that both acute (i.e., 2 weeks) and chronic exercise (i.e., 

6 weeks) training increase the concentration of HO-1 and endothelial nitric oxide synthase 
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(eNOS) proteins in the rat aorta [321].  Elevations in HO-1 and eNOS after exercise training 

were associated with enhanced vasodilation in this study [321].  Moreover, exercise may protect 

the cardiovascular system by inducing up-regulation of HO-1 in the myocardium [322].  In 

addition to exercise induced HO-1 responses in lymphocytes, skeletal muscles, and the 

cardiovascular system, chronic exercise (i.e., 11 weeks of treadmill exercise) has been shown to 

significantly increase HO-1 protein levels in the liver of rats [323].  Although exercise up-

regulates HO-1 in various organs and tissues throughout the body, no data has been published 

investigating exercise and HO-1 responses in the TBI brain.  If exercise increases the 

endogenous production of HO-1 in the brain, damage occurring as a result of post-TBI secondary 

injury responses (e.g., hypoxia, ischemia, oxidative stress, and inflammation) may be reduced, 

and TBI outcomes improved.    

1.9.5. Brain-Derived Neurotrophic Factor (BDNF) 

Numerous brain and exercise studies have focused on BDNF.  In 1995, Neeper et al. 

suggested that BDNF is involved in brain plasticity, and showed that BDNF expression increased 

in both the hippocampus and cerebral cortex when rodents were allowed access to a running 

wheel for 7 days [178].  Neurogenesis resulting from exercise is reduced if BDNF signaling is 

blocked by using antibodies against the TrkB receptor [324].  Animal studies demonstrate that 

post-TBI exercise increases BDNF expression within the hippocampus [260, 325], and the 

increased expression of BDNF is responsible for improvements in object recognition memory 

[326] and spatial learning memory [260] after injury.  These are important findings since BDNF 

gene and protein expression are altered within the hippocampus in response to TBI [187, 188, 

190, 326], and cognitive deficits are often associated with impaired hippocampal function [327].  

Exercise induced improvements in post-TBI cognitive function have been suggested to occur as 
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a result of BDNF facilitating axonal branching and remodeling of neural networks by up-

regulating mitogen-activated protein kinase phosphatase-1 (MKP-1) [326, 328].  Studies of 

MKP-1 knockout mice, and experiments specifically designed to inhibit the BDNF-MKP-1 

pathway, lend further support to the notion that BDNF plays a key role in mediating axonal 

branching and improvements in cognitive function that result from exercise.  Neurons from 

MKP-1 knockout mice lack the ability to sprout new axons in response to BDNF [328], and 

inhibiting the BDNF-MKP-1 pathway with triptolide abolishes the beneficial effects of exercise 

on post-TBI object recognition memory [326].  Furthermore, blocking free BDNF from binding 

to its TrkB receptor with an immunoadhesin chimera (TrkB-IgG) after TBI, and prior to exercise, 

eliminates improvements in spatial learning memory that are associated with voluntary exercise 

[260].  Taken together, these studies demonstrate that many of the beneficial effects of exercise 

on overall brain health and cognitive function are mediated through BDNF. 

1.9.6. Insulin-Like Growth Factor-1 (IGF-1) 

Exercise is known to increase IGF-1 production in the brain [329], while simultaneously 

raising the concentration of circulating IGF-1 [330].  Circulating levels of IGF-1 rise because 

exercise increases the synthesis and release of IGF-1 from the liver and muscles [329].  Long-

term aerobic exercise training has been shown to significantly increase and maintain resting 

serum levels of IGF-1 in competitive collegiate swimmers [331].  A direct correlation exists 

between elevated serum concentrations of IGF-1 at rest, and increased maximal oxygen uptake 

(i.e., VO2max), which is an important outcome measure of physical fitness [332].  In addition to 

aerobic exercise boosting IGF-1 levels, strength training also increases the total concentration of 

IGF-1 in serum [333].  Circulating IGF-1 can cross the BBB [194], and one study of adult rats 

revealed that exercise induces neurogenesis and improves cognitive function by increasing the 
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uptake of circulating IGF-1 into the brain [330].  Carro et al., demonstrated that blocking the 

entrance of circulating IGF-1 into the brain with an anti-IGF-1 antibody increases neuronal 

damage, and nullifies the exercise induced recovery of motor coordination in various rat models 

of brain insults and neurodegenerative disease [330].  The authors of this study concluded that 

exercise prevents and protects the brain from damage by increasing the uptake of circulating 

IGF-1 into the brain, and that administering IGF-1 may be a beneficial treatment approach for 

minimizing neuronal death resulting from brain trauma or disease [330]. 

1.10. EXERCISE AND RELATIONSHIPS BETWEEN GROWTH FACTOR PROTEINS: 

The neurobiological activity of IGF-1 appears to be closely related to the actions of 

BDNF and VEGF-A in translating exercise into neurological benefits.  For example, the levels of 

IGF-1, BDNF, and VEGF-A all increase in the brain after exercise, and all three of these growth 

factors elicit neurogenic and neuroprotective effects [113, 330].  IGF-1 signaling is required for 

the exercise induced up-regulation of BDNF [334], as several studies have shown that blocking 

IGF-1 signaling with antibodies prevents the exercise induced up-regulation of BDNF [334, 

335].  Moreover, blocking BDNF has been demonstrated to prevent the exercise induced up-

regulation of IGF-1 within the hippocampus [336].  Both IGF-1 and VEGF-A concentrations 

increase in the blood after exercise to stimulate repair and growth of the vascular system, which 

in turn enhances oxygen delivery to muscles and increases aerobic capacity [337, 338].  In 

addition to these peripheral effects, circulating IGF-1 and VEGF-A can cross the BBB and enter 

the brain to exert their respective neurogenic and angiogenic actions [194, 324].  Several studies 

have displayed that neurogenesis resulting from aerobic exercise is significantly inhibited when 

peripheral IGF-1 or VEGF-A are blocked from entering the brain [113, 339].  These experiments 

reveal that the beneficial effects of exercise on the nervous and vascular systems are associated 
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with the coordinated activity of IGF-1, BDNF, and VEGF-A.  It is possible that improved post-

TBI outcomes may result from IGF-1, BDNF, and VEGF-A interacting and modulating 

beneficial adaptations at the cellular and molecular level in response to exercise training.  More 

research investigating the response of these growth factors to exercise and TBI is needed. 

1.11. RESEARCH QUESTION: 

 The long-term goal of our research is to improve TBI outcomes.  Unfortunately, safe and 

effective TBI treatments remain limited.  There is a critical need for identifying novel 

preventative and/or therapeutic interventions that improve TBI outcomes.  Increasing the 

production of neuroprotective molecules (e.g., neuroglobin, VEGF-A, EPO, and HO-1) in the 

brain prior to, or early after TBI, may improve outcomes.  Thus, the objective of this dissertation 

was to determine whether gene therapy and/or pre-TBI exercise could improve post-TBI 

sensorimotor and cognitive (i.e., spatial learning memory) performance in adult mice by 

increasing the expression of neuroglobin, VEGF-A, EPO, and HO-1 in regions of the brain that 

are responsible for movement and memory. 

 In chapter 2, “Neuroglobin overexpression improves sensorimotor outcomes in a mouse 

model of traumatic brain injury”, results demonstrate that overexpression of neuroglobin reduces 

sensorimotor deficits after TBI, and increasing neuroglobin expression in the brain during the 

acute post-TBI recovery phase may improve outcomes.   

 In chapter 3, “Exercise preconditioning improves traumatic brain injury outcomes”, 

results show that improved post-TBI sensorimotor function and spatial learning memory are 

linked to pre-TBI exercise increasing the expression of neuroprotective proteins in the 

sensorimotor cortex (i.e., VEGF-A and EPO) and hippocampus (i.e., VEGF-A only). 
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 In chapter 4, the findings from chapter 2 and chapter 3 are summarized.  Discussion 

focuses on how neuroglobin overexpression and exercise may augment neuroprotection, which 

in turn, improves TBI outcomes.  In addition, the risks and benefits associated with post-TBI and 

pre-TBI exercise are reviewed.  Future research directions are also suggested in this chapter.                        
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Chapter 2 

Neuroglobin Overexpression Improves Sensorimotor Outcomes in a Mouse 

Model of Traumatic Brain Injury 
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2.1. ABSTRACT: 

 There is a significant need for novel treatments that will improve traumatic brain injury 

(TBI) outcomes.  One potential neuroprotective mechanism is to increase oxygen binding 

proteins such as neuroglobin.  Neuroglobin has a high affinity for oxygen, is an effective free 

radical scavenger, and is neuroprotective within the brain following hypoxia and ischemia.  The 

purpose of this study was to determine whether neuroglobin overexpression improves 

sensorimotor outcomes following TBI in transgenic neuroglobin overexpressing (NGB) mice.  

Additional study aims were to determine if and when an endogenous neuroglobin response 

occurred following TBI in wild-type (WT) mice, and in what brain regions and cell types the 

response occurred.  Controlled cortical impact (CCI) was performed in adult (5 month) C57/BL6 

WT mice, and NGB mice constitutively overexpressing neuroglobin via the chicken beta actin 

promoter coupled with the cytomegalovirus distal enhancer.  The gridwalk task was used for 

sensorimotor testing of both WT and NGB mice, prior to injury, and at 2, 3, and 7 days post-TBI.  

NGB mice displayed significant (p<.01) reductions in the average number of foot faults per 

minute walking at 2, 3, and 7 days post-TBI when compared to WT mice at each time point.  

Neuroglobin mRNA expression was assessed in the right cortex of WT mice prior to injury, and 

at 1, 3, 7, and 14 days post-TBI using quantitative real-time polymerase chain reaction (qRT-

PCR).  Neuroglobin mRNA was significantly (p<.01) increased at 7 days post-TBI.  

Immunostaining showed neuroglobin primarily localized to neurons and glial cells in the injured 

cortex and ipsilateral hippocampus of WT mice, while neuroglobin was present in all brain 

regions of NGB mice at 7 days post-TBI.  These results showed that overexpression of 

neuroglobin reduced sensorimotor deficits following TBI, and that an endogenous increase in 
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neuroglobin expression occurs during the subacute period.  Increasing neuroglobin expression 

through novel therapeutic interventions during the acute period after TBI may improve recovery. 

2.2. INTRODUCTION: 

 Traumatic brain injury (TBI) is a major public health concern with severe consequences 

that include long-term loss of function, profound disability, and death.  With the exception of 

routine medical intervention and care, no successful treatment options are currently available for 

promoting functional recovery from TBI in humans.  Between 1980 and 2009, 27 large phase III 

clinical trials were published for TBI, but the only studies reporting a significant treatment effect 

involved the use of decompressive craniectomy, and hypothermia to relieve brain swelling and 

control increased intracranial pressure [211].  Accordingly, there is a significant need for novel 

treatments that will improve TBI outcomes.  Improved TBI outcomes may be achieved through 

treatments that target globin genes (e.g., hemoglobin, myoglobin, cytoglobin, and neuroglobin).  

The globin gene family translates proteins that are vital for binding oxygen within various body 

tissues.  Following up-regulation, globin proteins also play a neuroprotective role in the brain 

[170, 340].  The work presented here focuses on neuroglobin, one of the most recently 

characterized members of the globin gene family.  Neuroglobin was first described in 2000 as a 

protein with a high affinity for binding oxygen that is present in the brain [161].  In addition to 

its ability to bind oxygen, neuroglobin also functions as an antioxidant and free radical scavenger 

[172].  Neuroglobin is expressed throughout the central and peripheral nervous systems of 

vertebrates [161-164].  The primary sites of neuroglobin expression are the limbic system and 

cerebral cortex [162].  Neuron survival is enhanced via an increased endogenous production of 

neuroglobin following hypoxia and ischemia [167].  Therefore, neuroglobin has been suggested 

to be neuroprotective in experimental models of stroke [100, 168] and in TBI [164, 169].   
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Previous research has demonstrated that transgenic neuroglobin overexpressing (NGB) 

mice display significantly reduced cortical lesion volumes in comparison to wild-type (WT) mice 

21 days after TBI [164].  Furthermore, overexpression of neuroglobin in Wistar rats significantly 

reduced neuron necrosis and apoptosis after TBI in comparison to controls [169].  In humans, 

genetic polymorphisms in neuroglobin have been shown to positively influence recovery in TBI 

patients [246].  The present study was designed to determine whether NGB mice displayed 

improved sensorimotor recovery after TBI in comparison to WT mice.  In addition, related study 

objectives were to determine if and when an endogenous neuroglobin response occurred 

following TBI, and in what brain regions and cell types the response occurred.  It was 

hypothesized that overexpression of neuroglobin would reduce sensorimotor deficits following 

TBI in NGB mice when compared to WT mice. 

2.3. METHODS: 

Animals 

Adult (5 month) male C57/BL6 WT, and transgenic (B6.Cg-Tg(CAG-Ngb,-

EGFP)1Dgrn/J; The Jackson Laboratory, ME) NGB mice were used for this study.  NGB mice 

overexpressed neuroglobin via the chicken beta actin promoter coupled with the cytomegalovirus 

distal enhancer.  Animal care and use procedures were approved by the University of Kansas 

Medical Center Institutional Animal Care and Use Committee and conducted according to the 

Institute of Laboratory Animal Research guidelines. 

Induction of Traumatic Brain Injury via Controlled Cortical Impact (CCI) 

 A controlled cortical impact (CCI) was used to induce a moderate TBI as previously 

described [341].  The CCI injury model targeted the primary and secondary motor, and primary 

somatosensory regions of the right cerebral cortex.  CCI reproduces many of the features of brain 
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injuries including motor deficits, memory loss, and neuron loss [342], and the severity of injury 

can be controlled experimentally by altering the velocity and depth of the impact and the size of 

the impactor tip [343].  CCI also eliminates a potentially confounding variable of skull thickness, 

which may change in transgenic mice.  Responses following controlled cortical impact include 

glial activation, increased cytokine expression, blood brain barrier disruption, and neuron loss 

[62, 91].  Prior to surgery, mice were stabilized in a Cunningham stereotaxic frame (Stoelting; 

Wood Dale, IN) and placed on a heating pad to maintain body temperature at 38°C.  The CCI 

procedure was performed while mice were anaesthetized with 2.5% isoflurane in 30% O2 and air.  

The skin on top of the head was shaved and scrubbed with iodine.  A midline incision was made 

with a sterile scalpel blade, and the scalp and epicranial aponeurosis were retracted to expose the 

skull. A Wild operating microscope was used to view the skull at 60X magnification, and a 3.5 

mm diameter craniotomy was performed with a dental drill on the right side of the mid-sagittal 

suture, with the following coordinates:  Anterior-Posterior (AP) coordinates centered at bregma, 

2.5 mm lateral to the midline.  Saline was periodically applied to the drill and surface of the skull 

to prevent burning the underlying brain tissue.  Drilling was performed in a careful manner to 

leave the dura intact, and avoid blood vessels traveling through the superior sagittal sinus.  Once 

the brain was exposed, the cortex was impacted with a custom made, electronically controlled, 

CCI injury device (P01-23x80, LinMot Inc., Zurich, Switzerland).  Attached to the shaft of the 

CCI injury device was a 3 mm stainless-steel injury tip.  The impactor tip was slowly lowered to 

the surface of the dura and center of the injury tip contact zone (2.5 mm lateral to bregma) via a 

push-button graphic user interface of the impactor control software (Visual Basic 6.0 software).  

Using this push-button graphic user interface, the operator initiated the CCI through the 

following steps:  1) The computer was programmed to control impact velocity (1.5 m/s), impact 
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depth (1.0 mm), and contact time (85 ms), 2) the tip was retracted 20 mm from the dura, 

immediately followed by a quick 21 mm downward strike (20 mm retraction plus the 1.0 mm 

operator programmed injury depth) of the impactor tip.  These impact parameters have resulted 

in a low (5%) mortality rate.  Following impact, the skin was closed with a sterile suture and all 

animals were returned to standard cages.  The duration of each CCI procedure was 

approximately 30 minutes. 

Assessment of Sensorimotor Function 

Sensorimotor deficits (i.e., foot faults per minute walking) were evaluated using the 

gridwalk task as previously described [341].  6 WT and 7 NGB mice were tested on the gridwalk 

at four time points (1 day pre-TBI, 2 days post-TBI, 3 days post-TBI, and 7 days post-TBI).  

Two gridwalk trials were performed at 1 day pre-TBI to establish each animal’s baseline 

performance, and to allow the animals to become familiar with the apparatus.  Mice were given 

one trial per day, at the same time of day, and scored by an observer who was unaware of the 

groups at each subsequent post-TBI time point.  Mice were placed on a grid area measuring 32 

cm×20 cm×50 cm with 11×11 mm diameter openings.  A video camera was placed beside the 

grid, and foot faults were counted as the mice walked over the elevated wire surface.  Mice were 

allowed to walk on the grid for five minutes, during which their total walking time was 

measured, and the number of foot faults for each foot counted.  Any step passing through a grid 

hole was considered a foot fault.  Foot fault data was normalized (to account for differences in 

locomotion seen in different trials) by dividing the total counted foot faults by the total time 

spent walking to obtain a measure of foot faults per minute of walking.  Data were expressed as 

the mean number of foot faults per minute walking + SEM.  Two-way repeated measures 
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ANOVA with a Fisher’s LSD post hoc for multiple comparisons was used for analyzing 

significant differences in mean number of foot faults per minute walking at each time-point. 

mRNA Analysis 

 Quantitative real-time polymerase chain reaction (qRT-PCR) was utilized for our gene 

expression time course study as previously described [87].  6 WT mice were sacrificed via 

intraperitoneal injection of beuthanasia prior to TBI, and at 1 day, 3 days, 7 days, and 14 days 

post-TBI.  All animals were decapitated at each time point, and whole brains were removed and 

stored in RNA later (Ambion, Austin, TX) for 24 hours at 4˚C to preserve the RNA.  After the 24 

hour incubation period, whole brains were dissected in order to collect the injured cortex (right 

cerebral cortex).  Total RNA was extracted from the tissues with a Polytron 2000 homogenizer 

(Brinkmann Instruments, Westbury, NY), using Trizol reagent (Invitrogen, Carlsbad, CA) 

according to the manufacturer’s instructions.  To assess RNA quantity, spectrophotometry was 

performed using a Nanodrop (Nanodrop Technologies, Wilmington, DE).  Isolated RNA samples 

were treated with DNase (Ambion PCR Kit) to remove any contaminating genomic DNA 

according to manufacturer’s instructions.  RNA purity and concentration were determined with 

an Agilent 2100 Bioanalyzer (Agilant Technologies, Santa Clara, CA), and samples not meeting 

quality standards were discarded.  Complementary DNA (cDNA) was synthesized by using 1 μg 

total RNA from each sample and random hexamers in a Taqman reverse transcription reaction 

(Applied Biosystems, Foster City, CA, USA).  10 ng of cDNA and gene-specific primers (see 

Table 1 for target genes and sequences of all primer pairs) were added to a 20 µL reaction 

volume of SYBR Green PCR Master Mix (SYBR Green I Dye, AmpliTaqDNA polymerase, 

dNTPs mixture, dUTP, and optimal buffer components [Applied Biosystems]), 1μl primer 

mixture (10 μg forward and 10 μg reverse primers in 150μl Sigma water), and Sigma water 
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(SigmaAldrich, St. Louis, MO) in a 96 well MicroAmp Optical reaction plate (Applied 

Biosystems, Foster City, CA).  The cDNA was subjected to PCR amplification (one cycle at 

50˚C for 2 minutes, one cycle at 95˚C for 10 minutes, and 40 cycles at 95˚C for 15 seconds and 

60˚C for 1 minute) using an Applied Biosystems 7300 Real Time PCR System Machine 

(Applied Biosystems, Foster City, CA).  PCR reactions were conducted in duplicate, and 

GAPDH was used as the housekeeping gene.  Sequence Detection Software 2.0 (Applied 

Biosystems, Foster City, CA) was used to collect and analyze data.  Neuroglobin gene 

expression was calculated relative to GAPDH by the ΔΔCt method, and reported in accordance 

with The Minimum Information for Publication of Quantitative Real-Time PCR Experiments 

(MIQE) guidelines [344].  A two-way ANOVA was used for analyzing significant differences in 

mRNA expression between time points.  Fisher’s LSD was used for post hoc comparisons. 

Table 1.  Primer sequences used for qRT-PCR 

  

 

 

 

Protein Analysis 

Immunohistochemistry was conducted to assess the location of specific cell types 

expressing neuroglobin as previously described [91].  4 WT and 4 NGB mice were sacrificed by 

transcardial perfusion under anesthesia (isoflurane) at 7 days post-TBI.  Brains were fixed by 

perfusion with 4% buffered formaldehyde, dissected, postfixed overnight, cryoprotected in 30% 

sucrose in 0.1 M phosphate buffer (pH 7.2), and sectioned through the coronal plane at 50 μm on 

a microtome.  Frozen sections were stored in an ethylene glycol solution at -80°C prior to 

immunostaining.  Sections were rinsed in PBS with 0.4 mg/ml glycine for 5 min, permeabilized 

Gene Primer Sequence 

Neuroglobin Forward-5’-TAC-AAT-GGC-CGC-CAG-TTC-T-3’ 

Reverse-5’-TGG-TCA-CTG-CAG-CAT-CAA-TCA-3’ 

GAPDH (housekeeping) Forward-5’-ATG-ACA-TCA-AGA-AGG-TGG-TG-3’ 

Reverse-5’-CAT-ACC-AGG-AAA-TGA-GCT-TG-3’ 
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with 0.2% Triton X-100, and quenched for peroxidase with 3% H2O2.  Sections were incubated 

overnight at 4°C with the primary antibody (neuroglobin rabbit anti-mouse 1:200, Sigma AB-

N7162).  After overnight incubation, all sections were rinsed with PBS and incubated with a 

biotinylated secondary antibody (1:500 goat anti-rabbit; Vector Labs BA-1000) for 2 hours at 

room temperature.  An ABC Elite kit (Vector Labs, Burlingame, CA) was used to produce the 

immunoperoxidase reaction.  Color was visualized using diaminobenzidine (DAB) solution 

(Vector Labs, Burlingame, CA).  A Nikon inverted stage microscope was used to visualize all 

sections, and digital images were captured with a SPOT microscope camera (Diagnostic 

Instruments, Sterling Heights, MI). 

2.4. RESULTS: 

The gridwalk task revealed unilateral sensorimotor forelimb and hindlimb deficits (i.e., 

foot faults) in both WT and NGB mice at 2 days, 3 days, and 7 days post-TBI (Figure 1).  

However, NGB mice displayed a significant (*p<.01) reduction in the average number of foot 

faults per minute of walking in comparison to WT mice at all post-TBI time points (2, 3, and 7 

days).  Furthermore, at 7 days post-TBI, NGB mice demonstrated a reduction in the average 

number of foot faults per minute of walking that was similar to pre-TBI averages.  qRT-PCR 

analysis (Figure 2) showed a significant (*p<.01) increase in neuroglobin mRNA expression in 

the right cerebral cortex of WT mice at 7 days post-TBI when compared to mRNA levels at all 

other time points.  CCI induced a lesion cavity within the right cerebral cortex that was seen at 7 

days post-TBI in both WT and NGB mice (Figure 3 a, d).  Immunohistochemistry revealed 

neuroglobin protein localization within neurons and glial cells in the injured cortex near the 

injury site, and ipsilateral hippocampus of WT mice at 7 days post-TBI (Figure 3 a, b, c).  In 
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addition, neuroglobin protein was observed in neurons and glial cells throughout the brain of 

NGB mice at 7 days post-TBI (Figure 3 d, e, f). 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gridwalk Task: Sensorimotor Deficits
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Figure 1.  The gridwalk task was used for evaluation of sensorimotor deficits in wild-type 

(WT) and transgenic neuroglobin (NGB) overexpressing mice.  Data represents the average 

number of foot faults per minute of walking prior to TBI, and at 2, 3, and 7 days post-TBI.  

NGB mice demonstrated significant reductions in the average number of foot faults per 

minute of walking at all post-TBI time points when compared to WT controls (*p<.01).  

Sensorimotor recovery was nearly complete at 7 days post-TBI for NGB mice.  Statistical 

Analysis: Two-way repeated measures ANOVA with Fisher’s LSD post hoc testing for 

multiple comparisons at each time point; n=6 (WT) n=7 (NGB); mean + SEM. 
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Right Cerebral Cortex Neuroglobin mRNA Expression in Response to TBI
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Figure 2.  qRT-PCR study of right cerebral cortex (injured cortex) neuroglobin gene 

expression in WT mice prior to TBI and at various post-TBI time points.  Y-axis is the 

average fold change relative to GAPDH (housekeeping gene) in the right cerebral cortex of 

pre-TBI (control) group mice.  Data represents neuroglobin expression prior to TBI, and at 1, 

3, 7, and 14 days post-TBI.  A significant (*p<.01) late up-regulation in neuroglobin 

expression occurred at 7 days post-TBI when compared to mRNA levels at all other time 

points.  Statistical Analysis: Two-way ANOVA with Fisher’s LSD post hoc testing for 

multiple comparisons at each time point; n=6 per group at each time point; mean + SEM. 
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Figure 3.  Coronal immunostained sections (50 µm) showing localization of neuroglobin 

protein in WT (a, b, c) and NGB mice (d, e, f) at 7 days post-TBI.  Neuroglobin was present 

in the injured cortex (right cerebral cortex) and ipsilateral hippocampus of WT mice (a).  

NGB mice displayed neuroglobin throughout the cortical and subcortical tissues (d).  The 

injured cortex of both WT and NGB mice demonstrated neuroglobin localization in neurons 

(b, e).  Neuroglobin was observed in both neurons and glial cells within the injured cortex of 

WT mice (c), and the subcortical white matter inferior to the injury site (dashed red line) in 

NGB mice (f).  Magnification at 1X (a, d), 10X (b, e), 40X (c), and 60X (f). 
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2.5. DISCUSSION: 

Neuroglobin Overexpression Improves Post-TBI Sensorimotor Function 

 The gridwalk task data demonstrated that NGB mice displayed a significant reduction in 

the number of foot faults (i.e., sensorimotor deficits) per minute walking at all post-TBI time 

points when compared to WT mice.  This result showed a link between neuroglobin 

overexpression and significantly improved sensorimotor outcomes after TBI.  Interestingly, this 

finding is in contrast to the results of a recent study conducted by Zhao et al., which showed no 

significant differences in recovery of sensorimotor function between NGB mice and WT mice at 

multiple post-TBI time points [164].  A disparity in the results may exist because Zhao et al. 

used a 10-point neurological severity score (NNS) for evaluating post-TBI neurological 

dysfunction while the present study used the gridwalk task.  One limitation of the NNS is that the 

test cannot evaluate sensorimotor deficits that occur while walking because the NNS only 

measures the ability of mice to walk on beams of various widths, but it does not evaluate 

accuracy (i.e., foot faults) of locomotion [345].  The gridwalk task is a well validated test used to 

assess sensorimotor function following TBI [341, 346], and since the NNS does not measure foot 

faults, it is less sensitive than the gridwalk task at assessing sensorimotor deficits that occur 

while walking [345].  In addition, differences in post-TBI sensorimotor function and recovery 

may have existed because our CCI injury site and impact parameters were different than those of 

Zhao et al.  

Timing of the Endogenous Post-TBI Neuroglobin mRNA Increase and Protein Localization 

Neuroglobin is an oxygen-binding protein that supplies oxygen to hypoxic tissue.  

Hypoxia commonly occurs as a secondary injury response to TBI, and many neuroprotective 

hypoxia-inducible genes (hypoxia-inducible factor-1 alpha, vascular endothelial growth factor, 
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heme oxygenase-1, and erythropoietin) are up-regulated after TBI to assist in promoting cell 

survival [87].  In conjunction with these hypoxia-inducible genes, neuroglobin expression is also 

known to increase in neurons responding to hypoxia [100].  This increase in neuroglobin 

expression protects neurons from cell death and reactive oxygen species damage [100, 172].  The 

qRT-PCR results indicated that there is a late, but significant, increase in neuroglobin mRNA 

expression at 7 days post-TBI in WT mice.  The subacute (i.e., 7 days post-TBI) increase in 

neuroglobin expression occurred later in comparison to the response of other hypoxia-inducible 

genes that are known to be up-regulated at 3 days post-TBI [87].  This delayed increase may 

reduce the neuroprotective potential of the endogenous neuroglobin response because significant 

neuron cell death occurs in adult mice at 3 days post-TBI [91].  The delayed increase in 

neuroglobin gene expression observed in our study at the 7 day post-TBI time point is in contrast 

to the findings of Di Pietro et al., which showed an acute increase in neuroglobin expression 

[347].  However, it is important to note that in opposition to our study design Di Pietro et al. 

employed rats instead of mice, and used a diffuse head injury model that induced different injury 

severities (i.e. mild and severe TBI).  Furthermore, neuroglobin expression was quantified at 

different time points in comparison to our study.  Differences in study design and methods make 

direct comparisons between the results of these studies difficult.  The immunostaining performed 

at 7 days post-TBI confirmed a greater accumulation of neuroglobin protein near the injury site 

and ipsilateral hippocampus when compared to the uninjured contralateral cortex and 

hippocampus in WT mice.  The presence of neuroglobin protein within the injured cortex of WT 

mice coincided with the significantly increased right cerebral cortex expression of neuroglobin 

mRNA observed at 7 days post-TBI.  NGB mice demonstrated neuroglobin protein throughout 

the brain, and neuroglobin was localized in neurons and glial cells of both WT and NGB mice.  
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Our immunostaining results are in agreement with the findings of DellaValle, et al., who showed 

similar in vivo neuroglobin localization in mouse models of TBI, cerebral malaria, and 

autoimmune encephalitis [166]. 

Mechanisms of Neuroprotection  

Neuroglobin has multiple neuroprotective effects that operate by different mechanisms, 

and several studies suggest that neuroglobin may positively affect TBI outcomes.  Neuroglobin 

inhibits the intrinsic apoptosis pathway by maintaining cytochrome c in a non-apoptotic 

oxidation state [173], protects neurons from nitric oxide toxicity [171], and prevents 

mitochondrial aggregation in hypoxic neurons [100].  In cell culture models, elevating neuronal 

neuroglobin reduced oxidative stress and increased intracellular adenosine tri-phosphate (ATP) 

by activating mitochondrial ATP sensitive potassium channels [174].  Furthermore, neuroglobin 

is known to positively affect metal homeostasis in neurons during hypoxic conditions.  Hypoxic 

neurons display increased intracellular concentrations of calcium, iron, copper, and zinc [175].  

Increased accumulation of these metals promotes inflammation, mitochondrial dysfunction, 

uncontrolled reactive oxygen species production, altered neurotransmitter release, neurotoxicity, 

and cell death [175].  Neuroglobin inhibits calcium influx, reduces cellular uptake of iron, 

copper, and zinc, and inhibits both necrosis and apoptosis [175].  The mechanisms underlying 

modulation of metal homeostasis by neuroglobin in response to hypoxia have not been clearly 

defined. 

Conclusions   

Based upon our observations and prior studies, we postulate that increasing neuroglobin 

expression prior to 7 days post-TBI would maximize its potential for neuroprotection, thereby 

improving sensorimotor outcomes.  Since neuroglobin is an intracellular protein that is not 
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capable of crossing cell membranes, direct administration of neuroglobin is not a practical 

treatment intervention [228].  However, previous research has demonstrated that endogenous 

neuroglobin production can be up-regulated pharmacologically by deferoxamine, cinnamic acid, 

and valproic acid [228].  Deferoxamine is an iron chelator known to increase hemin (ferric 

protoporphyrin IX), an oxidation product of heme [228].  Hemin initiates transcription and 

translation of neuroglobin in neurons via the soluble guanylate cyclase-protein kinase G (sGC-

PKG) signal transduction pathway [229].  In addition, Deferoxamine induces neuroglobin 

expression by increasing levels of hypoxia-inducible factors (HIF-1α and HIF-2α) in cortical 

neurons [228-230].  Cinnamic acid and valproic acid induce neuroglobin protein expression in 

cultured neurons in vitro [228], but the mechanisms by which these small molecules enhance 

neuroglobin production have not been determined.  Currently, no in vivo TBI studies exist 

investigating whether administration of cinnamic acid or valproic acid induces neuroglobin in the 

brain.  Increasing neuroglobin via pharmacological treatments during the acute period after TBI 

may improve sensorimotor outcomes.  More research is clearly warranted to determine whether 

pharmacological treatments are effective, and to define the optimal therapeutic window for 

neuroprotection after TBI. 

 

 

 

 

 

 

 

 

 

 

 

 

 



65 
 

Chapter 3 

Exercise Preconditioning Improves Traumatic Brain Injury Outcomes  
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3.1. ABSTRACT: 

Devastating long-term effects resulting from traumatic brain injury (TBI) include 

sensorimotor and cognitive dysfunction.  Post-TBI sensorimotor and cognitive function may be 

improved by increasing the expression of neuroprotective molecules in the brain.  Vascular 

endothelial growth factor-A (VEGF-A), erythropoietin (EPO), and heme oxygenase-1 (HO-1) 

promote neuron survival, neurogenesis, and angiogenesis in the brain.  Exercise has been shown 

in previous work to increase VEGF-A, EPO, and HO-1 expression in a variety of tissues.  

However, the response of these neuroprotective molecules in the brain after exercise is not 

known, and there is a critical need for examining VEGF-A, EPO, and HO-1 responses to 

exercise and TBI, and whether exercise can improve TBI outcomes.  The purpose of this study 

was to determine whether 6 weeks of voluntary pre-TBI exercise (i.e., exercise preconditioning) 

could improve post-TBI sensorimotor and cognitive function in adult mice.  In addition, we 

aimed to determine if improvements in post-TBI sensorimotor and cognitive function were 

associated with pre-TBI exercise increasing the production of VEGF-A, EPO, and HO-1 in 

regions of the brain responsible for movement (i.e., sensorimotor cortex) and memory (i.e., 

hippocampus).  120 adult (5 month) male C57/BL6 mice were randomly assigned to one of four 

groups: 1) no exercise + no TBI (NOEX-NOTBI [n=30]), 2) no exercise + TBI (NOEX-TBI 

[n=30]), 3) exercise + no TBI (EX-NOTBI [n=30]), and 4) exercise + TBI (EX-TBI [n=30]).  

Behavioral testing was conducted using the gridwalk task for assessment of sensorimotor 

function, and radial arm water maze (RAWM) for evaluation of spatial learning memory.  EX-

TBI mice displayed significant (p<.01) reductions in the average number of foot faults per 

minute walking during gridwalk testing when compared to NOEX-TBI mice at 1,3, and 7 days 

post-TBI.  In addition, EX-TBI mice demonstrated significant (p<.05) reductions in the average 
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number of RAWM retention test non-goal arm entry errors when compared to NOEX-TBI mice 

at both the pre-TBI and 7 day post-TBI time points.  Quantitative real-time polymerase chain 

reaction (qRT-PCR) and immunostaining were performed to investigate VEGF-A, EPO, and 

HO-1 mRNA and protein expression in the right cerebral cortex (injured cortex) and ipsilateral 

hippocampus.  EX-NOTBI and EX-TBI mice displayed significantly (p<.05) increased VEGF-A 

and EPO mRNA expression in the right cerebral cortex at 1 day post-TBI and/or post-exercise.  

In addition, ipsilateral hippocampus VEGF-A mRNA was significantly (p<.01) increased in both 

EX-NOTBI and EX-TBI mice at 1 day post-TBI and/or post-exercise.  EX-NOTBI and EX-TBI 

mice showed a significantly (p<.05) increased number of sensorimotor cortex neurons staining 

positive for VEGF-A and EPO protein at 1 day post-TBI and/or post-exercise.  Furthermore, EX-

TBI mice exhibited a significantly (p<.05) increased number of right hippocampus CA1 field 

neurons staining positive for VEGF-A protein at the 1 day post-TBI/post-exercise time point.  

HO-1 mRNA expression was not different in the right cerebral cortex or ipsilateral hippocampus 

of mice from either exercise group at any post-exercise time point.  However, HO-1 mRNA 

expression was significantly (p<.01) increased in the right cerebral cortex and ipsilateral 

hippocampus of NOEX-TBI mice at 3 days post-TBI, and ipsilateral hippocampus HO-1 mRNA 

remained elevated at 7 days post-TBI.  Results from this study show that improved TBI 

outcomes are associated with increased expression of specific neuroprotective genes and proteins 

(i.e., VEGF-A and EPO, but not HO-1) in the brain following exercise. 

3.2. INTRODUCTION: 

 A traumatic brain injury (TBI) results when external mechanical forces (e.g., direct 

impact to the head, rapid acceleration/deceleration of the head, blast waves, or penetration by a 

projectile) cause temporary or permanent brain damage and dysfunction.  Typically, TBI is 
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divided into primary and secondary injury responses.  Primary injury responses are defined by 

the immediate mechanical damage occurring at the moment of impact and include; brain 

contusion, laceration, hemorrhage, axon transection, and diffuse axonal injury [20, 63].  

Secondary injury responses including glutamate excitotoxicity, disturbed ionic gradients, 

metabolic disruption, mitochondrial dysfunction, reactive oxygen species formation, 

neuroinflammation, and hypoxic-ischemic damage, progress over hours, days, and months 

following the initial trauma [20, 61-63].  These secondary injury responses exacerbate primary 

injury damage, and are the main cause of death in hospitalized TBI patients [23].  Progression of 

secondary injury responses is a key factor that determines the final extent of brain damage, 

neurological dysfunction, and disability in those patients that survive a TBI [20].  TBI is not just 

an acute event, but rather a cascade of pathophysiological responses that ultimately promote 

neurological dysfunction and poor outcome following injury. 

TBI induces the transcription of several genes (e.g., vascular endothelial growth factor-A 

[VEGF-A], erythropoietin [EPO], and heme oxygenase-1 [HO-1]) that have the potential to 

protect neurons and reduce cellular damage resulting from post-TBI secondary injury responses 

[87].  VEGF-A is a homodimeric glycoprotein that acts as an angiogenic growth factor, but it 

also promotes neurogenesis [87, 113, 117].  VEGF-A is produced and released from many cell 

types including endothelial cells, neurons, glial cells, macrophages, and cancer cells during 

hypoxic cellular conditions [115-117].  The production of VEGF-A increases in the brain after 

stroke [117] and TBI [87].  Increased VEGF-A production is vital for promoting neuron survival, 

neurogenesis, and angiogenesis in and around the lesion site after TBI [125, 126].  Inhibiting the 

endogenous VEGF-A injury response prevents brain repair by impeding revascularization and 

astroglial proliferation [127].  Moreover, a significantly larger lesion volume in the cerebral 
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cortex, and increased neuronal and glial cell death result when VEGF-A receptors (VEGFR-2) 

are blocked prior to, and after TBI [128].   

EPO is a glycoprotein required for erythropoiesis, but it also has anti-apoptotic, anti-

inflammatory, antioxidative, angiogenic, and neurogenic properties [129, 130, 132-135].  The 

main site of EPO production is the kidneys [129, 130].  However, EPO and its receptor are also 

expressed in neurons, astrocytes, oligodendrocytes, and microglial cells in the brain [130-132].  

EPO is neuroprotective in animal models of TBI [142], spinal cord injury [143], stroke [144], 

and autoimmune encephalomyelitis [145].  EPO is known to elicit anti-apoptotic actions through 

inhibition of caspase activity, up-regulation of Bcl-2 family proteins, and by decreasing 

glutamate excitoxicity [87].  In ischemic tissue, EPO diminishes the production of pro-

inflammatory cytokines [146], and inhibiting the endogenous EPO response has been shown to 

worsen neuronal injury resulting from hypoxia and ischemia [147].   

HO-1 is a neuroprotective enzyme that exhibits anti-oxidative and anti-inflammatory 

effects [148, 149].  Our laboratory has shown in previous work that HO-1 production increases 

in the brain of mice after TBI [87].  HO-1 induction occurs in microglia and astrocytes following 

brain hemorrhage [156, 157], and increased expression of HO-1 in microglia and astrocytes may 

improve cellular resistance to oxidative stress and secondary injury after TBI [157].  HO-1 plays 

a neuroprotective role in many other pathophysiological conditions including; 1-Methyl-4-

phenyl-1,2,3,6-tetrahydropyridinium (MPP+) neurotoxicity [149], and stroke [158].  Disrupting 

endogenous HO-1 responses has been associated with poor outcomes in many central nervous 

system disorders [148].  In contrast, the pharmacological induction of HO-1 has elicited 

beneficial effects in many pathologic states including; inflammatory processes, atherosclerosis, 

carcinogenesis, ischemia-reperfusion injury and degenerative diseases [152].  Furthermore, the 
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neuroprotective effects of antioxidants including resveratrol and sulforaphane depend on 

induction of HO-1 [159, 160, 348].   

Exercise alters VEGF-A, EPO, and HO-1 expression in both non-neural and neural 

tissues.  Several studies demonstrate that exercise induces increased VEGF-A protein production 

in the skeletal muscles and brain [310-312].  EPO gene expression is increased in muscle [96, 

314] tissue following acute and chronic exercise.  Depending on intensity and duration, an acute 

bout of exercise is known to increase HO-1 protein expression in human lymphocytes [318], and 

rat skeletal muscle [319].  Chronic exercise has been shown to increase HO-1 expression in the 

aorta [321] and liver [323] of rats.  It is not known whether or when EPO and HO-1 increase in 

the brain after exercise training.  Furthermore, no research has investigated whether exercise 

modulates post-TBI VEGF-A, EPO, and HO-1 responses in the brain.   

Exercise is useful in neurorehabilitation after TBI.  However, premature initiation of an 

exercise program after TBI can exacerbate symptoms and worsen outcome [349].  Because of 

this finding, we chose to examine the potential prophylactic benefits offered by performing 

exercise prior to a TBI.  Exploring the novel use of exercise as “pre-habilitation” for improving 

recovery from TBI is also important since concerns still remain with current surgical and non-

surgical treatment options [209].  Exercise training may provide a practical non-invasive 

intervention for improving TBI outcomes by modulating secondary TBI responses, increasing 

neuroprotection, and minimizing post-TBI complications.  Damage resulting from post-TBI 

secondary injury responses may be diminished, and TBI outcomes improved, if exercise 

increases the endogenous production of VEGF-A, EPO, and HO-1 in the brain.  Therefore, the 

purpose of this study was to determine whether pre-TBI exercise (i.e., exercise preconditioning) 

could improve post-TBI sensorimotor and cognitive function in adult mice, and to examine 
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endogenous VEGF-A, EPO, and HO-1 responses in the brain after exercise and TBI.  We 

hypothesized that pre-TBI exercise would reduce sensorimotor and spatial learning memory 

deficits in adult mice, while simultaneously increasing VEGF-A, EPO, and HO-1 gene and 

protein expression throughout various post-TBI and/or post-exercise time points in brain regions 

responsible for movement (i.e., sensorimotor cortex) and memory (i.e., hippocampus). 

3.3. METHODS: 

Animals 

 All mice were obtained from Charles River (Wilmington, MA).  A total of 120 adult male 

C57/BL6 mice (28-32 g, 5 months old) were assigned to one of four groups for this study: 1) no 

exercise + no TBI (NOEX-NOTBI, n=30), 2) no exercise + TBI (NOEX-TBI, n=30), 3) exercise 

+ no TBI (EX-NOTBI, n=30), and 4) exercise + TBI (EX-TBI, n=30).  The no exercise group 

mice were individually housed in standard cages without running wheels, and exercise group 

mice were individually housed in standard cages with free access to running wheels for six 

weeks prior to being sacrificed.  Animals were sacrificed at 1, 3, or 7 days post-TBI and/or post-

exercise.  Mice were exposed to normal 12-hour light-dark cycles inside the University of 

Kansas Medical Center Laboratory Animal Resources building, and all animals had ad libitum 

access to water and standard rodent chow (8604; Harland Teklad Laboratories, Madison, WI).    

Animal care and use procedures were approved by the University of Kansas Medical Center 

Institutional Animal Care and Use Committee and conducted according to the Institute of 

Laboratory Animal Research guidelines. 

Voluntary Exercise/Free Access Wheel Running 

 A six week voluntary wheel running exercise protocol was used in this study.  This six 

week exercise protocol was chosen because it is similar in length to the 45 day protocol 
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employed by van Praag et al., who demonstrated that exercise improved learning and increased 

neurogenesis in the hippocampus of non-injured mice [253].  The voluntary wheel running 

activities of mice in the exercise groups was monitored via an interface cable that attached each 

cage containing a running wheel to a computer (Vital View Data Acquisition Software System; 

Mini Mitter Co. Inc., Bend, OR).  The Vital View Data Acquisition Software System 

automatically recorded the total number of wheel revolutions and distance ran (in kilometers) by 

each mouse at thirty-minute intervals for the duration of six weeks.  Data were expressed as the 

average daily running distance in kilometers (Km) + SEM. 

Induction of Traumatic Brain Injury via Controlled Cortical Impact (CCI) 

 A moderate TBI was induced via a controlled cortical impact (CCI) targeting the right 

sensorimotor cortex of TBI group mice (NOEX-TBI [n=30] and EX-TBI [n=30]).  Previous 

studies using magnetic resonance imaging have demonstrated high reliability for use of CCI in 

mice [341], and CCI reproduces the hallmark features of brain injuries observed in humans 

including motor deficits, memory loss, and neuron loss [342].  The CCI procedure was 

performed on the last day of the six week study, while TBI group mice were anesthetized with 

2.5% isoflurane in 30% O2 and air as previously described [91, 341].  Mice were stabilized in a 

Cunningham stereotaxic frame (Stoelting; Wood Dale, IN), and placed on a heating pad to 

maintain body temperature during the surgical procedure.  The temperature of all mice was 

measured throughout the surgery with a rectal thermometer and kept at 38
o 
C.  The skin on top of 

the head was shaved and scrubbed with iodine, and a longitudinal incision was made with a 

sterile scalpel blade.  Next, the scalp and epicranial aponeurosis were retracted to expose the 

skull.  The skull was viewed through a Wild operating microscope at 60X magnification, and a 

3.5 mm diameter craniotomy was performed with a dental drill on the right side of the mid-
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sagittal suture, with the following coordinates:  Anterior-posterior (AP) coordinates centered at 

bregma, 2.5 mm lateral to the midline.  Saline was routinely applied to the skull surface and drill 

to prevent heating the underlying brain tissue.  Drilling was performed carefully in order to leave 

the dura intact, and to avoid lacerating blood vessels traversing through the superior sagittal 

sinus.  Any bleeding from the skull was controlled with bone wax.  With the brain exposed, the 

cortex was impacted with a custom made CCI injury device.  This device was assembled from a 

linear motor (P01-23x80, LinMot Inc., Zurich, Switzerland) and an electronic servo controller 

(E100-MT, LinMot Inc., Zurich, Switzerland).  The motor consisted of a stator, a shaft, and 

integrated electronic circuitry.  The injury device was mounted on a platform through a flexible 

extension piece such that the motor could be oriented with respect to the platform.  A 3 mm 

stainless-steel injury tip was attached to the end of the shaft.  Immediately prior to CCI, the 

impactor tip was slowly lowered to the surface of the dura and center of the injury tip contact 

zone (2.5 mm lateral to bregma) via a push-button graphic user interface in the impactor control 

software (Visual Basic 6.0 software).  Using this push-button graphic user interface, the CCI was 

initiated through the following steps:  1) The computer was programmed to control impact 

velocity (1.5 m/s), impact depth (1.0 mm), and contact time (85 ms), 2) the tip was retracted 20 

mm from the dura, and a rapid 21 mm downward strike (20 mm retraction plus the 1.0 operator 

programmed injury depth) of the impactor tip on the exposed brain followed.  Following impact, 

the skin was closed with a sterile suture, and all TBI group mice were returned to standard cages 

without running wheels.  All control group mice (NOEX-NOTBI [n=30] and EX-NOTBI 

[n=30]) that did not receive a CCI were also returned to standard cages without running wheels.  

Each CCI surgery was performed within approximately 30 minutes. 
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Assessment of Sensorimotor Function 

 Sensorimotor deficits (i.e., number of foot faults per minute of walking) were assessed 

using the gridwalk task.  NOEX-TBI and EX-TBI mice were tested on the gridwalk at four time 

points (pre-TBI [n=24 per group], 1 day post-TBI [n=24 per group], 3 days post-TBI [n=16 per 

group], and 7 days post-TBI [n=8 per group]).  At the pre-TBI time point, mice performed two 

gridwalk trials to establish each animal’s baseline performance, and to allow familiarization with 

the gridwalk apparatus.  At each subsequent post-TBI time point, mice completed one trial per 

day, at the same time of day.  Sensorimotor deficits (i.e., foot faults) were scored by an observer 

who was blinded to the grouping of mice at each time point.  Mice were placed on an elevated 

wire grid (area measuring 32 cm×20 cm×50 cm with 11×11 mm diameter openings), and 

allowed to walk during 5 minute trials to score foot faults.  A foot fault was defined as any step 

passing through a grid opening.  The number of foot faults was counted for each foot, and the 

total time spent walking was calculated during each trial.  The total number of foot faults was 

divided by the total time spent walking during each trial to obtain the number of foot faults per 

minute of walking.  This normalization of the foot fault data was needed to account for 

differences seen in the duration of walking between trials.  Data were expressed as the average 

number of foot faults per minute walking + SEM. 

Evaluation of Spatial Learning Memory 

 Spatial learning memory deficits (i.e., number of non-goal arm entry errors) were tested 

using the radial arm water maze (RAWM).  The RAWM has been validated for testing learning 

and memory in mice [350].  RAWM testing combines assessment of spatial working memory via 

the radial arm maze, with assessment of spatial cognitive deficits provided by the Morris water 

maze.  Furthermore, RAWM testing has been shown to be more sensitive than the Morris water 
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maze in detecting cognitive deficits in transgenic models of Alzheimer’s disease [351, 352].  8 

mice from the NOEX-TBI and EX-TBI groups were tested in the RAWM at 1 day prior to TBI, 

and 7 days post-TBI.  At each time point, daily sessions consisted of four acquisition trials 

(separated by 3 minute rest periods for each mouse), followed by a 30-minute delay interval 

(after completing all acquisition trials the mice were returned to their respective cages during the 

delay interval), and a subsequent single retention test trial to evaluate spatial learning memory 

deficits.  Testing began once mice were released into one of the six non-goal arms of the maze; a 

different semi-randomized start-arm and goal-arm (i.e., platform containing arm) sequence were 

used each day.  Three dimensional objects (i.e., different shapes) erected 24 inches above the 

water surface on the perimeter of the RAWM served as visual cues for mice navigating the maze.  

A single trial allowed 120 seconds for mice to swim and find a platform submerged less than 1 

centimeter below the water surface and located in the distal part of the goal-arm.  If mice reached 

the goal-arm platform within the allotted time frame, they were permitted to remain on the 

platform for 30 seconds, and the trial was ended.  If mice failed to find the platform within 120 

seconds, animals were gently guided toward the platform and permitted to remain on the 

platform for 30 seconds.  During all trials, non-goal arm entry errors were recorded each time 

mice swam into an arm of the RAWM that did not contain the goal-arm platform.  A non-goal 

arm entry was scored when the entire body of a mouse (excluding the tail) entered a non-goal 

arm.  At the end of each trial, the total number of non-goal arm entry errors was calculated for 

each animal, and group averages were figured for the four acquisition trials and the single 

retention test trial.  Water temperature was kept at 24-27°C during all sessions, and the surface of 

the water was coated with powdered condensed milk to make the water opaque which concealed 

the location of the goal-arm platform.  Video was taken during each session (both training and 
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testing) to record behavior and performance.  Retention test data were expressed as the average 

number of non-goal arm entry errors + SEM. 

mRNA Analysis 

 Quantitative real-time polymerase chain reaction (qRT-PCR) was used for a gene 

expression time course study as previously described [87].  8 mice from each group (i.e., NOEX-

NOTBI, NOEX-TBI, EX-NOTBI, and EX-TBI) were sacrificed via intraperitoneal injection of 

beuthanasia at 1, 3, and 7 days post-TBI and/or post-exercise.  At each time point, all animals 

were decapitated and whole brains were removed and stored (for 24 hours at 4°C) in RNA later 

(Ambion, Austin, TX) to preserve the RNA.  Whole brains were dissected in order to collect a 5 

mm wide sample (samples from both TBI groups contained the lesion site) of the right cerebral 

cortex and all of the ipsilateral hippocampus.  Total RNA was extracted from these tissues by 

using a Polytron 2000 homogenizer (Brinkmann Instruments, Westbury, NY), and Trizol reagent 

(Invitrogen, Carlsbad, CA) according to the manufacturer’s instructions.  Spectrophotometry was 

performed using a Nanodrop (Nanodrop Technologies, Wilmington, DE) to assess RNA quality.  

In order to remove any contaminating genomic DNA, isolated RNA samples were treated with 

DNase (Ambion PCR Kit) according to the manufacturer’s instructions.  RNA purity and 

concentration were determined with an Agilent 2100 Bioanalyzer (Agilant Technologies, Santa 

Clara, CA), and samples that did not meet quality standards were discarded.  1 μg of total RNA 

from each sample, and random hexamers, were used in a Taqman reverse transcription reaction 

(Applied Biosystems, Foster City, CA, USA) to synthesize complementary DNA (cDNA).  10 ng 

of cDNA and gene-specific primers (see Table 2 for target genes and sequences of all primer 

pairs) were combined in a 20 µL reaction volume of SYBR Green PCR master mix (SYBR 

Green I Dye, AmpliTaqDNA polymerase, dNTPs mixture, dUTP, and optimal buffer 
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components [Applied Biosystems]), 1μl primer mixture (10 μg forward and 10 μg reverse 

primers in 150μl Sigma water), and Sigma water (SigmaAldrich, St. Louis, MO) in a 96 well 

MicroAmp Optical reaction plate (Applied Biosystems, Foster City, CA).  The cDNA/SYBR 

Green PCR master mix was subjected to PCR amplification (one cycle at 50°C for 2 minutes, 

one cycle at 95°C for 10 minutes, and 40 cycles at 95°C for 15 seconds and 60˚C for 1 minute) 

using an Applied Biosystems 7300 Real Time PCR System Machine (Applied Biosystems, 

Foster City, CA).  PCR reactions were conducted in duplicate, and glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) was used as the housekeeping gene.  Data were collected and analyzed 

with Sequence Detection Software 2.0 (Applied Biosystems).  VEGF-A, EPO, and HO-1 gene 

expression were calculated relative to GAPDH by using the delta-delta Ct method [353], and 

reported in accordance with The Minimum Information for Publication of Quantitative Real-

Time PCR Experiments (MIQE) guidelines [344].  Data were expressed as the average fold 

change + SEM relative to GAPDH in brain samples from the NOEX-NOTBI group. 

Table 2.  Primer sequences used for qRT-PCR 

Gene Primer Sequence Expected 

Amplicon Size 

(bp) 

VEGF-A Forward-5’-TTA-CTG-CTG-TAC-CTC-CAC-C-3’ 

Reverse-5’-ACA-GGA-CGG-CTT-GAA-GAT-G-3’ 

189 

EPO Forward-5’-CCT-GTC-CCT-GCT-CTC-AGA-AGC-3’ 

Reverse-5’-GTG-GTA-TCT-GGA-GGC-GAC-ATC-3’ 

177 

HO-1 Forward-5’-CGC-CTT-CCT-GCT-CAA-CAT-T-3’ 

Reverse-5’-TGT-GTT-CCT-CTG-TCA-GCA-TCA-C-3’ 

62 

GAPDH 

(Housekeeping) 

Forward-5’-ATG-ACA-TCA-AGA-AGG-TGG-TG-3’ 

Reverse-5’-CAT-ACC-AGG-AAA-TGA-GCT-TG-3’ 

177 

 

Protein Analysis 

 Immunohistochemistry was performed to investigate the location of neurons staining 

positive for VEGF-A or EPO proteins within the right cerebral cortex (injured cortex) and CA1 
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region of the ipsilateral hippocampus as previously described [91].  Neurons expressing VEGF-

A or EPO proteins were manually counted in the right cerebral cortex and CA1 region of the 

ipsilateral hippocampus.  6 mice from each group (i.e., NOEX-NOTBI, NOEX-TBI, EX-NOTBI, 

and EX-TBI) were sacrificed by transcardial perfusion at 1 day post-TBI and/or post-exercise.  

Brains were fixed by perfusion with 4% buffered formaldehyde, post-fixed for 24 hours, and 

cryoprotected in 30% sucrose in 0.1 M phosphate buffer (pH 7.2).  A microtome was used to cut 

35 μm thick coronal sections of the brain, and frozen sections were stored in ethylene glycol 

solution at -80°C.  Prior to immunostaining, all sections were rinsed for 5 minutes in PBS with 

0.4 mg/ml glycine, permeabilized with 0.2% Triton X-100, and quenched for peroxidase with 

3% H2O2.  Sections were incubated for 24 hours at 4°C with rabbit anti-mouse primary 

polyclonal antibodies to VEGF-A (1:5000, ab46154; Abcam Inc., Cambridge, MA) and EPO 

(1:150, sc-7956; Santa Cruz Biotechnology, Santa Cruz, CA).  Subsequent to overnight 

incubation, all sections were rinsed (3 washes x 5 minutes each wash) with PBS, and incubated 

for 2 hours at room temperature with a biotinylated goat anti-rabbit secondary antibody (1:500, 

BA-1000; Vector Labs, Burlingame, CA).  The immunoperoxidase reaction was produced 

according to the manufacturer’s instructions with an ABC Elite kit (Vector Labs, Burlingame, 

CA).  Color was visualized using diaminobenzidine (DAB) solution (Vector Labs, Burlingame, 

CA).  A Nikon Eclipse 80i microscope (Nikon Instruments Inc., Melville, NY) was used to 

visualize the location of positively stained neurons in all sections, and digital images were 

captured at 10X magnification with a Photometrics CoolSNAP ES microscope camera 

(Photometrics, Tucson, AZ).  Image J image analysis software was used to manually count 

neurons that expressed VEGF-A or EPO proteins.  Neurons stained positive for VEGF-A or EPO 

were labeled in the captured digital images with a blue dot and number after positioning the on-
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screen cursor over the cell body and clicking the computer mouse.  Positively stained neurons 

were counted (in sections located at Bregma 0.02 mm) within a 3.93721 mm
2
 region of the right 

cerebral cortex that included the primary and secondary motor cortices, and somatosensory 

fields.  In sections containing the TBI lesion cavity, cell counts were normalized to the total area 

of tissue remaining within the 3.93721 mm
2
 target region of the right cerebral cortex.  Neurons 

staining positive for VEGF-A or EPO proteins were also manually counted (in sections located at 

Bregma -1.94 mm) within an 891.6 μm
2
 region of the right hippocampus CA1 field.  Data were 

expressed as the average number of VEGF-A or EPO positive stained neurons per mm
2 

+ SEM 

in each brain region. 

Statistical Analyses 

 SPSS Statistics 20 (IBM, Chicago, IL) software was used for statistical analyses.  

Exercise and behavioral data were analyzed with one-way and two-way repeated measures 

ANOVA respectively.  Three-way ANOVA (fixed factors; day, TBI, and exercise) was used for 

analyzing mRNA data, and a two-way ANOVA (fixed factors; TBI and exercise) was performed 

for determining significant differences in the number of neurons staining positive for VEGF-A or 

EPO proteins between groups.  Fisher’s LSD post hoc testing was conducted for multiple 

comparisons.  Significant differences between groups are represented with asterisks (*p<.05 and 

**p<.01). 

3.4. RESULTS: 

Exercise 

 In the present study, exercise group mice (i.e., exercise + no TBI [EX-NOTBI, n=30] and 

exercise + TBI [EX-TBI, n=30]) displayed consistent circadian rhythms during each week of the 

six week voluntary wheel running protocol (Figure 4).  Mice ran throughout the night, and rarely 
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entered the running wheel during the day.  The mice ran on average 4.413 + .088 Km daily 

during the six week protocol (Figure 5).  Statistical analysis revealed significantly (**p<.01) less 

average daily running distance in week 1 when compared to all other weeks.  However, the 

amount of daily exercise increased and remained steady between weeks 2-6.  Physical activity 

patterns of no exercise group mice (i.e., no exercise + no TBI [NOEX-NOTBI, n=30] and no 

exercise + TBI [NOEX-TBI, n=30]) were observed on several occasions throughout the day and 

night.  The no exercise group mice appeared to be sleeping during the day, and displayed 

minimal activity at night that included mainly grooming, eating, drinking, and some walking 

while exploring the standard cage housing. 
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Figure 4.  The average distance ran (in kilometers [Km]) of 5 month old male, adult mice 

(n=60) during 30 minute sampling intervals throughout the course of one day (i.e., 24 hours). 

The mice show profound circadian rhythms in their running patterns.  Data are plotted 

separately for each week. 
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Figure 5.  The average total daily distance ran (in kilometers [Km]) during each week of the 

6 week exercise training period. Mice ran on average 4.413 + .088 Km daily during the 6 

week protocol.  Mice ran significantly (**p<.01) less in week 1 when compared to all other 

weeks.  However, the average total daily distance ran varied slightly during weeks 2-6.  

Statistical Analysis: One-way repeated measures ANOVA with Fisher’s LSD post hoc testing 

for multiple comparisons.  Mean + SEM for n=60. 
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Behavioral Testing 

 Sensorimotor deficits (i.e., average number of foot faults per minute walking) were 

evaluated using the gridwalk task prior to TBI, and at 1, 3, and 7 days post-TBI (Figure 6).  Prior 

to TBI, there were no statistically significant differences between NOEX-TBI and EX-TBI mice 

in the average number of foot faults per minute walking.  After injury, both TBI groups exhibited 

significant (p<.01, not labeled on graph) increases in the average number of foot faults per 

minute walking during the gridwalk task at all post-TBI time points when both TBI groups were 

compared to the pre-TBI time point.  However, 6 weeks of pre-TBI voluntary wheel running 

exercise decreased post-TBI sensorimotor deficits.  EX-TBI mice showed significant (**p<.01) 

reductions in the average number of foot faults per minute walking when compared to NOEX-

TBI mice at 1, 3, and 7 days post-TBI. 

 Spatial learning memory deficits (i.e., average number of non-goal arm entry errors) were 

assessed during retention testing using the radial arm water maze (RAWM) prior to TBI, and at 7 

days post-TBI (Figure 7).  TBI significantly (*p<.05) increased the average number of RAWM 

retention test non-goal arm entry errors in both NOEX-TBI and EX-TBI mice at 7 days post-

TBI.  However, 6 weeks of pre-TBI exercise training decreased spatial learning memory deficits 

prior to TBI, and after TBI.  EX-TBI mice demonstrated significant (*p<.05) reductions in the 

average number of RAWM retention test non-goal arm entry errors when compared to NOEX-

TBI mice at both the pre-TBI and 7 day post-TBI time points. 

 

 

 

 

 

 

 

 



83 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gridwalk Task: Sensorimotor Deficits
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Figure 6. The gridwalk task was used for investigating sensorimotor deficits (i.e., average 

number of foot faults per minute walking).  TBI significantly (p<.01, not labeled on graph) 

increased the average number of foot faults per minute walking during the gridwalk task in 

both no exercise + TBI (NOEX-TBI) and exercise + TBI (EX-TBI) mice at all post-TBI time 

points when compared to pre-TBI.  However, 6 weeks of pre-TBI voluntary wheel running 

exercise reduced the average number of foot faults per minute walking at 1, 3, and 7 days 

post-TBI.  EX-TBI mice demonstrated a significantly (**p<.01) reduced average number of 

foot faults per minute walking during the gridwalk task at all post-TBI time points when 

compared to NOEX-TBI mice.  Statistical Analysis: Two-way repeated measures ANOVA 

(fixed factors; day and exercise) with Fisher’s LSD post hoc testing for multiple comparisons.  

Mean + SEM for n=24 pre-TBI, n=24 at 1 day post-TBI, n=16 at 3 days post-TBI, and n=8 at 

7 days post-TBI per group. 
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Radial Arm Water Maze: Spatial Learning Memory Deficits
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Figure 7.  Radial arm water maze (RAWM) testing was conducted for evaluation of spatial 

learning memory deficits (i.e., average number of non-goal arm entry errors).  TBI 

significantly (*p<.05) increased the average number of non-goal arm entry errors during the 

RAWM retention test in both no exercise + TBI (NOEX-TBI) and exercise + TBI (EX-TBI) 

mice at 7 days post-TBI.  However, 6 weeks of pre-TBI voluntary wheel running exercise 

reduced the average number of non-goal arm entry errors prior to TBI, and at 7 days post-

TBI.  EX-TBI mice displayed a significantly (*p<.05) decreased average number of non-goal 

arm entry errors during the RAWM retention test at both time points (i.e., pre-TBI and 7 days 

post-TBI) when compared to NOEX-TBI mice.  Statistical Analysis: Two-way repeated 

measures ANOVA (fixed factors; day and exercise) with Fisher’s LSD post hoc testing for 

multiple comparisons.  Mean + SEM for n=8 per group at each time point. 
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VEGF-A Gene Expression 

 VEGF-A mRNA expression increased within the right cerebral cortex (Figure 8) and 

ipsilateral hippocampus (Figure 9) in response to both TBI and exercise.  Statistically significant 

(p<.05) differences existed between groups for VEGF-A mRNA expression (i.e., fold change 

relative to control) in both the right cerebral cortex and right hippocampus.  Post hoc testing for 

multiple comparisons revealed several interesting findings between groups.  As a result of TBI 

alone, VEGF-A mRNA expression was significantly (**p<.01) increased within the right 

cerebral cortex of NOEX-TBI mice when compared to NOEX-NOTBI mice at 3 days post-TBI.  

TBI alone also significantly (*p<.05) increased VEGF-A mRNA expression within the right 

hippocampus of NOEX-TBI mice in comparison to NOEX-NOTBI mice at 1 day post-TBI.  

After 6 weeks of voluntary wheel running exercise but no TBI, EX-NOTBI mice displayed 

significantly (**p<.01) increased right cerebral cortex VEGF-A mRNA expression in 

comparison to NOEX-NOTBI mice at both 1 and 3 days post-exercise.  In addition, exercise 

alone significantly (**p<.01) increased VEGF-A mRNA expression within the right 

hippocampus of EX-NOTBI mice when compared to NOEX-NOTBI mice at 1 day post-

exercise.  In response to the 6 week exercise intervention and subsequent TBI, EX-TBI mice 

demonstrated a significant (*p<.05) earlier increase in right cerebral cortex VEGF-A mRNA 

expression at 1 day post-exercise/post-TBI when compared to NOEX-TBI mice.  Furthermore, 

exercise followed by TBI resulted in significantly (**p<.01) greater increases in VEGF-A 

mRNA expression within the right hippocampus of EX-TBI mice in comparison to NOEX-TBI 

mice at 1 day post-exercise/post-TBI. 
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Right Cerebral Cortex VEGF-A mRNA Expression
in Response to TBI and Exercise
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Figure 8.  qRT-PCR study of right cerebral cortex VEGF-A mRNA responses after TBI and 

exercise (i.e., 6 weeks of pre-TBI voluntary wheel running).  Y-axis is the average fold 

change relative to GAPDH (housekeeping gene) in the no exercise + no TBI (NOEX-NOTBI) 

mouse cortex.  Data represents VEGF-A mRNA expression at various post-TBI and/or post-

exercise time points (X-axis) for NOEX-NOTBI, no exercise + TBI (NOEX-TBI), exercise + 

no TBI (EX-NOTBI), and exercise + TBI (EX-TBI) mice.  In response to TBI only, NOEX-

TBI mice demonstrated significantly (**p<.01) increased VEGF-A mRNA expression at 3 

days post-TBI when compared to NOEX-NOTBI mice.  In response to exercise only, EX-

NOTBI mice displayed significantly (**p<.01) increased VEGF-A mRNA expression at both 

1 and 3 days post-exercise in comparison to NOEX-NOTBI mice.  EX-TBI mice showed a 

significant early (*p<.05) increase in VEGF-A mRNA at 1 day post-exercise/post-TBI when 

compared to NOEX-TBI mice.  Statistical Analysis: Three-way ANOVA (fixed factors; day, 

TBI, and exercise) with Fisher’s LSD post hoc testing for multiple comparisons.  Mean + 

SEM for n=8 per group at each time point. 
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Right Hippocampus VEGF-A mRNA Expression
in Response to TBI and Exercise
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Figure 9.  qRT-PCR study of right hippocampus VEGF-A mRNA responses after TBI and 

exercise (i.e., 6 weeks of pre-TBI voluntary wheel running).  Y-axis is the average fold 

change relative to GAPDH (housekeeping gene) in the no exercise + no TBI (NOEX-NOTBI) 

mouse cortex.  Data represents VEGF-A mRNA expression at various post-TBI and/or post-

exercise time points (X-axis) for NOEX-NOTBI, no exercise + TBI (NOEX-TBI), exercise + 

no TBI (EX-NOTBI), and exercise + TBI (EX-TBI) mice.  In response to TBI only, NOEX-

TBI mice demonstrated significantly (*p<.05) increased VEGF-A mRNA expression at 1 day 

post-TBI when compared to NOEX-NOTBI mice.  In response to exercise only, EX-NOTBI 

mice displayed significantly (**p<.01) increased VEGF-A mRNA expression at 1 day post-

exercise in comparison to NOEX-NOTBI mice.  EX-TBI mice showed a significant 

(**p<.01) increase in VEGF-A mRNA at 1 day post-exercise/post-TBI when compared to 

NOEX-TBI mice.  Statistical Analysis: Three-way ANOVA (fixed factors; day, TBI, and 

exercise) with Fisher’s LSD post hoc testing for multiple comparisons.  Mean + SEM for n=8 

per group at each time point. 
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VEGF-A Protein Localization 

 Immunohistochemistry revealed VEGF-A protein localization within neurons found in 

various regions of the right cerebral cortex (Figure 10) and ipsilateral hippocampus CA1 field 

(Figure 11).  Minimal staining of right cerebral cortex VEGF-A positive neurons was observed 

in the sensorimotor cortex (i.e., primary motor cortex, secondary motor cortex, and 

somatosensory forelimb, hindlimb, and barrel fields) of NOEX-NOTBI mice.  NOEX-NOTBI 

mice also displayed very sparse staining of VEGF-A positive neurons contained in the oriens 

layer of the right hippocampus CA1 field.  However, in contrast to these findings, VEGF-A 

staining was more apparent within neurons located in the right cerebral cortex and right 

hippocampus CA1 field of TBI and exercise group mice.  NOEX-TBI and EX-TBI mice 

exhibited an abundance of right cerebral cortex neurons staining positive for VEGF-A in the 

cingulate cortex (area 1 and 2), and sensorimotor cortex near the injury site.  In addition, NOEX-

TBI and EX-TBI mice exhibited noticeable VEGF-A staining of neurons located in the oriens 

layer and pyramidal cell layers of the right hippocampus CA1 field.  EX-NOTBI mice displayed 

many VEGF-A positive stained neurons throughout the right sensorimotor cortex.  Furthermore, 

EX-NOTBI mice demonstrated VEGF-A staining of neurons located in the oriens layer and 

pyramidal cell layer of the right hippocampus CA1 field. 
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Figure 10.  Coronal immunostained sections (35 μm thick sections at Bregma 0.02 mm) 

showing localization of VEGF-A protein in the right cerebral cortex of no exercise + no TBI 

(NOEX-NOTBI), no exercise + TBI (NOEX-TBI), exercise + no TBI (EX-NOTBI), and 

exercise + TBI (EX-TBI) mice at 1 day post-TBI and/or post-exercise.  NOEX-NOTBI mice 

exhibited very few neurons staining positive for VEGF-A in the primary motor cortex (M1) 

and somatosensory (SS) hindlimb region.  NOEX-TBI and EX-TBI mice displayed abundant 

VEGF-A staining within neurons located in the cingulate cortex (area 1 [CG1] and area 2 

[CG2]), primary motor cortex (not shown), and secondary motor cortex (M2) near the injury 

site.  EX-NOTBI mice demonstrated very noticeable VEGF-A staining within neurons 

located in the primary motor cortex (M1), secondary motor cortex (not shown), and 

somatosensory (SS) hindlimb region.  10X magnification, scale bar = 100 μm for all images 

displayed. 
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Figure 11.  Coronal immunostained sections (35 μm thick sections at Bregma -1.94 mm) 

showing localization of VEGF-A protein in the right hippocampus (CA1 field) of no exercise 

+ no TBI (NOEX-NOTBI), no exercise + TBI (NOEX-TBI), exercise + no TBI (EX-NOTBI), 

and exercise + TBI (EX-TBI) mice at 1 day post-TBI and/or post-exercise.  NOEX-NOTBI 

mice displayed sparse VEGF-A staining within neurons located in the oriens layer (Or).  

NOEX-TBI and EX-TBI mice revealed marked VEGF-A staining within neurons located in 

the oriens layer (Or) and pyramidal cell (Py) layers.  EX-NOTBI mice also demonstrated 

VEGF-A staining within neurons located in the oriens layer (Or) and pyramidal cell (Py) 

layers.  10X magnification, scale bar = 100 μm for all images displayed. 
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VEGF-A Protein Quantification 

 VEGF-A protein expression (i.e., average number of VEGF-A positive stained neurons 

per mm
2
) increased within the right cerebral cortex (Figure 12) in response to exercise alone, and 

exercise followed by TBI at 1 day post-TBI/post-exercise.  In addition, VEGF-A protein 

expression increased within the ipsilateral hippocampus CA1 field (Figure 13) in response to 

exercise followed by TBI at the 1 day post-TBI/post-exercise time point.  Statistically significant 

(p<.05) differences existed between groups for the average number of VEGF-A positive stained 

neurons per mm
2
 in both the right cerebral cortex and right hippocampus CA1 field.  Post hoc 

testing showed several interesting differences when comparing groups.  In response to 6 weeks 

of exercise only, EX-NOTBI mice demonstrated a significantly (**p<.01) increased average 

number of right cerebral cortex VEGF-A positive stained neurons when compared to NOEX-

NOTBI mice.  After chronic exercise training and TBI, EX-TBI mice displayed a significant 

(*p<.05) increase in the average number of right cerebral cortex neurons staining positive for 

VEGF-A protein in comparison to NOEX-TBI mice.  A similar response to exercise and 

subsequent TBI was observed between groups in the hippocampus, as EX-TBI mice exhibited a 

significantly (*p<.05) increased average number of right hippocampus CA1 field VEGF-A 

positive stained neurons when compared to NOEX-TBI mice. 
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VEGF-A Protein Expression in Right Cerebral Cortex Neurons
(1 Day Post-TBI/Exercise)
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Figure 12.  Immunostaining (Anti-VEGF-A antibodies) was performed on coronal cut (35 

μm thick) brain sections (Bregma 0.02 mm) to quantify VEGF-A protein expression within 

neurons of the right cerebral cortex at 1 day post-TBI and/or post-exercise.  Data represents 

the average number of VEGF-A positive stained neurons per mm
2
 for no exercise + no TBI 

(NOEX-NOTBI), no exercise + TBI (NOEX-TBI), exercise + no TBI (EX-NOTBI), and 

exercise + TBI (EX-TBI) mice.  Neurons staining positive for VEGF-A protein were 

manually counted within a 3.93721 mm
2
 region of the right cerebral cortex which included 

the primary and secondary motor cortices, and somatosensory fields.  In sections containing 

the TBI lesion cavity, cell counts were normalized to the total area of tissue remaining within 

the 3.93721 mm
2
 target region of the right cerebral cortex.  In response to exercise only, EX-

NOTBI mice displayed a significantly (**p<.01) increased average number of neurons 

staining positive for VEGF-A protein in comparison to NOEX-NOTBI mice.  In addition, 

EX-TBI mice showed a significant (*p<.05) increase in the average number of neurons 

staining positive for VEGF-A protein when compared to NOEX-TBI group mice.  Statistical 

Analysis: Two-way ANOVA (fixed factors; TBI and exercise) with Fisher’s LSD post hoc 

testing for multiple comparisons.  Mean + SEM for n=6 per group. 
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VEGF-A Protein Expression in Right Hippocampus Neurons
(1 Day Post-TBI/Exercise)
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Figure 13.  Immunostaining (Anti-VEGF-A antibodies) was performed on coronal cut (35 

μm thick) brain sections (Bregma -1.94 mm) to quantify VEGF-A protein expression within 

neurons of the right hippocampus CA1 field at 1 day post-TBI and/or post-exercise.  Data 

represents the average number of VEGF-A positive stained neurons per mm
2
 for no exercise 

+ no TBI (NOEX-NOTBI), no exercise + TBI (NOEX-TBI), exercise + no TBI (EX-NOTBI), 

and exercise + TBI (EX-TBI) mice.  Neurons staining positive for VEGF-A protein were 

manually counted within an 891.6 μm
2
 region of the right hippocampus CA1 field.  EX-TBI 

mice showed a significant (*p<.05) increase in the average number of neurons staining 

positive for VEGF-A protein when compared to NOEX-TBI mice.  Statistical Analysis: Two-

way ANOVA (fixed factors; TBI and exercise) with Fisher’s LSD post hoc testing for 

multiple comparisons.  Mean + SEM for n=6 per group. 
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EPO Gene Expression 

 EPO responded in a manner similar to VEGF-A after chronic exercise training.  EPO 

mRNA expression increased within the right cerebral cortex (Figure 14) in response to exercise.  

Statistically significant (p<.05) differences existed between groups for EPO mRNA expression 

(i.e., fold change relative to control) in the right cerebral cortex only.  As a result of exercise 

alone, post hoc testing showed that EX-NOTBI mice exhibited significantly (**p<.01) increased 

right cerebral cortex EPO mRNA expression when compared to NOEX-NOTBI mice at the 1 

day post-exercise time point.  After chronic exercise training and TBI, post hoc testing indicated 

significantly (**p<.01) increased EPO mRNA expression within the right cerebral cortex of EX-

TBI mice in comparison to NOEX-TBI mice at 1 day post-TBI/post-exercise.  There were no 

statistically significant differences between groups in ipsilateral hippocampus (Figure 15) EPO 

mRNA expression. 
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Right Cerebral Cortex EPO mRNA Expression
in Response to TBI and Exercise
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Figure 14.  qRT-PCR study of right cerebral cortex EPO mRNA responses after TBI and 

exercise (i.e., 6 weeks of pre-TBI voluntary wheel running).  Y-axis is the average fold 

change relative to GAPDH (housekeeping gene) in the no exercise + no TBI (NOEX-NOTBI) 

mouse cortex.  Data represents EPO mRNA expression at various post-TBI and/or post-

exercise time points (X-axis) for NOEX-NOTBI, no exercise + TBI (NOEX-TBI), exercise + 

no TBI (EX-NOTBI), and exercise + TBI (EX-TBI) mice.  In response to exercise only, EX-

NOTBI mice displayed significantly (**p<.01) increased EPO mRNA expression at 1 day 

post-exercise in comparison to NOEX-NOTBI mice.  EX-TBI mice showed a significant 

(**p<.01) increase in EPO mRNA at 1 day post-exercise/post-TBI when compared to NOEX-

TBI group mice.  Statistical Analysis: Three-way ANOVA (fixed factors; day, TBI, and 

exercise) with Fisher’s LSD post hoc testing for multiple comparisons.  Mean + SEM for n=8 

per group at each time point. 
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Right Hippocampus EPO mRNA Expression
in Response to TBI and Exercise
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Figure 15.  qRT-PCR study of right hippocampus EPO mRNA responses after TBI and 

exercise (i.e., 6 weeks of pre-TBI voluntary wheel running).  Y-axis is the average fold 

change relative to GAPDH (housekeeping gene) in the no exercise + no TBI (NOEX-NOTBI) 

mouse cortex.  Data represents EPO mRNA expression at various post-TBI and/or post-

exercise time points (X-axis) for NOEX-NOTBI, no exercise + TBI (NOEX-TBI), exercise + 

no TBI (EX-NOTBI), and exercise + TBI (EX-TBI) mice.  No statistically significant 

differences existed between groups.  Statistical Analysis: Three-way ANOVA (fixed factors; 

day, TBI, and exercise) with Fisher’s LSD post hoc testing for multiple comparisons.  Mean + 

SEM for n=8 per group at each time point. 
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EPO Protein Localization 

 EPO protein was localized within neurons throughout various regions of the right 

cerebral cortex (Figure 16) and ipsilateral hippocampus CA1 field (Figure 17).  Only slight 

staining of right cerebral cortex EPO positive neurons was seen in the sensorimotor cortex (i.e., 

primary motor cortex, secondary motor cortex, and somatosensory forelimb, hindlimb, and barrel 

fields) of NOEX-NOTBI mice.  Furthermore, NOEX-NOTBI mice showed very limited EPO 

staining of neurons located in the right hippocampus CA1 field.  However, in a manner 

comparable to VEGF-A, staining was more apparent within neurons found in the right cerebral 

cortex and right hippocampus CA1 field of TBI and exercise group mice.  NOEX-TBI and EX-

TBI mice demonstrated distinct EPO staining within right cerebral cortex neurons located in the 

cingulate cortex (area 1 and 2), and sensorimotor cortex near the injury site.  Both NOEX-TBI 

and EX-TBI mice displayed an obvious staining pattern of EPO positive neurons situated in the 

pyramidal cell layer of the right hippocampus CA1 field.  In addition, NOEX-TBI and EX-TBI 

mice showed scant EPO staining of right hippocampus CA1 field neurons located in the oriens 

layer and stratum radiatum.  EX-NOTBI group mice exhibited abundant EPO staining within 

neurons found in the right sensorimotor cortex.  Light EPO staining of right hippocampus CA1 

field neurons located primarily in the oriens layer was also observed in EX-NOTBI mice. 

 

 

 

 

 

 

 

 

 

 

 

 



98 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16.  Coronal immunostained sections (35 μm thick sections at Bregma 0.02 mm) 

showing localization of EPO protein in the right cerebral cortex of no exercise + no TBI 

(NOEX-NOTBI), no exercise + TBI (NOEX-TBI), exercise + no TBI (EX-NOTBI), and 

exercise + TBI (EX-TBI) mice at 1 day post-TBI and/or post-exercise.  NOEX-NOTBI mice 

displayed very few neurons staining positive for EPO in the primary motor cortex (M1) and 

somatosensory (SS) hindlimb region.  NOEX-TBI and EX-TBI mice exhibited more obvious 

EPO staining within neurons located in the cingulate cortex (area 1 [CG1] and area 2 [CG2]), 

primary motor cortex (not shown), and secondary motor cortex (M2) near the injury site.  EX-

NOTBI mice showed EPO staining within neurons located in the primary motor cortex (M1), 

secondary motor cortex (not shown), and somatosensory (SS) hindlimb region.  10X 

magnification, scale bar = 100 μm for all images displayed. 
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Figure 17.  Coronal immunostained sections (35 μm thick sections at Bregma -1.94 mm) 

showing localization of EPO protein in the right hippocampus (CA1 field) of no exercise + no 

TBI (NOEX-NOTBI), no exercise + TBI (NOEX-TBI), exercise + no TBI (EX-NOTBI), and 

exercise + TBI (EX-TBI) mice at 1 day post-TBI and/or post-exercise.  NOEX-NOTBI mice 

demonstrated very few neurons staining positive for EPO.  NOEX-TBI and EX-TBI mice 

revealed an obvious staining pattern of EPO positive neurons located in the pyramidal cell 

(Py) layer.  In addition, NOEX-TBI and EX-TBI mice showed scant EPO staining within 

neurons located in the oriens layer (Or) and stratum radiatum (Rad).  EX-NOTBI mice 

displayed light staining within neurons that were primarily located in the oriens layer (Or).  

10X magnification, scale bar = 100 μm for all images displayed. 
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EPO Protein Quantification 

 EPO protein expression (i.e., average number of EPO positive stained neurons per mm
2
) 

increased within the right cerebral cortex (Figure 18) in response to TBI alone, and exercise 

alone, at 1 day post-TBI/post-exercise.  However, EPO protein expression only increased within 

the ipsilateral hippocampus CA1 field (Figure 19) in response to TBI at 1 day post-TBI.  

Statistically significant (p<.05) differences existed between groups for the average number of 

EPO positive stained neurons per mm
2
 in both the right cerebral cortex and right hippocampus 

CA1 field.  Post hoc testing was conducted for multiple comparisons between groups, and 

several interesting findings were revealed.  After TBI only, NOEX-TBI mice showed a 

significantly (**p<.01) increased average number of right cerebral cortex neurons staining 

positive for EPO protein when compared to NOEX-NOTBI mice.  This TBI response was also 

observed in the hippocampus.  NOEX-TBI mice displayed a significant (*p<.05) increase in the 

average number of right hippocampus CA1 field EPO positive stained neurons in comparison to 

NOEX-NOTBI mice.  In response to chronic exercise training, EX-NOTBI mice demonstrated a 

significantly (*p<.05) increased average number of right cerebral cortex neurons staining 

positive for EPO protein when compared to NOEX-NOTBI mice. 
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EPO Protein Expression in Right Cerebral Cortex Neurons
(1 Day Post-TBI/Exercise)
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Figure 18.  Immunostaining (Anti-EPO antibodies) was performed on coronal cut (35 μm 

thick) brain sections (Bregma 0.02 mm) to quantify EPO protein expression within neurons of 

the right cerebral cortex at 1 day post-TBI and/or post-exercise.  Data represents the average 

number of EPO positive stained neurons per mm
2
 for no exercise + no TBI (NOEX-NOTBI), 

no exercise + TBI (NOEX-TBI), exercise + no TBI (EX-NOTBI), and exercise + TBI (EX-

TBI) mice.  Neurons staining positive for EPO protein were manually counted within a 

3.93721 mm
2
 region of the right cerebral cortex which included the primary and secondary 

motor cortices, and somatosensory fields.  In sections containing the TBI lesion cavity, cell 

counts were normalized to the total area of tissue remaining within the 3.93721 mm
2
 target 

region of the right cerebral cortex.  In response to TBI only, NOEX-TBI mice demonstrated a 

significantly (**p<.01) increased average number of neurons staining positive for EPO 

protein in comparison to NOEX-NOTBI mice.  In response to exercise only, EX-NOTBI mice 

displayed a significantly (*p<.05) increased average number of neurons staining positive for 

EPO protein when compared to NOEX-NOTBI mice.  Statistical Analysis: Two-way 

ANOVA (fixed factors; TBI and exercise) with Fisher’s LSD post hoc testing for multiple 

comparisons.  Mean + SEM for n=6 per group. 
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(1 Day Post-TBI/Exercise)
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Figure 19.  Immunostaining (Anti-EPO antibodies) was performed on coronal cut (35 μm 

thick) brain sections (Bregma -1.94 mm) to quantify EPO protein expression within neurons 

of the right hippocampus CA1 field at 1 day post-TBI and/or post-exercise.  Data represents 

the average number of EPO positive stained neurons per mm
2
 for no exercise + no TBI 

(NOEX-NOTBI), no exercise + TBI (NOEX-TBI), exercise + no TBI (EX-NOTBI), and 

exercise + TBI (EX-TBI) mice.  Neurons staining positive for EPO protein were manually 

counted within an 891.6 μm
2
 region of the right hippocampus CA1 field.  In response to TBI 

only, NOEX-TBI group mice showed a significant (*p<.05) increase in the average number 

of neurons staining positive for EPO protein when compared to NOEX-NOTBI group mice.  

Statistical Analysis: Two-way ANOVA (fixed factors; TBI and exercise) with Fisher’s LSD 

post hoc testing for multiple comparisons.  Mean + SEM for n=6 per group. 
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HO-1 Gene Expression 

 HO-1 mRNA expression increased within the right cerebral cortex (Figure 20) and 

ipsilateral hippocampus (Figure 21) in response to TBI alone.  However, in contrast to VEGF-A 

and EPO, HO-1 mRNA expression did not increase after exercise.  Statistically significant 

(p<.05) differences existed between groups for HO-1 mRNA expression (i.e., fold change 

relative to control) in both the right cerebral cortex and right hippocampus.  Post hoc testing was 

conducted for multiple comparisons between groups.  As a result of TBI alone, HO-1 mRNA 

expression was significantly (**p<.01) increased within the right cerebral cortex of NOEX-TBI 

mice in comparison to NOEX-NOTBI mice at 3 days post-TBI.  TBI alone also significantly 

(**p<.01 [3 days post-TBI], and *p<.05 [7 days post-TBI]) increased HO-1 mRNA expression 

within the right hippocampus of NOEX-TBI mice when compared to NOEX-NOTBI mice at 

both the 3 and 7 day post-TBI time points.  HO-1 protein was not investigated in this study 

because exercise did not significantly increase HO-1 mRNA in the right cerebral cortex or 

ipsilateral hippocampus. 
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Right Cerebral Cortex HO-1 mRNA Expression
in Response to TBI and Exercise
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Figure 20.  qRT-PCR study of right cerebral cortex HO-1 mRNA responses after TBI and 

exercise (i.e., 6 weeks of pre-TBI voluntary wheel running).  Y-axis is the average fold 

change relative to GAPDH (housekeeping gene) in the no exercise + no TBI (NOEX-NOTBI) 

mouse cortex.  Data represents HO-1 mRNA expression at various post-TBI and/or post-

exercise time points (X-axis) for NOEX-NOTBI, no exercise + TBI (NOEX-TBI), exercise + 

no TBI (EX-NOTBI), and exercise + TBI (EX-TBI) mice.  In response to TBI only, NOEX-

TBI mice displayed significantly (**p<.01) increased HO-1 mRNA expression at 3 days post-

TBI when compared to NOEX-NOTBI mice.  Statistical Analysis: Three-way ANOVA (fixed 

factors; day, TBI, and exercise) with Fisher’s LSD post hoc testing for multiple comparisons.  

Mean + SEM for n=8 per group at each time point. 
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Right Hippocampus HO-1 mRNA Expression
in Response to TBI and Exercise
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Figure 21.  qRT-PCR study of right hippocampus HO-1 mRNA responses after TBI and 

exercise (i.e., 6 weeks of pre-TBI voluntary wheel running).  Y-axis is the average fold 

change relative to GAPDH (housekeeping gene) in the no exercise + no TBI (NOEX-NOTBI) 

mouse cortex.  Data represents HO-1 mRNA expression at various post-TBI and/or post-

exercise time points (X-axis) for NOEX-NOTBI, no exercise + TBI (NOEX-TBI), exercise + 

no TBI (EX-NOTBI), and exercise + TBI (EX-TBI) mice.  In response to TBI only, NOEX-

TBI mice displayed significantly (**p<.01, and *p<.05) increased HO-1 mRNA expression at 

3 and 7 days post-TBI when compared to NOEX-NOTBI mice.  Statistical Analysis: Three-

way ANOVA (fixed factors; day, TBI, and exercise) with Fisher’s LSD post hoc testing for 

multiple comparisons.  Mean + SEM for n=8 per group at each time point. 
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3.5. DISCUSSION: 

Exercise Improves Post-TBI Sensorimotor Function 

 In the present study, we demonstrated that chronic pre-TBI exercise training improved 

post-TBI sensorimotor function.  The EX-TBI mice displayed significant reductions in 

sensorimotor deficits when compared to NOEX-TBI mice at all three post-TBI time points.  

Other clinical and basic science research studies have also shown exercise can improve post-TBI 

motor function.  Walking speed, mobility, and balance have been demonstrated to improve in 

humans when intensive mobility training exercise is initiated after TBI [354].  Improved motor 

function has also been noted in adult patients that performed post-TBI exercise in a virtual reality 

environment [243].  Mota et al., revealed that chronic pre-TBI aerobic exercise (i.e., 4 weeks of 

treadmill training) protected against TBI (i.e., fluid percussion injury) induced motor impairment 

in rats [261].  They also demonstrated that the attenuation of motor deficits seen in exercise 

group rats was linked to significantly decreased post-TBI neuroinflammation and BBB 

breakdown [261]. 

Exercise Improves Post-TBI Cognitive Performance 

 Results from this study revealed that chronic pre-TBI exercise training improved post-

TBI cognitive performance (i.e. spatial learning memory).  EX-TBI group mice exhibited a 

significant decrease in spatial learning memory deficits when compared to NOEX-TBI group 

mice at 7 days post-TBI.  The finding that exercise can decrease spatial learning memory deficits 

is in agreement with research conducted by Gu et al., which showed 3 weeks of pre-TBI 

voluntary wheel running exercise attenuated spatial learning memory deficits in mice at 15 days 

post-TBI, and diminished neuron and synaptic density loss resulting from the injury [355].  The 

reductions in spatial learning memory deficits, and neuron and synaptic density loss, observed in 
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exercise group mice were associated with increased cytochrome c oxidase, brain-derived 

neurotrophic factor (BDNF), snyapsin I, synaptophysin, and growth associated protein 43 levels 

in the hippocampus [355].  Post-TBI exercise studies have also revealed that exercise enhances 

object recognition memory [326] and spatial learning memory [260] after injury.  The beneficial 

effects of exercise on post-TBI cognitive function were attributed to increased brain BDNF 

levels in these studies [260, 326].  It has been suggested that BDNF plays a key role in 

improving cognitive function by facilitating axonal branching and remodeling of neural networks 

in brain structures (e.g., hippocampus) that are important for learning and memory [260, 325, 

326, 328, 356].  These studies suggest that other neuroprotective molecules including VEGF-A 

and EPO may be responsible for increasing neuroprotection and improving TBI outcomes. 

Exercise Increases VEGF-A Gene Expression in the Brain 

 Both exercise and TBI significantly increased right cerebral cortex (injured cortex) and 

right hippocampus VEGF-A gene expression in this study.  However, mice from both exercise 

groups showed a significantly greater increase in VEGF-A mRNA expression in both the right 

cerebral cortex and right hippocampus when compared to mice from the no exercise and TBI 

only groups at 1 day post-TBI and/or post-exercise.  Interestingly, VEGF-A mRNA expression 

did not significantly increase in the injured cortex of the no exercise TBI group mice until 3 days 

post-TBI, and this finding was in agreement with our previously published data [87].  The 

exercise-induced increase in VEGF-A gene expression observed here at 1 day post-exercise may 

contribute to improved neuroprotection in the brain, while the delayed increase in VEGF-A gene 

expression detected 3 days after TBI may reduce its neuroprotective potential.  Furthermore, 

right cerebral cortex VEGF-A mRNA expression was still significantly increased 3 days after 

exercise was terminated.  This increase in VEGF-A mRNA expression at 3 days post-exercise 
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was nearly equal to the VEGF-A mRNA expression level observed in mice that received TBI 

only.  A prolonged increase in VEGF-A gene expression after chronic voluntary exercise may 

help to protect neurons in the brain from cell death that has been shown to peak at 3 days post-

TBI in adult mice [91]. 

Exercise Increases VEGF-A Protein Expression in Brain Neurons 

 VEGF-A protein responses were investigated at 1 day post-TBI and/or post-exercise 

because this time point coincided with increased VEGF-A mRNA expression in the exercise 

group mice.  Our immunohistochemical results confirmed the presence of VEGF-A protein 

within neurons located in the right cerebral cortex (i.e., primary motor cortex, secondary motor 

cortex, and cingulate cortex [area 1 and area 2]) and CA1 field of the right hippocampus.  This 

finding is in agreement with data from other studies demonstrating VEGF-A localization in brain 

neurons [115-117].  Mice that exercised displayed dense VEGF-A staining in sensorimotor 

cortex (i.e., primary motor cortex and somatosensory hindlimb region) neurons of the right 

cerebral cortex.  In addition, VEGF-A positive stained neurons were prevalent in the right 

cerebral cortex around the CCI injury site, and pyramidal layer of the right hippocampus CA1 

field in tissue sections of mice from both TBI groups.  However, mice that exercised prior to TBI 

exhibited a heavier staining pattern of neurons in both of these brain regions when compared to 

mice that did not exercise.  We suggest the increased VEGF-A protein in exercising mice at early 

time points (i.e., prior to TBI, and at 1 day post-TBI) may have provided enhanced 

neuroprotection near the injury site, and in the CA1 region of the ipsilateral hippocampus. 

 Results from the current study indicated significantly increased endogenous VEGF-A 

protein expression in the brain of mice 1 day after termination of chronic voluntary exercise.  

Specifically, mice from both exercise groups showed a significantly greater increase in VEGF-A 
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protein expression within neurons of the right cerebral cortex when compared to mice from the 

no exercise and TBI only groups at 1 day post-TBI and/or post-exercise.  Additionally, mice that 

engaged in exercise prior to induction of TBI exhibited a significant increase in VEGF-A protein 

expression within right hippocampus CA1 field neurons when compared to mice that did not 

exercise but received a TBI.  We postulate that this increase in VEGF-A protein expression may 

have allowed more neurons to survive after injury, while also expediting healing of the brain.  

Several animal studies have demonstrated that VEGF-A is responsible for mediating favorable 

exercise effects on the brain.  In a rat model of ischemic stroke, axon regeneration of newborn 

corticonigral and striatonigral neurons, and improved motor function after transient middle 

cerebral artery occlusion, have been linked to an increased production of VEGF-A in the brain 

after 28 days of treadmill training [313].  Furthermore, Fabel et al. concluded that VEGF-A is 

necessary for increased hippocampal neurogenesis in exercising mice [113].  In addition to its 

effects on neurons, increased VEGF-A protein production following exercise has been associated 

with greater capillary density in the cerebral cortex of exercising rats [311], and enhanced post-

stroke cerebral blood flow within the ischemic lesion in a rat model of focal cerebral ischemia 

[312].  A VEGF-A mediated increase in angiogenesis and blood flow resulting from exercise 

may augment neuronal survival and accelerate healing by restoring the supply of oxygen rich 

blood to damaged brain tissues. 

We speculate that exercised mice demonstrated improved post-TBI sensorimotor function 

and spatial learning memory in the current study at least in part as a result of increased VEGF-A 

protein protecting neurons within the right cerebral cortex and right hippocampus, respectively.  

Accordingly, it is possible that post-TBI neuron cell death was reduced in both brain regions due 

to exercise increasing VEGF-A protein production in neurons at 1 day post-TBI and/or post-
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exercise.  In contrast, the increased VEGF-A mRNA expression observed at 3 days post-TBI in 

mice that did not exercise may have been too late to augment neuroprotection during the 

secondary injury response.  Further investigation of the roles exercise and VEGF-A could play in 

preventing neuron death and improving TBI outcomes is clearly warranted.  Future studies 

should also explore whether the neuroprotective effects of exercise may be eliminated by 

blocking the central production of VEGF-A in the brain prior to, or immediately after injury.  In 

addition, future research should investigate how TBI recovery may be improved by targeting 

VEGF-A with other non-pharmacological and pharmacological interventions. 

Exogenous VEGF-A Administration for Treatment of TBI 

 The use of exogenous VEGF-A has been studied as a treatment approach for improving 

ischemic brain injury [117] and TBI outcomes [122].  However, delivering VEGF-A to the 

central nervous system through exogenous methods (e.g. intravenously) is very difficult due to 

the large molecular weight, limited BBB permeability, and extremely short half-life of the 

protein in plasma [219].  Therefore, interventions (e.g., exercise) that increase the endogenous 

production of VEGF-A in the brain may be a more practical alternative to exogenous VEGF-A 

TBI treatments. 

Exercise Increases EPO Gene Expression in the Brain 

 Exercise significantly increased right cerebral cortex (injured cortex) EPO gene 

expression in this study.  Mice from both exercise groups showed a significantly greater increase 

in right cerebral cortex EPO mRNA expression when compared to mice from the no exercise and 

TBI only groups at 1 day post-TBI and/or post-exercise.  EPO mRNA was not significantly 

elevated in the exercise groups at any other post-exercise time point.  This was in contrast to 

VEGF-A mRNA expression, which remained significantly increased in the right cerebral cortex 
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3 days after termination of exercise.  Taken together, these findings suggest that the post-TBI 

neuroprotection offered by increased EPO gene transcription may last for a shorter duration in 

comparison to VEGF-A, once exercise is stopped.  Future gene expression time point studies 

investigating pre-TBI exercise and post-TBI neuron cell death are needed to confirm this.  In the 

present study, EPO mRNA expression was not significantly increased at any post-TBI time point 

in the injured cortex of mice that received a TBI only.  In contrast to VEGF-A, no significant 

differences in right hippocampus EPO mRNA expression were observed between the exercise or 

TBI groups in the present study.  Results from the current study, and our prior research [87], 

demonstrate that exercise and TBI appear to increase EPO gene expression in a region specific 

(i.e., cerebral cortex only) manner within the brain. 

Exercise Increases EPO Protein Expression in Brain Neurons 

 EPO protein responses were examined at 1 day post-TBI and/or post-exercise since we 

observed increased EPO mRNA at this time point in the exercise group mice.  EPO is known to 

be produced in brain neurons [130], and our immunohistochemical results revealed EPO protein 

localized to neurons in the sensorimotor cortex of the right cerebral cortex and CA1 field of the 

right hippocampus.  Mice that received exercise only, displayed dense EPO staining in 

sensorimotor cortex neurons of the right cerebral cortex.  In addition, neurons stained positive for 

EPO were especially evident in the right cerebral cortex around the CCI injury site, and 

pyramidal layer of the right hippocampus CA1 field in tissue sections of mice from both TBI 

groups.  The pattern of EPO staining observed in the right cerebral cortex and ipsilateral 

hippocampus was remarkably similar to VEGF-A in mice that received exercise, TBI, or 

exercise and TBI.  In this study, EPO may have worked in conjunction with VEGF-A to promote 
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neuroprotection and brain repair after TBI in the right cerebral cortex near the injury site, and 

CA1 region of the ipsilateral hippocampus. 

 Results from the work presented here revealed that exercise and TBI significantly 

increased endogenous EPO protein expression in brain neurons of mice at 1 day post-TBI and/or 

post-exercise.  Mice that performed exercise displayed a significantly greater increase in EPO 

protein expression within neurons of the right cerebral cortex when compared to non-exercising 

mice at 1 day post-exercise.  This up-regulated production of EPO protein subsequent to exercise 

was comparable to the increase in VEGF-A protein within right cerebral cortex neurons.  In mice 

that received TBI only, EPO protein expression was significantly increased within neurons of the 

right cerebral cortex and right hippocampus CA1 field at 1 day post-TBI.  However, in contrast 

to VEGF-A, mice that exercised prior to induction of TBI did not exhibit a significant increase in 

EPO protein expression within neurons of the right cerebral cortex or right hippocampus CA1 

field when compared to mice that received TBI only.  In other words, our study results indicated 

that exercise did not increase EPO protein expression in brain neurons to a greater extent than the 

endogenous injury response at 1 day post-TBI.  Nonetheless, exercise alone did increase EPO 

protein expression in right cerebral cortex neurons at 1 day post-exercise, and neuroprotection 

and brain repair may still have been enhanced after injury because more EPO protein would have 

been present in neurons of exercising mice prior to induction of TBI.  To our knowledge, this is 

the first study investigating EPO protein expression within neurons of the brain after exercise 

and TBI.  In comparison to VEGF-A, very few studies have been conducted investigating EPO 

responses to exercise. 

 In the present study, EPO protein was increased in right cerebral cortex neurons after 

long-term exercise in a manner that was analogous to VEGF-A.  We suggest that exercised mice 
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showed improved post-TBI sensorimotor function as a result of increased EPO and VEGF-A 

protecting neurons within the sensorimotor cortex of the right cerebral cortex.  It is conceivable 

that post-TBI neuron cell death may have been reduced in the right cerebral cortex due to 

exercise increasing EPO and VEGF-A protein expression in neurons prior to TBI.  In contrast to 

the right cerebral cortex, EPO protein expression was not significantly increased within right 

hippocampus neurons after exercise.  Thus, it is unlikely that EPO played a role in improving the 

spatial learning memory of exercised mice.  Future research should examine the combination of 

exercise and hypoxia on EPO and TBI outcomes.  It is known that performing exercise in a 

hypoxic environment increases EPO protein in the blood [315].  Elevated serum EPO levels 

improve oxygen carrying capacity in the body by stimulating increased red blood cell production 

[316].  An increased supply of circulating red blood cells may augment oxygen transport to the 

brain.  Enhanced brain oxygenation would likely promote increased neuron survival after TBI, 

but studies are needed to endorse this idea.  In addition, future studies should investigate 

endogenous EPO production in neurons of the brain when exercise is performed in a hypoxic 

environment.  Performing pre-TBI exercise in a hypoxic environment may be a better method for 

increasing neuronal EPO expression, enhancing neuroprotection in the brain, and improving TBI 

outcomes.  Post-TBI studies could also examine the possible beneficial effects of exercise in 

hypoxic environments on the brain.  However, performing post-TBI exercise in hypoxic 

conditions too soon after injury would likely exacerbate hypoxic and ischemic responses in the 

brain, which in turn, could further contribute to neuronal injury and dysfunction.  Determining 

the safety and efficacy of post-TBI exercise under hypoxic conditions would be imperative. 
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Exogenous EPO Administration for Treatment of TBI 

 The exogenous administration of EPO has been investigated as a treatment approach for 

brain injuries, since EPO can cross the BBB via active transport [209].  Injecting rats with 

recombinant human erythropoietin (rhEPO) after TBI has been shown to significantly decrease 

brain edema, and reduce the number of infiltrating apoptotic monocyte chemotactic protein-1
+
 

and CD68
+
 cells [137].  In addition, a single dose injection of 5,000 IU/kg of rhEPO 

administered at 1 and 24 hours post-TBI reduced white matter damage, attenuated 

neuroinflammation, increased the expression of the EPO receptor, and significantly improved 

sensorimotor and cognitive recovery in a rat model of diffuse TBI and hypoxia [220].  Post-TBI 

rhEPO injections are known to significantly increase neurogenesis within the cerebral cortex and 

hippocampus of mice [209].  Exogenous rhEPO treatments have decreased neuron cell death, 

and improved sensorimotor and spatial learning memory scores after TBI in mice [133].  Clinical 

trials are also investigating exogenous EPO administration for treatment of TBI [209, 226].  

Unfortunately, it has been suggested that exogenous EPO administration may increase the risk of 

thrombosis in TBI patients [227], and evidence is lacking regarding the safety and efficacy of 

exogenous EPO treatments in TBI patients.  Increasing the endogenous production of EPO in the 

brain through non-pharmacological interventions such as exercise may be a safer strategy for 

improving TBI outcomes. 

TBI Increases HO-1 Gene Expression in the Brain 

 TBI significantly increased right cerebral cortex (injured cortex) and right hippocampus 

HO-1 gene expression in this study.  However, in contrast to VEGF-A and EPO, exercise did not 

significantly alter HO-1 gene expression in either brain region.  HO-1 mRNA expression 

significantly increased in the injured cortex of TBI group mice at 3 days post-TBI, and this 
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finding was in agreement with our previously published research [87].  This delayed post-TBI 

increase in HO-1 mRNA expression occurred at the same time point that VEGF-A mRNA 

significantly increased.  In a response similar to the right cerebral cortex, HO-1 mRNA 

expression significantly increased at 3 days post-TBI in the right hippocampus.  Furthermore, 

right hippocampus HO-1 mRNA expression remained elevated at 7 days post-TBI.  Hypoxia is a 

common secondary injury response to TBI [90], and HO-1 is known to be induced in the brain 

during chronic hypoxia [150].  It is possible that hypoxia persisted within the right hippocampus 

at the 7 day post-TBI time point.  An increased expression of HO-1 is thought to improve 

cellular resistance to oxidative stress resulting from TBI [157].  Peripheral HO-1 production may 

be up-regulated after exercise in an effort to protect cells against oxidative stress and 

inflammation that occur as a consequence of physical exertion [318].  However, results from this 

study indicated that exercise alone did not increase HO-1 mRNA in the brain.  Therefore, other 

interventions that up-regulate HO-1 prior to 3 days post-TBI are needed to maximize its 

neuroprotective properties. 

Nutraceutical Compounds Induce HO-1 and Demonstrate Potential for Treating TBI 

 Several nutraceutical compounds (e.g., sulforaphane, capsaicin, and resveratrol) are 

known to induce HO-1, enhance neuroprotection, and improve outcomes in animal models of 

TBI [357-360].  Sulforaphane is a naturally occurring compound found in cruciferous vegetables 

[348].  Rats that were administered sulforaphane 1 hour after TBI have demonstrated enhanced 

cognitive function [348].  Capsaicin is an active component of chili peppers, and pre-TBI 

administration of capsaicin to rats has been shown to significantly reduce motor and cognitive 

impairments after injury [358].  The antioxidant resveratrol promotes neuroprotection [359, 360].  

Resveratrol is a polyphenolic stilbene that exists in grapes and red wine, and a recent study 
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demonstrated that pre-treating cells with resveratrol prevented rotenone-induced apoptosis of 

neurons through induction of HO-1 in an in vitro Parkinson’s disease model [359].  Lin et al., 

showed that cell survival was improved with resveratrol treatment in a rat model of TBI, and the 

authors concluded that resveratrol may be beneficial therapeutic agent for treatment of TBI in 

humans [360].  Sulforaphane, capsaicin, and resveratrol need to be further investigated in TBI 

animal models and humans to develop a clearer picture of the potential therapeutic benefits these 

agents offer as a result of HO-1 induction. 

Pre-TBI Exercise Intensity and Possible Mechanisms Responsible for Increasing 

Neuroprotection and Improving TBI Outcomes 

 Avoidance of exercise and rest are initially recommended to the majority of patients 

diagnosed with mild TBI (i.e., concussion) because of concerns regarding aggravation of post-

concussion symptoms [361].  Because premature initiation of post-TBI exercise may exacerbate 

symptoms and lead to worse outcome, regular exercise participation prior to the unexpected 

occurrence of a TBI may be an effective prophylactic measure for optimizing recovery from 

head injury.  More specifically, an individual that has performed high intensity exercise (i.e., 

above the lactate threshold) prior to a TBI may maximize the production of neuroprotective 

proteins in the brain, and this high intensity exercise dependent response could result in a better 

outcome when compared to a TBI patient that engaged in low intensity exercise prior to injury.  

Support for this notion is garnered from a recent study that investigated VEGF-A responses in 

humans that performed exercise at various intensities [308].  In this study conducted by Wahl et 

al., high intensity exercise training was shown to increase circulating VEGF-A protein, but low 

intensity exercise was associated with a decrease, or no change in serum levels [308].  The 

expression of other neuroprotective proteins may be highly dependent on exercise intensity.  



117 
 

Exercise intensity was not monitored in the current study since mice ran voluntarily.  

Nevertheless, mice that consistently exercised at higher intensities may have produced greater 

amounts of VEGF-A and EPO proteins in brain neurons when compared to mice that exercised 

at lower intensities.  No studies have investigated how various exercise intensities influence the 

expression of VEGF-A, EPO, and other neuropotective hypoxia-inducible proteins in the brain.   

Several mechanisms may be responsible for enhancing neuroprotection and improving 

recovery if high intensity exercise training is performed prior to TBI.  An up-regulated 

production of neuroprotective hypoxia-inducible proteins may be observed in brain neurons after 

high intensity exercise training due to changes in ventilation, blood carbon dioxide levels, blood 

vessel diameter, blood flow, and pH.  High intensity exercise induces hyperventilation, which 

results in a decreased partial pressure of carbon dioxide (pCO2) in the blood [265].  In response 

to decreased pCO2, cerebral vasoconstriction and diminished cerebral blood flow ensue, which 

reduces the supply of glucose and oxygen to the brain temporarily [265, 266].  Impaired oxygen 

supply and delivery to the brain may also briefly occur during high intensity exercise due to 

reductions in pH and decreased oxyhemoglobin binding [265].  It is reasonable to speculate that 

an increased production of neuroprotective hypoxia-inducible proteins may be detected in brain 

neurons responding to transient decreases in blood flow and oxygen delivery during high 

intensity exercise.  Research is needed to determine if these mechanisms are responsible for 

inducing neuroprotection, and improving TBI outcomes when high intensity exercise is 

performed prior to injury. 

Conclusions 

 This study showed that improved TBI outcomes were linked to exercise inducing the 

increased expression of neuroprotective genes and proteins in brain regions that are responsible 
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for movement (i.e., sensorimotor cortex) and memory (i.e., hippocampus).  Long-term voluntary 

wheel running exercise performed prior to TBI attenuated sensorimotor and spatial learning 

memory deficits after TBI in mice.  Improved post-TBI sensorimotor function may have 

occurred in mice that exercised because pre-TBI exercise increased the production of both 

VEGF-A and EPO in the sensorimotor cortex.  Furthermore, it is quite possible that improved 

post-TBI spatial learning memory was noticed in mice that exercised since pre-TBI exercise 

increased the production of VEGF-A in the hippocampus.  Pre-TBI exercise increased VEGF-A 

and EPO protein production in neurons of the brain at 1 day post-TBI and/or post-exercise.  

Thus, the exercise induced up-regulation of these proteins at this time point may have protected 

against neuron cell death that is known to occur in mice at 3 days post-TBI [91].  In addition, it is 

probable that pre-TBI exercise accelerated the initiation of post-TBI brain repair by up-

regulating VEGF-A and EPO production in the brain.  Humans that are more physically fit prior 

to the unexpected occurrence of a TBI may display less neurological dysfunction, and faster 

recovery from injury than sedentary individuals.  Future TBI research should examine how the 

frequency, intensity, duration, and type of exercise influence the neuroprotective proteins 

mentioned in this work.  In addition, other molecular mechanisms in the brain that may be 

positively affected by performing pre-TBI or post-TBI exercise should be studied.  Determining 

the appropriate time window for initiating post-TBI exercise is also critically important.  This 

would help to establish exercise guidelines aimed at optimizing recovery from TBI in 

rehabilitation settings. 
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Chapter 4 

Summary of Findings, Discussion and Future Directions 
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4.1. SUMMARY OF FINDINGS: 

 Despite being a major cause of death and disability, treating TBI remains difficult since 

concerns still remain with current treatments [209].  Consequently, novel non-pharmacological 

and non-surgical interventions that improve TBI outcomes are needed.  Results from this 

dissertation demonstrated that gene therapy (i.e. gene overexpression) and pre-TBI exercise 

improved outcomes in a mouse model of TBI by increasing the expression of neuroprotective 

proteins in the brain.  Specifically, improved post-TBI motor and cognitive function were 

associated with an increased endogenous production of neuroglobin, VEGF-A, and EPO in the 

brain.  

Significant improvements in post-TBI sensorimotor function were noted in transgenic 

mice that overexpressed neuroglobin, and in mice that performed 6 weeks of pre-TBI exercise.  

Post-TBI reductions in sensorimotor deficits while walking during the gridwalk task, were linked 

to an increased production of neuroglobin in neurons and glial cells throughout the brain of 

transgenic mice, and increased VEGF-A and EPO expression in sensorimotor cortex neurons of 

pre-TBI exercise mice.  Results from this dissertation also revealed improved post-TBI spatial 

learning memory in mice that performed long-term pre-TBI exercise.  Pre-TBI exercise mice 

displayed a decrease in post-TBI spatial learning memory deficits during RAWM retention 

testing, and increased production of VEGF-A in the hippocampus. 

 The findings presented here demonstrate that gene therapy and exercise are practical 

non-pharmacological interventions that have the potential to improve TBI outcomes.  Gene 

therapy and pre-TBI exercise increased the expression of neuroglobin, VEGF-A, and EPO within 

brain neurons prior to injury, or early after TBI during the acute phase of recovery.  Post-TBI 

improvements in motor and cognitive function were associated with the increased expression of 
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these neuroprotective proteins in regions of the brain responsible for movement (i.e., 

sensorimotor cortex) and memory (i.e., hippocampus). 

4.2. DISCUSSION AND FUTURE DIRECTIONS: 

4.2.1. Improving TBI Outcomes Through Increased Neuroglobin Expression 

In chapter 2 of this dissertation, a link between neuroglobin overexpression and improved 

sensorimotor outcomes after TBI was revealed.  Results from this dissertation suggest that 

transgenic neuroglobin overexpressing mice may have demonstrated improved post-TBI 

sensorimotor function due to an increased endogenous production of neuroglobin in neurons and 

glial cells of the sensorimotor cortex.  The increased production of neuroglobin in the 

aforementioned cells may have augmented neuroprotection prior to, and after TBI, thus 

improving post-TBI sensorimotor function in mice that overexpressed the gene.  In contrast to 

neuroglobin overexpressing mice, wild-type mice displayed a late, but significant, increase in 

neuroglobin expression at 7 days post-TBI.  This increase in neuroglobin expression during the 

sub-acute phase (i.e. 7 days post-TBI) was observed later in comparison to other neuroprotective 

hypoxia-inducible proteins that are known to be up-regulated at 3 days post-TBI [87].  Since 

significant neuron cell death is known to occur in adult mice at 3 days post-TBI [91], it is very 

possible that neuron cell death could be decreased in the brain if neuroglobin expression is 

increased prior to this time point.  Reduced neuroprotection, greater neuron cell death, and worse 

post-TBI sensorimotor function may have ensued in wild-type mice due to the delayed increase 

in neuroglobin expression. 

 A comparison of differences in post-TBI neuron cell death between neuroglobin 

overexpressing mice and wild-type mice was not conducted in chapter 2 of this dissertation.  

However, in a future study, deOlmos aminocupric silver staining (i.e., stains degenerating and 
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dying neurons) could be used to investigate differences in post-TBI neuron cell death between 

neuroglobin overexpressing mice and wild-type mice.  It is quite possible that post-TBI neuron 

cell death would be significantly reduced in neuroglobin overexpressing mice when compared to 

wild-type mice that show a delayed increase in endogenous neuroglobin expression past the time 

point (i.e., 3 days post-TBI) at which significant neuron cell death peaks.  Decreased post-TBI 

neuron cell death in the brain of neuroglobin overexpressing mice would likely coincide with 

improved sensorimotor function after TBI.  Another potential future study would be to 

investigate whether sensorimotor outcomes are worse after TBI in neuroglobin deficient (i.e., 

knock-out) mice when compared to wild-type mice.  Results from this study could lend further 

support to the notion that neuroglobin plays a direct role in post-TBI sensorimotor recovery.  In 

addition, future studies should investigate whether post-TBI cognitive function is improved as a 

result of increased neuroglobin expression. 

 Findings from this dissertation and previous studies suggest that increasing neuroglobin 

expression before TBI, or during the acute phase of recovery, could maximize neuroprotection 

and subsequently improve sensorimotor outcomes.  The neuroglobin protein is produced 

intracellularly, and it is not capable of crossing cell membranes.  Therefore, direct administration 

(e.g., oral, intramuscular, or intravenous) of neuroglobin is not a feasible treatment approach.  

However, in addition to gene therapy strategies, pharmacological interventions that increase 

neuroglobin production in the brain early after TBI may result in improved neuroprotection and 

better neurological outcome post-injury.  Previous research has shown that intracellular 

neuroglobin production can be increased pharmacologically through administration of 

deferoxamine, cinnamic acid, and valproic acid [228].  The iron chelator deferoxamine is known 

to cross the BBB [362], and induce neuroglobin [228].  Interestingly, intranasal administration of 
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deferoxamine has been shown to protect the brain against stroke in animal models [363], and 

intraperitoneal injection of deferoxamine improved spatial learning memory performance after 

TBI in one study of rats [364].  Neuroglobin expression was not investigated in the brain after 

deferoxamine treatment in either of these studies.  An in vitro study showed that cinnamic acid 

and valproic acid induce neuroglobin protein expression in cultured neurons [228].  However, no 

in vivo studies have been conducted to determine whether administration of these small 

molecules induces neuroglobin within brain neurons. 

Future research is needed to determine whether pharmacological treatments aimed at 

increasing neuroglobin production in the brain after TBI are safe and effective.  It is important to 

remember that although neuroglobin may be induced in neurons via exogenous pharmacological 

treatments, greater than 98% of small molecule drugs lack the ability to cross the BBB and exert 

biological effects on cells [365].  There is a critical need for conducting in vivo studies with the 

purpose of determining more pharmacological agents that can safely cross the BBB, and induce 

neuroglobin within neurons.  In addition, alternative methods of delivering neuroglobin-inducing 

drugs to the brain need to be examined.  For example, intranasal administration of neuroglobin-

inducing drugs would be an effective non-invasive method for bypassing the BBB via olfactory 

and trigeminal nerve pathways.  This route of delivery could potentially improve TBI outcomes 

by allowing neuroprotective neuroglobin-inducing drugs greater access to neurons in the brain.  

Consequently, the intranasal delivery of novel pharmacological agents should be explored in 

future TBI animal studies.  Furthermore, the optimal therapeutic time window for increasing 

neuroglobin expression in the brain, and thus potentially enhancing neuroprotection after TBI 

needs to be elucidated.  Increasing neuroglobin production in the brain pharmacologically may 

be an effective alternative approach to gene therapy.  Future TBI research is clearly needed to 
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determine pharmacological treatments that safely and effectively increase neuroglobin 

production in the brain.  Clinical research should be conducted to determine whether monitoring 

neuroglobin levels in serum or cerebrospinal fluid is useful for predicting outcomes after TBI, 

since the protein may leak out of damaged neurons and glial cells. 

4.2.2. Improving TBI Outcomes Through Exercise 

 In chapter 3 of this dissertation, improved TBI outcomes (i.e., motor and cognitive 

function) paralleled an exercise induced increase in the expression of VEGF-A and EPO in 

regions of the brain responsible for movement and memory.  Mice that performed 6 weeks of 

voluntary wheel running exercise prior to TBI displayed a reduction in sensorimotor and spatial 

learning memory deficits after TBI.  It is likely that improvements in post-TBI sensorimotor 

function may have resulted from the increased expression of both VEGF-A and EPO that was 

observed in sensorimotor cortex neurons of mice that exercised.  Furthermore, it is probable that 

the improvements in post-TBI spatial learning memory seen in mice that exercised may have 

occurred due to an increased expression of VEGF-A in hippocampal neurons.  Interestingly, pre-

TBI exercise increased VEGF-A and EPO production in brain neurons at 1 day post-TBI.  The 

exercise induced increase in the expression of VEGF-A and EPO was noted prior to the 

endogenous up-regulation of these proteins seen at 3 days post-TBI in non-exercising mice [87].  

The early exercise induced up-regulation of VEGF-A and EPO during the acute phase of TBI 

recovery may have protected against significant neuron death that has been observed in mice at 3 

days post-TBI [91]. 

 In conjunction with gene therapy strategies such as overexpressing neuroglobin, results 

from this dissertation show exercise is another promising non-pharamacological approach for 

improving TBI outcomes and increasing the production of proteins that are involved in 
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protecting neurons and promoting brain repair.  Based on findings from chapter 3, it is likely that 

exercise enhanced neuroprotection in the brain.  Better post-TBI sensorimotor function and 

spatial learning memory performance may have been evident in mice that exercised due to an 

early increase in VEGF-A and EPO expression after exercise and prior to TBI, or during the 

acute phase of TBI recovery.  Furthermore, increasing the production of these proteins in the 

brain via non-pharmacological interventions such as exercise may be a safer approach for 

improving TBI outcomes in comparison to exogenous VEGF-A and EPO administration. 

 Future efforts should investigate differences in post-TBI neuron cell death between mice 

that exercise prior to TBI, and mice that do not.  In a future study, decreased post-TBI neuron 

cell death in the sensorimotor cortex and hippocampus of pre-TBI exercise mice would likely 

correlate with improved post-TBI sensorimotor function and spatial learning memory, 

respectively.  It is conceivable that post-TBI neuron cell death would be significantly reduced in 

pre-TBI exercise mice since the work presented in chapter 3 showed a significant early up-

regulation in the production of neuroprotective proteins (i.e., VEGF-A and EPO).  This up-

regulation occurred 1 day after exercise, which is prior to the significant neuron cell death that 

has been previously shown to peak in the mouse brain at 3 days post-TBI [91].  Future research 

should investigate whether the neuroprotective effects of exercise are abolished by blocking 

VEGF-A or EPO in the brain prior to, or immediately after injury.  In addition, the role VEGF-A 

and EPO play in exercise induced neurogenesis within the brain needs to be further explored.  In 

addition to its neurogenic properties, VEGF-A is responsible for facilitating angiogenesis.  

Angiogenesis is necessary for restoring the supply of oxygen rich blood to damaged brain 

tissues, and this response enhances neuronal survival and accelerates healing [117].  Increased 

VEGF-A protein expression after exercise has been linked to greater capillary density in the 
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cerebral cortex of un-injured rats [311].  Thus, a future study could explore differences in post-

TBI VEGF-A expression, capillary density, and neuron survival in the brain of mice that engage 

in pre-TBI exercise, and those that do not.  Future TBI animal research should investigate how 

the frequency, intensity, duration, and type of exercise alter the expression of VEGF-A and EPO 

in the brain and periphery.  There is a need for determining whether monitoring levels of these 

proteins in the serum and cerebrospinal fluid after exercise and TBI could be useful for 

predicting outcomes after injury.  Furthermore, studies should examine how recovery from TBI 

may be improved by targeting VEGF-A and EPO with other non-pharmacological and 

pharmacological interventions. 

 Results from this dissertation show exercise improves TBI outcomes, and increases the 

expression of neuroprotective genes and proteins in brain regions that are responsible for 

movement and memory.  However, since multiple biochemical pathways can be activated and 

manipulated through exercise, the door is open for many future exercise and TBI studies to be 

conducted.  For example, it would be wise to examine and compare the biochemical activity in 

muscle mitochondria to changes in the brain that occur due to exercise and TBI.  Chronic aerobic 

exercise causes cardiac and skeletal muscle tissue to adapt and become more oxidative, which 

protects these tissues from oxidative stress [366].  This is an important finding, because future 

work could be aimed at determining whether pre-TBI exercise attenuates oxidative stress and 

secondary neuron death that occurs within the brain following TBI.  Alterations in the activity of 

cytochrome c oxidase may contribute to mitochondrial dysfunction, increased oxidative stress, 

secondary neuron death, and long-term damage and disability following TBI [367].  Cytochrome 

c oxidase would be an interesting target to investigate within brain and muscle cell mitochondria, 

since this enzyme plays a critical role in oxidative phosphorylation [367].  Interestingly, the 
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activity of this enzyme is known to decrease at seven days post-TBI within the injured cortex 

[368], but significantly increase activity by 52% (in non-TBI animals) in muscle tissue that has 

received aerobic exercise training [366].  Exercise has many positive effects on brain health, and 

many biochemical pathways are involved in the response to physical activity.  It is important to 

understand the effect of exercise on complex biochemical pathways, because future research may 

lead to the development of potent pharmacological interventions that mimic the positive 

prophylactic effects of pre-TBI exercise within the brain. 

 Findings from chapter 3 have important implications for humans.  Faster recovery from 

TBI, and an overall improvement in neurological outcome, may be apparent in humans that are 

more physically fit prior to the unexpected occurrence of a TBI.  Future basic science and 

clinical TBI studies should investigate how the frequency, intensity, duration, and type of 

exercise influence TBI recovery and overall outcome.  Although pre-TBI exercise improves 

outcomes, many questions remain regarding the use of post-TBI exercise.  The appropriate time 

window for initiating post-TBI exercise in rehabilitation settings has not been defined.  

Therefore, future studies should be conducted to determine the effects of post-TBI exercise on 

the brain, and to establish exercise guidelines that optimize recovery from TBI in humans. 

4.2.3.  Possible Benefits and Risks Associated with Using Post-TBI Exercise to Improve TBI 

Outcomes 

 Post-TBI exercise displays potential for enhancing recovery or exacerbating neurological 

deficits depending on the timing of exercise initiation, exercise intensity, and injury severity.  

Early post-TBI treadmill exercise performed for seven days has been shown to increase neural 

stem cell proliferation near the injury site in the brain of rats [369].  The authors concluded that 

exercise performed in the acute phase after TBI is important for recovery from cerebral 
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dysfunction, but no behavioral studies were conducted, and histological data (i.e., neuron cell 

counts, contusion volume measurements) were not obtained [369].  Two weeks of low intensity 

exercise (initiated 1 day after induction of a severe TBI) has been reported to significantly 

improve spatial learning memory and reduce neurologic deficits when compared to control group 

rats [370].  This finding is in agreement with clinical studies that have demonstrated early onset 

rehabilitation can improve cognitive and motor function in TBI patients [210, 371].  Moderate 

intensity exercise (i.e., approximately 60% of maximal oxygen consumption) initiated 2 days 

post-TBI, and performed for a duration of one or two weeks, has been shown to restore object 

recognition memory and prevent progressive neuronal loss and activation of microglia in mice 

that received a moderate TBI [326].  In contrast to low and moderate intensity exercise, early 

post-TBI initiation of high intensity exercise does not reduce cognitive deficits in rats, and 

secondary injury responses may be exacerbated [370]. 

 Magnetic resonance spectroscopy studies have shown that vigorous exercise significantly 

increases glutamate levels within the brain of humans [372].  If high intensity exercise is initiated 

too soon after TBI, it is conceivable that excessive glutamate production and release may worsen 

neurologic outcome and hinder recovery.  Positron emission tomography (PET) studies have 

demonstrated that performing high intensity (i.e., 75% of VO2max) exercise decreases global 

brain glucose uptake [373], and reductions in cerebral glucose uptake are known to occur for 2-4 

weeks after TBI [70].  Therefore, high intensity exercise performed during the first month post-

TBI may further impair whole brain metabolism and exacerbate the cellular energy crisis that 

transpires after injury.  It is accepted that low and moderate intensity (i.e., < 60% of VO2max) 

exercise increases cerebral blood flow and oxygen supply [265].  However, decreases in cerebral 

blood flow have been noted with exercise intensities above 60% of VO2max [265].  In addition, 
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performing 20 minutes of exercise at 70% of the age-predicted maximal heart rate was shown to 

significantly reduce grey matter cerebral blood flow by 11% at 10 minutes post-exercise in a 

recent study of healthy young adults [374].  Oxygen uptake is also altered in the brain during 

strenuous exercise.  Rats that swam for 2 hours at 75% of VO2max have exhibited significant 

reductions in hippocampal oxygen pressure after the completion of exercise [93].  However, a 

maximal intensity exercise study demonstrated increased brain oxygen, glucose, and lactate 

uptake in humans despite a reduction in cerebral blood flow [375].  The increase in brain uptake 

of energy substrates (i.e., glucose and lactate) and oxygen observed in this study may have 

occurred to compensate for diminished cerebral blood flow, and reduced glucose and oxygen 

supply [375].  Mismatches in the cellular supply and demand for glucose and oxygen during 

vigorous exercise may exacerbate secondary injury responses after TBI.  Post-TBI exercise 

performed at high intensities greater than the aforementioned may intensify hypoxic and 

ischemic responses, and further contribute to neuronal injury and dysfunction if exercise is 

performed too soon after injury. 

4.2.4. Pre-TBI Exercise Benefits and Potential Mechanisms Involved in Increasing the 

Production of Neuroprotective Proteins within the Brain 

 In order to limit post-TBI symptoms, avoidance of exercise and rest are initially 

recommended to most patients diagnosed with a mild TBI (i.e., concussion) [361].  Premature 

initiation of post-TBI exercise may exacerbate symptoms and lead to worse outcome.  However, 

engaging in routine exercise prior to the unexpected occurrence of a TBI may be an effective 

prophylactic measure for optimizing TBI recovery.  More specifically, individuals that have 

performed high intensity exercise (i.e., above the lactate threshold) prior to a TBI may increase 

the production of neuroprotective proteins in the brain to a greater extent than those that engaged 
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in low or moderate intensity exercise prior to injury.  This idea is supported by a recent study 

that investigated VEGF-A responses in healthy humans performing exercise at various intensities 

[308].  Wahl et al., showed that high intensity exercise training increased circulating VEGF-A 

protein, but low intensity exercise was associated with a decrease or no change in serum levels 

[308].  These findings suggest that the expression of VEGF-A and other neuroprotective proteins 

may be highly dependent on exercise intensity.  If high intensity exercise maximizes the 

production of neuroprotective proteins in the brain, better TBI outcomes may be evident in a 

patient that was performing a vigorous exercise program before sustaining a TBI. 

 The exercise intensity of mice was not monitored in the chapter 3 study of this 

dissertation work.  Unfortunately, no other studies have investigated how various exercise 

intensities influence the expression of VEGF-A, EPO, and other neuropotective hypoxia-

inducible proteins in the brain.  Nevertheless, several mechanisms may be responsible for 

enhancing neuroprotection and improving recovery if high intensity exercise training is 

performed prior to TBI.  An up-regulated production of neuroprotective hypoxia-inducible 

proteins may be observed in the brain after high intensity exercise training due to changes in 

ventilation, blood carbon dioxide levels, blood vessel diameter, blood flow, and pH.  High 

intensity exercise induces hyperventilation, which results in a decreased partial pressure of 

carbon dioxide (pCO2) in the blood [265].  In response to decreased pCO2, cerebral 

vasoconstriction and diminished cerebral blood flow ensue, which reduces the supply of glucose 

and oxygen to the brain temporarily [265, 266].  Impaired oxygen supply and delivery to brain 

neurons may also momentarily occur during high intensity exercise due to reductions in pH and 

decreased oxyhemoglobin binding [265].  It is reasonable to speculate that an increased 

production of neuroprotective hypoxia-inducible proteins may be noticed in brain neurons that 
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are responding to transient decreases in blood flow and oxygen delivery during high intensity 

exercise.  Research is needed to determine if these mechanisms induce neuroprotection, and 

improve TBI outcomes when high intensity exercise is performed prior to injury.  In addition, the 

exercise intensity that maximizes the production of VEGF-A, EPO, and other neuroprotective 

proteins in the brain needs to be determined. 

4.3. OVERALL SUMMARY: 

 Non-pharmacological and non-surgical interventions for improving TBI outcomes are 

desirable since many pharmacological and surgical treatments pose risks, and may exacerbate 

secondary injury responses.  This dissertation demonstrated that TBI outcomes were improved in 

a mouse model of TBI via the use of gene therapy and exercise.  Improvements in post-TBI 

sensorimotor function and spatial learning memory were linked to gene therapy and exercise 

increasing the production of neuroprotective proteins (i.e., neuroglobin, VEGF-A, and/or EPO) 

in regions of the brain that control movement (i.e., sensorimotor cortex) and memory (i.e., 

hippocampus).  Interventions that increase the production of these neuroprotective proteins in the 

brain prior to TBI, or early after injury during the acute phase of recovery, may reduce neuron 

death, accelerate brain repair, and improve overall outcome in humans. 
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