
Theorem Provers as Libraries – An Approach to

Formally Verifying Functional Programs

By

Evan Austin

Submitted to the Electrical Engineering and Computer Science Department and the

Graduate Faculty of the University of Kansas

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Committee members

Perry Alexander, Chairperson

Arvin Agah

Andy Gill

Prasad Kulkarni

Erik Van Vleck

Date defended:

The Dissertation Committee for Evan Austin certifies

that this is the approved version of the following dissertation :

Theorem Provers as Libraries – An Approach to Formally Verifying Functional Programs

Perry Alexander, Chairperson

Date approved:

ii

Abstract

Property-directed verification of functional programs tends to take one of two

paths. First, is the traditional testing approach, where properties are expressed

in the original programming language and checked with a collection of test data.

Alternatively, for those desiring a more rigorous approach, properties can be

written and checked with a formal tool; typically, an external proof system. This

dissertation details a hybrid approach that captures the best of both worlds: the

formality of a proof system paired with the native integration of an embedded,

domain specific language (EDSL) for testing. At the heart of this hybridization is

the titular concept – a theorem prover as a library. The verification capabilities of

this prover, HaskHOL, are introduced to a Haskell development environment as

a GHC compiler plugin. Operating at the compiler level provides for a compar-

atively simpler integration and allows verification to co-exist with the numerous

other passes that stand between source code and program.

iii

Acknowledgements

First and foremost, I would like to thank the members of my committee for

everything they have done to help make this dissertation a reality.

I have had the absolute pleasure and honor of calling Perry my advisor, mentor,

and friend for roughly the last six years. In that time, he has helped shape

who I am, not only as a researcher, but as a person. I will always be beyond

appreciative of the freedom he afforded me to pursue the interests I had and to

develop at my own pace and in my own way. While this dissertation represents a

significant body of knowledge I have attained while at KU, it is because of Perry

that I feel comfortable in being honest that there is still so, so much more that I

do not know.

To those not familiar with the inner workings of our research lab, I frequently

referred to Andy as my “second boss.” While some may consider that a four-

letter word, I don’t; it was a title I voluntarily assigned Andy to reflect the

respect I have for him and to acknowledge the significant impact he has had on

my research career. Given that he was never actually my direct superior, our

interactions had the benefit of a level of candor that was beyond what you would

observe in a typical advisor-student relationship. For every beer he bought me

for a job well done, there was an equal amount of blunt criticism that pushed me

to work harder and not settle for less than my best.

iv

Possibly my biggest regret of my time at KU is not making an effort to develop

a better relationship with Prasad. In the last year I have had the privilege of

serving as teaching assistant for one of his classes, and it was only then that I

realized the mistake I had made. He is one of the brightest, kindest, and most

ambitious people I have ever had the pleasure of meeting. Even though I worked

for him for only one semester, I learned more about teaching in that time than I

did in all of my other assistantships combined.

If not for Arvin then I would most likely never have entered graduate school,

and I most certainly would not have stayed. In the past, whenever I neared the

completion of a degree I found myself lost and without a direction for my future.

Arvin has always been a pillar of support at those times and his frank and unique

opinions on industry and academia have helped guide my path up to this point.

Finally, I would like to thank Dr. Van Vleck for his service as my outside commit-

tee member. While our interactions have been limited, they have been nothing

but professional and enjoyable.

Outside of my committee, there have been so many wonderful people who have

helped me along this journey that I can not possibly name and thank everyone.

In no particular order are a few I would like to single out:

Thank you Aaron Stump and Eddy Westbrook for providing me with my first,

significant research experience.

Thank you Nancy Kinnersley for mentoring me through my first teaching assign-

ments.

Thank you to the numerous lab mates I have had the pleasure of sharing a

working environment with. I would like to especially thank Nick Frisby and

Andrew Farmer as a large amount of the work in this dissertation was only

possible because of their support and suggestions.

v

Thank you to my many friends who reminded me that there is life outside of

school. An extra special thanks belongs to my best friends, and favorite married

couple, Steve and Jessica Rold, for literally accepting me into their home when

I had nowhere else to go.

And, finally, thank you to my family; the one group of people who will always

think I am smart, no matter what. Because they have to. It is what families do.

vi

Contents

Contents . vii

List of Figures . ix

Listings . xi

1 Introduction . 1

2 Motivation . 6
2.1 A Closed System Approach to Verification 8
2.2 A Proposal for Type Class Laws 10
2.3 Augmenting Informal Tests with Formal Proofs 15

3 Background . 19
3.1 Functional Programming 20

3.1.1 Church’s λ-calculus 20
3.1.2 The Simply Typed λ-Calculus 28
3.1.3 Polymorphic λ-Calculi (System F and Friends) 32

3.2 Higher-Order Logic 39
3.2.1 Types and Terms 40
3.2.2 Theorems and Rules 43
3.2.3 Definitional Extension and Theories 48
3.2.4 Forward and Backward Proof 58

4 HaskHOL . 67
4.1 Challenges Implementing an LCF-Style Prover with Haskell 68

4.1.1 Characterizing an LCF-Style Prover 68
4.1.2 A Monadic Approach to the LCF Style 70
4.1.3 Type-Directed Extensible State 74
4.1.4 Practical Implications of Stateful Monads 76
4.1.5 Optimizing Monadic Proof 80
4.1.6 Polymorphic Protection 83

4.2 Stateless Higher-Order Logic with Quantified Types 87
4.2.1 A Stateless Kernel 88
4.2.2 A Polymorphic Type System 92

5 HaskHOL as a Library . 97
5.1 Verifying Constructor Classes 98

5.1.1 Monads in HaskHOL 100
5.2 HaskHOL as a Plugin 104

vii

5.2.1 The HERMIT with the KURE 106
5.3 A Formalized Translation 111

5.3.1 From GHC Core to HaskHOL 113

6 Evaluation .118
6.1 A HERMIT Plugin for Verification 119
6.2 Verification Results 127

6.2.1 A Case Study in Verifying Type Class Laws 128
6.2.2 A Case Study in Formalizing Test Suites 131

6.3 Observations 133
6.4 Future Work 137

7 Related Work .139
7.1 Related Theorem Provers 140
7.2 Related Verification Efforts 143

8 Conclusion .146

References .148

A Select Code from the Verification Plugin .155

viii

List of Figures

1.1 A Proof of reverse’s Involutarity (Part 1) . 3
1.2 A Proof of reverse’s Involutarity (Part 2) . 4

2.1 An Open System Approach to Verification . 9
2.2 A Closed System Approach to Verification . 9
2.3 The Identity Monad . 12
2.4 Proof of Left Identity Law for Identity Monad . 13

3.1 BNF Grammar for the λ-calculus . 20
3.2 Derivation of the Ω Combinator . 23
3.3 Evaluation Semantics of the λ-calculus . 24
3.4 Derivation of the succ Function . 25
3.5 Testing the succ Function . 26
3.6 Boolean Truth Tables . 26
3.7 Derivation of Alternative λ-calculus Encodings for AND 28
3.8 An Unsafe Mixing of Church Numerals and Booleans . 28
3.9 BNF Grammar for the Simply Typed λ-calculus . 29
3.10 Typing Rules for the Simply Typed λ-calculus . 30
3.11 Extended Semantics for Naturals and Booleans . 31
3.12 Extended Semantics for System F . 34
3.13 A Polymorphic Implementation of Church Booleans . 35
3.14 Barendgt’s Lambda Cube . 36
3.15 BNF Grammar for HOL’s Term Language . 40
3.16 Typing Rules for HOL . 41
3.17 Primitive Rules for Assumption Elimination . 45
3.18 Primitive Inference Rules of HOL Light . 46
3.19 Proof of Contradiction Through Open Definitions . 49
3.20 Derived Union Types . 54
3.21 HOL Representation of Inductive Types . 55
3.22 A Subset of HOL Theories . 58

4.1 Substitution Rules for Type Instantiation in HaskHOL . 96

5.1 A More General Tactic for Constructor Classes . 102
5.2 The HERMIT Framework . 106
5.3 GHC’s Core – Simplified . 113
5.4 HaskHOL’s Primitive Types – Simplified . 113

ix

5.5 Translating Ids and TyCons . 114
5.6 Translating Types, Part I . 114
5.7 Translating Types, Part II . 115
5.8 Translating CoreExprs, Part I . 116
5.9 Translating CoreExprs, Part II . 116

6.1 hermit’s View of the Monad.hs Module . 120

x

List of Code Examples

1.1 A Basic List Implementation . 2
1.2 Testing a List Implementation . 2

2.1 The Monad Type Class . 12
2.2 An Example Polymorphic Testing Property 15

3.1 A Primitive Implementation of Transitivity 47
3.2 A Derived Implementation of Transitivity . 47
3.3 A Conversion Combinator Language . 61
3.4 Derived Conversion Combinators . 61
3.5 Sequencing Combinators for Tactics . 63
3.6 Examples of Forward Backward and Combined Proof 66

4.1 The HOL Monad Through Transformers . 71
4.2 The HOL Monad Through Manual Construction 73
4.3 Extensible State Through Existential Types 75
4.4 Explicit and Implicit Stateful Effects . 76
4.5 Persistent State Through Existential Types 78
4.6 Protecting Context-Sensitive Data . 83
4.7 Constructing Polymorphic Theory Constraints 85
4.8 A Refinement of safeProof . 86
4.9 A Subset of the HOL Light Logical Kernel 87
4.10 A Naive Approach to Effects . 88
4.11 The Stateless HOL Approach to Effects . 89
4.12 Psuedo-Stateless Data Types . 91
4.13 HaskHOL’s Type System . 93

5.1 The Construction of Monads in HaskHOL 100
5.2 The Identity Monad and its HaskHOL Proof 101
5.3 A Definition of Identity in HaskHOL . 101
5.4 A Subset of the ModGuts Data Type . 105
5.5 HERMIT’s Sum Data Type Hierarchy . 107
5.6 Transforming Vars in HERMIT . 109

6.1 The Monad Module . 119
6.2 Substituting Constants for Variables . 121
6.3 Translation and Replacement Passes . 124
6.4 An Example Verification Configuration File 126

xi

A.1 High-Level Translation Transformations . 155
A.2 Type and Low-Level Translation Transformations 155
A.3 Term Translation Transformations . 156
A.4 Primitive HOLTerm Transformations . 157
A.5 Term and Type Replacement Transformations 158
A.6 Verification Plugin Implementation . 159

xii

1 Introduction

Property-directed verification of functional programs tends to follow one of two paths: testing

or formal reasoning. Each approach has its own advantages and disadvantages. Software

test cases, while easy to implement, are unable to provide a general guarantee of their

completeness. Conversely, formal reasoning, with its basis in sound logical and mathematical

principles, provides that missing guarantee; but at a cost of more complex system integration

and increased pre-requisite knowledge. This dissertation details a hybridization of these

approaches with the goal of providing a path to verification that captures the “best of both

worlds” with as little of the “worst” as possible.

My primary technical contribution is the development of an interactive, higher-order logic

(HOL) [29] theorem prover that can integrate natively with a functional programming lan-

guage. This integration allows both implementation and verification to reside within the

same environment, permitting the construction of the logical bridge between the two at any

level of development. This freedom enables what I feel is the most important, and novel,

portion of my contribution: a linkage between implementation and verification that exists

at the core, or intermediate language, level. Given that functional programming languages

are rooted in the same lambda calculus [14, 15] that serves as the foundation of HOL, this

linkage exposes a number of benefits not seen in related verification workflows.

Specifically, it is my claim that my work provides the following benefits not currently observed

by the existing, related work:

• Integrating natively is simpler, in that no external tools are required to marshall in-
formation from program to prover, or vice versa.

• Using the compiler to desugar higher-level language features before translation reduces
the complexity of the required representational logic.

• Implementing formal reasoning capabilities in a DSL style allows for their reuse in a
variety of applications beyond verification.

Again, these benefits arise as a result of melding formal reasoning with the predominant

method of verification, software testing.

1

Testing’s pervasive use is not surprising when you consider its chief appeal: software imple-

mentation and software testing can be handled by the same individual. The last statement

is made under the belief that writing a program and writing its associated test cases requires

the same skill set and knowledge. Take, for example, a basic implementation of lists and

their append and reverse operations written in a functional language, as shown in Listing 1.1.

Listing 1.1: A Basic List Implementation

data List a = Nil | Cons a (List a)

append :: [a] -> [a] -> [a]

append Nil ys = ys

append (Cons x xs) ys = Cons x (append xs ys)

reverse :: [a] -> [a]

reverse Nil = Nil

reverse (Cons x xs) = append (reverse xs) (Cons x Nil)

One possible set of tests for this implementation is shown in Listing 1.2. Note that these unit

tests require only basic knowledge of list construction and the expected behavior of reverse;

knowledge that the implementor should already possess. The implementation of reverse,

including its internal use of append, can be treated as a black box and ignored. Conducting

tests in this way, especially when aided by a testing framework or library, works well. The

consequence of approaching verification in such a manner, is that showing a set of tests

exhaustively cover a property ranges from difficult to impossible. Thus, the argument of

correctness frequently cannot claim to be an irrefutable guarantee. In this specific case, to

make such a claim, the inductive nature of lists needs to be leveraged. Shifting from informal

testing to a formal structural induction proof provides us with the coverage guarantee we

desire.

Listing 1.2: Testing a List Implementation

do test (reverse Nil == Nil)

"Test (reverse []) failed."

test (reverse (Cons 1 Nil) == (Cons 1 Nil))

"Test (reverse [1]) failed."

test (reverse (Cons 1 (Cons 2 Nil)) == (Cons 2 (Cons 1 Nil)))

"Test (reverse [1, 2]) failed."

2

Given the applicative nature of functional languages, the formal reasoning tools most com-

monly turned to for verification purposes utilize a logic that supports equational reasoning.

These tools generally take the form of a theorem prover, with verification proceeding as

the backwards, or sometimes forwards, proof of propositional goals. Continuing with the

example above, one could formally demonstrate the correctness of reverse by proving the

function’s implementation to be involutary:

forall xs. reverse (reverse xs) == xs

As was hinted at in the preceding paragraph, the proof of the above property involves an

inductive, case-wise analysis of the structure of the quantified list:

reverse (reverse Nil) == Nil

reverse (reverse (Cons x xs ’)) == Cons x xs ’

The resultant subgoal proofs are a series of equational rewrites based on the definitions of

append and reverse and the distributive property of append; these proofs are shown in Fig-

ures 1.1 and 1.2 accordingly. The simplicity of these proofs reflects the appeal of equational

reasoning and referential transparency: when provided with a context containing the req-

uisite definitions and lemmas, most verification obligations can be discharged via induction

and simplification (rewriting).

Figure 1.1: A Proof of reverse’s Involutarity (Part 1)

Base Case:

reverse (reverse Nil)

= reverse Nil By Definition of reverse (1)

= Nil By Definition of reverse (2)

3

Inductive Case:

reverse (append xs ys) = append (reverse ys) (reverse xs) (Distributive Lemma)

reverse (reverse (Cons x xs′))

= reverse (append (reverse xs′) (Cons x Nil)) By Definition of reverse (1)

= append (reverse (Cons x Nil)) (reverse (reverse xs′)) By Distributive Lemma (2)

= append (append (reverse Nil)(Cons x Nil)) (reverse (reverse xs′)) By Definition of reverse (3)

= append (append Nil (Cons x Nil)) (reverse (reverse xs′)) By Definition of reverse (4)

= append (Cons x Nil) (reverse (reverse xs′)) By Definition of append (5)

= Cons x (append Nil (reverse (reverse xs′))) By Definition of append (6)

= Cons x (reverse (reverse xs′)) By Definition of append (7)

= Cons x xs′ By Inductive Hypothesis (8)

Figure 1.2: A Proof of reverse’s Involutarity (Part 2)

While the proof process can be quite simple, using proof tools themselves can be quite

the opposite. Where as software testing can be performed with minimal knowledge of the

source language and problem domain, interacting with a theorem prover for the purposes

of program verification requires expert knowledge of the afore mentioned topics, as well

as the proof system itself. An additional challenge is introduced when following the formal

reasoning approach – the implementation and verification of a program now reside in separate

systems with separate languages. Even if these languages are logically close, any conversion

between the two implies a necessarily more complex system integration than is required by

the testing approach.

This is not to say that such integrations are impossible, or even uncommon. There have been

a number of successful verification efforts involving functional programs, ranging from the

small [1, 45] to the quite large [53, 58]. The chosen routes from implementation to verification

in these projects also vary quite widely. Some elect to iteratively abstract from implementa-

tion to specification, providing a bridge to the verification in incremental steps [54]. Others

elect a more direct approach, utilizing external tools to automatically generate either a spec-

ification from an implementation [35], or vice versa [60]. In either case, the development

pipeline is now augmented with a large proof system that tends to be overkill for all but the

most complex of problems.

4

It is my belief that the simplicity of the testing approach is rooted in the fact that the

verification effort never leaves the source language’s environment. In order to bring that same

simplicity to the formal reasoning approach, the tool to be utilized must be implemented

in a way such that its proof artifacts can be handled as first class objects in the target

source language. For the work of this dissertation, I choose to satisfy this requirement by

implementing a HOL theorem prover as an embedded domain specific language (EDSL),

with proof terms and theorems acting as the principal data types for the DSL.

This works exposes two interesting, auxiliary benefits of note. First, the LCF implemen-

tation style [31] popularized by HOL theorem provers pairs quite naturally with the EDSL

approach [44], leading to, what is in my opinion, a comparatively clear and direct implemen-

tation of a general theorem prover, as will be discussed in Chapter 4. Second, given that

many of the popular testing frameworks for functional languages are also implemented as

EDSLs [17] the resultant proof system can reuse a large number of existing test cases as ver-

ification targets. This was one of the primary motivations of the work, as will be explained

in more detail in Chapter 2.

The techniques presented in this dissertation should be applicable to any functional language

with the required features, namely support for user-written compiler plugins. The concrete

implementation of said techniques utilizes the Haskell programming language [62]; specifi-

cally, the version of Haskell supported by the Glasgow Haskell Compiler (GHC) [25]. The

resultant HOL EDSL, cleverly (or not so) named HaskHOL is available as a series of Haskell

packages.

Stable versions of some of these packages are hosted on the Hackage package repository

(https://hackage.haskell.org). Unstable, but cutting edge, versions are available from

my personal Github account (https://github.com/ecaustin). Additional information

regarding the HaskHOL system, as well as related publications, is available at http://

haskhol.org.

5

https://hackage.haskell.org
https://github.com/ecaustin
http://haskhol.org
http://haskhol.org

2 Motivation

The motivation for the work in this dissertation is rooted in the origin story of the HaskHOL

proof system:

My time as a graduate student began in support of Rosetta, a specification language for

system-level design [3] whose development was spearheaded by the System Level Design

Group at the University of Kansas. By the time I joined the research group, a fairly robust

tool suite had already been developed to accompany the Rosetta language standard – with

tools ranging from type checking frontends to hardware synthesis backends. What was

missing was a way to formally reason about the specifications we were writing.

Attempts had been made to correct this deficiency before my arrival; most notably involving

work with the VSPEC [8] and Prufrock [92] systems. As will be discussed in the next sub-

section, the issue with attempting verification using external systems such as these is that,

in general, it is extremely difficult to restructure their output to be meaningful within the

context of the original specification. We desired a system that could integrate seamlessly

into the Rosetta tool suite to avoid this problem.

The rest of the Rosetta tool suite was implemented using Haskell. At the time, there was

a dearth of Haskell-based formal reasoning tools so we found no off-the-shelf solution for

what we wanted. Guided by prior experience and familiarity with proof systems, including

PVS [20] and the previously mentioned Prufrock, we started down the path of developing

a purpose-built theorem prover for Rosetta specifications. We decided on a foundational

logic for the prover when a literature search lead us to higher-order logic (HOL). In addition

to having a rich history and an active community behind it, HOL is a great formalism for

hardware verification [30, 64] which was the primary domain for Rosetta specification at the

time.

6

After surveying the popular members of the HOL theorem prover family tree [81, 69, 41] we

decided to follow the titular “lightweight” approach of John Harrison’s HOL Light system.

In fact, our earliest attempt to implement a proof tool for Rosetta was a naive translation of

HOL Light’s OCaml implementation to Haskell [6]; thus, HaskHOL was born. Having gone

through a number of revisions and reimplementations since then, HaskHOL has morphed

into a more general tool; a library designed to provide proof capabilities to any Haskell-

based program that imports it [5]. This transformation opened the door to the work of

this dissertation: a novel approach to formally verifying functional languages. The following

sections detail the motivation behind the design of this new workflow, as well as what I see

as the two most obvious cases to motivate its use.

7

2.1 A Closed System Approach to Verification

In physics, a closed system is a system which does not allow transfers of certain types across

its boundaries. For example, a thermodynamically closed system can exchange heat or

work with its surroundings, but not matter. The science of calorimetry depends on systems

restricted in this way, as the process of calculating a reaction’s net energy is greatly simplified

when changes in mass can be removed from the equation. Analogously, it is my belief that

a verification effort can be simplified by removing the marshaling of information from its

“equation.”

The problem with most verification workflows is that they require a specification to be

“thrown over the wall” that stands between the development environment and the verifica-

tion environment. Provided that both environments are rooted in compatible formalisms,

this “tossing” of a specification back and forth reduces to a translation between language

and logic. Focusing specifically on theorem proving, Florian Haftmann has shown that, fol-

lowing the spirit of the Curry-Howard isomorphism [83], these translations between proof

and program can be automated [35]. Unfortunately, the information contained in, and/or

represented by, the resultant artifacts of either environment can not as easily be shared.

The opening to this chapter stated the problem quite clearly: “in general, it is extremely dif-

ficult to restructure [proof objects] to be meaningful within the [development environment].”

Outside of a prover, a theorem represents nothing more than an affirmation of the validity of

a property. Its structure cannot be dissected or analyzed, its requisite assumptions cannot

be checked, and its proof cannot be rerun or otherwise validated. The consequence is that

most workflows match the diagram shown in Figure 2.1; development and verification are

distinct and separate systems with compatible input and incompatible outputs.

8

Figure 2.1: An Open System Approach to Verification

The work in this dissertation is motivated by a different workflow, shown in Figure 2.2,

where development and verification are subsystems within a larger system closed to proof

objects. There are two keys to this design that should be observed. First, the development

and verification environments share a host language, such that both can interact natively

with the abstract data representation of proof objects. Second, the boundary to this host

system is semi-permeable, such that a user can interact with the verification system, but

not the proof objects themselves. These design requirements are critical to the success and

soundness of the overall system.

Figure 2.2: A Closed System Approach to Verification

9

2.2 A Proposal for Type Class Laws

One of Haskell’s more unique contributions to programming language research is its approach

to ad hoc polymorphism: type classes [37]. Operations can be made overloadable by enclosing

their declaration within a class that binds the type variable to be made polymorphic. For

example, the equality operator, (==), is contained within the Eq type class:

class Eq a where

(==) :: a -> a -> Bool

(/=) :: a -> a -> Bool

Overloads are introduced via type class instances which instantiate the class parameter and

provide definitions for the monomorphic view of the class operations. Continuing with the

equality example, one possible instance of Eq for Booleans is shown below:

instance Eq Bool where

True == True = True

False == False = True

_ == _ = False

When an overloaded operation is used in another definition or expression, the requisite type

class is introduced as a constraint to the overall type, e.g.:

elem :: Eq a => a -> [a] -> Bool

At compile time, type inference is used to resolve which type, if any, has an instance that

satisfies this constraint and can unify with the polymorphic type variable [50]. The pertinent

definitions from that type’s instance are inlined into the original body of code, providing a

dictionary passing implementation of polymorphism. Given that constraint resolution is

entirely type directed, it is critical that definitions in class instances are well-typed. This

typing is currently the only sanity or safety check that is performed on class instances, such

that the compiler will gladly accept “incorrect” definitions for overloads:

instance Eq Bool where

_ == _ = False

10

The author of a type class usually defines correctness by pairing the class declaration with

a set of properties to guide the implementation of class instances. In the case of value

equality, there are a number of properties that instances of Eq should satisfy – the simplest

being the reflexive property: forall x. x == x = True. The incorrect definition shown above

is obviously invalidated by this property, so why does the compiler continue to accept it? In

short, there is no formal way to specify or check these properties within the Haskell language.

Typically, properties are documented in source code comments tied to type class declarations.

Instance implementors reason away their obligation to correctness with arguments ranging

from the hand waving, to formal proofs of correctness. The more rigorous end of this

spectrum is most commonly occupied by test suites that cover the definitions of an instance.

This technique works well for basic type classes, such as Eq, but can fail in more complicated

cases. The main problem is that testing frameworks tend to struggle with code that is

polymorphic [10]; a fact that will be expounded upon in the next section.

The discussion up to this point has dealt with a type class whose parameter is of kind *, such

that type instantiation results in monomorphic code. In the case where the bound variable

is higher kinded1, e.g. * -> *, type instantiation results in parametrically polymorphic code.

The primitive type classes of Haskell based on category theory constructs, Functor, Monad,

etc., are common, real-world examples. The correctness of Monad instances is of particular

note, given that Haskell’s desugaring of do notation depends on rewrite rules which are

literal translations of the monad laws. Haskell’s declaration of the Monad class, along with its

correctness properties, is shown in Listing 2.1.

1Higher kinded type classes are sometimes referred to as constructor classes, referring to the type con-
structors that instantiate their parameter

11

Listing 2.1: The Monad Type Class

{-

Instances of ’Monad ’ should satisfy the following laws:

> return a >>= k == k a

> m >>= return == m

> m >>= (\x -> k x >>= h) == (m >>= k) >>= h

-}

class Monad m where

(>>=) :: forall a b. m a -> (a -> m b) -> m b

return :: a -> m a

Instantiating the Monad class with even the simplest possible type constructor, Identity,

creates issues for testing. This instantiation, along with a derivation of the corresponding

instance of the left identity monad law, is shown in Figure 2.3. By inlining the definitions

of both >>= and return, we are left with the testing property formed by equating the final

two steps in the figure. This property contains two universally quantified variables, both of

which are polymorphic. The full property, including its type quantifications, is shown below:

FORALL A B. forall (k :: A -> Identity B) (a :: A).

k (runIdentity (Identity a)) == k a

Figure 2.3: The Identity Monad

newtype Identity a = Identity { runIdentity :: a }

instance Monad Identity where

return a = Identity a

m >>= k = k (runIdentity m)

Left Identity Law:

return a >>= k

= k (runIdentity (return a)) By Definition of (>>=) (1)

= k (runIdentity (Identity a)) By Definition of return (2)

= k a By Definition of runIdentity (3)

12

In the previously cited paper, Bernardy et. al present an approach to testing polymorphic

properties, including an extension that supports properties with multiple type parameters.

However, it is not readily apparent if that technique is applicable in cases where a parameter

needs to represent an arbitrary, functional value, as is the case for the parameter k in this ex-

ample property. Claessen presents a refinement of his work with Bernardy et. al specifically

to address this problem; however, the newer approach still has limitations of its own [16].

Following either technique, there is a risk of producing an inefficient, and potentially incom-

plete, test suite bogged down by unnecessary redundancy. Or worse yet, the resultant test

suite will be logically weaker than you need it to be.

Conversely, the “paper proof” from Figure 2.3 can be easily, and formally, proved using a

higher-order logic that supports type quantification. One possible, subgoal-directed proof is

shown in Figure 2.4.

Figure 2.4: Proof of Left Identity Law for Identity Monad

Original Goal:

FORALL A B. forall (k :: A→ Identity B) (a :: A). k (runIdentity (Identity a)) = k a (1)

forall (k :: A′ → Identity B′) (a :: A′). k (runIdentity (Identity a)) = k a By Repeated Type Generalization
(2)

k′ (runIdentity (Identity a′)) = k′ a′ By Repeated Term Generalization
(3)

Equality of Functions Subgoal:

k′ = k′ (4)

True By Reflexivity (5)

Equality of Arguments Subgoal:

runIdentity (Identity a′) = a′ (6)

a′ = a′ By Definition of runIdentity (7)

True By Reflexivity (8)

13

This motivating example has two key parts that guided the work presented in this disser-

tation. First, it was clear that the Haskell community as a whole would benefit from a

standardized way to formally state type class properties. Second, it was my belief that a

mechanization of the steps shown in Listing 2.1, Figure 2.3, and Figure 2.4 would lead to a

higher level of assurance than was currently provided by a testing approach. This mecha-

nization could be realized as an implementation and application of the verification workflow

shown in the preceding section.

14

2.3 Augmenting Informal Tests with Formal Proofs

To paraphrase a theme of the previous section, there are times when a testing approach

to verification may be inadequate. The previously cited work of Bernardy, Jansson, and

Claessen focused on a specific instance of this problem – finding solutions for testing oth-

erwise untestable polymorphic properties. In a Haskell mailing list post announcing the

publication of this work2, Bernardy summarizes the crux of their solution. In short, you can

test polymorphic properties, but to do so you must coerce them to be monomorphic. We fol-

low Bernardy’s posted example to both explain this approach and document the remaining

open issues.

The property in Listing 2.2 is flawed, as the arguments to (++) are not properly commuted on

the right-hand side of the equation. Fixing the polymorphic type variable by defaulting to

the simplest type, (), results in a monomorphic view of this property that obscures this flaw

rather than reveals it. The cause of the obscurity lies in the definition of the unit type, (); so

named because it is inhabited by only a single term value. Given that every element in a list

of type [()] must be equal, comparisons between such lists can be reduced to a comparison of

their lengths. Provided that the implementations of reverse and (++) are length preserving,

as they should be, fixing the type of prop_reverse_append to [()] -> [()] -> Bool makes it a

tautology, even though its polymorphic counterpart is refutable.

Listing 2.2: An Example Polymorphic Testing Property

prop_reverse_append :: Eq a => [a] -> [a] -> Bool

prop_reverse_append xs ys =

reverse (xs ++ ys) == reverse xs ++ reverse ys

2https://www.haskell.org/pipermail/haskell/2009-October/021657.html

15

https://www.haskell.org/pipermail/haskell/2009-October/021657.html

Prior to the publication of Bernardy et. al’s work, the popular technique was to fix poly-

morphic type variables to a type with a very large term space, usually Integer, specifically

to avoid this problem. Even with a countably infinite term space to draw from, there are

still potential issues that can arise when selecting test data. The most concerning of these

issues is that a seemingly complete set of tests may actually be significantly weaker than

necessary to verify their target property.

Recall that the flaw in prop_reverse_append is a missing commutation of arguments when

appending lists. When the argument lists are equal, though, the commuted and uncommuted

versions of an append expression are reflexively equal. Thus, when the input lists xs and ys

are equal, prop_reverse_append will always test true. Following from the previous discussion,

this should be an obvious result for lists that hold homogeneous values, e.g. [’a’], [1, 1],

[(), (), ()], etc., regardless of which monomorphic type is selected. However, when testing

with equal, heterogeneous lists, it may not be immediately obvious that weakened test data

has been selected.

Take, for example, the following set of test data where each item is a pairing of inputs

for the lists xs and ys accordingly: ([], []), ([1], [1]), and ([1, 2], [1, 2]). Upon first

inspection it appears that all of the necessary test cases are covered – empty lists, unary

lists, and n-ary lists. As discussed in the preceding paragraph, testing with this data will not

reveal the flaw in prop_reverse_append given that each pair is comprised of equal lists. The

inclusion of an additional test pair that doesn’t satisfy this property, specifically ([], [1]),

is still not enough to strengthen the test suite to the point of finding a refutation, as it is

a member of another logically weak class of tests for this property; prop_reverse_append is

vacuously true for list pairs whose combined length is 1 or less.

16

Randomly generating test data can strength its collective argument by making it probabilis-

tically unlikely that every case is weak. However, random generation can simultaneously

aggravate secondary issues with testing – inefficiency and incompleteness. As noted above,

prop_reverse_append is true for any pairing of a null and unary list. Thus, if the property is

tested with the pair ([], [1]) then repeating the test with either the pairing’s permutation

or a different unary list would represent a wasted effort. Given that only a fixed number

of tests will be performed, in addition to being inefficient, redundant tests jeopardize a test

suite’s odds of revealing a refutation, should any exist

Analyzing all of the possible ways a property can construct values from its input data can

reveal techniques for mitigating the potential weakness and redundancy of said data. In

the case of prop_reverse_append, there are two input lists, xs and ys, that are constrained

by the same polymorphic variable. If the combined elements of the two lists form a set

of entirely distinct values then weakness is no longer a concern, as xs and ys can never be

equal. Generating lists of exclusively unique values can also help reduce redundancy, as their

complexity subsumes that of similarly lengthed lists, e.g. testing with [1, 2, 3] sufficiently

replaces tests for [1, 1, 1], [1, 1, 2], etc. Thus, the property only needs to be tested once

for each combination of list lengths.

This approach, especially Claessen’s later refinements of it, goes a long way towards making

polymorphic properties testable. However, there are still open problems that need to be

solved. For one, this approach to data generation cannot be made general for higher-order

polymorphic arguments, only first-order ones. Secondly, identifying methods of construction

for a property can be extremely difficult, especially in the presence of type classes or other

methods of indirection. Third, it is unclear if this approach is applicable to non-equational

properties, nor is it clear how it would need to be modified in order to make it so. Finally,

as has been harped upon up to this point, this approach to data generation still does not

address the issue of guaranteeing the completeness of a test suite.

17

Even with these outstanding problems, it is my belief that testing still has a place somewhere

in the overall verification of a system. Formal reasoning tools can provide strong, mathemat-

ical arguments for the correctness of a property when a verification effort succeeds, however,

when a verification effort fails it typically reveals very little about the problem at hand.

Conversely, when a test is found that refutes a property, it represents a concrete counter-

example to work from; something that can be very hard to derive when working with formal

systems, proof tools especially. Additionally, given the “black box” nature of testing, an ini-

tial verification attempt can be made with minimal to no knowledge of the implementation

of the system involved.

Given these benefits, a hybrid approach to verification where testing is used to preface formal

reasoning would seem to provide the best of both worlds: a quick path to possible refutation

and a formal verification to support an otherwise informal argument of correctness. The

workflow presented in Section 2.1 can be adapted to mechanize this proposed hybridization.

The only difference compared to the motivating example from Section 2.2 is that properties

are now captured via code fragments in the implementation language itself rather than in a

special language construct, such that they must be translated alongside the code they target.

A true hybridization would generate both a monomorphic testing property and a proof

obligation from the same polymorphic source. More recent versions of the QuickCheck li-

brary [17] provide an experimental mechanism for automatically monomorphising a property,

satisfying the testing half of the proposed hybrid. Template Haskell [80] is used to inspect

the property’s polymorphic type signature, generate a monomorphic view of it, and ascribe

this new type to the original property:

prop_reverse_append ’ :: [Integer] -> [Integer] -> Bool

prop_reverse_append ’ = $(monomorphic ’prop_reverse_append)

When test suites are implemented in this manner we can essentially “recycle” them for formal

verification.

18

3 Background

The requisite knowledge to understand the technical content of this dissertation falls into

two main categories:

1. Functional Programming

2. Higher-Order Logic

Section 3.1 covers the functional programming background material. Starting with a concise

introduction to the Lambda Calculus, select axes of Barendregt’s Lambda Cube are explored

to develop a basic understanding of the type theory related to the foundational logics of both

Haskell and HaskHOL.

Section 3.2 covers the HOL background material. The basics of higher-order logic, as mech-

anized by the original HOL theorem prover, are presented building from the logical kernel

up.

19

3.1 Functional Programming

In the early 1930s, Alonzo Church was pursuing a way to formally model a theory of com-

putable functions [13]. Alan Turing, a student of Church, followed this work with his own

model of computability [88], eventually showing the two to share the same level of ex-

pressivity [89]. Subsequently, these two formalisms grew to become the prominent models

of computation in computer science: the λ-calculus and the Turing Machine, respectively.

Modern functional languages can be viewed as natural elaborations of the original λ-calculus,

frequently utilizing some variant of it as their core language.

Church’s λ-calculus

The chief appeal of the λ-calculus is its simplicity. Its syntax is defined by only three possible

constructs: variables, abstractions, and combinations. The grammar for this language is

shown back in Figure 3.1. Briefly summarized:

• Variables model an identifier for a term.

• Abstractions model a function definition by binding a variable name, such that it can
be referenced in the body of the abstraction.

• Combinations model a function application by pairing a function/operator term with
an argument/operand term.

Figure 3.1: BNF Grammar for the λ-calculus

variable ::= a | b | ...

term ::= variable
| λ variable . term
| term term

20

The only method of computation in the pure λ-calculus is reduction, as powered by variable

substitution. In the body of the term λx. x y there are two variable occurrences, x and

y. The variable x is considered bound, as it is introduced within the scope of a lambda

binding, λx. Conversely, the variable y is considered free as it has no introduction to the

term, i.e. it is scoped globally. In the instance where a variable has multiple occurrences

in a term, each occurrence’s scope is calculated from the inside out. For example, in the

term λx. y (λx. λy. x y), the outermost binding of x is unused, the outermost occurrence of

y is free, and the innermost occurrences of x and y are both bound by the corresponding,

remaining lambdas.

Variable substitution is notated by the short-hand [x 7→ e] t, indicating that occurrences of

the variable x in the term t are replaced by the expression e. In the interest of brevity,

the actual definition of substitution is not shown. It should be noted that it satisfies two

important properties:

1. Only free occurrences of x in t are substituted.

2. A substitution will not capture variables, i.e. previously free occurrences never become
bound.

In the event where a substitution would violate either one of these properties, a renaming of

bound variables can be performed to avoid the problem.

There are three classes of reduction for the untyped λ-calculus described above. The first,

α-reduction, is used to rename the bound variable of a lambda expression:

λx. t =⇒
α
λy. [x 7→ y] t

Term equality in the pure λ-calculus is intensional, such that two terms are equal if they

have equivalent representations modulo renaming of bound variables. For example, the terms

λx. x and λy. y are considered to be equal in value, but the terms x and y are not. The

α-reduction rule facilitates the conversion between alpha-equivalent terms and is critical to

ensuring the correctness of the definition of substitution described above.

21

The second, and most important, class is β-reduction:

(λx. t1) t2 =⇒
β

[x 7→ t2] t1

The above rule represents the primary method of computation in the λ-calculus, as it is the

only mechanism that can reduce a combination of terms. The application of a lambda term

to an argument, known as a β-redex1, is simplified by substituting the operand for every

occurrence of the bound variable in the body of the operator. For example, the expression

(λx. x) y can be β-reduced to y, capturing the notion of the application of the identity

function to a variable value.

The final class, η-reduction, can be used to simplify extraneously abstract lambda terms:

(λx. t) x =⇒
η
t

Starting with the term λx. (λy. y) x, we can see that η-reduction is essentially a sequential

application of β-reduction, λx. (λy. y) x =⇒
β

λx. x and α-reduction, λx. x =⇒
α

λy. y. These

two reductions can be safely combined into a single step in the instance where the outermost

binding is used immediately in the innermost application. The proof of the extensionality

property of functions2 in the λ-calculus also relies on η-reduction.

Even though it is framed by only the three language constructs and three classes of reduction

described above, the λ-calculus is an amazingly expressive language3 . It has the ability to

capture complicated aspects of a programming language quite clearly, though in most cases

not succinctly. For example, the notion of looping is captured in the λ-calculus by the fixed-

point, or Y , combinator: λf. (λx. f (x x)) (λx. f (x x)). Non-termination, e.g. infinite

looping, can be implemented by applying the Y -combinator to the identity function, as

shown in Figure 3.2.

1redex = reducible expression
2(∀x. f(x) = g(x))⇒ f = g
3The λ-calculus is Turing complete, as explained by Turing’s work cited above.

22

(λf. (λx. f (x x)) (λx. f (x x))) (λx. x) =⇒
β

(λx. (λx. x) (x x)) (λx. (λx. x) (x x)) =⇒
β

(λx. x x) (λx. x x) =⇒
β

(λx. x x) (λx. x x) =⇒
β

...

Figure 3.2: Derivation of the Ω Combinator

In this example, repeated application of the β-reduction rule will always return the expression

(λx. x x) (λx. x x); cleverly named, the Ω combinator as it is the “last” term in Church’s

λ-calculus. The derivation of the Ω combinator is a strong motivating example for the

discussion of the evaluation semantics of the λ-calculus. Note that there are two β-redexes

in the first step of the derivation shown in Figure 3.2, the overall expression and the body

of the first lambda term, thus there are two possible reduction strategies. The derivation

as presented follows a normal order, reducing the leftmost, outermost redex first. The

alternative strategy, an applicative order, reduces the leftmost, innermost redex first. Note

that following an applicative evaluation order in this case would lead to a divergence at the

inner redex, preventing the derivation of the Ω combinator as encoded.

Unless otherwise noted, the examples in this section will follow the call-by-value semantics

shown in Figure 3.3. The evaluation relation e −→ e′ indicates that an expression is reduced,

or steps, to a simpler form; in this case through β-reduction. This relation is formally

defined with an operational semantics where an expression’s overall reduction is structured

by the sub-term reductions shown above the dividing line. In these semantics an applicative

evaluation order is enforced by reducing the function term of an application to a value before

continuing with the reduction of the application’s argument term. Note that the evaluation

order is further restricted by forcing the argument of an application order to also be reduced

to a value before β-reduction can occur, hence the name call-by-value.

23

term ::= variable
| term term
| λ variable . term

value ::= λ variable . term

EvalApp1
term1 −→ term′

1

term1 term2 −→ term′
1 term2

EvalApp2
term −→ term′

value term −→ value term

EvalAbs
(λx. term) value −→ [x 7→ value] term

Figure 3.3: Evaluation Semantics of the λ-calculus

Reduction proceeds in this manner until the expression reaches an irreducible, or normal,

form. The appeal of a call-by-value semantics is that the normal forms of a language are all

elements of its value space. For the pure λ-calculus, this value space is defined as all arbitrary

lambda terms. Languages that always terminate their evaluation at a term in normal form

are said to be strongly normalizing. The existence of the Ω combinator acts as proof that

the pure λ-calculus is not strongly normalizing; though all Turing complete languages are

not strongly normalizing by definition.

Notably absent from the language shown in the previous subsection is any construct for the

inclusion of constants. This makes it quite difficult to use the λ-calculus to model otherwise

simple formalisms; for example, Peano arithmetic [72]. Peano’s formulation is simplistic in

that it requires just nine axioms to establish the canonical definition of natural numbers.

These axioms can be used to inductively define basic arithmetic functions, such as addition of

natural numbers. Even with such a simple formulation it is a non-trivial exercise to capture

the semantics of Peano addition in the λ-calculus.

24

Kleene’s Church-Turing thesis demonstrates that any data type, and any computation over

it, can be represented in the λ-calculus [52]. The Church numerals are one such encoding of

natural numbers. Their basic premise is that a natural number, n, can be represented by n

applications of a function, f , to a base value, x; both of which must be bound variables. Thus,

counting in Church numerals gives the term stream: λf. λx. x, λf. λx. f x, λf. λx. f (f x),

etc.

The addition of two numerals can be represented as the composition of their function appli-

cations:

add(m,n) = m + n =⇒ λf. λx. fm (fn x)

Given that a Church numeral is encoded as a series of function applications, the expression

fn can be represented in the λ-calculus by passing f as the function argument to a numeral

n, i.e. fn x =⇒ λn. λf. λx. n f x. The resultant encoding for the addition function, m+ n,

is shown below:

λm. λn. λf. λx. m f (n f x)

Using this definition, we can derive other functions. The derivation for the successor function,

succ, as well as a simple test, are shown in Figures 3.4 and 3.5 accordingly. Note that this

derivation matches the intuitive definition of succ, f(fnx), and the test for succ(0) produces

the correct Church numeral for the value 1.

Figure 3.4: Derivation of the succ Function

succ(n) = add(1, n) :
(λm. λn. λf. λx. m f (n f x)) (λf. λx. f x) =⇒

β

λn. λf. λx. (λf. λx. f x) f (n f x) =⇒
β

λn. λf. λx. (λx. f x) f (n f x) =⇒
β

λn. λf. λx. f (n f x)

25

succ(0) = 1 :
(λn. λf. λx. f (n f x)) (λf. λx. x) =⇒

β

λf. λx. f ((λf. λx. x) f x) =⇒
β

λf. λx. f (λx. x) x =⇒
β

λf. λx. f x

Figure 3.5: Testing the succ Function

A similar encoding can be implemented for boolean constants. Given their finite value space,

Church booleans are implemented as a set of higher-order functions that select and return

one of their parameters, each representing a single possibility from the enumerated value

space:

• true is encoded as the function that chooses the first parameter - λt. λf. t

• false is encoded as the function that chooses the second parameter - λt. λf. f

Primitive boolean operators can be similarly encoded as functions that implement the appro-

priate truth tables. For reference, the truth tables for NOT (P) = R and AND(P,Q) = R

are shown in Figure 3.6.

Figure 3.6: Boolean Truth Tables

Truth Table for NOT
P R

true false
false true

Truth Table for AND
P Q R

true true true
true false false
false true false
false false false

26

Following the truth table, the NOT operator is encoded as a function that returns the inverse

of its Church boolean parameter:

NOT (P) =⇒ λp. p F T

Operators with more than one parameter can be encoded by scanning the truth table from

left to right, branching at each parameter, providing saturated applications of the remaining

parameters for the true and false arguments. The encoding of the AND operator consists

of saturated applications of Q for each branch of P :

AND(P,Q) =⇒ λp. λq. p (q T F) (q F F)

A benefit of encoding constant values with selector functions in this manner is that a number

of rewrite rules follow as corollaries. In cases where a selector is applied to the same value

twice, the expression can be reduced to just that value:

sel x x ⇒
ID1

x

In cases where an argument to a selector is equal to its respective parameter value, the

expression can be rewritten to replace said argument with the selector itself:

sel T x ⇒
ID2a

sel sel x

sel x F ⇒
ID2b

sel x sel

Following from a composition of the previous laws, in the case where a selector function is

applied to values in an order that matches their parameterized representation, the expression

can be safely reduced to that selector:

sel T F ⇒
ID3

sel

27

λp. λq. p (q T F) (q F F) ⇒
ID1

λp. λq. p (q T F) F ⇒
ID3

λp. λq. p q F ⇒
ID2b

λp. λq. p q p

Figure 3.7: Derivation of Alternative λ-calculus Encodings for AND

Applications of these rules allow us to reduce the previous encoding for AND to a simpler

form, as shown in Figure 3.7.

The Simply Typed λ-Calculus

The consequence of implementing constants with Church encodings is that constructing a

language with multiple classes of constants presents a certain level of danger. Take, for

example, an application of the previously derived succ function to a Church boolean, as

shown in Figure 3.8.

In this example, we can proceed with β-reduction because the application forms a valid β-

redex, however, the resultant value is meaningless; it takes the structural shape of neither a

Church numeral nor boolean. This should be of no surprise given that we are attempting to

apply succ to true, a value not covered by Peano’s formulation. The solution to this problem

is to separate the value spaces of numerals and booleans, such that ill-formed expressions

can be identified before reduction is attempted or computed.

Figure 3.8: An Unsafe Mixing of Church Numerals and Booleans

(λn. λf. λx. f (n f x)) (λp. λq. p) =⇒
β

λf. λx. f ((λp. λq. p) f x)) =⇒
β

λf. λx. f ((λq. f) x)) =⇒
β

λf. λx. f f

28

variable ::= a | b | ...

value ::= λ variable : type . term
| c where c is a constant value

term ::= variable
| term term
| λ variable : type . term
| c where c is a constant term

type ::= type → type
| T where T is a base type

Figure 3.9: BNF Grammar for the Simply Typed λ-calculus

Church’s typed formulation of the λ-calculus implements this solution by adding an addi-

tional level of abstraction to the language to express the types of terms [14]. The grammar for

this language is shown in Figure 3.9. In the simply typed λ-calculus, the type level has only

a single constructor, →, used to build function types. For example, the type Nat→ Bool is

the type of a function whose domain is natural numbers and range is booleans. Note that

there are no variable types in this language, thus there is no notion of polymorphism or type

substitution. Additionally, the only place a type can be, and must be, introduced in a term

is as the type of the bound variable of a lambda term.

The evaluation of the simply typed λ-calculus is guarded by only reducing well-typed ex-

pressions. We say an expression, e, is well-typed when, under a typing context, Γ, we can

compute a type, T , for it. We denote this typing relation with the syntax Γ ` e : T . The

typing relation itself is defined by the set of rules shown in Figure 3.10. These inference rules

follow the standard form
A1...An
C

, stating that the conclusion C holds under the premise

that the assumptions A1...An are all true.

29

TypeCon
c is a constant of type T

Γ ` c : T
TypeV ar

x : T ∈ Γ
Γ ` x : T

TypeLam
Γ, (x : T1) ` e : T2

Γ ` (λx : T1. e) : (T1 → T2)
TypeApp

Γ ` e1 : T1 → T2 Γ ` e2 : T1

Γ ` (e1 e2) : T2

Figure 3.10: Typing Rules for the Simply Typed λ-calculus

The first and simplest rule, TypeCon, states that a constant is typed by the set of values it

belongs to, e.g. ` true : Bool. The second rule, TypeV ar, appears equally simple, though

there is a slight wrinkle for cases with an empty typing context. A variable, x, is of type T

when the judgement x : T is a member of the typing context. Note that the typing context

is only extended when a variable is bound by a lambda term, as shown in rule TypeLam.

Thus, free variables are always ill-typed under an empty typing context. Expressions that

are well-typed under the empty context, i.e. they contain no free variables, are referred to

as closed.

The final two rules introduce and eliminate function types. As noted above, typing a lambda

term extends the context with the type ascription contained in its binding. The TypeLam

rule constructs a function type for a lambda term where the domain is drawn from this

ascription and the range is the type of its body under the extended context. The final rule,

TypeApp, acts as the type-checking equivalent of modus ponens. The type of an application,

e1 e2, is a reduction to e1’s range type when its domain type matches the type of e2.

The simply typed λ-calculus is considered a safe language because it is strongly normalizing

for well-typed terms. Given that type-checking this language is a static computation, it

provides a compile-time guarantee that the evaluation of an expression will terminate with a

value that is correct according to the semantics of the language. Hence why it was previously

noted that typing typically precedes evaluation for most λ-calculus based systems.

30

nat ::= 0 | succ nat

value ::= true | false | nat | ...

term ::= true | false | 0 | succ term | ...

type ::= Bool | Nat | ...

TypeTrue
Γ ` true : Bool

TypeFalse
Γ ` false : Bool

TypeZero
Γ ` 0 : Nat

TypeSucc
Γ ` n : Nat

Γ ` succ n : Nat

EvalSucc
e −→ e′

succ e→ succ e′

Figure 3.11: Extended Semantics for Naturals and Booleans

Stated more formally, a language is considered safe when it satisfies the following properties:

• Progress - A well-typed term is either a value or it can be reduced by one of the
evaluation rules.

• Preservation - If a well-typed term is reduced by one of the evaluation rules then the
resultant term or value remains well typed.

We can step through a semi-formal proof of these properties for the extension of the simply

typed λ-calculus that accommodates booleans and naturals shown in Figure 3.11.

The proof of progress proceeds by rule induction over the possible derivations for the typ-

ing judgements of well-typed terms. The cases for TypeTrue, TypeFalse, and TypeZero are

vacuously true given that the terms in their judgments are all values. Per the inductive

hypothesis, the assumption judgement of the TypeSucc case, Γ ` n : Nat, is a witness for a

well-typed term that itself is either a value or progresses. In the sub-case where n is a value,

it must be a Nat value, thus the grammar of the language dictates that succ n is a value as

well. In the sub-case where n −→ n′, then succ n −→ succ n′ by the EvalSucc evaluation

rule.

31

The proof of preservation proceeds similarly, again by rule induction over the possible deriva-

tions for the typing judgements of well-typed terms. The cases for TypeTrue, TypeFalse, and

TypeZero are again vacuously true, this time by contradiction given that values can not

be reduced. For the TypeSucc case there is only one possible reduction we can perform,

succ term −→ succ term′ by the EvalSucc evaluation rule. By the induction hypothesis,

the sub-term reduction term −→ term′ must be type preserving, thus term′ : Nat and

succ term′ : Nat per TypeSucc, preserving the type of succ term.

With the language formally defined and its safety informally proven, we can show that the

previously discussed computation succ(true) is ill typed and will result in a stuck computa-

tion:

Γ, (n : Nat) ` n : Nat

Γ, (n : Nat) ` (succ n) : Nat

Γ ` (λn : Nat. succ n) : Nat→ Nat true : Bool

Γ ` ((λn : Nat. succ n) true) : < error >

Polymorphic λ-Calculi (System F and Friends)

The simply typed λ-calculus makes for a nice introduction to type systems, but being lim-

ited to a fixed set of monomorphic base types makes it an impractical language for actual

use. The lack of polymorphism in the language almost completely eliminates any notion

of the reusability that computer scientists value so much. Additionally, the monomorphism

of lambda bindings precludes the previously discussed Church encoding technique, meaning

that new types can only be introduced by extending a language’s semantics and implemen-

tation both. Using the λNB language defined in the previous subsection as the basis of

discussion, note that there are several possible operations that should intuitively work over

both of the primitive types; the identity operation, λx. x, is just one such example.

32

The lack of polymorphism in this language means that you must write a new identity function

for each type, e.g. λx : Nat. x and λx : Bool. x. The style of implicit typing introduced by

Haskell Curry et. al in their combinatory logic systems can be adapted for the λ-calculus to

make these terms intrinsically equal [21, 22]. The consequence of removing type ascriptions

and inferring the type of lambda terms from their arguments is that it makes typing an

undecidable procedure in general.

Continuing with λNB, note that there are no primitive operations over booleans defined by

the language. Additionally, the language has no mechanisms for scrutinizing data types

or branching based on their construction, so the only method we have to introduce new

operations is through semantic extension. We could attempt to redefine booleans through

a Church encoding as we did in a previous subsection, but the type system of the simply

typed λ-calculus will shut us down quickly.

Assuming our working language has an arbitrary type value, A, among its base types, we

can derive the following typing judgement for the Church encoding of true:

(Γ ` λt : A. λf : A. t) : (A→ A→ A)

Given that the types in the following example will grow quite large, we abbreviate the type

A → A → A as Bool and Bool → Bool → Bool as Sel. With these abbreviations in mind,

we show the failed derivation of a typing judgement for the Church encoding of NOT (true)

below:

Γ, (p : Sel) ` p : Sel Γ′ ` false : Bool

Γ, (p : Sel) ` (p false) : (Bool → Bool) Γ′ ` true : Bool

Γ ` (λp : Sel. p false true) : (Sel→ Bool) Γ ` true : Bool

Γ ` ((λp : Sel. p false true) true) : < error >

33

type variable ::= A | B | ...

value ::= Λ type variable . term | ...

term ::= Λ type variable . term | term [type] | ...

type ::= type variable | ∀ type variable . type | ...

TypeAPPTY

Γ ` term : ∀X. type2

Γ ` term [type1] : [X 7→ type1] type2

TypeABSTY

Γ, X ` term : type

Γ ` (ΛX. term) : ∀X. type

EvalAPPTY

term −→ term′

term [type] −→ term′ [type]

EvalABSTY
(ΛX. term) [type] −→ [X 7→ type] term

Figure 3.12: Extended Semantics for System F

Functionally, NOT operates as a binary selector, much like true and false do. It makes

sense, therefore, that all of their types share the shape ∗ → ∗ → ∗. We can see in the

example above, though, that in spite of the similar shape to the type, there is no way to

derive a correct judgement for an application of NOT . Preemptively modifying the type of

true to match the expected type of the argument to NOT , i.e. changing it from Bool to

Sel, just leads to another tripling of NOT ’s domain type to Sel → Sel → Sel. What we

need is a way to ascribe a more general type to true, such that it can be unified with any

witness to the type shape ∗ → ∗ → ∗.

Jean-Yves Girard [27] and John Reynolds [75] independently discovered the solution to this

problem, a polymorphic λ-calculus. The resultant system, extends the simply typed λ-

calculus with the notion of universally quantified types. The extended semantics of this

second-order λ-calculus, commonly referred to as System F, are shown in Figure 3.12.

34

The key construct of System F, ΛX. t, allows for the binding of a type variable at the term

level, such that it is in scope for later ascriptions. Demonstrating this new abstraction, the

polymorphic identity function is expressed as ΛA. λx : A. x. Following from the TypeABSTY

typing rule, the type of this function is ∀A. A→ A, where the ∀ binder is the universal type

quantifier. System F extends the β-reduction relation with the EvalAPPTY
and EvalABSTY

rules to define how to reduce type applications. Continuing with the above example, a

monomorphic instance of the identity function can be produced by applying it to the desired

type, e.g.:

(ΛA. λx : A. x) [Nat] =⇒
β

λx : Nat. x

To reiterate the problem that motivated System F’s introduction in this chapter, the simply-

typed λ-calculus is incapable of representing Church booleans because its type system is too

restrictive. Recall that we needed a way to express an all-inclusive type of shape ∗ → ∗ → ∗,

but could not do so given the lack of type polymorphism. System F can express this type

as ∀A. A→ A→ A. Figure 3.13 shows the resulting formulation of Church booleans and a

successful type derivation for the previously failing NOT (true) example.

The key to the success of this derivation is the reduction of the type application. Because

the Bool type is being used to instantiate itself, we observe an expansion at the type level;

the tripling effect that was noted earlier:

(p : Bool) [Bool] =⇒
β

p : Bool → Bool → Bool

Figure 3.13: A Polymorphic Implementation of Church Booleans

• Bool - ∀A. A→ A→ A
• true - ΛA. λt : A. λf : A. t
• false - ΛA. λt : A. λf : A. f
• NOT - λp : Bool. p [Bool] false true

Γ, (p : Bool) ` p : Bool Γ′ ` false : Bool

Γ, (p : Bool) ` (p false) : (Bool → Bool) Γ′ ` true : Bool

Γ ` (λp : Bool. p [Bool] false true) : (Bool → Bool) Γ ` true : Bool

Γ ` ((λp : Bool. p [Bool] false true) true) : Bool

35

This is permissible in System F because the domain of the ∀ operator covers all possible types,

such that the type variables it binds can be instantiated with other universally quantified

types. While this allows for an incredibly expressive type system, it makes type checking in

System F impredicative and undecidable in general [11].

Impredicativity can be avoided by enforcing a hierarchy of types and using it to restrict the

instantiation of universally quantified type variables. For example, one possible hierarchy

separates types into two sets: small types that contain no quantifiers, and types with un-

restricted quantification. By permitting only types that satisfy the smallness property to

instantiate quantifiers, the type system can be made predicative [73, 90]. Similar restrictions

are found in the Hindley-Milner inspired type systems employed by most modern functional

languages [42, 66]

System F’s polymorphic language features can be more generally explained as the extension

of the simply-typed λ-calculus, from here on referred to as λ→, with constructs to support

terms that depend on types. The λ→ language can be similarly extended with constructs for

types that depend on types and types that depend on terms. Henk Barendgt modeled these

extensions, and their possible combinations, as corners of his Lambda Cube [9], as shown in

Figure 3.144.

Figure 3.14: Barendgt’s Lambda Cube

4Image courtesy of http://commons.wikimedia.org/wiki/File:Lambda_cube.png

36

http://commons.wikimedia.org/wiki/File:Lambda_cube.png

The origin point of this cube is λ→, a language that, in Barendgt’s terms, provides an

abstraction for terms that depend on terms. As was stated in the preceding paragraph,

System F, labeled as λ2 on the cube to indicate its second-order nature, is the extension of

λ→ along the axis of polymorphism; this is Barendgt’s first axis. Notable features of this

axis include universal type quantification, term-level type abstraction, and term-level type

application.

Barendgt’s second axis is the axis of type functions. This axis can be explained as a direct

promotion of the untyped λ-calculus to the type level of a language in order to provide

abstractions for types that depend on types. The most commonly used type functions are

type operators, or type constructors – parametric type constants that can construct new

types from provided arguments. The λ→ language already includes one such operator, →,

which constructs a function type when given arguments for its domain and range type. Other

type operators commonly seen in languages provide for the construction of list types, pair

types, and sum types.

Extending the λ→ language along this axis produces Barendgt’s λω, a language that is not

suited for practical use for reasons similar to those of λ→. However, when paired with

Barendgt’s first axis, polymorphism, it produces System Fω, the basis for many functional

languages [74]. System Fω, labeled as λω by Barendgt, also defines the notion of kinds – the

types of types.

In their simplest form, kinds are used to indicate the arity of a type operator. I have

already borrowed the common notation for kinds when discussing the “shape” of a type, e.g.

∗ → ∗ → ∗. Nullary type operators and fully saturated type applications have the kind ∗

indicating that they can be used anywhere a type is expected. A type operator that requires

an argument has a functional kind, denoted by recycling the→ operator from the type level.

For example, the list type operator, [], has the kind ∗ → ∗.

37

More complicated type systems may introduce classes of kinds, much like extensions of λ→

introduce classes of base types. The most popular example of such a language is System

F↑
C

[95], an extension of System FC [86] that is itself an extension of System Fω. System

F↑
C

is notable because it serves as the foundation of Haskell’s intermediate language. In this

language, all data type definitions are automatically promoted to the kind level, such that

you can write kind ascriptions identical to the type ascriptions available in System F. These

kind ascriptions guard advanced, kind-safe computation at the type level, allowing System

F↑
C

to simulate some capabilities of dependent typing.

Incidentally, dependent typing is Barendgt’s third and final axis. When extending λ→ along

this axis the λΠ-calculus is produced, the meta-language of the LF logical framework [39].

This calculus allows bindings of the form Πterm. type at the type level, providing an ab-

straction for types that depend on terms. The most common examples of dependent typing

tend to deal with encoding correctness properties at the type level, e.g.:

append :: Vector a m -> Vector a n -> Vector a (n + m)

When all three axes are followed you arrive at the point opposite λ→ on the Lambda Cube,

λΠω. This language corresponds to Thierry Coquand’s Calculus of Constructions type the-

ory [19] which is the foundational basis of the Coq theorem prover [87]. Coq will be discussed

as related work, however, its complexity and differing foundational logic greatly distances

it from my HaskHOL system. Understanding the basic notions of System Fω should be

sufficient for following the presentation of HaskHOL and its application, i.e. the work of this

dissertation.

38

3.2 Higher-Order Logic

Higher-order logic (HOL) is an extension of the first-order predicate calculus that allows

quantification to cover all objects of a given type, not just simple values [52]. Per the Curry-

Howard Isomorphism, it is the logical correspondent to the the simply-typed lambda calculus

discussed in Chapter 3 [83]. HOL has served as the logical foundation for a number of proof

systems; most obviously the HOL family of theorem provers that HaskHOL is a member of.

Following from higher-order logic’s extension of the predicate calculus, the HOL proof sys-

tem [29, 32] was born as an extension of Robin Milner’s Logic for Computable Functions

(LCF) [34]. HOL extends LCF with the capability to reason about higher-order predicates,

guarding their construction and application with a simple, polymorphic type theory. In ad-

dition to inheriting its base predicate logic, HOL follows LCF’s implementation technique

of focusing on the development of a small, trusted, logical kernel from which more advanced

reasoning features are bootstrapped from.

This technique, known colloquially as the “LCF style,” is employed by a number of proof

systems, both inside and out of the HOL family. The appeal of the LCF style is that a

system’s implementation can be reduced to a composition of a small set of primitive opera-

tions that collectively form its trusted code base. If the soundness and completeness of the

kernel defined by these primitives can be guaranteed, that guarantee can easily be extended

to cover the entirety of the system. This section’s presentation follows the bootstrapping

nature of the LCF style, working from the primitive, abstract types of a HOL system up to

its advanced proof capabilities.

39

Types and Terms

The term language of a HOL system corresponds to the simply-typed λ-calculus that was

shown in Figure 3.9. To aid comparison, the grammar for a HOL language is shown in

Figure 3.15. Note that this language differs in two major ways:

• Type ascriptions are present at every variable and constant occurrence, not just at
variable bindings.

• Function types have been replaced with a more general type application construct.

Both of these changes are motivated by the primary application of this language – represen-

tation, rather than computation.

Recall from the previous section that the purpose of types in typed extensions of the λ-

calculus is to guarantee the safe evaluation of expressions. For example, the evaluation

of the expression x will fail as there is no way to reduce it to a value of the language,

where values are defined as all lambda expressions and constants. We can attest to this

failure statically because free variables are ill-typed terms. In other words, free variables are

meaningless in the λ-calculus.

Figure 3.15: BNF Grammar for HOL’s Term Language

typed var ::= identifier : type

term ::= typed var
| term term
| λ typed var . term
| c : type where c is a constant term

type ::= identifier
| c [type] where c is a constant type

40

In HOL free variables are used to represent the unknowns of a logical term. Most commonly,

these unknowns act as placeholders for future instantiations. For example, the proposition

P ∨¬P is a classically true term for every substitution of the free variable P . It is critical to

the soundness of any logic that the validity of its terms is preserved through these substitu-

tions, otherwise contradictions can easily be derived. Corresponding to the λ-calculi, types

can be used to enforce this preservation property.

In his previously cited formulation of HOL, Gordon demonstrates the danger of an un-

typed higher-order logic with the predicate Px = ¬(xx). Performing the substitution

[x 7→ P](Px = ¬(xx)) results in the term PP = ¬(PP), an obvious contradiction. In

a typed logic, the original predicate Px = ¬(xx) could not have been constructed, as there

is no satisfying assignment for the type of x. This is evident from just the right-hand side

of the equation, where x simultaneously has the general types of A → Bool and A. There

exists no finite type that satisfies their unification, thus the entire proposition is ill typed.

For all of the examples seen up to this point, the types of free variables could be inferred

from their use. This is not true in general, hence why all variables and constants in HOL

must be paired with a type ascription. With these ascriptions in place, HOL’s typing rules,

shown in Figure 3.165, are comparatively simpler than those of any of the previously seen

λ-calculi, as a typing context is no longer required.

Figure 3.16: Typing Rules for HOL

TypeAs
x is a constant or variable

` (x : T) : T

TypeLam
` e : T2

` (λx : T1. e) : (T1 → T2)

TypeApp
` e1 : T1 → T2 ` e2 : T1

` (e1 e2) : T2

5Note that I have combined the typing rules for constants and variables into a single rule, TypeAs, for a
more concise display.

41

The absence of a typing context motivates an interesting point regarding term equality in

HOL. For all of the versions of the λ-calculus that were discussed in Chapter 3, the equality

of variables depended on only two factors: their names and their scope. Under HOL’s typing

rules, the term λx : Nat. (x : Bool) has the type Nat → Bool, such that x simultaneously

has the types Nat and Bool, which again can not be unified. This would seem to indicate

that λx : Nat. (x : Bool) is an ill-typed term, but it is well typed because the two occurrences

of x are different variables. This is due to the equality of variables in HOL depending not

just on their names and scope, but on the equality of their types as well.

Given this, to clarify an earlier statement, the predicate Px = ¬(xx) can be well typed in

HOL provided that, at minimum, the two occurrences of x on the right-hand side of the

equation are different variables. This can be achieved through manual construction, but

is typically impossible for a parser to do. Recall from the discussion of implicitly typed

lambda terms in the previous section that type inference for such terms is undecidable in

general. Most parsers, including those of most HOL systems, solve this problem by making

the simplifying assumption that all occurrences of a name in a given scope refer to the same

variable. Any of these occurrences that lack a type ascription are assigned a fresh type

variable to make typing explicit and decidable. For example, the input \ x. x would be

parsed as the term λx : A. (x : A), but the input \ x:Nat. (x:Bool) would be rejected.

As an aside, most pretty-printers for proof systems do not display the types of variables in

order to maintain a clean and concise presentation of terms. For most HOL systems, this

means that they can print the predicate Px = ¬(xx), but not parse it. Freek Wiedijk has

dubbed this problem Pollack-inconsistency [94]. I will attempt to avoid related issues in the

remainder of this section by introducing additional type ascriptions to pretty-printed terms

where necessary.

42

Compared to the simply-typed λ-calculus, the other major difference of this HOL language

is its decision to represent constant types with type functions. This approach is similar to

that of the λω language, however, no kind system is introduced, variable type operators

are not permitted, and partial applications of types are not allowed. As an example, the

various HOL implementations all have different sets of base constants for their logics, but

at minimum each must have a constant for term equality. This necessitates the existence of

constant types for functions and booleans, i.e. = : a→ a→ bool. Assuming that strings are

an adequate representation of identifiers, this constant can be expressed abstractly as

"=" : ("->", ["a", ("->", ["a", ("bool", [])])]), where type applications are simple pair-

ings of an operator and its list of argument types.

Additional constants, both terms and types, are introduced in HOL through definitional

extension which will be covered in a following subsection. The important point to be made

is that their primitive representations follow from that of equality’s, i.e. they will use the

same general forms of (identifier : type) and identifier [type]. Using this general, abstract

syntax greatly simplifies the implementation of the logical kernel, as regardless of a constant’s

definitional complexity, it can be constructed in only one way. For most primitive operations

this means that all constants are handled with a single conditional or case scrutinization

branch, as opposed to numerous branches that all do the same thing.

Theorems and Rules

The principle data type of a HOL system is the theorem type, represented as a sequent of

boolean terms: a1, ..., an ` c. In this notation, the term c represents the conclusion of a

theorem which is held true under the conjunctive assumption that terms a1, ..., an are also

true; hence their name – the assumption list. For example, the theorem x∧ y ` x concludes

that x is true under the assumption that its conjunction with another variable, y, is true. A

theorem with an empty assumption list, such as ` P ∨ ¬P , is a tautology.

43

Following the restrictions of the LCF style, theorems can not be manually constructed. They

can only be introduced by the logical kernel of a system in one of three ways:

• As an axiom.

• Through a primitive rule of inference.

• Or as a consequence of definitional extension.

Axiomatic introduction of a theorem is the acceptance of a term as true without any logical

support to make the claim. There are a number of reasons you may wish to introduce an

axiom; the most logically sound of these reasons is to assert a theorem you know to be

true but cannot prove in a system’s logic. For example, some, but not all, HOL systems

include a primitive inference rule for η-reduction. In the absence of that rule, a system must

axiomatize the universal eta property of lambda terms in order to implement η-reduction as

a derived rule:

newAxiom (! t : A→ B. (λx. t x) = t)

Similarly, axioms can also be used to assert a theorem that can be proved in a system’s

logic for cases where you wish to delay doing the work for one reason or another. You must

be careful when doing so, as there are no checks of correctness for axiomatic terms beyond

ensuring that they are of a boolean type. Even if a single axiom is not a contradiction on

its own, it may raise an inconsistency in the presence of other theorems or axioms. Thus,

unrestricted axiomatic introduction is an easy way to jeopardize the soundness of the entire

system, intentionally or unintentionally.

The safe alternative to axioms is the introduction of theorems through inference. Collectively,

a system’s primitive rules of inference frame its foundational logic. It is important to note

that there is no one definitive set of rules for a HOL prover; systems are free to include any

rule as primitive, rather than derived, and many do for reasons of efficiency. More commonly,

the sets of primitive rules differ because there are any number of places to “draw a line in

the sand” between the logical kernel and the rest of the system.

44

DISCH
A ` q

A− p ` p⇒ q

DEDUCT ANTISYM RULE
A ` p B ` q

(A− q) ∪ (B − p) ` p = q

Figure 3.17: Primitive Rules for Assumption Elimination

As an example, the DISCH rule acts as the primitive assumption elimination rule for some

systems. However, if a logical kernel does not include the propositional connectives, or

at the very least implication, this rule cannot be used. Instead, the only way to remove

an assumption is through deductive antisymmetry. These two approaches to assumption

elimination are shown in Figure 3.17.

These rules are presented in sequent calculus form, a notation credited to Gerhard Gentzen [24].

The theorems above the horizontal line of a rule are referred to as the hypotheses, and the

theorem below is referred to as the result. Much like the sequent representation of theorems

themselves, these rules state that a result can be deduced from the truth of its hypotheses.

Again, there is a logical correspondence between this notation and the inference rules for the

λ-calculus that we have already seen.

Though HOL systems vary in their selection of the rules included in their logical kernels,

minimally they require methods for:

• Reflexive Equality of Terms
• Introduction and Elimination of Assumptions
• Term Substitution
• Type Instantiation
• Beta Reduction
• Congruence of Abstractions and Combinations
• Modus Ponens

Note that biconditionality logically subsumes implication, such that the modus ponens rule

can be written to reduce equivalences of boolean terms if a kernel lacks the inclusion of

implication.

45

REFL ` t = t
ASSUME

t ` t

DEDUCT ANTISYM RULE
A ` p B ` q

(A− q) ∪ (B − p) ` p = q

INST
A ` t

A [t1, ..., tn/x1, ..., xn] ` t [t1, ..., tn/x1, ..., xn]

INST TYPE
A ` t

A [ty1, ..., tyn/tv1, ..., tvn] ` t [ty1, ..., tyn/tv1, ..., tvn]

BETA
` (λx. t) x = t [x]

ABS
A ` t1 = t2 x not free in A

A ` (λx. t1) = (λx. t2)
MK COMB

A1 ` f = g A2 ` x = y

A1 ∪ A2 ` f x = g y

EQ MP
A1 ` t1 = t2 A2 ` t1

A1 ∪ A2 ` t2 TRANS
A1 ` t1 = t2 A2 ` t2 = t3

A1 ∪ A2 ` t1 = t3

Figure 3.18: Primitive Inference Rules of HOL Light

John Harrison’s HOL Light system was developed with a minimalistic and lightweight im-

plementation in mind [41]. As such, the set of primitive inference rules for that system are

close to the previously enumerated list. I have included the specifications of these rules in

Figure 3.18, both to show what the complete logic of a HOL system looks like, and because

HaskHOL reuses these primitive rules as some of its own. Note that HOL Light does not

elect to include the definition of propositional connectives in its kernel, such that its rules

for assumption elimination and modus ponens are modified following the discussions from

preceding paragraphs. Additionally, HOL Light includes a primitive rule for transitivity,

TRANS, even though it can be derived from the others.

46

Listing 3.1: A Primitive Implementation of Transitivity

primTRANS :: HOLThm -> HOLThm -> Either String HOLThm

primTRANS (ThmIn as1 c1) (ThmIn as2 c2) =

case (destEq c1, destEq c2) of

(Just (l, m1), Just (m2 , r))

| m1 ‘aConv ‘ m2 ->

let as ’ = as1 ‘termUnion ‘ as2 in

Right . ThmIn as’ $ safeMkEq l r

| otherwise -> Left "primTRANS: middle terms don ’t

agree"

_ -> Left "primTRANS: not both equations"

The difference between a primitive rule and a derived rule is that primitive rules have access

to the internal constructors of the theorems they operate over and derived rules do not. For

example, a possible Haskell implementation of TRANS as a primitive is shown in Listing 3.1.

In Haskell, pattern matching requires access to the internal constructors of a data type

in order to work. Alternatively, HOL theorems can be safely destructed without pattern

matching by binding the results of a call to a destruction method, destThm. The more

important use of the internal constructor, ThmIn, is when the primTRANS rule constructs a new

theorem value for its successful return case: Right . ThmIn as’ $ safeMkEq l r. Following

from the LCF style, only primitive rules are able to construct theorems in this way. An

alternative, derived implementation of transitivity is shown in Listing 3.2.

In this implementation, the internal constructor of the theorem type is never used. The

theorem is destructed following the previously described alternative technique and theo-

rem construction is a result of the composition of the primitive inference rules primMK_COMB,

primEQ_MP, and primREFL.

Listing 3.2: A Derived Implementation of Transitivity

ruleTRANS :: HOLThm -> HOLThm -> Either String HOLThm

ruleTRANS th1 th2 =

let (_, c) = destThm th1 in

do (eq , m) <- note "ruleTRANS: not an equation"

(destComb =<< rator c)

th3 <- primMK_COMB (primREFL eq) th1

th4 <- primMK_COMB th3 th2

primEQ_MP th4 (primREFL m)

47

Compared to its primitive implementation, the derived version of TRANS has a number of

inefficiencies. The overall work to manipulate the assumption lists of the provided theorems

remains the same, however, their conclusions are repeatedly destructed and compared with

each call to primMK_COMB and primEQ_MP. Additionally, the construction of each intermediate

theorem increases the total allocation of the rule. For small proofs these inefficiencies are

relatively benign, however, they have a significant impact on performance when a rule is

called thousands to millions of times. This is the general justification behind including

additional rules as primitives of a system.

Definitional Extension and Theories

The final method for introducing theorems is as a consequence of definitional extension. Fol-

lowing from the LCF style’s overall bootstrapping approach, new constants of the language

are defined using existing types and terms accordingly. This results in a hierarchy of constant

definitions that is rooted in the primitive constructs of the language. These definitions are

returned as the conclusions of theorems that can be viewed as axiomatic specifications of

constants.

The introduction of a new constant term is essentially the assignment of an identifier to act

as an alias for a given expression. This assignment is captured by a theorem of the form

` c = t where c is the new constant with the desired name and t is its definitional term. In

order to successfully define a constant in this way, there are a number of restrictions that

must be satisfied:

• The name for c must not be associated with an existing constant.

• The term t must be closed, i.e. it can have no free variables.

• The new constant c can not appear anywhere in its own definition.

48

` P = (x : bool) (1)

` P = T [x 7→ T] (1) (2)

` P = F [x 7→ F] (1) (3)

` T = P By Symmetry of (2) (4)

` T = F By Transitivity of (4) and (3) (5)

Figure 3.19: Proof of Contradiction Through Open Definitions

Requiring definitions to be closed prevents substitution from introducing inconsistencies. For

example, if the variable definition ` P = (x : bool) was permitted it could be instantiated

to produce both of the theorems ` P = T and ` P = F . Figure 3.19 shows that trivial

manipulations of these theorems lead to a proof of T = F , demonstrating the unsoundness

of open definitions.

The restriction on the use of the constant c in its own definition is to preclude unbounded re-

cursive definitions. For example, the definition of the fixed point operator, fix = λf. f (fix f),

is infinitely recursive. Recall from the discussion of the λ-calculi in Chapter 3 that infinite

recursion, or any other form of non-termination, prevents a language from being strongly

normalizing. The logical correspondence of strong normalization is consistency, thus, a logic

that permits infinitely recursive definitions is necessarily inconsistent.

Most HOL systems have derived proof tools external to the kernel that do permit bounded

recursive definitions, however. Without this capability, we could not represent recursive data

types and their associated methods, such as the List example from Listing 1.1. Using append

as an example, its definition can be represented as the conjunction of two clauses:

(!ys. append Nil ys = ys) ∧ (!x xs ys. append (Cons x xs) ys = Cons x (append xs ys))

49

A general recursive definition, like append, must satisfy two properties to be admissible in a

HOL logic:

• Its clauses must not be mutually inconsistent, e.g. only one clause applies for any given
value.

• The recursion must be well-founded, e.g. it operates over a well-ordered set with a
minimal element, such that recursion is provably terminating.

The definition of append clearly satisfies the first property because there are distinct clauses

for each possible list constructor. It satisfies the second property because its recursive clause

destructs lists element by element, with each recursive call bein guaranteed to use a list

smaller than the original argument. This process repeats until recursion terminates with the

Nil constructor clause. The recursive definition of another list function, repeat, would be re-

jected, as its recursive clause has a constructive behavior: !x. repeat x = Cons x (repeat x).

There is no way to prove this recursion to be well-founded because it has no terminating

condition.

HOL also permits the definition of primitive constants that have no associated definition.

The equality operator is an example of one such constant that is included in every HOL

kernel. These primitive constants are essentially variables that are bound at an inaccessible,

global level. This prevents them from being replaced by substitution or rewritten with

standard simplification methods. Additionally, primitive constants paired with axioms can

be used to circumvent the restrictions of the definitional methods described above. This is

useful for constructing definitions whose well-foundedness cannot be automatically proved;

however, as with any other use of axioms, the user should be careful. For example, we can

demonstrate the construction of the previously mentioned unsound theorem ` P = (x : bool)

with the following pseudo-code:

let p = newConstant "P" tyBool in

newAxiom (mkEq p (mkVar "x" tyBool))

50

The introduction of new constant types is slightly more complicated due to the fact that

HOL does not support computation at the type level to the same degree it does at the term

level. Specifically, there is no way to assert the equality of types which precludes following

the equational style of definition used for constant terms. There does exist a mechanism

for defining type synonyms, but they are intended to be used exclusively by the parser;

they function purely as syntactic sugar, similar to their counterparts in Haskell and other

programming languages.

The following example is derived from the explanation of types in Gordon and Melham’s

introduction to the original HOL system [33]. Suppose we want to define a calendar date as a

triple of naturals representing the day, month, and year. Assuming that we have definitions

for the nat type and the product type operator, #, we can easily define date as a type

abbreviation:

newTypeAbbrev “date” (nat#nat#nat)

This allows us to ascribe date as a type, however, it does nothing to restrict its value space,

e.g. (32, 13, 2015) : date is a valid term. Furthermore, any value of type nat#nat#nat, or

one of its other synonyms, will be accepted as a date whether that is its intended meaning or

not. If we model time in an identical manner, using a triple of naturals to represent hours,

minutes, and seconds, then the parser will accept the application (f : date→ bool) (a : time).

It would be preferable if the term was rejected with a type-checking error.

These problems are solved by defining a new type in bijection with an existing type, using

term-level constants to move between value spaces. Continuing with the date example, these

constants would be:

absDate :: (nat#nat#nat)→ date

and

repDate :: date→ (nat#nat#nat)

51

The prefixes of these constants indicate their role in the isomorphism; they are the abstraction

function and representation function that move between the new and old type. Simultaneous

to the definition of these new constants, date is introduced as a new type operator, not just

a synonym. Thus, unlike the preceding example, attempting to match date and time will

produce the desired type error.

In more programmer-friendly terms, the abstraction and representation functions can be

viewed as the most general constructor and destructor for a type, respectively. Therefore,

we can restrict the value space of a new type by associating its abstraction function with a

predicate that must be satisfied for a successful construction. Following the above example,

assume that we want to constrain the minimum and maximum values for days and months

to those found on the Gregorian calendar. We can define this predicate as the validDate

function shown below:

validDate = λ(day,month, year). (0 < day ∧ day < 32) ∧ (0 < month ∧month < 13)

In addition to acting as a precondition to construction, validDate doubles as an assertion

to the possible representative values after deconstruction. This creates a biconditional rela-

tionship between abstract terms and their representative values:

absDate (day,month, year)⇔ validDate (day,month, year)

This relationship is important because it is a critical component to proving that the abstrac-

tion and representation functions have an inverse relationship. If we start with a value of

the representative type, we know that the composition of construction and destruction will

return the original value if and only if the original value satisfied the corresponding predicate:

` validDate x⇔ repDate (absDate x) = x

52

We can make a corresponding statement about the reverse of this composition:

validDate x⇔ absDate (repDate x) = x

Note that this proposition is stronger than it needs to be. If we start with a value of the

abstract type then we know that the value was correctly constructed to begin with, thus we

can exclude the predicate from the final theorem:

` absDate (repDate x) = x

Beyond serving to frame the inverse relationship between abstraction and representation,

a predicate is used to prove inhabitation of a new type. In HOL, there are only two base

types from which other types can be defined: boolean and individual. The boolean type

is primitive to all HOL kernels, with its base values, T and F , being introduced either as

primitives or through definitional extension. Once classical logic is admitted in the prover,

the inductive and enumerative properties of booleans are derived, such that its value space

is provably closed to just these two values.

Individuals are a notion inherited from some formulations of set theory; they represent an

infinite, non-empty set of distinct atoms. Again, in most HOL systems the individual type is

introduced as a primitive and its infinite nature is specified through axiomatic specification.

Given that both base types are inhabited and that it is impossible to define a bijection from

a non-empty set to an empty set, all new types in HOL must also be inhabited. Proving

inhabitation is as easy as providing a theorem that demonstrates that a type’s predicate is

satisfied by a witness:

newBasicTypeDefinition date (absDate, repDate) ` validDate (1, 1, 1)

53

The definition of abstract data types (ADTs) in HOL follows from the implementation

of ADTs in most functional languages [2]. Data types are defined as tagged unions of

constructors where the tags can be used to build paths to direct injective construction and

projective destruction. The definition of the Either data type is a literal translation of this

idea for binary unions, where possible values are tagged as Left or Right constructions:

data Either a b = Left a | Right b

More complicated unions of constructors can be derived from nested applications of Either.

Two such examples are shown in Figure 3.20. As the names imply, the Three type has three

possible constructors and the One type has only one. Given that these new types are defined

as synonyms, their constructors are simply compositions of Either’s constructors.

The implementation of Three’s constructors is straight forward. The implementation of One’s

is slightly more challenging given that we need to find some way to indicate that its Right

construction is impossible. Borrowing an idea from type theory, we can fix One’s right values

to the bottom type which is uninhabited. As an aside, note that in Haskell a bottom value

is implicitly included in every data type. This is due to bottom being associated with

non-termination and other “errors” of the language, undefined. The exBottom example from

Figure 3.20 demonstrates this fact.

Figure 3.20: Derived Union Types

type Three a b c =

Either a (Either b c)

conA :: a -> Three a b c

conA = Left

conB :: b -> Three a b c

conB = Left . Left

conC :: c -> Three a b c

conC = Right . Left

type One a = Either a Bottom

data Bottom

conOne :: a -> One a

conOne = Left

conBottom :: Bottom -> One a

conBottom = Right

exBottom :: One a

exBottom = bottom

where bottom = bottom

54

data A = None | Some B

data B = Var Nat

root
0

numsum(false, 0)
0

numsum(false, 0)
0

None

numsum(true, 0)
1

Some

numsum(true, 0)
1

numsum(false, 1)
2

Var

numsum(true, 1)
3

Bottom

Figure 3.21: HOL Representation of Inductive Types

HOL refines this basic approach with a hierarchy of injective functions based on set theory.

These functions allow for the definition of mutually recursive data types in the most general

way possible [40]. Key to this technique is the inclusion of Bottom, allowing for a balanced

binary tree representation of union types, rather than the right or left leaning trees that

result from associative nestings of Either, such as in Three’s implementation in the previous

example. A rudimentary example is shown in Figure 3.21.

In this example, the constructors for each type are all combined into a single set and dis-

tributed as leaves of a binary tree. This allows each constructor to be indexed by a natural

number that can be computed from its position relative to the root:

numsum(b, x) = if b then 2 ∗ x else 2 ∗ x+ 1

In the above equation, b is a boolean flag indicating a left or right traversal and x is the index

of its parent node, with the root’s value being set to 0. HOL provides a multivariate constant,

CONSTR, that accepts these one of these indices and a list of arguments terminated by a

BOTTOM value.

55

These arguments are constructed in one of three ways, following from HOL’s set of injective

functions:

• Constructors with no arguments are provided an arbitrary value for their argument
list. This value is built using Hilbert’s choice operator: εx. T .

• Base values share a polymorphic, injective function, such that they can be passed
nearly directly.

• Values of a type belonging to the current family are constructed with the appropri-
ate recursive call to CONSTR; the constant CONSTR REC is used for recursive
constructions.

The resultant definitions for the constructors contained in Figure 3.21 are shown below:

None = CONSTR 0 (@v. T) BOTTOM

Some b = CONSTR 1 (CONSTR_REC b) BOTTOM

Var n = CONSTR 2 n BOTTOM

With the constants for each constructor in place, the type operator for an ADT can itself be

defined using a disjunction of its constructors as the predicate. This predicate can obviously

be witnessed by supplying any saturated application of one of its constructors:

newBasicTypeDefinition A (mkA, destA)

` (λa. (∀a. a = None ∨ (∃b. a = Some b)) a) None

Note that the above definitions and predicate are greatly simplified compared to their actual

HOL equivalents. There are various indirections and lifting functions that are critical for a

number of reasons, but they are not particularly important to this high-level explanation.

HOL’s overall approach to type definition is comparable to predicate sub-typing, as found

in the PVS proof system [76]. The primary difference in HOL is that computation of side-

conditions introduced by type predicates are performed at the term-level. Conversely, PVS

statically tests predicates as part of type-checking, leaving assumptions it can not prove

automatically as “type correctness conditions” (TCCs) to be handled by the user. An

example of one such TCC is type inhabitation; something that is required in HOL, but

optional in PVS. Joe Hurd has shown how to implement actual predicate types in a HOL

system, however, to my knowledge no system has elected to do so as of yet [48].

56

Mirroring definitions at the term level, HOL permits the introduction of primitive types with-

out definition. This does not mean that these types are uninhabited, rather, the predicate

that defines their inhabitation is simply unknown. As was previously mentioned, booleans

and individuals are two such examples, as they are both introduced through primitive exten-

sion; until their respective properties are derived, their sets of values remain unknown. As

was the case with primitive terms, be careful pairing primitive types with axioms as unsound

definitions can be introduced.

Collectively, the set of definitions and axioms introduced by a user are referred to as the

current working theory. These theories may also contain other auxiliary context values, such

as parser extensions, configuration flags, rewrite lemmas, etc., that are beneficial to the user

but have no impact on the underlying logic of the system. The contents of a theory are left

out of the display of theorems as their intended meanings are typically understood without

the additional information. For example, the theorem ` T explicitly requires a definition

for the truth constant. This is not always the case as, unless you are overly familiar with

HOL systems, it might not be obvious that the theorem ` P ∨ ¬P implicitly requires the

introduction of several axioms6.

Any theory can be reconstructed by tracing its extensions back to the logical kernel of the

system, e.g. the definition of term pairs requires the definition of conjunction, which requires

the definition of truth, which requires the boolean type from the logical kernel. Rather than

repeatedly rebuilding theories, theory checkpoints are set when a large collection of related

context values can be isolated. For example, the boolean theory checkpoint contains the

definitions for truth, falsity, and the propositional connectives, as well as their associated

parser/printer extensions.

6The admission of classical logic necessitates several axioms in most HOL system.

57

base

bool

num pair bit

list

words

Figure 3.22: A Subset of HOL Theories

The organizational structure of these checkpoints forms a semi-lattice, with each edge in-

dicating a relationship between two theories. To demonstrate this visually, a subset of the

theories provided by HOL is shown in Figure 3.22. The base theory is the “bottom” of this

lattice from which other theories are extended. The line between base and bool indicates not

only a dependency, but also inheritence; bool contains the entirety of the base theory. Most

systems provide a large collection of theories as a prelude, leaving users free to manually

include any other theories they need for their proofs.

Forward and Backward Proof

In its simplest form, a proof in HOL is the construction of a theorem through repeated ap-

plications of primitive inference rules. This process may be aided by introducing lemmas as

axioms or through the definitional methods described in the preceding subsection. Proceed-

ing in this manner is referred to as forward proof because each new theorem, intermediate

and final, is derived from knowledge that came before it.

58

Comparatively, backward proof of a proposition is conducted by showing the sum of its

constituent parts to be true. Backward proof is also frequently referred to as subgoal-

directed proof because the destruction of a goal into smaller subgoals is what drives the

process. These subgoals are themselves destructed until they can be reduced to a provably

true value, at which point they are accepted and their proof obligation is discharged. When

no subgoals remain, the proof of the original goal is considered complete.

Previous chapters of this dissertation contained examples of proof in both of these forms.

Figures 1.1 and 1.2 from Chapter 1 contained a specialized version of forward proof – equa-

tional reasoning. Figure 2.4 from Chapter 2 contained a backward proof, as might have been

obvious from its use of the text “goal” and “subgoal.” Though not well illustrated by these

examples, each approach has its advantages and disadvantages.

Forward proof is best applied when there is a direct and obvious path for theorem construc-

tion. For this reason, it is most commonly used when transforming a general statement to a

more specific form. This was the case in the previously cited examples where polymorphic

properties were proved for specific instantiations. Where forward proof tends to fall short is

in the construction of very large or very complex theorems.

Inference rules paired with methods of automation can assist in these cases, but this is

the logical equivalent of swinging a very large hammer, i.e. it is not always the best tool

for the job. When dealing with difficult proofs, working backwards tends to be preferable

as each subgoal necessarily represents a simpler problem to solve. The trade off is that

backwards, logical leaps are not always obvious, especially when re-examining a completed

proof. Reading a subgoal-directed proof requires additional effort to “glue the pieces back

together,” compared to following the step-by-step presentation of a forward proof.

59

The main tool of forward proof, derived inference rules, was already introduced earlier in

this chapter. To reiterate, mirroring both the general flow of information in forward proof

and the bootstrapping nature of the LCF style, derived rules are composed of other rules

already in existence. The previous discussion of theorem construction compared two possible

implementations of the TRANS rule, one of which was derived from applications of primitive

rules. Derived rules can, of course, also utilize other derived rules, as is the case in the

implementation of the α-equivalence rule:

ruleALPHA :: HOLTerm -> HOLTerm -> Either String HOLThm

ruleALPHA tm1 tm2 =

ruleTRANS (primREFL tm1) (primREFL tm2)

One class of derived rules worth covering in more detail is HOL’s conversion language. A

conversion, as the name implies, is a specialized rule that accepts a term, converts it to a new

form, and returns a theorem asserting these forms’ equivalence. The simplest, non-failing

example is reflexivity, where a term is asserted to be equal to itself:

primREFL x ` x = x

The primitive BETA rule is another example of a conversion, however, it is typically replaced

by a derived implementation that allows for reduction with values of the same type as, but

not necessarily equal to, the bound variable:

convBETA (λx. t) y ` (λx. t) = [x 7→ y] t when type(x) = type(y)

Conversions are unique among derived rules because they have an inherent notion of success

and failure; if they succeed, the result will always be a theorem of the form ` x = y. Knowing

the structure of the resultant theorems allows for the definition of a conversion combinator

language. For example, given two conversions that return the theorems ` x = y and ` y = z,

their sequential application can be performed by using the TRANS rule to combine these

intermediate outputs.

60

Listing 3.3: A Conversion Combinator Language

type Conversion = HOLTerm -> Either String HOLTerm

convALL :: Conversion

convALL tm = return (primREFL tm)

convFAIL :: String -> Conversion

convFAIL str _ = Left str

convTHEN :: Conversion -> Conversion -> Conversion

convTHEN conv1 conv2 tm =

do th1 <- conv1 tm

tm’ <- note "" rand (concl th1)

th2 <- conv2 tm ’

ruleTRANS th1 th2

convORELSE :: Conversion -> Conversion -> Conversion

convORELSE conv1 conv2 tm =

either (\ _ -> conv2 tm) return (conv1 tm)

This sequencing combinator is shown in Listing 3.3 as part of a basic combinator language.

Just like the other implementations of rules shown up to this point, this language relies on

the Either type for basic exception handling. This allows for relatively simple definitions of

combinators for success (convALL), failure (convFAIL), sequencing (convTHEN), and alternating

(convORELSE). Much like the derived rules they are designed to support, these four basic

combinators can be combined to form more complicated language constructs, as shown in

Listing 3.4.

Listing 3.4: Derived Conversion Combinators

convFIRST :: [Conversion] -> Conversion

convFIRST [] = convFAIL "convFIRST: empty list"

convFIRST xs = foldr1 _ORELSE xs

convTRY :: Conversion -> Conversion

convTRY conv = conv ‘convORELSE ‘ convALL

convREPEAT :: Conversion -> Conversion

convREPEAT conv =

(conv ‘convTHEN ‘ convREPEAT conv) ‘convORELSE ‘ convALL

61

The derived combinators convTRY and convREPEAT are two examples of conversionals, functions

that modify the behavior of a conversion. In this case, the evaluation result is guarded,

ensuring that one or many applications of a conversion, accordingly, are wrapped by an

outer conversion that will never fail. Conversionals can also be used to modify the target

of a conversion, applying it to only a portion of a term, rather than its entirety. These

subterm conversionals are most useful when you either can not, or do not want to, bind an

intermediate term in order to convert it. For example, the convABS conversional will retarget a

conversion to the body of an abstraction, returning a theorem of the form ` (λx. t) = (λx. t′).

Collectively, the set of subterm conversionals can also be used to define depth-based traversal

combinators. These traversals navigate the structure of a term from top-down or bottom-

up, applying a given conversion to a specified set of subterms: only the first set of subterms

it succeeds on, every subterm, or every subterm, repeatedly, until there are no longer any

changes. The traversing conversion (convREDEPTH convBETA) is one such example; it attempts

to β-reduce every subterm, repeatedly, in a bottom-up manner. This has the net result of

producing a theorem that asserts the equivalence of a term and its β-redex-free form.

The main tool of backward proof, tactics, are the approximate, logical opposite of conver-

sions. Rather than being used for the purpose of construction, tactics are destructive methods

for splitting goals into sets of subgoals. Much like a conversion builds an equivalence between

old and new terms, a tactic builds a justification that can be used to reconstruct a goal from

its constituent subgoals. For example, the tacCONJ tactic destructs a conjunctive goal to

produce two subgoals, one for each clause. The justification for this tactic reintroduces the

conjunction with the ruleCONJ rule, combining the proofs for each subgoal.

62

In each step of a tactic-based proof, the current set of subgoals and their corresponding

justification is tracked by the goalstate. This goalstate also records any metavariables intro-

duced by tactics and carries an instantiation for terms, types, and higher-order data. This

instantiation is used by the justification to allow for the acceptance of more general proofs of

subgoals. A tactic-based proof is considered complete when the goalstate is void of subgoals

and the justification returns a theorem concluding the original goal. In the event that this

theorem has a non-empty assumption list, it is an indication that an invalid tactic was used

at some point in the proof.

Tactics can be interacted with using a combinator language much like conversions; in fact,

a number of the same primitive combinators are shared, e.g. success, failure, sequencing,

alternating, etc. The implementations of these combinators mirror their conversion equiv-

alents with the exception of sequencing. There is no set return value for a tactic, in that

any number of subgoals may be produced. Sequencing of tactics, therefore, must replicate

the second tactic and apply it each and every subgoal produced by the first tactic. Alterna-

tively, a list of tactics can be accepted as the second argument to sequencing, mapping each

one to a corresponding subgoal. Both of these combinators, shown in Listing 3.5, rely on a

sequencing function, tacsequence, to ensure that the many intermediate instantiations and

justifications are properly composed within the new goalstate.

Listing 3.5: Sequencing Combinators for Tactics

_THEN :: Tactic -> Tactic -> Tactic

_THEN tac1 tac2 g =

do gstate@(GS _ gls _) <- tac1 g

let tacs = replicate (length gls) tac2

tacsequence gstate tacs

_THENL :: Tactic -> [Tactic] -> Tactic

_THENL tac1 tacs g =

do gstate@(GS _ gls _) <- tac1 g

let tacs ’ = if null gls then [] else tacs

tacsequence gstate tacs ’

63

A subgoal can be discharged by accepting a theorem that proves it. This action is performed

by a theorem tactical, a specialized form of tactic that accepts a theorem as an argument:

tacACCEPT :: HOLThm -> Tactic. The tacACCEPT tactical can also be used to construct tactics

from existing rules:

tacREFL :: Tactic

tacREFL g@(Goal _ (Comb _ x)) = tacACCEPT (primREFL x) g

tacREFL _ = fail "tacREFL: goal not a reflexivity."

The derivation of tactics from rules cannot be generalized, however, derivation from conver-

sions can be: tacCONV :: Conversion -> Tactic. The tactic produced by tacCONV can destruct

a goal in one of three ways. When the provided conversion is applied to the conclusion of

the goal, w, and the result is a proof of an α-equivalent term, w′, the goal is accepted. If

the result is instead a theorem of the form ` w′ = T , the goal can still be accepted by first

eliminating the truth equality in the theorem using the EQT ELIM rule. Finally, if the

result is a theorem of the form ` w′ = x, then a new subgoal for x is created, using this

equivalence theorem as its justification.

The interaction between conversions and tactics is best witnessed by the rewrite engine of a

system. This engine is powered by rules that, obviously, rewrite terms, transforming them

based on a provided body of knowledge. The most common application of these rewrite

rules is for implementing simplification and other evaluation strategies. For example, when

provided with sufficient knowledge of the propositional connectives, rewrites can be used

to automatically prove the proposition x ∧ y ⇒ x by showing that it simplifies to T . The

advantage of proving propositions through rewriting, as opposed to using derived decision

procedures, is that it tends to be more a direct and, therefore, more efficient process.

64

The primitive basis for rewriting is captured by the convREWR conversion. This conversion

attempts to convert a term by matching it with the left-hand side of an equational rewrite

lemma. If a match is possible, convREWR asserts the equality of the original term and the

instantiated right-hand side of the lemma. For example:

convREWR (` (P ∨ ¬P)⇔ T) (x ∨ ¬x) ` (x ∨ ¬x)⇔ T

To improve its applicability, this basic rewriting process is extended in two ways. First, it

is typically paired with the previously discussed traversal combinators, such that rewrites

can be performed in a term somewhere other than just the top level. Second, rather than

accepting only a single theorem, rewrites are attempted using a collection of lemmas. These

two extensions can be easily combined in a naive manner by mapping convREWR over a list of

lemmas and combining the resultant conversions with the desired combinators:

convREWRS ths = convTOP_DEPTH (convFIRST (map convREWR ths))

It is important to note that even partial matching of terms is a fairly computationally

expensive operation. Thus, for rewrites involving large terms and/or large collections of

theorems, a naive approach quickly becomes infeasible due to the multiplicative complexity

of the matching involved. This problem can be solved by organizing rewrites in a data

structure that provides for more efficient, matching lookups for terms – a conversion net.

The basic idea behind a conversion net is that all of the term patterns in a theorem can

be identified and organized ahead of matching to make the process faster. Similarly, the

list of conversions that can succeed for each of these patterns can also be constructed ahead

of time. Thus, as each subterm is encountered in a traversal, its pattern is identified and

searched for in the net. A matching instantiation is computed if, and only if, a list of

potentially applicable rewrites is returned by this search. Nets have the added benefit of

efficient extension, such that a net constructed from the rewrite rules of a system “installed”

at compile-time can easily be extended by theorems provided by the user at run-time.

65

The appeal of a net-based approach to rewriting is that it can be made highly configurable

by defining a general rewrite conversion:

convGENERAL_REWRITE :: (Conversion -> Conversion)-> Net -> [HOLThm] -> Conversion

The user can select the traversal they want, the conversion net they wish to start with, and

any additional lemmas they want to provide. For example, “pure” rewriting can be achieved

by supplying an empty conversion net, such that rewrites are based only on the provided

lemmas:

convPURE_REWRITE = convGENREAL_REWRITE convTOP_DEPTH netEmpty

These conversions can also be lifted into tactics using tacCONV to allow rewriting to be utilized

in forward and backward proof both:

tacPURE_REWRITE thl = tacCONV (convPURE_REWRITE thl)

This is not to imply that users are restricted to working purely forwards or backwards in

a proof. Both approaches can be, and frequently are, combined by constructing lemmas in

the middle of a tactic-based proof. An example of a forward proof, backward proof, and

combined proof are all shown in Listing 3.6.

Listing 3.6: Examples of Forward Backward and Combined Proof

-- Forward Proof

ruleTAUT [str| (a <=> b) ==> a ==> b |]

-- Backward Proof

prove [str| !t1 t2. t1 /\ t2 <=> t2 /\ t1 |] tacITAUT

-- Combined Proof

prove [str| (?b. P b) <=> P T \/ P F |] $

tacMATCH_MP (ruleTAUT [str| (~p <=> ~q) ==> (p <=> q) |]) ‘_THEN ‘

tacREWRITE [thmDE_MORGAN , thmNOT_EXISTS , thmFORALL_BOOL]

66

4 HaskHOL

The verification workflow described in Chapters 1 and 2 demands a formal reasoning tool

that possess two critical characteristics:

1. The foundational logic of the tool must be capable of representing artifacts of the
target language.

2. The tool itself must be capable of integrating with the target language natively.

This chapter describes a proof system that was specifically developed with these character-

istics in mind. As is inferable from its name, HaskHOL is a Haskell (Hask) implementation

of Higher-Order Logic (HOL) theorem proving [5]. More specifically, HaskHOL is an em-

bedded domain specific language (EDSL) that provides HOL proof techniques through an

application programming interface (API) heavily inspired by the related HOL Light proof

system [41]. This API can be used to implement new proof tools or, alternatively, integrate

proof capabilities into existing tools; as is the case for this dissertation work.

The implementation of HaskHOL follows the standard approach to building EDSLs: the

primitive data types of the language are defined, effectful computations over these types are

structured using a monad, and a set of monadic combinators is implemented and exposed to

the user as the interface to the language [44]. This approach is analogous to the traditional

implementation technique behind HOL systems, the LCF style [28, 31]. In both cases, the

entirety of a codebase is bootstrapped from a small kernel that frames the principal features

of a language.

The sections of this chapter are intended to explain HaskHOL’s implementation in detail.

They are organized as follows:

• Section 4.1 provides a more detailed introduction to the LCF style, noting the chal-
lenges involved with implementing it with a monadic approach.

• Section 4.2 discusses in depth the details of HaskHOL’s foundational logic, a stateless
higher-order logic with quantified types.

67

4.1 Challenges Implementing an LCF-Style Prover with Haskell

There is an ideological split in the functional programming community regarding the role and

importance of purity in a language’s design. Implementors of interactive theorem provers,

however, have almost unanimously elected to rely on impure languages to build their systems.

Browse through the documentation and source repositories of the most popular proof tools

and you will find some variation of the usual suspects, Lisp and ML. There is another shared

trend to be noticed – a boot-strapping implementation style that dates back to early LCF

systems [34]. This ubiquitous pairing of impure languages with the LCF style has spawned

an impressive number of successful theorem prover systems; among them: Isabelle [69],

Coq [87], and every member of the HOL family.

When I began designing a monadic proof system suitable to Haskell’s standard methodolo-

gies, I noted an ancillary trend amongst the previously mentioned provers that were now

serving as my inspiration. The pervasive use of impure side-effects in the implementation

of LCF-style provers had made it an almost unintentional, secondary characteristic of the

approach. As such, not only did I struggle to translate many of the defining features of these

provers to Haskell, but I failed to find anyone else who had succeeded at similar attempts.

Characterizing an LCF-Style Prover

The central tenet of the LCF approach is an abstraction of theorems to a type whose con-

struction is precisely constrained. When this constraint is obeyed, it forces a bootstrapping

approach to deriving new methods of construction not found in the core logic. Stated more

concretely, when following this implementation technique, the advanced proof capabilities

of a system must be reducible to a composition of that system’s primitive inference rules.

Thus, the soundness of an entire system can be assumed, provided that its logical kernel is

itself shown to be sound; this is the essence of the LCF style.

68

Critically paired with the LCF style is a host language that can faithfully implement the

necessary restrictions on the construction of theorems. At minimum, this language must be

strongly typed and have a mechanism for controlling the visibility of data type constructors.

Typically, this mechanism is provided in the form of the language’s module system, its

design of abstract data types, or a combination of the two. Implementation of a proof

system, therefore, can proceed directly by mapping its core logic to functions in the target

language that construct and destruct theorems appropriately.

The LCF style has a more general analog in functional programming: domain specific lan-

guages. As was mentioned in the introduction to this chapter, the LCF style is traditionally

facilitated through impure features, however, the process for implementing DSLs in pure

languages is both equally common and well understood. The only additional required step

in a pure approach is that effects that were previously introduced implicitly by the host

language must now be explicitly structured with a computational monad.

As a brief aside, it is worth noting that the LCF style does not itself mandate the use of

impure side-effects, nor does it dictate how the implementation of a proof system must be

structured. Although they have a shared heritage, the systems listed in the introduction

differ quite greatly both in design and degree of impurity:

• Isabelle is implemented with Standard ML (SML) [67], a language that is typically
referred to as having impure aspects as opposed to being labeled entirely impure.
This system makes great distinction between its host language and the various meta-
languages it provides, e.g. Isabelle/HOL, by defining them in terms of an intermediate
logical framework, Isabelle/Pure. The use of the impure features of SML in Isabelle is
mostly constrained to the implementation of this framework, with only sporadic usages
occurring beyond this boundary.

• HOL4 [81] is the most-direct descendent of the early LCF and HOL systems, so it
should be of no surprise that it too relies on SML as its implementation language. In
addition to admitting only a single meta-language, HOL4 differs from Isabelle in that it
is less concerned with restricting the use of impure SML features in its implementation.

69

• Coq is a proof system of complexity similar to that of Isabelle/HOL and HOL4. The
main difference between these systems, beyond their differing foundational logics, is
that OCaml [59] is used for Coq’s implementation language. Compared to SML, OCaml
is significantly more impure. Coq takes significant advantage of this impurity in the
implementation of its underlying infrastructure, utilizing everything from mutable data
structures to unsafe type coercions.

• HOL Light is yet another proof system that elects to use OCaml as its implementa-
tion language. As is implied by its name, this system is notable for its comparatively
lightweight implementation. The meta-language exposed to the user is simply OCaml
extended with quasi-quotations for concrete syntax. As such, the use of impure lan-
guage features can be found everywhere in this system, including the implementation
of logical theories.

• Stateless HOL [93] is a modification of HOL Light that attempts to bound its use of
side-effects. Unlike Isabelle or Coq this system is designed to remove impurity from
the logical kernel, rather than constrain it there. The goal of this approach is to make
the use of mutable state a matter of convenience, rather than necessity; beyond the
kernel, the overall purity of the system is unchanged.

Given that the motivation from Chapter 2 requires a lightweight system, the presented

monadic approach follows closely from the design of HOL Light and its extensions/modifica-

tions. This is an important fact to keep in mind when reading the following subsections, as

a number of critical implementation choices were made specifically with this “lightweight”

goal in mind. To reiterate earlier statements, HaskHOL is essentially a shallow embedding

of HOL theorem proving in Haskell, rather than a full-fledged proof system like Isabelle,

HOL4, or Coq.

A Monadic Approach to the LCF Style

When simulating the side-effects of an LCF-style theorem prover via a monad, it is important

to recognize that a portion of the trusted code base is being shifted from the host language to

the prover itself. For example, instead of being able to rely on a compiler’s implementation

of references in good faith, it is now upon the monad to correctly structure and simulate

mutable state. Depending on where the definition of this monad is introduced in the proof

system, a variety of potential issues could arise.

70

Implementing the computational monad inside the logical kernel of a system puts it in the

critical path of constructing theorems, i.e. the primitive inference rules become monadic

computations. The HOL background examples from Chapter 3 utilized the Either monad,

however, for the purposes of this section, a more general implementation is assumed, e.g.:

primTRANS :: SomeMonad m => HOLThm -> HOLThm -> m HOLThm

The guarantee of soundness provided by the LCF approach is now at risk, as this monad

represents a potential mechanism for bypassing the constraints on theorem construction. If

the monad implementation instead resides at a higher level of the system, as it might in a

monadic variant of the previously mentioned Stateless HOL, there are still a number of ways

to make the system inconsistent, intentionally or otherwise.

Protecting the soundness of a monadic kernel can be achieved by extending the LCF style’s

core tenet to additionally constrain the construction of monadic computations. Hiding the

internal constructors of the monad and its argument types, just as is done for the abstract

theorem type, sufficiently implements this requirement. This process is trivially straight-

forward, so I will focus the remaining discussion on the harder problem: preserving the

consistency of a monadic system.

One potential technique for implementing a monad is with the use of monad transformers.

These transformers implement one class of effects each, such that they can be combined in

a stack-like manner to form a single monad providing a closed set of effects [61]. Take, for

example, a basic State and IO monad transformer stack that could be used to model the

effects in a HOL system, as shown in Listing 4.1.

Listing 4.1: The HOL Monad Through Transformers

-- Type of a Theory Context

type Context = ...

type HOL = StateT Context IO

runHOL :: HOL a -> Context -> IO (a, Context)

runHOL = runStateT

71

This process promotes the reuse of standard library definitions which can be beneficial,

however, it is important to understand the resultant consequences. In order to facilitate

arbitrary transformer stacks, a monad’s effects are defined by methods contained within

type classes associated with each transformer. In this example, the StateT transformer is

associated with the MonadState class that provides, most notably, the get and put methods.

Note that these methods serve as duals such that, when using the standard transformer

libraries, it is impossible to expose one for use without also exposing the other.

This presents a potential issue, as put can be used to inject an inconsistent theory context into

a computation. This can happen in a variety of ways, although the simplest is a restoration

of an old context after a proof is performed:

bad1 :: HOL HOLThm

bad1 =

do ctxt <- get -- store old theory context

newAxiom ax -- introduce an axiom

th <- someProof -- requires ax to succeed

put ctxt -- restore the old context

return th

This problem is not unique to the methods provided by the MonadState class. The definition

of HOL from Listing 4.1 also utilizes the IO monad that itself has an associated class, MonadIO.

This class provides the liftIO method that can be used to lift an arbitrary I/O computation

into any transformer stack that is rooted with the IO monad. Again, this can be used to

introduce inconsistency to the system by discarding theory context updates:

bad2 :: HOL HOLThm

bad2 =

do ctxt <- get

liftIO $ evalState bad2 ’ ctxt

-- ’evalState ’ discards the modified context

where bad2 ’ = newAxiom ax >> someProof

72

As a general rule of thumb, it can be assumed that any transformer that provides a method for

lifting computations or destructively updating any of its argument types exposes a pathway

to inconsistency. Regrettably, providing an indirect monad definition via a newtype wrapper

is not sufficient to protect against these issues. The combination of the language extensions

StandaloneDeriving and GeneralizedNewtypeDeriving allows a user to circumvent this wrapper

to generate a type class instance, even where one was not previously provided1:

newtype HOL a = HOL (StateT Context IO a)

deriving Monad

deriving instance (MonadState Context) HOL

An indirect definition that instead uses a data wrapper provides the desired protection, but

not without negatively affecting the performance of the monad. The preferable approach,

shown in Listing 4.2, is to manually construct a flattened version of the desired transformer

stack. The requisite methods can then be defined individually, such that their visibility can

be controlled just like any other kernel method.

Listing 4.2: The HOL Monad Through Manual Construction

module HOL (get) where

newtype HOL a =

HOL { runHOL :: Context -> IO (a, Context) }

get :: HOL Context

get = HOL $ \ s -> return (s, s)

-- Not exposed external to the HOL module

put :: Context -> HOL ()

put s = HOL $ \ _ -> return ((), s)

1http://www.haskell.org/ghc/docs/7.10.1/html/users_guide/deriving.html

73

http://www.haskell.org/ghc/docs/7.10.1/html/users_guide/deriving.html

Type-Directed Extensible State

Note that the type of theory contexts was left undefined in the examples from the previous

subsection. This was intentional, as it is not immediately obvious how to model these

contexts for a monadic approach. Even among LCF-style theorem provers in the same

family, there are differences in implementation. Using members of the HOL family as an

example:

• HOL Light – Models the theory context pragmatically as an implicit collection of
top-level, mutable references.

• HOL4 – Models the theory context as a global symbol table maintained by the pre-
kernel system of its underlying infrastructure.

• Isabelle/HOL – Models the theory context as an Isabelle/Pure generic proof context2,
again being created and otherwise maintained by Isabelle’s underlying system infras-
tructure.

Shared among these approaches is the notion that the theory context is both heterogenous

and extensible outside of the logical kernel. Unfortunately, while Haskell provides a standard

analog for most of the commonly occurring side-effects leveraged by LCF-style proof systems,

it lacks an agreed upon technique for modeling extensible state. HOL Light’s approach can

be simulated, but it would require the use of unsafePerformIO that is at best a code smell and

at worst a serious threat to the type safety of the system. Instead, the following discussion

presents an approach similar to the one utilized by HOL4 and Isabelle/HOL.

The use of a central symbol table to carry configuration data is seen in other large Haskell

systems. These tables are implemented using a standard Haskell technique for heterogeneity

– existential, abstract data types:

class Typeable a => ExtClass a where

initValue :: a

data ExtState = forall a. ExtClass a => ExtState a

2These proof contexts are a symbol table for a theory, much like the one stored by HOL4, extended with
a number of other values and functions to facilitate stateless, parallel proof.

74

The ExtState constructor shown on the previous page can be used to box values of different

types, provided they have an instance of the ExtClass class, making their collection well

typed. The inclusion of the ExtClass class constraint serves two purposes. First, it acts

as a subclass to other necessary type class constraints. Second, it provides a mechanism

to define initial values for individual pieces of the theory context. Defining initial values

for context extensions allows static configuration information to be passed in a dictionary

manner, rather than via a computation’s state that can help with performance.

The theory context is modeled as a map whose indices are serializations of the types of the

context’s extensions. These serializations are produced via the Typeable class, as introduced

through the ExtClass class. Context retrieval is implemented as a guarded, type-safe casting

from the existential type to the type of the target context extension. Note that this approach

mandates that each piece of the theory context has a unique type to prevent future extensions

from overlapping the index of an old extension. This uniqueness can easily be enforced by

utilizing newtype wrappers for context types that are not exported outside of the module they

are defined.

Listing 4.3: Extensible State Through Existential Types

newtype BinderOps = BinderOps [String]

deriving Typeable

instance ExtClass BinderOps where

initValue = BinderOps ["\\"]

parseAsBinder :: String -> HOL ()

parseAsBinder op =

modifyExt (\ (BinderOps ops) ->

BinderOps $ op ‘insert ‘ ops)

binders :: HOL [String]

binders =

do (BinderOps ops) <- getExt

return ops

75

An example of these pieces in play is shown in Listing 4.3. Briefly explained, a new, unique

type for binder operator tokens and the necessary class instance are defined. This allows

a system implementor to write methods for adding and retrieving binder operators to be

used during term parsing. In this example, modifyExt and getExt are primitive monadic

computations that follow from the general forms of context map manipulation discussed in

the previous paragraph.

Practical Implications of Stateful Monads

Compound monadic computations expand to sequences of binds that enforce an ordering of

effects. For example, the binders computation from Listing 4.3 desugars to the following:

binders = getExt >>= \ x -> case x of (BinderOps ops) -> return ops

As such, a proof that makes explicit use of all the context modifications it depends on is

guaranteed to succeed, as a satisfying context is constructed during its evaluation. Listing 4.4

contains once such example where a proof of the truth theorem, thmTRUTH, depends only on

the definition of the truth constant, introduced to the working theory context by defT. This

proof will always succeed, assuming a bug-free implementation of the system up to and

including its definition.

Listing 4.4: Explicit and Implicit Stateful Effects

defT :: HOL HOLThm

defT = newBasicDefinition "T"

[str| T = ((\ p:bool . p) = (\ p:bool . p)) |]

defI :: HOL HOLThm

defI = newDefinition "I" [str| I = \x:A. x |]

thmTRUTH :: HOL HOLThm

thmTRUTH =

do tm <- toHTm [str| \p:bool. p |]

tdef <- defT

either fail return $

do th1 <- ruleSYM tdef

primEQ_MP th1 (primREFL tm)

thmI :: HOL HOLThm

thmI = prove "!x:A. I x = x" $ tacREWRITE [defI]

76

At first glance the other proof computation shown in Listing 4.4, thmI, appears to exhibit

the same guarantee. However, it implicitly relies on a number of context modifications to

parse a term (requires the definition of the universal quantifier (!)) and then prove it through

rewriting (requires extending the set of basic rewrites). This proof could be changed to make

these dependencies explicit, however that is an intractable solution in general. Furthermore,

doing so would defeat one of the main purposes of using a mechanized prover, which is to

lessen the amount of work involved in a proof.

A proof like thmI can remain implicit in its dependencies provided that we guarantee the

construction of a satisfying context before the proof is attempted. The simplest way to do

this is to lift the set of context modifications for a theory to a separate, top-level computation

that is evaluated before any proof effort:

loadCtxt :: HOL ()

loadCtxt = defFORALL >> extendBasicRewrites [...]

runHOL (loadCtxt >> thmI) ctxtBase

This technique is a monadic approximation of the “implementation of theories as scripts”

approach employed by REPL-style proof systems, such as HOL Light. Those familiar with

such systems can point out a serious drawback of their use – a significant amount of time

is spent preparing the proof environment every time the system is launched. This delay is

amplified by the monadic approach described above, as contexts are rebuilt not just once

per session, but for each and every evaluation.

More complex systems, such as the recurringly mentioned Isabelle, HOL4, and Coq, avoid

this problem by compiling or otherwise storing their theories in a way that allows them

to be used on an as-needed basis without requiring repeated work. The implementations

of lightweight systems typically provide an embedding that is too shallow to mimic this

approach. In HaskHOL, for example, theories are simply a collection of Haskell functions,

such that we lack the ability to inspect or otherwise interact with their construction.

77

We can serialize just the values associated with theories, i.e. the previously discussed theory

contexts, through a simple adaptation of the approach to extensible state presented earlier.

Most Haskell libraries for persistent data utilize a method of type-directed serialization

compatible with the base techniques of this approach. To concretize discussion, the following

examples utilize the acid-state library from the Happstack project [79], although the general

ideas should be applicable to other libraries.

Data is serialized by acid-state as a collection of binary files whose access is carefully guarded

to provide guarantees of the ACID properties. Its API, inspired by database management

systems, provides variations on four basic functions: opening a connection to a data store,

querying its value, updating its value, and closing the connection. A reimplementation of

the binders computation using acid-state is shown in Listing 4.5.

The primary change in this reimplementation is that the state of the HOL monad is now a file

path where a theory context is stored. The openLocalStateHOL method opens a connection

to the desired theory context value guided by this file path and an initial value, reusing

initValue from the ExtClass class. Once a connection is formed, this value can be queried,

as is done in the example, or updated: updateHOL acid (InsertBinder op).

Listing 4.5: Persistent State Through Existential Types

newtype HOL a = HOL { runHOL :: FilePath -> IO a }

openLocalStateHOL ast =

HOL $ \ fp -> openLocalStateFrom fp ast

binders :: HOL [String]

binders =

do acid <- openLocalStateHOL (initValue :: BinderOps)

binds <- queryHOL acid GetBinders

closeAcidStateHOL acid

return binds

78

The GetBinders and InsertBinder constructors used here are defunctionalizations of user-

written access methods that are automatically generated by the acid-state library. For

example, GetBinders maps to a method that looks similar to the previous implementation of

binders, further demonstrating the compatibility of acid-state and the previous approach:

getBinders :: Query BinderOps [Text]

getBinders =

do (BinderOps ops) <- ask

return ops

Contexts are written to disk during the evaluation of their “loading” computations, e.g.

loadCtxt. By pairing these computations with the context they extend and their associated

file path, this creation can be done dynamically:

data Context = Context

{ ctxtFP :: FilePath

, ctxtBase :: Maybe Context

, ctxtLoad :: HOL ()

}

ctxtNew = Context "new" (Just ctxtBase) loadCtxt

runHOL ’ thmI ctxtNew

In the above code, runHOL’ is a wrapper to the previously seen runHOL function. This new

evaluation method checks for the existence of a theory context before using it. If it exists,

its file path is passed to runHOL and evaluation proceeds as before, otherwise it is created by

first evaluating its ctxtLoad computation. This ensures that the effort to create a context is

never repeated, giving us a lightweight approximation of the compilation process performed

by more complex systems.

79

Optimizing Monadic Proof

As was demonstrated in the preceding subsections, it is certainly possible to construct a

monad definition that sufficiently simulates the side-effects required in an LCF-style proof

system. This implementation is not necessarily performant, though. Perhaps the most

commonly cited criticism of using monads is their impact on computational efficiency within

a single thread of execution when compared to equivalent, impure programs. The potential

problem is demonstrated by the small, example program shown below:

main = print . (flip evalState) 35 $

do x <- f

y <- f

return (x, y)

where f :: State Int Int

f = gets fib

The important thing to note in this example is that there is an expensive sub-computation,

f, that is repeated. This computation depends on the monadic state value that we can

visually identify as remaining constant between evaluations. Unfortunately, the compiler

cannot make the same observation, thus f is evaluated twice. The program can be manually

optimized by sinking the point of evaluation within the where clause, as shown:

main = print $

let x = f

y = f in

(x, y)

where f :: Int

f = evalState (gets fib) 35

Because f is now a pure binding, rather than a monadic one, the compiler is able to perform

the appropriate inlining and subexpression elimination, effectively cutting runtime time in

half.

80

This example can be shifted to the domain of theorem proving by imagining f as a lemma

used within a larger proof. Recall from the discussion of monad implementation techniques

that forcing the evaluation of a proof computation and then using the resultant theorem

can raise inconsistency issues. The general problem is that context modifications critical

to a proof could potentially be discarded. This can be protected against by enforcing two

properties:

1. Only non-context-modifying computations can be forcefully evaluated.

2. A theorem can only be used within a context consistent with the one in which it was
originally proved.

Both properties can be witnessed statically at the type-level by tagging monadic proof com-

putations with phantom type variables:

newtype HOL cls thry a =

HOL {runHOL :: Context thry -> IO (a, Context thry)}

evalHOL :: HOL cls thry a -> Context thry -> IO a

evalHOL m = liftM fst $ runHOL m

The first type variable in the definition of HOL, cls, records a tag for the classification of

a computation. This variable is inhabited by one of two possible empty data declarations:

Theory, for theory context-modifying computations; or Proof, for effect-free, proof compu-

tations. The classification type of a computation is inferred from its component, primitive

computations. For example, the previously shown updateHOL method would be classified as

a Theory computation given that it is used to update a context extension value. The classifi-

cation of effect-free computations are left fully polymorphic, otherwise type inference would

disallow their mixing with Theory computations. The Proof tag is only explicitly used when

a witness to the first property is needed.

81

The second type variable, thry, records a tag for the working theory required by a compu-

tation. These tags are unique, empty data declarations that should be generated for each

theory context checkpoint that is associated with a library. For example, the proof computa-

tion for the truth theorem, |- T, would carry a tag of BoolThry indicating that it requires the

definition of T from the Boolean logic library. Note that the thry type variable also haunts

the Context type definition to guarantee that theory context values stay tightly coupled to

their respective tags.

With these tags in place, it is trivial to define an alias to the evaluation function that provides

a guarantee of the first property. For the sake of simplified discussion, assume that there

exists a method, runIO, that can be used internal to this evaluation function to safely escape

the IO monad3:

safeEval :: HOL Proof thry a -> Context thry -> a

safeEval m = runIO . evalHOL m

However, this definition provides no guarantee of the second property. Once safeEval returns

a pure value, it can be lifted into any computation via the return function, regardless if it is

consistent with the theory context or not.

Rather than return an unprotected pure value, the resultant value should also be tagged with

the theory context used to compute it. This process can be made general for all possible

values by using an open type family that defines methods for both protecting and using

protected data safely. On the next page, Listing 4.6 shows one possible implementation

that, when paired with safeEval, provides guarantees for both of the desired properties.

3This assumption holds as long as primitive computations with non-benign IO effects are correctly tagged
as Theory computations

82

Listing 4.6: Protecting Context-Sensitive Data

class Protected a where

data PData a thry

protect :: Context thry -> a -> PData a thry

serve :: PData a thry -> HOL cls thry a

instance Protected HOLThm where

data PData HOLThm thry = PThm HOLThm

protect _ = PThm

serve (PThm thm) = return thm

safeProof :: HOL Proof thry HOLThm -> Context thry

-> PData HOLThm thry

safeProof mthm ctxt = protect ctxt $ safeEval mthm ctxt

Polymorphic Protection

The safeProof method included in Listing 4.6 can be used to safely optimize monadic proof

in a number of convenient ways, ranging from run-time memoization to staged, compile-time

computation. When paired with the encoding of theory context tags as described in the

previous section it too strongly enforces the second, enumerated, safety property. With their

current formulation, for each call to protect the type checker can infer only a single, possible

type for the theory tag, such that protected values can be reused only in the context in

which they were computed.

In the absence of primitive “undefinition” methods, LCF-style theory contexts can be as-

sumed to be monotonic. Thus, a theory context is always consistent, not only with itself,

but with any new context formed through its extension. A protected value, therefore, should

be reusable in the context in which it was computed and any of its subsequent extensions.

To safely permit this, a theory tag must be polymorphic, with its possible instantiations

constrained to the appropriate set of contexts.

83

As was the case with the abstract representations of theory contexts themselves, the HOL

family of provers differs in how they model context hierarchies. Again, HOL Light takes a

pragmatic approach and leverages its host language’s script-like execution scheme to build a

strict, linear ordering of theory contexts. HOL4 and Isabelle/HOL, on the other hand, both

have much more complex representations that resemble the semi-lattice structure discussed

in the HOL background section. In either case, constraining the theory tag follows directly

from translating a context hierarchy to an equivalent type representation.

The technique utilized by the previous subsections reified theory contexts to the type-level

by recording only the most recently seen checkpoint. In order to construct a sufficiently

polymorphic view of contexts, we must instead record information about all the checkpoints

seen in the construction of a theory, including their relationships. With this information

available, constraints on the thry type can be expressed as tests for the existence of requisite

checkpoints in the type representation of a theory context.

In the interest of simplifying the following discussion, a linear ordering of theories, like HOL

Light’s, is assumed. Under this assumption, the type of a theory context can be encoded

directly by promoting the ordered list of its theory checkpoints to the type level. We perform

this promotion by mimicking the syntax of list construction, using the type ExtThry c t to

denote an extension of theory t with the checkpoint c and the type BaseThry to denote the

unextended theory of our logical kernel. The existence of a checkpoint can be tested for by

recursively searching this linear type, much as one would a list.

84

Listing 4.7: Constructing Polymorphic Theory Constraints

data BoolThry

type instance BoolThry == BoolThry = ’True

type BoolType = ExtThry BoolThry BaseThry

type family BoolContext a :: Bool where

BoolContext BaseThry = ’False

BoolContext (ExtThry a b) =

(a == BoolThry) || (BoolContext b)

type family BoolCtxt a :: Constraint where

BoolCtxt a = (BaseCtxt a, BoolContext a ~ ’True)

type instance PolyTheory BoolType b = BoolCtxt b

Using Boolean logic as the example theory, Listing 4.7 shows the pertinent types and in-

stances for the construction of its theory type constraint, BoolCtxt. The crux of the presented

solution lies in the closed type family definition of BoolContext. The two instances for this

family collectively define the recursive search pattern for theory types, with the first instance

serving as the terminating, base case.

This search pattern relies on a promotion of boolean values to the type level in order to

define type-level functions for both equality, (==), and disjunction, (||). Applications of

these functions are reduced by a constraint solver which uses type family instances as rewrite

rules. Each checkpoint tag has its reflexive equality asserted by a type instance, such that

when a constraint is applied to a satisfying theory type it will reduce to the promoted value

’True. Constraints that are not satisfied will statically fail with one of the following error

messages:

• Couldn’t match type ’’False’ with ’’True’ - The base theory context was pro-
vided and it failed to satisfy the constraint.

• Couldn’t match type ’A == B’ with ’’True’ - A theory context was provided with
the last seen checkpoint A, however, the constraint requires the checkpoint B or later,
e.g. Couldn’t match type ’BoolThry == SimpThry’ ...

85

In order to constrain a theory tag to require it to contain the Boolean logic checkpoint, an

equality constraint of the form BoolContext thry ~ ’True is introduced to the type context.

The BoolCtxt type both provides a shorthand for this constraint and asserts the constraint

of the theory the Boolean logic library extends, BaseCtxt. For cases where multiple check-

points are required, e.g. (BoolCtxt thry, TheoremsCtxt thry, SimpCtxt thry), enforcing the

linear ordering inside type constraints allows us to write only the most inclusive constraint,

(SimpCtxt thry), as it necessarily implies the others.

The PolyTheory type is used to relax a monomorphic theory tag to its corresponding poly-

morphic constraint. This allows us to redefine safeProof, as shown in Listing 4.8. Protected

values, such as pthmTRUTH, are now assigned the correct, polymorphic type when they are con-

structed. This theorem can now be safely served in the context it was constructed, ctxtBool,

and one of its extensions, ctxtSimp, but not in a context lacking the Boolean logic checkpoint,

ctxtBase.

Listing 4.8: A Refinement of safeProof

safeProof :: PolyTheory thry thry ’

=> HOL Proof thry HOLThm -> Context thry

-> PData HOLThm thry ’

safeProof mthm ctxt = protect ctxt $ safeEval mthm ctxt

pthmTRUTH :: BoolCtxt thry => PData thry HOLThm

pthmTRUTH = safeProof (...) ctxtBool

-- These will succeed

testGood1 = evalHOL (serve pthmTRUTH) ctxtBool

testGood2 = evalHOL (serve pthmTRUTH) ctxtSimp

-- This will fail

testBad = evalHOL (serve pthmTRUTH) ctxtBase

86

4.2 Stateless Higher-Order Logic with Quantified Types

From the theorem proving perspective, the bootstrapping approach to HaskHOL’s implemen-

tation is critical to being able to ensure the soundness of the system. To continue harping

upon the LCF style’s key contribution, by limiting the trusted computing base of a proof

system to a small, logical kernel, the lines of code that need to be verified is greatly reduced.

From the language design perspective, however, this design pattern is less critical than it is

useful.

Specifically, the benefit of implementing a language in the manner described in the previous

section is that it forces you to consider the design of its features from the inside out. As was

demonstrated, this can be extremely helpful when developing a side-effectful EDSL using a

pure host language, as the primitive methods and constructors will dictate the shape of the

computational monad. Take, for example, the subset of the HOL Light logical kernel shown

in Listing 4.9 that provides for definitional extension of type constants. Using this code as

a guide, we see that in order to implement a pure version of new_type, we must account for

the two previously identified classes of side-effects: exceptions and global state.

Listing 4.9: A Subset of the HOL Light Logical Kernel

let the_type_constants = ref ["bool" ,0; "fun" ,2]

let get_type_arity s = assoc s (! the_type_constants)

let new_type(name ,arity) =

if can get_type_arity name then

failwith ("new_type: type "^name^" has already been declared")

else the_type_constants := (name ,arity)::(! the_type_constants)

87

Listing 4.10: A Naive Approach to Effects

type HOL a = StateT [(String , Int)] IO a

getTypeArity :: String -> HOL Int

getTypeArity name =

do tys <- get

maybe (fail $ "getTypeArity: type " ++ name ++

" has not been defined.")

return $ lookup name tys

newType :: (String , Int) -> HOL ()

newType (name , arity) =

do whenM (can getTypeArity name)

(fail $ "newType: type " ++ name ++

" has already been declared.")

modify (\ tys -> ((name , arity):tys))

Listing 4.10 includes a naive translation of this HOL Light subset that corresponds approx-

imately to the implementation of the HOL monad from Listing 4.1 in Section 4.1. Comparing

the HOL Light implementation to the code above, specifically get_type_arity to getTypeArity,

highlights a major drawback of a monadic implementation; the introduction of structured

side-effects can quite easily complicate code. For that reason, the logical kernel of HaskHOL

is designed to minimize the use of side-effects as much as possible.

A Stateless Kernel

With this goal in mind, the primitive data types of HaskHOL are modeled after the Stateless

HOL approach developed by Freek Wiedijk [93]. To summarize Wiedijk’s solution, auxiliary

information about HOL data types is embedded directly in their construction, rather than

being stored via stateful effects. Stateless introduction of a new HOL constant involves

creating either a new constant tag or type operator, which can then be provided as an

argument when building a HOL term or type accordingly.

88

Listing 4.11: The Stateless HOL Approach to Effects

let new_prim_type_op(name ,arity) =

Typrim(name ,arity)

let new_type ’(name ,tyop) =

if can get_type_arity name then

failwith ("new_type: type "^name^" has already been declared")

else the_type_constants := (name ,tyop)::(! the_type_constants)

let new_type(name ,arity) =

new_type ’(name ,new_prim_type_op(name ,arity))

Stateless HOL’s implementation of new_type is shown above in Listing 4.11. The crux of

this implementation is the segregation, and eventual combination, of stateful (new_type’)

and stateless (new_prim_type_op) methods. The stateless methods of the system act as smart

constructor wrappers for the primitive data types; in this case, for Typrim. When these

smart constructors are fully applied they create closures for tag and operator objects that

can be reused in common sub-terms, giving the data types that form Stateless HOL theories

a graph-like shape.

In order to maintain comparatively similar performance to the stateful HOL Light system

it’s based on, Stateless HOL relies on OCaml’s object comparison model. By testing the

pointers to embedded information for physical equality, they can be compared without having

to traverse and evaluate the closures they point to. This allows HOL terms and types to

be efficiently and, most importantly, statelessly checked for definitional equality with only

a minimal memory overhead cost. In essence, the observable sharing in Stateless HOL data

types can be gleaned almost for free.

89

Regrettably, this approach is not applicable in HaskHOL for a number of reasons. The most

troublesome obstruction is the lack of a pure, physical equality mechanism in Haskell. The

StableName 4 and StablePointer 5 data types could be used to provide similar functionality,

however, neither is an ideal solution. Creation of a StableName or StablePointer requires use of

the IO monad. Thus, we are either forced to introduce unwanted effects to the lowest levels

of the logical kernel or abuse the dreaded unsafePerformIO method; both are “solutions” I

would prefer to avoid.

Additionally, the implementation of the StableName and StablePointer data types makes in-

ternal use of compiler-specific primitives, StableName# and StablePtr# repsectively, precluding

the derivation of instances for several useful type classes. Interactions with these construc-

tors are restricted to primitive operations defined in GHC’s base libraries. These operations

include creation, destruction, comparison, and a handful of purpose built methods, e.g. hash-

ing and casting. Thus, it is impossible to define an instance of Template Haskell’s Lift class,

preventing HaskHOL from including a number useful features, such as quasi-quotation of

types and terms. In fact, any instance not already defined for StableName and StablePointer

values cannot be derived without modification to the GHC system itself.

Andy Gill developed a solution for extracting the observable sharing of a DSL where StableName

values appear in the intermediate construction of an abstract syntax graph (ASG), but not

the final result [26]. Given that the StableName generated for an object can vary pre and post

evaluation, Gill’s reifyGraph function forces the complete traversal and strict evaluation of

a target data structure before its sharing is observed. This brings to surface the secondary

concern of implementing stateless data types in Haskell; fully evaluated stateless values uti-

lize exponentially more constructors than their stateful equivalents. Thus, any operations

that require a complete traversal of these constructors will necessarily be computationally

more expensive.

4http://hackage.haskell.org/package/base-4.7.0.1/docs/System-Mem-StableName.html
5http://hackage.haskell.org/package/base-4.7.0.1/docs/Foreign-StablePtr.html

90

http://hackage.haskell.org/package/base-4.7.0.1/docs/System-Mem-StableName.html
http://hackage.haskell.org/package/base-4.7.0.1/docs/Foreign-StablePtr.html

An example of one such operation is the persistence of theory context values via serialization

to disk, as described towards the end of Section 4.1. Storing stateless values in their normal,

AST representation will produce serializations exponentially larger than their stateful equiv-

alents. Extracting any observable sharing and instead storing their ASG representation does

not improve things much, as this process adds a non-trivial amount of run-time overhead.

ASG values would need to be converted back to their AST form or, alternatively, primitive

term construction and destruction methods would need to be modified to perform the nec-

essary graph merging and updating. The latter option would be comparable to Stateless

HOL’s implementation of axiom contexts, a process that was shown to significantly slow

down the proof system. This slow down would be amplified in this case, give that term

manipulations happen much more frequently than theorem manipulations do.

Given the above issues, HaskHOL’s implementation uses a “psuedo-stateless” compromise

to Stateless HOL’s approach. Auxiliary information with uses beyond just comparison, e.g.

constant names, arities, etc., are embedded directly as before. However, information used

purely for comparison purposes, e.g. definitional terms and theorems, are stored as an

embedded hash instead of their actual value. Example implementations of constant tags and

type operators are shown in Listing 4.12.

Listing 4.12: Psuedo-Stateless Data Types

data ConstTag

= PrimitiveIn

| DefinedIn Int -- hash

| MkAbstractIn Text Int Int -- name , arity , hash

| DestAbstractIn Text Int Int -- name , arity , hash

data TypeOp

= TyOpVarIn Text -- name

| TyPrimitiveIn Text Int -- name , arity

| TyDefinedIn Text Int Int -- name , arity , hash

91

In practice, this provides the same efficient comparison as the stateless approach without

the exponential blowup in constructors. In theory, there is the obvious potential issue where

a hash collision could lead to an incorrect equality comparison. Hashes are only compared

when the names of constant tags match, though. Thus, the collision problem can only arise

in a context with redefined constants. This is only possible if users are manually driving the

prover at the stateless level or utilizing non-monotonic theory extension methods, such as

undefinition, at the stateful level. Both of these techniques can be beneficial when developing

proofs, however, final verifications should avoid using them to guarantee that the soundness

of the system is maintained.

A Polymorphic Type System

Knowing that GHC Core would be a major verification target for HaskHOL, an additional

extension was made to its primitive data types to introduce higher-order polymorphism to

its type system. This extension allows for direct representation of Core’s types, modulo a

few limitations:

• Types must be simply kinded, i.e. only * or -> kinds are allowed.

• Following from the above restriction, polymorphism is restricted to the second order.

• Instantiation of bound type variables is limited to non-universal types.

These limitations preclude reasoning about code that leverages some of GHC’s more ad-

vanced extensions, e.g. DataKinds6 or RankNTypes7. However, language features that other

provers struggle to represent, for example type classes, can be represented and reasoned

about in HaskHOL directly.

6https://downloads.haskell.org/~ghc/7.10.1/docs/html/users_guide/promotion.html
7https://downloads.haskell.org/~ghc/7.10.1/docs/html/users_guide/

other-type-extensions.html

92

https://downloads.haskell.org/~ghc/7.10.1/docs/html/users_guide/promotion.html
https://downloads.haskell.org/~ghc/7.10.1/docs/html/users_guide/other-type-extensions.html
https://downloads.haskell.org/~ghc/7.10.1/docs/html/users_guide/other-type-extensions.html

Again, this extension was inspired by a related HOL system; in this case, Norbert Voelker’s

HOL2P [90]. The “2P” in this system’s name refers to the second-order, polymorphic lambda

calculus, making it a logical correspondent to the System F language discussed in Section 3.1.

The enumerated limitations of HaskHOL’s type system, inherited directly from HOL2P, are

due to Coquand. In his A New Paradox in Type Theory, it was shown that the combination

of System F and HOL is inconsistent [18].

This inconsistency is largely because of System F’s impredicative type system. HaskHOL

and HOL2P both address this problem by following the previously discussed solution of

asserting a hierarchy of types and using it to restrict the possible instantiations of universally

quantified type variables. Both systems implement a “smallness” constraint to indicate if a

type is universal or not, such that only small types may be bound.

In HOL2P, the distinctions between types are syntactic in nature. Identifier prefixes are used

to distinguish between the numerous varieties of type variables since small type variables,

large type variables, and type operator variables all utilize the same data type construc-

tor. HaskHOL instead elects to make these distinctions structural by including a boolean

field in the type variable constructor that indicates smallness; type operator variables are

already structurally distinct due to the stateless approach. HaskHOL’s primitive data types

for its type system are shown in Listing 4.13, including the TypeOP type already shown in

Listing 4.12.

Listing 4.13: HaskHOL’s Type System

data HOLType

= TyVarIn Bool Text

| TyAppIn TypeOp [HOLType]

| UTypeIn HOLType HOLType

data TypeOp

= TyOpVarIn Text

| TyPrimitiveIn Text Int

| TyDefinedIn Text Int Int

93

The separation of type operators into a new data type caused signification issues when

blending the concepts of Stateless HOL and HOL2P [7]. Recall the primitive INST TY PE

rule shown in Figure 3.18 back in Section 3.2:

INST TYPE
A ` t

A [ty1, ..., tyn/tv1, ..., tvn] ` t [ty1, ..., tyn/tv1, ..., tvn]

Implicit in the semantics for this rule is the definition of a type instantiation function. In

the simplest case, type instantiation is a substitution performed over type variables. For

Stateless HOL, this substitution is trivially defined by the following equations:

x [ty/x] = ty

y [ty/x] = y (y 6= x)

(c a1 ... an) [ty/x] = (c a′1 ... a
′
n)

Note that these equations use a tick notation to indicate recursive application of substitution.

The intent here is to show that in the TyAppIn case only the first field is left unchanged. This

is not the case in HOL2P, as the first argument to a type application may be a type operator

variable and, therefore, may be subject to substitution. This system’s additional rules for

type variable substitution, including the name capture avoiding rules for universal types, is

shown below8:

(x a1 ... an) [c/ x] = (c a′1 ... a
′
n) (arity c = n)

(x a1 ... an) [Πb1.Πbm. ty/ x] = ty [a′1/b1 ... a
′
n/bm] (m = n, ty is small)

(Πx.a) [ty/x] = (Πx. a)

(Πy.a) [ty/x] = (Πy. a′) (y 6= x, y is not free in ty)

8The notation x indicates that x is a type operator variable

94

Note that these rules disagree on the contents of their substitution environments. The

first two rules have [type/type operator] substitution pairs, while the second two rules have

[type/type] pairs. In essence, HOL2P dictates that type operators have two different, but

conceptually equivalent, representations. The disagreement between rules is eliminated by

asserting an isomorphism between these representations. More specifically, type operators

in HOL2P are stored as string values, such that its type_subst function can use mk_tyvar and

dest_tyvar as coercion methods.

The type variable representation of operators is nonsensical, as there are no terms that can

inhabit such a types, i.e. there are no typing rules that will return a judgement of the form

Γ ` term : type operator. The only real purpose of this representation is to serve as a

mechanism for making the implementation of the type substitution function well-typed in

the host language. This solution is troublesome, as these coercions leak into the other rules

for type instantiation. For example, in the case where a type constant is to be substituted

for a type operator variable, the same trick must be used to represent both the constant and

the operator as type variables.

HaskHOL’s differing approach to type instantiation was primarily motivated by a desire

to remove any reliance on disingenuous type representations. Regardless of my qualms

with HOL2P’s design, the integration of a stateless approach eliminated the isomorphic

representations work-around described above. In a stateless system, there is no way to

reconstruct a type given only its identifier, i.e. there is no mk_type function available at

the kernel level. Therefore, once a constant or operator is converted to a type variable

representation, there is no way to return to its original form. This prevents type operators

from being derived during substitution in the same manner as HOL2P, thus they must be

constructed beforehand.

95

[type/type] Substitution (In all cases ty must preserve the smallness of x):

x [ty/x] = ty

y [ty/x] = y (y 6= x)

(c a1 ... an) [ty/x] = (c a′1 ... a
′
n)

(Πx. a) [ty/x] = (Πx. a)

(Πy. a) [ty/x] = (Πy. a′) (y 6= x, y is not free in ty)

[type operator/type operator] Substitution:

x [c/ x] = x

(x a1 ... an) [c/ x] = (c a′1 ... a
′
n) (arity c = n)

(Πx. a) [c/ x] = (Πx. a′)

[type operator/type] Substitution:

x [Πb1.Πbm. ty/ x] = x

(x a1 ... an) [Πb1.Πbm. ty/ x] = ty [a′1/b1 ... a
′
n/bm] (m = n, ty is small)

(Πy. a) [Πb1.Πbm. ty/ x] = (Πy. a′) (y is not free in ty)

Figure 4.1: Substitution Rules for Type Instantiation in HaskHOL

Given that type instantiation can no longer accept a singular form for substitution pairs,

the previously shown rules must be split into three separate functions – one for smallness

preserving type substitutions ([type/type] pairs), one for substitution of constants types for

type operator variables ([type/type operator] pairs), and one for reduction of universal types

by type operator variables ([type/type operator] pairs). The rules for these functions are

shown in Figure 4.1.

96

5 HaskHOL as a Library

Among the most commonly cited advantages of working with purely functional languages

is that reasoning about program behavior is significantly easier in the presence of referen-

tial transparency. Unfortunately, despite all of the benefits that the functional paradigm

provides, it does nothing to assuage a major problem in software verification: marshaling

knowledge between implementation and verification environments is, more often than not,

just as complex and error prone as attempting proofs by hand. Consequently, conceptually

“easy” verifications are frequently left unattempted or incomplete as a matter of inconve-

nience.

The contents of this chapter detail my approach to eliminating this inconvenience through

the titular technique of using theorem provers as libraries. Following from the workflow

detailed in Chapter 2, the capabilities of a formal reasoning tool are integrated natively with

its host language. This integration allows developers to verify their code in an environment

that is already both well established and familiar to them. In addition to mitigating the

previously mentioned communication issues, this reduces the verification learning curve to

the equivalent of understanding a new DSL; something functional programmers, especially

Haskell users, are quite adept at.

The previous chapter covered the implementation of the formal reasoning tool in question,

the HaskHOL library for HOL theorem proving. The sections of this chapter are intended to

demonstrate HaskHOL’s applicability for verifying Haskell programs and explain its linkage

with the Glasgow Haskell Compiler (GHC). They are are organized as follows:

• Section 5.1 works through an example verification, noting the correspondence between
HaskHOL’s foundational logic and GHC’s core language.

• Section 5.2 details GHC’s compiler plugin framework and the HERMIT library, the
chosen method for integration.

• Section 5.3 formalizes HaskHOL’s connection to GHC Core and notes current limita-
tions of the work.

97

5.1 Verifying Constructor Classes

To reiterate earlier background material, property directed verification is carried out through

repeated substitutions of equivalent forms. Much like the evaluation strategy of the host

language itself, properties are rewritten with function and data type definitions until they are

reduced into true or false statements; this is the essence of equational reasoning. In Haskell,

these correctness properties are often self-introduced, whether the programmer realizes it or

not. Listing 2.1 from Chapter 2 contained one such example – a signature for the Monad type

class paired with its categorical laws.

The catch with equational reasoning is that the effort required is directly proportional to the

complexity of both the proof obligation and its requisite definitions. The Identity monad was

intentionally targeted as the motivating example in Chapter 2 because it has the simplest

possible Monad instance. Conversely, the definition of HaskHOL’s computational monad relies

on smart constructors, complex data structures, and other monads. Attempting a paper

proof with its definition, while certainly possible, would be both time consuming and error

prone. This is of no surprise to anyone familiar with the motivations behind mechanizing

proof theory.

This problem only further reinforces the point made in the introduction to this chapter –

“easy” proofs about functional programs are typically done either informally or not at all.

The formal verifications of functional programs that do exist are spread among a diverse

set of proof assistants, logics, and representation techniques; each with their own pros and

cons. Focusing on examples related to monads, proofs of the monad laws frequently arise

as ad hoc lemmas in larger efforts [38, 85]. The monads in these verifications are “built to

order”, such that it is difficult to restructure their proofs to be useful outside of their original

context. In other words, these proofs are not of immediate benefit to anyone attempting to

verify existing and unrelated implementations.

98

Brian Huffman has presented work that more generally formalizes Haskell type classes [45],

including Monad, using Isabelle/HOLCF [68] and its Tycon library [46]. Unfortunately, by the

author’s own admission, portions of the presented technique are impractical for widespread

use. The domain-theoretic model of Haskell’s type system is logically distant from what the

average functional programmer is familiar with and an advanced working knowledge of the

underlying proof system and logic is required for the more complicated cases.

Huffman et. al’s early work [47] took place at a time before type classes were common,

first-class constructs of proof languages. Since then, at least two popular proof systems,

Coq and Isabelle/HOL, have been extended with implementations of type classes similar to

Haskell’s [84, 36]. These systems can be used to more clearly model and verify Monad instances;

and in the case of working with Isabelle/HOL, there even exists a tool to automate the

necessary translations from existing Haskell code [35]. However, Coq and Isabelle are both

large, complex systems that offer more reasoning power than is necessary in most cases.

Furthermore, they can be overwhelming to work with for new users requiring significant

background experience to use effectively.

This section presents an alternative approach to verification of the monad laws in a prover

built in Haskell, for Haskell – HaskHOL. Rather than working at the source level, as the

systems from the preceding discussion do, HaskHOL instead performs its verifications by

translating Haskell programs at the intermediate language level. Given that both Haskell

and HaskHOL are based on derivatives of the simply typed λ-calculus, this makes for a much

more direct translation and proof.

99

Monads in HaskHOL

Following from GHC’s intermediate representation of type classes as dictionary-passing con-

structors, the Monad class is represented in HaskHOL as a constant term whose type is dictated

by its parameter and methods:

forall (m :: * -> *).

(forall a b. m a -> (a -> m b) -> m b) ->

(forall a. a -> m a) -> Monad m

Recall from Chapter 4 that HaskHOL’s polymorphism is restricted in that universally quanti-

fied type variables may only be instantiated by small types, i.e. types that are not themselves

quantified. Additionally, type operators are distinct from regular types in the language such

that they also cannot be used to instantiate quantified type variables. This leads to the

construction of monads shown in Listing 5.11 where the type operator variable representing

the class’s parameter, _M, is left globally free.

Listing 5.1: The Construction of Monads in HaskHOL

MONAD

(bind : % ’A ’B. ’A _M -> (’A -> ’B _M) -> ’B _M)

(return : % ’A. ’A -> ’A _M) =

((!! ’A ’B.

! (a: ’A) (f:’A -> ’B _M).

bind [: ’A] [: ’B] (return [: ’A] a) f = f a) /\

(!! ’A.

! (m: ’A _M).

bind m return = m) /\

(!! ’A ’B ’C.

! (m: ’A _M) (f: ’A -> ’B _M) (g: ’B -> ’C _M).

bind (bind m f) g = bind m (\ x. bind (f x) g)))

1A HaskHOL syntax cheat sheet:
’A - Small type variables
_M - Type operator variables
(\) / (\\) - Term-level term/type abstraction
(!) / (!!) - Term-level, universal term/type quantification
[: ’A]- Term-level type application
$ - Type-level universal type quantification
’A _M - ML-Style, type-level type application

100

Listing 5.2: The Identity Monad and its HaskHOL Proof

prove [str| MONAD (\\ ’A ’B. \ m k. k (RunIdentity m))

Identity |] $

tacREWRITE [defMONAD] ‘_THEN ‘ tacCONJ ‘_THENL ‘

[_REPEAT tacGEN_TY ‘_THEN ‘

tacREWRITE [defIdentity , defRunIdentity]

, tacCONJ ‘_THENL ‘

[tacGEN_TY ‘_THEN ‘

tacMATCH_MP inductionIdentity ‘_THEN ‘

tacREWRITE [defIdentity , defRunIdentity]

, _REPEAT tacGEN_TY ‘_THEN ‘

tacACCEPT thmTRUTH]]

The MONAD constant is defined as the conjunction of the monad laws, translated to HOL

propositions. This translation includes making type abstractions and applications in the laws

explicit, similar to how the GHC rewrite system requires pattern variables to be explicitly

bound in rules. The specific proof obligation for the Identity instance can be achieved

by supplying appropriate definitions for bind and return. Following from the definitions of

these methods shown in Figure 2.3, HaskHOL constants for the Identity constructor and

runIdentity destructor, shown in Listing 5.3, are introduced to the working theory. Using

these constants, a definition for the Identity monad instance is constructed, as shown in

Listing 5.22

Listing 5.3: A Definition of Identity in HaskHOL

defineType [str| Identity = IdentityIn A |]

newDefinition [str| Identity = \\ ’a. \ x:’a. IdentityIn x |]

newRecursiveDefinition recursionIdentity

[str| runIdentity (IdentityIn x) = x |]

2The str quasi-quoter prepares a String for HaskHOL’s parser, notably removing the need to escape
special characters.

101

proveConsClass consDef indThm thms =

tacREWRITE [consDef] ‘_THEN ‘ _REPEAT

(_TRY (tacCONJ ‘_THEN ‘ _REPEAT tacGEN_TY)

‘_THEN ‘ _TRY (tacMATCH_MP indThm)

‘_THEN ‘ tacREWRITE thms)

proveIDMonad =

proveConsClass defMONAD inductionIdentity

[defIdentity , defRunIdentity]

Figure 5.1: A More General Tactic for Constructor Classes

Included in this listing is a proof tactic for this term. The term is rewritten using the def-

inition of the MONAD constant to bring the instantiated monad laws into view. Each law is

separated from the rest via a conjunctive split (tacCONJ), its bound types are generalized

(tacGEN_TY), and the resultant subgoal is proved by rewriting (tacREWRITE). Given that the

definition of runIdentity depends on pattern matching against the Identity constructor, prov-

ing the left-identity law subgoal requires an extra step. Manual, rule induction is performed

to handle pattern matching by invoking the primitive recursion theorem for the Identity

type via the tacMATCH_MP tactic.

This proof tactic may seem daunting to those unfamiliar with HOL systems. However, it

is simply a Haskell value that can be manipulated in the same ways as any other Haskell

value. Specifically, the constant values that represent HOL theorems can be abstracted out

and tactic combinators can be used to make the structure more general. The proveConsClass

function shown in Figure 5.1 achieves this through judicious use of _TRY and _REPEAT. Utilizing

the more general theorem tactical, a user only needs to be able to identify three pieces of

information to complete their proof:

1. The definitional theorem for the constructor class.

2. The recursion theorem to use for induction.

3. The list of additional theorems to use for rewriting.

102

This proof procedure has two hiccups that prevent it from being fully generalized. First,

astute readers may have noticed that Listing 5.3 contained multiple constructors for the

Identity data type. Depending on where a constructor appears in GHC’s core language, its

most general type may or may not be universally quantified. HaskHOL’s method for type

definition, defineType, leaves constructors’ type variables globally free. This necessitates the

definition of an additional, smart constructor to introduce quantifiers when necessary.

The second problem is that not every constructor class proof will have the same induction

pattern. For proofs not requiring induction, an undefined value can be supplied for the

recursion theorem to intentionally fail, and therefore skip, that proof step. Proofs requiring

more complicated induction schemes, however, will require the user to modify the structure

of this tactic or develop a tactic of their own. Both of these issues will be addressed in more

detail in Chapter 6.

103

5.2 HaskHOL as a Plugin

The primary goal of this work is to mitigate or eliminate as many barriers to entry for

formal reasoning as possible. Rather than working at the source level, as many of the

related approaches do, the intermediate language of GHC is targeted. Working at the core

level of the compiler is beneficial for a number of reasons. Chief amongst them is that

using the compiler to desugar and simplify definitions to a core syntax allows for a more

direct translation to a corresponding higher-order logic. The resultant syntax this translation

needs to account for is comparatively simpler and almost exactly mirrors the term language

provided by HaskHOL. The following, additional benefits are also observed:

• The core syntax is extremely stable compared to the source syntax.

• Terms can safely be assumed to be well-typed and correctly constructed before trans-
lation.

• Type information is stored locally, simplifying translation.

• Integration with GHC, Cabal, and other system tools is significantly easier.

The final point listed above, simplicity of integration, is in large part thanks to GHC’s

compiler plugin architecture. A GHC plugin modifies the compilation phases of the compiler

pipeline with a function of type [CommandLineOption] -> [CoreToDo] -> CoreM [CoreToDo]. In

this signature, the abstract type CoreToDo represents a compilation pass, such that a plugin

author can add, remove, modify, and reorder passes as they please by manipulating the

[CoreToDo] argument. Thus, verification can be made a part of the compilation process

by inserting it as a new pass into the compilation pipeline at the desired point – before

simplification, after simplification, or at any alternative, intermediate step.

104

Listing 5.4: A Subset of the ModGuts Data Type

data ModGuts = ModGuts

{ mg_module :: Module -- The module itself

, mg_tcs :: [TyCon] -- Type constructors

, mg_insts :: [ClsInst] -- Class instances

, mg_fam_insts :: [FamInst] -- Family instances

, mg_patsyns :: [PatSyn] -- Pattern synonyms

, mg_rules :: [CoreRule] -- Rewrite rules

, mg_binds :: CoreProgram -- Bindings

}

The critical piece of any user-defined plugin is the function it uses to interact with a module.

This function is of the type ModGuts -> CoreM ModGuts. Aptly named, the ModGuts data type

stores all of the information contained in the “guts” of the module currently being compiled.

There are a number of fields in the ModGuts type that a verification plugin may be interested

in, a subset of which are shown in Listing 5.4. However, the translation from Haskell to

HaskHOL is primarily concerned with the CoreProgram value stored in the mg_binds field. As

can be inferred from the name of the field, this data type holds all the top-level bindings in

a module, stored as a list of variable and expression pairs. These expressions are values of

the core type CoreExpr that will be examined in more detail in the next section.

Ultimately, the required translation function will be of type CoreExpr -> HOLTerm, where

HOLTerm is HaskHOL’s abstract data type for HOL terms, as previously introduced in Chap-

ter 3. This function could be defined using the GhcPlugins module provided as part of the

GHC API. However, browsing this module’s documentation3 makes it clear that there would

be a significant amount of integration work to do before translation could even be attempted.

Instead, the Haskell Equational Reasoning Model-to-Implementation Tunnel (HERMIT) li-

brary is used to do most of the heavy lifting.

3https://downloads.haskell.org/~ghc/7.10.1/docs/html/libraries/ghc-7.10.1/GhcPlugins.

html

105

https://downloads.haskell.org/~ghc/7.10.1/docs/html/libraries/ghc-7.10.1/GhcPlugins.html
https://downloads.haskell.org/~ghc/7.10.1/docs/html/libraries/ghc-7.10.1/GhcPlugins.html

Figure 5.2: The HERMIT Framework

The HERMIT with the KURE

Originally built as a tool for interactively developing new optimization passes, HERMIT has

since evolved to serve as a generalized framework for constructing new compilation passes of

all forms. Figure 5.2, courtesy of Farmer et al., shows the key components of HERMIT [23].

At the root of HERMIT is the Kansas University Rewrite Engine (KURE), an EDSL for

strategic rewriting [78]. HERMIT specializes the primitive combinators of KURE to provide

generic traversals for GHC’s core data types, as indicated by the “GHC Core Support” box

in the aforementioned figure.

These traversals are structured by KURE’s Transform data type that abstractly models a

transformation from type a to monadic values of type m b, with a given context of type c:

data Transform c m a b = Transform { applyT :: c -> a -> m b }

For HERMIT, Transform is specialized by the following type synonym:

type TransformH a b = Transform HermitC HermitM a b

106

The HermitM monad is essentially GHC’s core monad, CoreM, augmented with error handling

as provided by KURE. There are additional effects structured by HermitM, but they are not

utilized by this work. The context for HERMIT transformations, HermitC, tracks all of the

bindings in a module from the top-level down. The context also tracks the location inside

of a module that a HERMIT computation is manipulating or accessing. These locations are

stored with the digital equivalent of a trail of breadcrumbs that leads back to the root of the

module. These paths of crumbs are an abstraction, again provided by KURE, that can also

be used to dictate how to traverse an expression for transformation or rewriting.

HERMIT provides a dictionary of navigations that can compute a path to a target location

in a module. The bindingOfT function, whose signature is shown below, returns the path to

the first binding it encounters whose variable satisfies a given predicate.

type LocalPathH = LocalPath Crumb

bindingOfT :: (Var -> Bool) -> TransformH CoreTC LocalPathH

Note that bindingOfT is itself a transformation that converts the constructors it encounters

to their corresponding Crumbs. Given that a path could traverse any type in ModGuts from

CoreProgram all the way down to CoreExpr, HERMIT defines sum types that bundle entire data

type hierarchies together. These sum types, including the CoreTC type used by bindingOfT,

are shown in Listing 5.5.

Listing 5.5: HERMIT’s Sum Data Type Hierarchy

data Core = GutsCore ModGuts

| ProgCore CoreProg

| BindCore CoreBind

| DefCore CoreDef

| ExprCore CoreExpr

| AltCore CoreAlt

data TyCo = TypeCore Type

| CoercionCore Coercion

data CoreTC = Core Core

| TyCo TyCo

107

As was mentioned previously, HERMIT was originally developed as an interactive tool. For

this reason, its plugin architecture is based upon yet another monad, HPM, whose primary

purpose is to structure user interaction:

hermitPlugin :: ([CommandLineOption] -> HPM ())-> Plugin

HERMIT provides a number of combinators to lift transformations into this monad; two of

which, query and at, are worth examining in more detail:

query :: (Injection ModGuts g, Walker HermitC g)

=> TransformH g a -> HPM a

at :: TransformH CoreTC LocalPathH -> HPM a -> HPM a

The query combinator converts a transformation to an HPM computation provided it satisfies

two requirements. First, the data type to be transformed must be defined in injection

with the ModGuts type. Second, this data type must be traversable by KURE combinators

when guided by a HermitC context. All of the previously shown sum types satisfy these

requirements.

The at combinator applies a given HPM computation at a specified location. This location is

provided to at as a transformation that computes the correct LocalPathH value. Given that

the CoreTC type is the most inclusive of the sum types, it is an obvious target for this path

transformation, hence its involvement with the previously shown bindingOfT transformation

When paired with the cmpString2Var function, bindingOfT makes for a clean and concise way

to target definitions of a given name. For example, the following computation would apply

a transformation to the binding that carries the intermediate representation of Identity’s

Monad instance:

at (bindingOfT . cmpString2Var $ "$fMonadIdentity")(query trans)

108

The types of the at and query combinators constrain the possible types of the example

transformation function, trans. Refining the statement from earlier in this section, this

translation is not of type CoreExpr -> HOLTerm, but rather TransformH CoreTC HOLSum, where

HOLSum is the sum of HaskHOL’s primitive data types that corresponds to CoreTC. Given that

the initial evaluations of this workflow are expression-level, not whole program, verifications,

no data types above CoreExpr in HERMIT’s hierarchy will be utilized. Thus, provided that

a transformation of type TransformH CoreExp HOLTerm can be defined, KURE’s Injection class

and HERMIT’s promotion combinators can be used to bridge the gap from CoreExpr to CoreTC.

The general technique for constructing such a transformation in HERMIT is demonstrated

by focusing on a “dummy” translation of variables.

HERMIT’s combinator for transforming CoreExpr variables is shown at the top of Listing 5.6.

A Var is essentially a wrapper for typed identifiers, capable of representing terms and types

both. The varT combinator lifts a transformation of identifiers into a transformation of

expressions that consist of a single variable occurrence. It unboxes a Var value, applies the

sub-transformation to its internal value, and extends the working context with a Crumb to

indicate that the transformation has descended into a variable. The dummy transformation

takes the name of an Id and uses it to create a new, variable HOL term of an arbitrary type.

Listing 5.6: Transforming Vars in HERMIT

varT :: TransformH Id b -> TransformH CoreExpr b

varT t = transform $ \ c -> \case

Var v -> applyT t (c @@ Var_Id) v

_ -> fail "not a variable."

dummy :: TransformH Id HOLSum

dummy = contextfreeT $ \ id -> Tm $

mkVar (name id) tyA

where name = pack . unqualified . varName

trans :: TransformH CoreExpr HOLSum

trans =

varT dummy

<+ appT trans trans (\ (Tm x) (Tm y) -> Tm (mkComb x y))

<+ ...

109

When varT is applied to dummy, a transformation of the desired type is produced. Note that

the varT combinator will fail if presented with a CoreExpr value not constructed with Var.

The cases for other constructors are handled by writing transformations for them and then

threading everything together with combinators that handle the exceptions. The example

in Listing 5.6 uses the (<+) combinator, the KURE equivalent of <|> from the Alternative

type class. The formal semantics for the complete translation function will be shown in the

next section and the implementation of this translation will be discussed in Chapter 6.

110

5.3 A Formalized Translation

The intermediate language of GHC is an implementation of System F↑
C [95], an extension

of System FC [86] that supports data type promotion. System FC is itself is an extension

of the the well known System F [74] that supports type-level equalities through coercion.

Following from previous discussions in Chapters 3 and 4, System F, and all of its extensions,

are necessarily more expressive than HaskHOL’s logic due to its consistent nature. Thus,

HaskHOL can only represent a subset of GHC’s core language.

The following list contains the assumptions made by the translation semantics presented in

this section. Collectively they define the current limitations of HaskHOL’s ability to reason

about Haskell programs, some of which were previously enumerated in Chapter 4:

1. Types are simply kinded, i.e. ? or k1 → k2, and/or are otherwise safe to ignore.

2. Reducing a type application results in a substitution or instantiation that obeys the
restrictions of HaskHOL’s polymorphism.

3. Casts and other coercions are discharged or otherwise removed before translation, e.g.
newtype definitions are replaced with equivalent data versions.

4. Binding groups can be reduced to a list of possibly self recursive, but not mutually
recursive, expressions.

5. All of the bindings in a group reside within a single module.

6. Constants of the language, primitives and user-defined alike, all map to analogous
constants in an existing HaskHOL theory.

Assumptions 1 and 2 are due to the previously covered limitations of HaskHOL’s type system.

Though there are HOL systems that can reason about kinds [43], HaskHOL currently lacks

that capability. As for the restrictions of HaskHOL’s polymorphism, they are in place

to maintain consistency of its logic; something that is critical for a proof system but not

necessarily important for a type system.

111

Assumption 3 is primarily due to the immaturity of the translation semantics. In practice,

the coercion of newtype values was the only type casting encountered by the evaluations to

be discussed in Chapter 6. At the time of this writing, it seems an acceptable compromise

to manually convert these definitions to data values and leave the translation of coercions as

possible future work. However, it should be noted that as more and more computation is

shifted to the type level in Haskell, coercions may become more prevalent in the intermediate

code that HaskHOL targets.

Assumption 4 is again due to a limitation of HaskHOL. Following from the logic of HOL

Light that it is based on, HaskHOL permits mutually recursive data types, but not mutually

recursive function definitions. Again, there are HOL systems that do have this capability [56],

but HaskHOL is not currently one of them.

Assumptions 5 and 6 are due to limitations and design choices of HERMIT and the GHC

plugin architecture. The only ModGuts value available to a plugin is the value for the module

currently being compiled. While there is likely a way to persist the necessary information

while compiling a sequence of modules, this technique would be infeasible for any body of

code that depends on a library whose source is not immediately available for recompilation;

programs depending on GHC’s base library would be the most obvious example. Addition-

ally, HERMIT does not currently provide combinators to transform the TyCon values that

store type definitions, so translating constants would be supported for terms only without a

sizable amount of additional work. Again, at the time of this writing, it seems an acceptable

compromise to depend on HaskHOL’s constant definitions for now, leaving the exploration

of alternative solutions as possible future work.

112

data Type

= TyVarTy Id

| AppTy Type Type

| TyConApp TyCon [Type]

| FunTy Type Type

| ForAllTy Id Type

data CoreExpr

= Var Id

| App CoreExpr CoreExpr

| Lam Id CoreExpr

| Type Type

Figure 5.3: GHC’s Core – Simplified

From GHC Core to HaskHOL

A simplified view of GHC’s core data types is shown in Figure 5.3. The Cast, Lit, and LitTy

constructors have been removed following from the previously enumerated list of assump-

tions. The Tick constructor has also been removed, as its primary purpose is annotating

information for profiling and debugging purposes, such that it is not relevant to this transla-

tion. Finally, the Case and Let constructors have been removed as both map quite directly to

meta-constructs in HaskHOL’s term language. This makes their translations both awkward

to formalize and comparatively uninteresting.

A corresponding, simplified view of the primitive data types of HaskHOL is shown in Fig-

ure 5.4. Constructors and constructor fields that are not critical to our translation have been

converted to simpler types or removed entirely. This has mainly resulted in the removal of

types that facilitated HaskHOL’s semi-stateless features, e.g. ConstTag, leaving behind a

term language very similar to that of HOL2P. Additionally, we have defined the HOLSum sum

type that mirrors HERMIT’s CoreTC type, minus coercions.

Figure 5.4: HaskHOL’s Primitive Types – Simplified

data HOLSum

= Tm HOLTerm | Ty HOLType | TyOp TypeOp

data TypeOp

= TyOpVar String

| TyPrim String Int

data HOLType

= TyVar String

| TyApp TypeOp [HOLType]

| UType HOLType HOLType

data HOLTerm

= Var String HOLType

| Const String HOLType

| Comb HOLTerm HOLTerm

| Abs HOLTerm HOLTerm

| TyComb HOLTerm HOLType

| TyAbs HOLType HOLTerm

113

Id to HOLSum

varType id→ ty x =

{
if (isId id) : Tm (V ar (varName id) ty)
otherwise : Ty (TyV ar (varName id))

}
id→ x

TyCon to TypeOp

x =

{
if (isFunTyCon con) : TyPrim “fun” 2
otherwise : TyPrim (tyConName con) (tyConArity con)

}
con→ x

Figure 5.5: Translating Ids and TyCons

Figure 5.5 defines the predicate-based translations for the Id and TyCon types. Term vari-

ables translate directly between language and logic. As was mentioned in the introductory

assumptions, when translating type variables their kinds are discarded such that only their

names are kept. When translating type constructors, everything is mapped to primitive type

operators in HaskHOL, making sure to handle the special case of the function type construc-

tor. Primitive type operators are used rather than variable operators so that the translation

can maintain and track the arity of types. Figures 5.6 and 5.7 define the translations for

the constructors of the Type data type. Translations not related to type application proceed

directly.

Figure 5.6: Translating Types, Part I

TyVarTy to HOLSum

id→ id′

TyV arTy id→ id′

ForAllTy to HOLSum

id→ Ty id′ ty → Ty ty′

ForallTy id ty → Ty (UType id′ ty′)

FunTy to HOLSum

ty1→ Ty ty1′ ty2→ Ty ty2′

FunTy ty1 ty2→ Ty (TyApp (TyPrim “fun” 2) [ty1′, ty2′])

114

AppTy to HOLSum

id→ Ty (TyV ar x) ty → Ty ty′

AppTy (TyV arTy id) ty → Ty (TyApp (TyOpV ar x) [ty′])

ty1→ Ty (TyApp op tys) ty2→ Ty ty2′

AppTy ty1 ty2→ Ty (TyApp op (tys++ [ty2′]))

TyConApp to HOLSum

op→ TyOp op′ x =

{
if (arity op′ = 0) : Ty (TyApp op′ [])
otherwise : TyOp op′

}
TyConApp op []→ x

op→ TyOp op′ for each i ∈ n, tyi → Ty ty′i
TyConApp op [ty1, ..., tyn]→ Ty (TyApp op′ [ty′1, ..., ty

′
n])

Figure 5.7: Translating Types, Part II

Non-constructor type application translations depend on whether the operator of the appli-

cation is a type variable or another application. In the case of a type variable, it is converted

to a type operator variable and a HOL type application is built. A variable type operator is

used rather than a primitive type operator for two reasons. First, the correct arity to give to

the operator is not known due to the erasure of kinds. Second, it makes type substitutions

performed when translating CoreExpr values slightly easier.

Constructor type application translations depend on the length of the argument type list.

When passing a constructor as an argument to a type application, GHC will pair it with an

empty type argument list in a TyConApp to satisfy the type of the CoreExpr Type constructor.

However, HaskHOL does not permit partial applications of type operators, so the transla-

tion must check to see if a type operator is actually nullary or not before handling such

applications. If the operator is nullary then the appropriate HOL type application is con-

structed, otherwise just the type operator itself is returned. Note that this requires adding

an additional translation case for App constructs to handle applying type operators.

115

Var to HOLSum

id→ id′

V ar id→ id′

Type to HOLSum

ty → ty′

Type ty → ty′

Lam to HOLSum

id→ id′ tm→ Tm tm′ x =

if (id′ = Ty ty) : TyAbs ty tm′

if (id′ = Tm id′′) ∧ ¬(isDict id′′)) :
Abs id′′ tm′

otherwise : tm′

Lam id tm→ Tm x

Figure 5.8: Translating CoreExprs, Part I

Figures 5.8 and 5.9 define the translations for the constructors of the CoreExpr data type.

The rules for translating Var and Type are trivial. The rules for translating App and Lam

values, however, are fairly complex. Given that the translation maps all constants to their

equivalent values in HaskHOL, type classes and other dictionary values do not themselves

need to be translated. Each of these constructors has a case that essentially erases dictionary

arguments or parameters accordingly, adjusting types as needed.

Figure 5.9: Translating CoreExprs, Part II

App to HOLSum

id→ Tm (V ar x (UType ty1 ty2)) ty → ty′

App (V ar id) (Type ty)→ Tm (V ar x [ty1 7→ ty′] ty2))

f → Tm f ′ ty → Ty ty′

App f (Type ty)→ Tm (TyComb f ′ ty′)

id1 → Tm id′1 id2 → Tm id′2 x =

if ¬(isDict id′2) : Comb id′1 id

′
2

otherwise : V ar name ty2

where id′1@(: ty1 → ty2)
where id′2@(name : ty1)

App (V ar id1) (V ar id2)→ Tm x

f → Tm f ′ a→ Tm a′

App f a→ Tm (Comb f ′ a′)

116

There are also additional rules for the App constructor to force the evaluation of type applica-

tions during translation where possible. This is done primarily because GHC’s core language

permits passing type constructors as arguments to term-level, type applications:

(x : forall _m. forall a b. _m a b)(->)

In the above term, the bound variable _m can be instantiated by any type constructor of kind

∗ → ∗, such that the example can be reduced to the following:

x : forall a b. a -> b

The HaskHOL equivalent is malformed for a number of reasons, though:

(x : % _m. % ’a ’b. (a, b)_m)[: (->)]

In addition to not being able to bind type operator variables, HaskHOL does not permit

partial type applications. Thus, attempting to supply the type (->) as an argument for

type application is impossible. The reduced term, though, can be represented without issue,

hence why the application is forced at translation time:

x : % ’a ’b. ’a -> ’b

While not necessary, the application of non-operator types are also forced. In most cases this

produces terms that more closely match HaskHOL constants, as the majority were defined

with the intention of matching their HOL Light definitions; a system that does not support

term-level type applications.

117

6 Evaluation

The goal of this chapter is to piece together the concepts from the preceding chapters to eval-

uate the feasibility and applicability of the verification workflow described in Chapter 2. This

evaluation is performed using a HERMIT plugin that implements the translation semantics

discussed in Chapter 5. This plugin was applied to examples from each of the motivating

problem classes, verification of type class laws and formal “re-verification” of existing test

cases, with both quantitative and qualitative results being gathered.

The sections of this chapter are organized as follows:

• Section 6.1 covers the low-level implementation details of the verification plugin itself.
Additionally, a general verification procedure that utilizes this plugin is prescribed.

• Section 6.2 uses this procedure to verify the example cases, displaying the results.
Following from the presentation of Section 6.1, multiple, intermediate representations
of each verification target is shown. Additionally, each verification is timed and any
outlying behavior is noted.

• Section 6.3 discusses the current state of the work, as framed by the results in Sec-
tion 6.2.

• Finally, Section 6.4 discusses potential future work, including my thoughts on possible
solutions for some of the previously discussed limitations of the translation semantics.

118

6.1 A HERMIT Plugin for Verification

This section will detail the implementation of a HERMIT-based plugin for verification. To

aid discussion, this implementation will be derived by following a verification of the monad

laws for the Identity data type; the example that his driven much of the content of this

dissertation. Recall that, due to current limitations of the integration with GHC, all rel-

evant definitions must be contained within a single module. Therefore, the first step to

a verification is to construct a satisfying module. For this specific case, a module must

contain definitions of the Identity type, the Monad class, and their intersection. A minimal

construction of this module is shown in Listing 6.1.

The remainder of the verification is carried out by the following procedure:

1. GHC’s intermediate representation of the target type class instance is translated.

2. The translated term is deconstructed into the definitions of the corresponding class
methods.

3. Any bindings within these definitions that are locally available are expanded with their
own translations.

4. The final versions of these definitions are recombined, replacing the dictionary con-
structor with the Monad constant as the head term of the application.

5. The resultant term is proved correct.

Listing 6.1: The Monad Module

{-# LANGUAGE ExplicitForAll # -}

module Monad where

import Prelude hiding (Monad , return , (>>=))

data Identity a = Identity a

runIdentity :: Identity a -> a

runIdentity (Identity a) = a

class Monad m where

(>>=) :: m a -> (a -> m b) -> m b

return :: a -> m a

instance Monad Identity where

return a = Identity a

m >>= k = k (runIdentity m)

119

Figure 6.1: hermit’s View of the Monad.hs Module

The hermit executable provided by the HERMIT library is an invaluable tool that can help

at each step of this process. This program compiles a module, launches HERMIT’s interac-

tive shell, and populates a context with information pulled from the module’s ModGuts. An

example execution of hermit on the Monad.hs module is shown in Figure 6.1. Using this tool,

$fMonadIdentity is identified as the name of the binding that corresponds to the target type

class instance. The names of other type class bindings will follow this general pattern of

$ < var >< ClassName >< InstanceType >, e.g. $fMonadMaybe, $fMonadEither, etc.

A HERMIT user can expand this binding and examine its definition with the binding-of

command. Note that this command is the interactive equivalent of the previously discussed

bindingOfT transformation. The definition of $fMonadIdentity consists of the application of

four terms: the dictionary constructor, the instance type1, and the two definitions for the

Identity monad’s methods. As their names and their locations within this dictionary would

imply, the $c>>= and Identity terms are the definitions for (>>=) and return accordingly.

1HERMIT’s default pretty-printer replaces type applications with triangles for brevity’s sake.

120

Querying for information about the binding group with the info command reveals that

Identity is a globally free identifier. This, paired with the fact that its name has a leading

capital letter, is a good indication that it is a constructor for a data type. Due to the previ-

ously mentioned limitations of HERMIT relating to type constructors, no other information

about this identifier can be retrieved, and no other translation work can be done.

The $c>>= term refers to another local binding in scope, so additional work can be done there.

After backtracking to the top-level of the module, the binding for $c>>= can be expanded

to see its definition. Unless the current working theory already has a constant that maps

to Identity’s instance for (>>=), this expression must be translated in order to produce a

verifiable proof obligation:

Note that the translation of the above expression will match with the bind definition supplied

as part of the proof obligation in Listing 5.1 from Chapter 5; a good indication that the

verification is on the right path. In fact, translation produces an identical obligation, at

least visually. Careful readers probably noted that the translation semantics presented in

the previous chapter never return constant terms. It is up to the users of the translated terms

to substitute in constants for variables where appropriate. This substitution is relatively easy

to mechanize thanks to the combinators and methods provided by HERMIT and HaskHOL.

One possible implementation for variable substitution is shown in Listing 6.2.

Listing 6.2: Substituting Constants for Variables

repVar :: [(String , HOLTerm)] -> String -> HOLType

-> HOL Proof thry HOLTerm

repVar tmmap i ty = (tryFind (\ (key , Const name ty ’) ->

if key == i && isJust (typeMatch ty ’ ty ([], [], []))

then mkMConst name ty

else fail "") tmmap) <|> (return $! mkVar i ty)

121

The repVar function works by traversing an association list of String and constant HOLTerm

pairs, looking for all terms indexed by a given variable name. These constants are provided

in the same form they are stored in the theory context, with their most general type. Thus,

lookups also compute a type match in addition to checking equality with the indexing names.

This allows variable substitution to accept multiple possible replacements for a given name,

supporting the previously mentioned need to have versions of constants with, and without,

quantified types.

Given that all of the constant names in this example mirror their HaskHOL mappings, the

term map provided to repVar can simply be the list of constants tracked in the theory context,

as returned by the constants function. However, to account for cases when the names might

not line up, this plugin also accepts an auxiliary, user-provided term map. Assuming this

mapping is stored as an external configuration file, the following functions can be used to

parse it and join it with the relevant constants from the current working theory context:

-- Prepare the constant list

prepConsts :: String -> HPM (Map Text b) -> HPM [(Text , b)]

prepConsts file mcnsts =

do cmap <- liftIO $ parse file

cnsts <- mcnsts

let cnsts ’ = catMaybes $ map (\ (x, y) ->

do y’ <- mapLookup y cnsts

return (x, y’)) cmap

return (cnsts ’ ++ mapToList cnsts)

-- Lift HOL computations into the HPM monad

liftHOL :: HOL Proof HaskellType a -> HPM a

liftHOL m = liftIO $ runHOLProof True m ctxtHaskell

-- Parse the term constants from a file

prepConsts "terms.h2h" $ liftHOL constants

122

If a matching constant skeleton is found by the search in repVar, the mkMConst method is used

to construct an instantiation of the constant that matches the provided type. If no match

is found, a variable of the provided name and type is returned instead. This behavior fits

nicely as a reconstruction function in a KURE transformation of HOLTerm values:

-- The type of the transformation

type TransHOL thry a b = Transform (Context thry) IO a b

-- Transformation to replace variables using ’repVar ’

replaceTerm :: [(String , HOLTerm)] -> TransHOL thry HOLTerm HOLTerm

replaceTerm tmmap = repTerm

where repTerm :: TransHOL thry HOLTerm HOLTerm

repTerm =

contextfreeT (\ tm@Const {} -> return tm)

<+ hvarT (contextfreeT return) (contextfreeT return) repVar

<+ ...

Structuring replaceTerm with the HOL monad and providing it with a HaskHOL theory context

allows for the safe and sound use of HOL computations, e.g. mkMConst. The definition of other

transformations, such as the replacement of type operator variables with type constants,

follows similarly. This entirety of the Haskell-to-HOL transformation process requires three

major passes:

1. The initial translation from GHC’s intermediate representation to a HaskHOL term.

2. The replacement of type variables with matching type constants.

3. The replacement of term variables with matching term constants.

123

Listing 6.3: Translation and Replacement Passes

trans :: TransformH CoreTC HOLTerm

pass :: HOLTerm -> HPM HOLTerm

pass ctxt tm = liftIO $

do tm’ <- applyT (replaceType tyMap) ctxtHaskell tm

applyT (replaceTerm tmMap) ctxtHaskell tm ’

consClassPass :: HOLTerm -> HPM HOLTerm

consClassPass tm =

do liftIO $ putStrLn "Translating Arguments ..."

let (_, args) = stripComb tm

args ’ <- mapM trans ’ args

liftIO $ putStrLn "Building Class Instance ..."

monad <- liftHOL $ mkConstFull "MONAD" ([] ,[] ,[])

maybe (fail "Reconstruction of class instance failed.")

return $ foldlM mkIComb monad args ’

where trans ’ :: HOLTerm -> HPM HOLTerm

trans ’ x@(Var name _) = pass =<< query

(do lp <- lookupBind $ unpack name

case lp of

Nothing -> return x

Just res -> localPathT res trans)

trans ’ x = pass x

lookupBind :: String

-> TransformH CoreTC (Maybe LocalPathH)

lookupBind x = catchesT

[liftM Just . bindingOfT $ cmpString2Var x

, return Nothing

]

Listing 6.3 shows how these passes are composed to transform a constructor class instance.

In this listing, the first signature, trans, is the transformation from CoreTC to HOLTerm defined

by the translation semantics. The second definition, pass, sequences the replacement of type

constants and term constants. The ordering of these replacements is critical given that the

replacement of term constants depends on type matches being correctly computed. The

third definition, consClassPass, combines the two previous definitions in a way specialized for

constructor classes. This function destructs a type class instance, translates its constituent

methods, and reconstructs it using the appropriate constant term.

124

The translation of the class methods is controlled by the trans’ function which builds in

more finely grained exception handling than HERMIT’s base set of combinators provides.

If a binding can be found for a method’s name then an additional translation is performed,

otherwise only the replacement pass is performed. This allows the trans’ function to handle

locally bound ($c>>=) and globally free (Identity) methods both, providing some uniformity

to the definition of the plugin. Note that additional translations are only performed one level

deep. In this example, runIdentity will not be replaced with its definition as it is assumed

that it has a matching constant in the HaskHOL theory that provides the definition of the

Identity type.

The entirety of the evaluation plugin’s implementation, including the definition for the trans

function, is included in Addendum A as a reference. The major steps it follows are concisely

explained below, followed by an example execution of the plugin.

First, the user-provided type and term maps are parsed and prepared:

tyMap <- prepConsts "types.h2h" $ liftHOL types

tmMap <- prepConsts "terms.h2h" $ liftHOL constants

Next, GHC’s intermediate representation of the verification target is translated:

tm <- at (lookupBind "$fMonadIdentity") $ query trans

The resultant term is transformed by the secondary translation and replacement pass:

tm ’ <- consClassPass tm pass

Finally, the verification is completed using a tactic specified by the user:

tacMonadIdentity :: HaskellCtxt thry => Tactic cls thry

tacMonadIdentity = proveConsClass defMonad

inductionIdentity

[defIdentity , defRunIdentity]

liftHOL $ printHOL =<< prove tm ’ tacMonadIdentity

125

HaskHOL provides a method for safe, run-time interpretation of string values as HOL com-

putations. This allows a user to specify the required proof tactic in the same way they

would declare the verification target and other configuration options. The plugin used for

the evaluations in the next section parses these options from a configuration file contained

in the same directory as the target module. An example configuration file tailored to this

specific verification is shown in Listing 6.4.

Listing 6.4: An Example Verification Configuration File

binding: $fMonadIdentity

bindingType: ConsClass

class: Monad

proofType: Tactic

proofModule: HaskHOL.Lib.Haskell

proofName: tacMonadIdentity

As the plugin performs a verification, a user’s terminal updates them as each step in the

process is completed:

> ghc --make Monad.hs -fforce -recomp -O2

-fplugin=HaskHOL.Haskell.Plugin

...

> Parsing constant mappings ...

> Translating from Core to HOL ...

> Translating Arguments ...

> Building Class Instance ...

> Proving ...

> |- MONAD (\\’a ’b.(\ m k . k (runIdentity m))) Identity

If the verification is successful, a theorem is displayed, demonstrating the correctness of the

generated proof obligation. If the verification fails, GHC throws an exception, just as it

would for any other compilation error.

126

6.2 Verification Results

This section contains the results of example verifications drawn from the two motivating

problem classes introduced in Chapter 2. For each example, the following information is

shown:

• The Haskell module containing the relevant source-level definitions.

• The associated GHC core-level definitions, as produced by the hermit tool.

• The configuration file required by the verification plugin.

• The HaskHOL proof obligation generated by the verification plugin.

• An average total verification time and average isolated proof time.

All timing metrics are recorded using an Apple Macbook Pro laptop with the following

configuration:

Generation Retina, Mid 2012
Processor 2.6 GHz Intel Core i7
Memory 8 GB 1600 MHz DDR3
Operating System OS X 10.10.2

The average total verification time is the real time reported by the following command,

averaged over ten executions:

time ghc --make Monad.hs -fforce-recomp -O2 -fplugin=HaskHOL.Haskell.Plugin

The average isolated proof time is the time reported by ghci using the :seti+s command.

The proof effort is isolated by timing the evaluation of the prove method applied to a pre-

constructed term and tactic matching those used by the plugin, again averaged over ten

executions.

It should be noted that using two different mechanisms for timing makes the results not

directly comparable. The average isolated proof time is intended to be used only as an

approximation of the amount of total verification time inherited from the proof effort.

127

A Case Study in Verifying Type Class Laws

• Identity Functor

• Module:

module Functor where

import Prelude hiding (Functor , fmap)

data Identity a = Identity a

runIdentity :: Identity a -> a

runIdentity (Identity a) = a

class Functor f where

fmap :: (a -> b) -> f a -> f b

instance Functor Identity where

fmap f id = Identity (f (runIdentity id))

• Core:

Node: Module

Constructor: ModGuts

Free global identifiers: Identity , D:Functor

Local bindings in scope:

$cfmap : 0$TOPLEVEL

$fFunctorIdentity : 0$TOPLEVEL

runIdentity : 0$TOPLEVEL

$cfmap = λ 4 4 f id → Identity 4 (f (runIdentity 4 id))

$fFunctorIdentity = D:Functor 4 $cfmap

• Configuration:

binding: $fFunctorIdentity

bindingType: ConsClass

class: Functor

proofType: Tactic

proofModule: HaskHOL.Lib.Haskell

proofName: tacFunctorIdentity

Prelude Term Mappings

("Identity", "IdentityIn")

• Proof Obligation:

Functor (\\’a ’b. (\ f id . IdentityIn (f (runIdentity id))))

• Performance:

Average Total Verification Time 18.23s
Average Proof Time 8.90s

128

• Identity Monad

• Module:

{-# LANGUAGE ExplicitForAll # -}

module Monad where

import Prelude hiding (Monad , return , (>>=))

data Identity a = Identity a

runIdentity :: Identity a -> a

runIdentity (Identity a) = a

class Monad m where

(>>=) :: forall a b. m a -> (a -> m b) -> m b

return :: a -> m a

instance Monad Identity where

return a = Identity a

m >>= k = k (runIdentity m)

• Core:

Node: Module

Constructor: ModGuts

Free global identifiers: Identity , D:Monad

Local bindings in scope:

$c >>= : 0$TOPLEVEL

$fMonadIdentity : 0$TOPLEVEL

runIdentity : 0$TOPLEVEL

$c >>= = λ 4 4 m k → k (runIdentity 4 m)

$fMonadIdentity = D:Monad 4 $c >>= Identity

• Configuration:

binding: $fMonadIdentity

bindingType: ConsClass

class: Monad

proofType: Tactic

proofModule: HaskHOL.Lib.Haskell

proofName: tacMonadIdentity

• Proof Obligation:

Monad (\\’a ’b. (\ m k . k (runIdentity m)))Identity

• Performance:

Average Total Verification Time 21.57s
Average Proof Time 13.68s

129

• Maybe Monad

• Module:

{-# LANGUAGE ExplicitForAll # -}

module Monad where

import Prelude hiding (Maybe (..), Monad , return , (>>=))

data Maybe a = Nothing | Just a

class Monad m where

(>>=) :: forall a b. m a -> (a -> m b) -> m b

return :: a -> m a

instance Monad Maybe where

return a = Just a

Nothing >>= k = Nothing

(Just x) >>= k = k x

• Core:

Node: Module

Constructor: ModGuts

Free global identifiers: Nothing , Just , D:Monad

Local bindings in scope:

$c >>= : 0$TOPLEVEL

$fMonadMaybe : 0$TOPLEVEL

$c >>= = λ 4 4 ds k →
case ds of wild 4

Nothing → Nothing 4
Just x → k x

$fMonadMaybe = D:Monad 4 $c >>= Just

• Configuration:

binding: $fMonadMaybe

bindingType: ConsClass

class: Monad

proofType: Tactic

proofModule: HaskHOL.Lib.Haskell

proofName: tacMonadMaybe

Prelude Term Mappings

("Just", "JustIn")

• Proof Obligation:

Monad (\\’a ’b. (\ ds k .

match ds with Nothing -> Nothing | JustIn x -> k x)) Just

• Performance:

Average Total Verification Time 2m41.20s
Average Proof Time 1m45.62s

130

A Case Study in Formalizing Test Suites

• List Test

• Module:

{-# LANGUAGE TemplateHaskell # -}

module List where

import Test.QuickCheck

myrev :: [a] -> [a]

myrev [] = []

myrev (x:xs) = myrev xs ‘myapp ‘ [x]

myapp :: [a] -> [a] -> [a]

myapp [] ys = ys

myapp (x:xs) ys = x : myapp xs ys

class MyEq a where

myeq :: a -> a -> Bool

instance MyEq a => MyEq [a] where

myeq [] [] = True

myeq (x:xs) (y:ys)

| x ‘myeq ‘ y = myeq xs ys

| otherwise = False

myeq _ _ = False

instance MyEq Bool where

myeq True True = True

myeq False False = True

myeq _ _ = False

prop :: MyEq a => [a] -> [a] -> Bool

prop xs ys = (myrev (xs ‘myapp ‘ ys)) ‘myeq ‘ (myrev ys ‘myapp ‘ myrev xs)

return []

main = $quickCheckAll

• Core:

Node: Module

Constructor: ModGuts

Free global identifiers: void#, :, False , [], True , Eq#, (,), (,,),

tacMATCH_ACCEPT , myeq , quickCheckResult , thmREVERSE_APPEND , D:MyEq ,

$fHOLThmRepHOLclsthry , runQuickCheckAll , $fTestableProperty

Local bindings in scope:

$cmyeq : 0$TOPLEVEL

$cmyeq : 0$TOPLEVEL

$fMyEq [] : 0$TOPLEVEL

$fMyEqBool : 0$TOPLEVEL

prop : 0$TOPLEVEL

proof : 0$TOPLEVEL

myrev : 0$TOPLEVEL

myapp : 0$TOPLEVEL

main : 0$TOPLEVEL

prop = λ 4 $dMyEq →
let $dMyEq = $fMyEq [] 4 $dMyEq

in λ xs ys →
myeq 4 $dMyEq (myrev 4 (myapp 4 xs ys))

(myapp 4 (myrev 4 ys) (myrev 4 xs))

131

• Configuration:

binding: prop

bindingType: Test

proofType: HOLThm

proofModule: HaskHOL.Lib.Lists

proofName: thmREVERSE_APPEND2

Prelude Type Mappings

("Bool", "bool")

("[]", "list")

Prelude Term Mappings

("myrev", "REVERSE")

("myapp", "APPEND")

("myeq", "=")

• Proof Obligation:

!!’a. !(xs: ’a list) ys.

REVERSE (APPEND xs ys) = APPEND (REVERSE ys) (REVERSE xs)

• Performance:

Average Total Verification Time 20.47s
Average Proof Time 2.55s

132

6.3 Observations

The example verifications contained in Section 6.2 are ordered based on their respective

complexities. The first, and simplest, example is a verification of the functor laws for the

Identity type. Given that this data type was previously covered, but functors were not,

HaskHOL’s definition of the Functor constant is shown below to aid discussion:

Functor (fmap : % ’A ’B. (’A -> ’B) -> ’A _F -> ’B _F)

= ((!! ’A. fmap (I:’A -> ’A) = I) /\

(!! ’A ’B ’C. ! (f:’B -> ’C) (g:’A -> ’B).

fmap (f o g) = fmap f o fmap g))

Just like the Monad class, the definition of the Functor class is borrowed from category theory.

A data type is a functor if it has a structure preserving traversal, referred to as its functor

map or fmap, that applies a given function to each element in a set of values grouped by the

type. The List type is the most commonly cited example of a functor, as its map operation

is fmap specialized for lists.

As is shown in the definition above, the fmap function has two laws it should obey. The

first states that fmap is identity preserving, such that mapping the identity function, repre-

sented by the constant I in HaskHOL, over a functor is equivalent to applying the identity

function directly. The second law states that fmap is distributive over function composition,

represented by the infix o operator in HaskHOL.

As was the case with its monad instance, the Identity type is the simplest possible functor;

it has only a single constructor that can hold only a single value. These instances are

similar enough that both verifications are performed using the same general proof tactic for

constructor classes, proveConsClass, that was defined back in Chapter 5. When compared

with the previously seen verification of the monad laws for Identity there is only one major

difference: the internal constructor for the type is used in the definition of the class’s method.

133

This necessitates providing an additional term mapping when performing the verification.

Given the definition of the substitution function repVar shown in Listing 6.2 in Section 6.1,

the net impact of this change is that a superfluous type matching may be performed based

on the ordering of constants in the provided term map. This may present a problem for

the construction of very large proof obligations, however, in this case the added computa-

tion seems to be relatively inconsequential. When comparing the verification times of the

functor laws and monad laws for Identity, both the average total verification time and the

approximated average proof time are within seconds of each other.

Serving as a contrasting example, the verification of the monad laws for the Maybe type takes

approximately eight times as long as for the Identity type. The majority of this time is

spent conducting the proof, though the construction of the proof obligation also takes an

alarming amount of time; almost a full minute compared to roughly ten seconds for the other

constructor class examples. This obligation is notably different from the others due to its

inclusion of derived term constructs to represent a pattern-matching case statement.

When these derived terms are expanded by their definitions, such that the proof obligation

is expressed using only primitive constructors, the resultant term is significantly larger than

those of the other examples. Thus, some amount of additional construction and proof time is

to be expected, but not to the degree that was observed. Clearly, this example demonstrates

a major inefficiency in the HaskHOL system that needs further investigation. Additional

constructor class verifications were not attempted past this, as pattern matching is such a

critical component of functional programming that I could not think of a non-trivial example

that would not be affected by this issue.

134

The final example included in Section 6.2 is a formal “re-verification” of a test case corre-

sponding to the property shown in Listing 2.2 from Chapter 2. Following from the technique

described in that chapter, this test was prepared as a polymorphic proposition that could

be monomorphised and tested using the QuickCheck library [17]. In order to avoid the

previously mentioned issues with pattern matching, new versions of the reverse and append

operations were defined, myrev and myapp respectively, to exactly match those provided by

HaskHOL’s list theory. This allows the plugin to focus on translating just the test case, prop.

Much like constructor class instances require a specialized pre-processing pass in order to

construct a valid proof obligation, so do test cases. After erasing dictionary arguments and

forcing the evaluation of type applications, as the translation semantics from Chapter 5

dictate, the prop test is reduced to a functional term:

\ xs ys. (myrev (myapp xs ys))= (myapp (myrev ys)(myrev xs))

The QuickCheck library tests this function by providing a randomized set of input data for

xs and ys, effectively simulating an implicit universal quantification of these arguments. In

order to verify this term with HaskHOL, these quantifications must be made explicit:

let (bvs , bod) = stripTyAbs tm

(bvs ’, bod ’) = stripAbs bod in

do x <- pass bod ’

bvs ’’ <- mapM pass bvs ’

liftHOL $ flip (foldrM mkTyAll) bvs =<<

listMkForall bvs ’’ x

The above code performs this quantification by stripping the term of any bound variables,

term and type both, and applying the translation and replacement transformation, pass,

to the remaining body. Afterwards, the previously stripped variables are reintroduced, this

time bound by universal quantifiers.

135

The overall term construction process for this example takes approximately twice as long as

those of the constructor class verifications of the Identity type. However, it is not immedi-

ately clear if this additional time is due to the need to quantify bound variables or because

of the increased number of term and type mappings required by the example. In either case,

the additional cost should scale linearly with the number of bound variables or the number

of replacements, such that it won’t be a dominating factor in larger verification efforts.

Given that QuickCheck tests do not follow any general form beyond being testable functions,

they can not all share a general proof tactic like constructor classes can. Proof search tactics,

like tacMESON, could be used, but their successful application is not guaranteed. Rather, I

elected to extend the capabilities of the verification plugin to allow the user to provide a

pre-constructed theorem as an alternative to a proof tactic, as is done in this case. This

theorem is paired with the tacACCEPT tactic, such that the only proof computation that needs

to be performed is to check that the theorem concludes a term α-equivalent to the obligation.

This is why the average proof time for this example is so comparatively short.

136

6.4 Future Work

The observations in this previous section make a key point painfully obvious – the success of

this verification workflow is critically dependent on the formal reasoning tool it utilizes. In

that regard, all of the potential paths for future work are based on a desire to improve the

reasoning capabilities of the HaskHOL proof system in order to enable verification of larger

and more complex bodies of Haskell code.

The most apparent, lingering issue with the HaskHOL system was demonstrated by the

verification of the monad laws for the Maybe data type – manipulating terms of non-trivial

complexity is currently a prohibitively time-consuming process. The domain of these terms

does not seem to be of importance, only that they are constructed with derived constants

that expand to significantly large compositions of primitive constructors.

Proofs of terms with match statements, let bindings, complex arithmetic expressions, etc.

all take orders of magnitude longer to complete in HaskHOL than in algorithmically com-

parable systems. The good news, though, is that up to this point practically no attempt

has been made to optimize HaskHOL outside of its logical kernel, so its inefficiencies are of

no particular surprise. Provided with enough time, I am confident that I can significantly

improve HaskHOL’s performance, pushing its limitations beyond the boundary currently

witnessed by the Maybe monad verification.

Speaking of limitations, Chapter 5 contains an enumerated list of the currently known defi-

ciencies of the semantics that define the translation from Haskell to HaskHOL. These open

problems are split roughly down the middle, with half being due to limitations of HaskHOL’s

foundational logic and the other half being due to the immaturity of the work. My research

that has been best received up to this point was the original formulation of HaskHOL’s logic,

so I am looking forward to pushing its evolution and development in new ways.

137

Specifically, I believe that with relatively minor changes to the representation of term-level

type abstractions and type combinations, the binding and application of type operators would

be admissible in the logic. This would be a big step in simplifying the presented translation

semantics and would allow terms to be represented more closely to their original Haskell

constructions. An extension of HaskHOL’s polymorphism to the kind level, like the related

HOL-Omega [43] system has, would move things even further in this direction. Extending

the translation semantics to handle coercions may or may not also require a modification of

HaskHOL’s logic. Unfortunately, I have lacked the time to further examine this problem.

The remaining limitations of the translation are consequences of the immaturity of this work.

The previously mentioned efficiency problems unfortunately lie in the critical path of im-

plementing support for general recursive functions in HaskHOL. As such, its capability to

reason about recursive functions is limited to those with relatively simple inductive defini-

tions. Similarly, there are a significant number of types and functions that HaskHOL cannot

currently reason about simply because corresponding theories have not been developed for

the system. It is my intention to address this problem by either extending the current Haskell

theory for HaskHOL or exploring an integration with the OpenTheory tool [49]. This would

allow HaskHOL to take advantage of theories that already exist for other HOL systems.

The remaining work I would like to pursue is mainly a collection of “quality of life” improve-

ments for the verification plugin. Currently, the plugin is quite obviously designed and tuned

for the specific examples included in this dissertation. Deeper translations of Haskell terms

are not performed because they are not required, configuration options are limited because

there exists only two problem classes and two styles of proof, and augmenting the plugin to

support a new problem class, or really modifying it in any way, requires recompilation of

the entire package it is included in. All of these problems should be mitigated, or entirely

eliminated, by wrapping the plugin in a user interface with a more robust set of configuration

options.

138

7 Related Work

In this chapter I do my best to constrain the related work into a concise presentation split

into two categories, each tied to one of the dominant chapters of the dissertation.

• Section 7.1 presents the work related to Chapter 4, focusing on the innumerable other
theorem provers that I have encountered during my development of HaskHOL.

• Section 7.2 presents the work related to Chapter 5, focusing on comparable approaches
to verifying functional programs that use formal proof in at least some capacity.

139

7.1 Related Theorem Provers

Before I compare HaskHOL to the many leaves on the HOL theorem prover family tree, I

think it is only appropriate to extend my sincere gratitude to the developers of each and

every one of those systems. Almost the entirety of my knowledge of higher-order logic and

theorem proving in general was gained by studying the implementations of these systems

and their supporting publications. Without the work that came before it, HaskHOL would

quite literally not exist today.

At the root of this tree that HaskHOL is now a proud part of is Milner, Paulson, Gordon,

et. al’s work on the early LCF systems from which HOL was born [65, 34, 71]. The trunk of

that tree has since split into three major branches, each well represented today by a proof

system in popular use.

The main branch follows the natural evolution of Gordon’s original HOL system [32]. The

later systems in this lineage, HOL90 and HOL4 [81], were precipitated by a move to Standard

ML as their implementation language. HOL4 is widely considered to be today’s de facto

standard of a HOL theorem prover, serving as the basis of experimentation for a number of

extensions of the HOL logic. The previously cited HOL-Omega system is the result of one

such experiementation, the extension of HOL4 with a kind system [43].

Parallel to the development of HOL4, John Harrison followed an alternative, lightweight

approach to implementing a HOL theorem prover. The resultant proof system, HOL Light,

is HaskHOL’s primary source of inspiration [41]. Much like HOL4, HOL Light has also

served as a basis for experimentation. HaskHOL’s other major sources of inspiration, Freek

Wiedijk’s Stateless HOL [93] and Norbert Völker’s HOL2P [90], are two such examples.

140

The third and final branch is occupied by the Isabelle proof system [69]. If HOL4 is the

direct descendent of Edinburgh LCF then Isabelle, following in the spirit of Cambridge LCF,

is its close sibling. Isabelle separates itself from other HOL proof systems by serving as a

more general logical framework from which more complicated logics can be built upon. In

addition to HOL, Isabelle’s theory libraries notably support reasoning with first-order logic,

set theory, and domain theory. A more thorough comparison of HaskHOL with all of these

proof systems, focused on their low-level implementations, was included in Chapter 4.

Aside from HOL, there are a number of other logics that theorem provers use to frame

their primitive methods of inference. One such example, the calculus of constructions

(CoC) [19], was previously mentioned in Chapter 3 as the ultimate vertex of Barendregt’s

lambda cube [9]. The inductive extension of CoC serves as the foundational logic of the Coq

theorem prover [87].

Coq’s notion of universes is used to assert a hierarchy of types, allowing for a significantly

more complex, but still consistent, type system than HOL provers can admit. Specifically,

Coq’s inclusion of dependent types is frequently touted as one of its key features. Where

as HOL systems typically conduct proof through some form of equational reasoning, Coq

instead encodes propositions with its type system and proves them by providing a term that

inhabits that type. Per the Curry-Howard Isomorphism, Coq’s method of proof is the logical

correspondent of type-checking [83].

There are a number of other systems that dwell in the dependent type space. Cayenne [4] and

Epigram [63] follow more traditional implementations of functional languages with dependent

types added on top. However, relative new comers to the field, Agda [70] and Idris [12], are

blending the line between language environment and proof environment.

141

On the fringe of being related to HaskHOL are proof systems like PVS [20], NuPRL [57], and

ACL2 [51]. PVS shares an equational reasoning approach to theorem proving, however, it

differs from the HOL family of provers in that it is not particularly concerned with guaran-

teeing the soundness of its logical kernel, i.e. it is not implemented following the traditional

LCF style. NuPRL is an LCF-style system, however, its basis in intuitionistic type theory

places it quite logically distant from HOL. ACL2 is an almost equally far distance in the

opposite direction; based on a first-order logic, it is closer to hybrid systems like Agda and

Idris than it is HaskHOL.

Similarly, a number Haskell-specific proof systems are cropping up that are related to

HaskHOL only because of the language they target. The ZENO prover [82] attempts to

automatically construct proofs of attribute properties by finding chains of equivalences be-

tween Haskell terms. If a proof is found, it is reconstituted as an Isabelle specification for

further checking. Like HaskHOL, it operates at the intermediate, compiler level.

Microsoft’s HALO system [91] has similar goals, however, it is not itself a prover. HALO

simply structures the translation from Haskell to first-order logic using a denotational se-

mantics. Once in a FOL representation, the verification work is passed off to another system.

142

7.2 Related Verification Efforts

Possibly the closest related work to the verification workflow presented in this dissertation is

a recent extension of HERMIT itself. HERMIT has always supported equational reasoning,

insomuch that it could be used to mechanize the rewriting of Haskell terms. This reasoning

was extremely restricted, though, as it could only be initiated from existing, not arbitrary,

terms. Additionally, this reasoning was necessarily destructive because HERMIT had no

notion of theorems or saved proofs. A rewrite could be saved as a script, however, the only

way to “prove” it correct was to apply it and actually transform a term into its goal state.

When the GHC rewrite rule system was changed to permit inactive rules, it provided HER-

MIT with a source of core expressions that could be modified without affecting anything

else in the compilation environment. HERMIT’s rewrite engine was extended to allow direct

reasoning over these rules, and a notion of lemmas was formalized to act as proof objects

that could be saved and reused as attestations of equivalence [77]. Essentially, HERMIT

lemmas were designed and implemented to provide a mechanism for safe and verified term

rewriting.

One of the biggest differences between HaskHOL’s logic and HERMIT’s logic is that HER-

MIT’s implementation of equational reasoning eschews the typical concerns of soundness

in favor of practicality. Additionally, the expressivity of HERMIT’s lemmas is significantly

limited compared to the term languages of HaskHOL and other more general proof systems.

For example, HERMIT lemmas can only express equivalences, not implications or any other

statements based on non-equational, propositional connectives. That being said, the early

work cited above would seem to indicate that HERMIT’s extended equational reasoning

system works well for its intended purpose.

143

The Haskabelle tool cited in the introduction is likely the next closest piece of related work.

Like HaskHOL and HERMIT, the goal of Haskabelle is to facilitate equational reasoning of

Haskell programs. The principal difference, though, is that Haskabelle operates at the source

level, rather than at the intermediate level. The primary advantage of working at the source

level is that the resultant specification and proof terms more closely resemble the original

implementation. This advantage comes at a steep cost, though, as the Haskell programming

language, or more specifically the GHC implementation of it, is constantly changing and

adding new syntax that must be accounted for. Comparatively, the core language of GHC

changes at a much slower rate.

The secondary consequence of working with Haskabelle is that it requires your verifications

to be performed with the Isabelle system. This is not intended as an insult or backhanded

comment about that system, it is simply a statement of fact. Isabelle is an incredibly

impressive proof system, however, its reasoning capability is significantly overkill for most

verifications that I care about at this point in time. It is my opinion simple verifications

should be completed with simple tools, and that the larger, more complex systems should

be reserved for the larger, more complex problems.

Outside of the Haskell universe, there have been a number of other attempts to integrate

formal reasoning tools with programming languages. One such example that we are familiar

with is Köksal, et. al’s work on integrating the Z3 SMT solver with the Scala programming

language [55]. This integration differed from our work, in that their goal was to use Z3 to

provide Scala with additional reasoning power, rather than use it to verify Scala programs.

Additionally, they elected to integrate Z3 as a library using Scala’s equivalent of Haskell’s

foreign function interface, rather than at the compiler level.

144

Both of these factors make their work much closer to any of the SAT and SMT binding

libraries available on Hackage than ours. However, given that a number of these libraries

are incomplete, abandoned, or both, it would seem to indicate that there are significant

challenges to integrating reasoning tools with this approach. At the same time though, we

will be the first to admit that there were significant challenges in reimplementing a formal

logic in our language of choice rather than integrating with an existing tool. In either case,

we point to the work of Köksal as an example of how beneficial a symbiotic relationship

between formal reasoning tool and programming language can be.

145

8 Conclusion

The primary technical contribution of my work covered in this dissertation is the ongoing

development of the HaskHOL proof system, as introduced in Chapter 4. In addition to

helping to satisfy a growing demand for formal reasoning tools developed in, and for, Haskell,

HaskHOL’s lightweight implementation enables the novel verification workflow described in

Chapter 2. This workflow was imagined with the specific goals of mitigating issues related to

integrating development and verification environments, and leveling out the learning curve

for users new to proof-based formal verification.

It is my belief that the implementation of this workflow described in Chapter 5 and evaluated

in Chapter 6 has met both of these goals. While there is still a significant amount of work to

be done in order to realize its full potential, the results observed so far are an exciting first

step towards a method of semi-automated verification that is approachable by functional

programmers of a less-than-expert level. This approachability is due largely in part to

HaskHOL’s implementation as an embedded domain specific language.

Embedding HaskHOL within its host language allows users to interact with a theorem prover

just as they would any other library. It also provides for a comparatively simpler integration

of proof capabilities with existing Haskell-based applications, e.g. the Glasgow Haskell Com-

piler (GHC). This native integration with GHC allows formal verification to coexist with,

and support, informal testing without having to rely on complex, external reasoning tools.

A secondary benefit of this integration is that GHC can be leveraged to perform desugaring

and other simplifications before a verification is attempted, essentially letting HaskHOL tar-

get the intermediate language of the compiler. HaskHOL’s foundational logic was developed

with the specific purpose of corresponding to this language in order to allow for a near direct

translation from program to proof. This logic, a polymorphic derivative of the simply-typed

λ-calculus, should appear familiar, and easily understandable, for functional programmers.

146

The previously noted automation was introduced to this workflow by mechanizing the trans-

lation from Haskell to HaskHOL. GHC’s compiler plugin framework provides direct access

to target terms, such that they can be interacted with programatically. The HERMIT li-

brary was used to facilitate this access and structure both the translation and verification

of core expressions as a phase of compilation. The resultant implementation, shown in Ad-

dendum A, was applied in the evaluation of this work by tackling several examples from the

motivating problem classes – verification of type class laws and formal “re-verification” of

existing test cases.

This evaluation had largely positive results, however, it made it clear that it scaling this

approach to verification to handle “real world” problems would be a serious undertaking.

Inefficiencies of the HaskHOL proof system need to be addressed, a more complete theory

for Haskell reasoning needs to be written, and a more robust user interface needs to be

developed to allow for the interactive proof of targets that don’t have easily generalizable

structures. All of these items represent possible paths for continuing work, should my future

endeavors permit it.

Should you, the reader, desire to experiment with this verification workflow yourself, all of the

requisite HaskHOL packages are available from my personal Github, https://github.com/

ecaustin/. The haskhol-haskell package on this site contains the verification plugin itself, as

well as a README containing installation and execution instructions. Please note that the

development of this verification workflow is active research, such that the implementation of

the plugin at the time you download it may differ from its presentation in this dissertation;

hopefully because of improvements to it. More information regarding the HaskHOL system

in general is also available at http://haskhol.org.

147

https://github.com/ecaustin/
https://github.com/ecaustin/
http://haskhol.org

References
[1] Abel, A., Benke, M., Bove, A., Hughes, J., & Norell, U. (2005). Verifying Haskell

Programs Using Constructive Type Theory. In In Haskell’05: ACM Press.

[2] Aitken, W. E. & Reppy, J. H. (1992). Abstract Value Constructors: Symbolic Constants
for Standard ML. Technical Report TR 92-1290, Department of Computer Science, Cornell
University. A shorter version appears in the proceedings of the “ACM SIGPLAN Workshop
on ML and its Applications,” 1992.

[3] Alexander, P. (2006). System Level Design with Rosetta. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc.

[4] Augustsson, L. (1999). Cayenne — A Language with Dependent Types. In S. Swierstra,
J. Oliveira, & P. Henriques (Eds.), Advanced Functional Programming, volume 1608 of
Lecture Notes in Computer Science (pp. 240–267). Springer Berlin Heidelberg.

[5] Austin, E. (2011). HaskHOL: A Haskell Hosted Domain Specific Language for Higher-
Order Logic Theorem Proving. Master’s thesis, University of Kansas.

[6] Austin, E. & Alexander, P. (2010). HaskHOL: A Haskell Hosted Domain Specific
Language Representation of HOL Light. In Trends in Functional Programming Pre-
Proceedings.

[7] Austin, E. & Alexander, P. (2013). Stateless Higher-Order Logic with Quantified Types.
In S. Blazy, C. Paulin-Mohring, & D. Pichardie (Eds.), Interactive Theorem Proving, vol-
ume 7998 of Lecture Notes in Computer Science (pp. 469–476). Springer Berlin Heidelberg.

[8] Baraona, P., Penix, J., & Alexander, P. (1995). VSPEC: A Declarative Requirements
Specification Language for VHDL. In J.-M. Berge, O. Levia, & J. Rouillard (Eds.), High-
Level System Modeling: Specification Languages, volume 3 of Current Issues in Electronic
Modeling chapter 3, (pp. 51–75). Boston, MA: Kluwer Academic Publishers.

[9] Barendregt, H. et al. (1991). Introduction to generalized type systems. J. Funct. Pro-
gram., 1(2), 125–154.

[10] Bernardy, J.-P., Jansson, P., & Claessen, K. (2010). Testing Polymorphic Properties.
In A. Gordon (Ed.), Programming Languages and Systems, volume 6012 of Lecture Notes
in Computer Science (pp. 125–144). Springer Berlin Heidelberg.

[11] Boehm, H.-J. (1985). Partial polymorphic type inference is undecidable. In Foundations
of Computer Science, 1985., 26th Annual Symposium on (pp. 339–345).

[12] Brady, E. C. (2011). Idris — Systems Programming Meets Full Dependent Types.
In Proceedings of the 5th ACM Workshop on Programming Languages Meets Program
Verification, PLPV ’11 (pp. 43–54). New York, NY, USA: ACM.

[13] Church, A. (1932). A Set of Postulates for the Foundation of Logic. Annals of Mathe-
matics, 33(2). http://www.jstor.org/stable/1968702Electronic Edition.

148

[14] Church, A. (1940). A Formulation of the Simple Theory of Types. Journal of Symbolic
Logic, 5, 56–68.

[15] Church, A. (1985). The Calculi of Lambda Conversion. Princeton, NJ, USA: Princeton
University Press.

[16] Claessen, K. (2012). Shrinking and Showing Functions: (Functional Pearl). In Pro-
ceedings of the 2012 Haskell Symposium, Haskell ’12 (pp. 73–80). New York, NY, USA:
ACM.

[17] Claessen, K. & Hughes, J. (2000). QuickCheck: A Lightweight Tool for Random Testing
of Haskell Programs. In Proceedings of the Fifth ACM SIGPLAN International Conference
on Functional Programming, ICFP ’00 (pp. 268–279). New York, NY, USA: ACM.

[18] Coquand, T. (1994). A New Paradox in Type Theory. In Logic, Methodology and Phi-
losophy of Science IX : Proceedings of the Ninth International Congress of Logic, Method-
ology, and Philosophy of Science (pp. 7–14).: Elsevier.

[19] Coquand, T. & Huet, G. (1988). The calculus of constructions. Information and Com-
putation, 76(2–3), 95 – 120.

[20] Crow, J., Rushby, J., Shankar, N., & Srivas, M. (1995). A Tutorial Introduction to PVS.
SRI International, Menlo Park, CA. Presented at WIFT’95.

[21] Curry, H. B. & Feys, R. (1958). Combinatory Logic, Volume I. North-Holland. Second
printing 1968.

[22] Curry, H. B., Hindley, J. R., & Seldin, J. P. (1972). Combinatory Logic, Volume II.
North-Holland.

[23] Farmer, A., Gill, A., Komp, E., & Sculthorpe, N. (2012). The HERMIT in the Machine:
A Plugin for the Interactive Transformation of GHC Core Language Programs. In Haskell
(pp. 1–12).

[24] Gentzen, G. (1935). Untersuchungen über das logische schließen i. Mathematische
Zeitschrift, 39, 176–210.

[25] GHC Team (2014). The Glasgow Haskell Compilation System User’s Guide, Version
7.8.4. Website:. http://haskell.org/ghc/.

[26] Gill, A. (2009). Type-Safe Observable Sharing in Haskell. In Proceedings of the Second
ACM SIGPLAN Haskell Symposium, Haskell ’09 (pp. 117–128). New York, NY, USA:
ACM.

[27] Girard, J.-Y. (1971). Une Extension De l’Interpretation De Gödel a l’Analyse, Et Son
Application a l’Elimination Des Coupures Dans l’Analyse Et La Theorie Des Types. In
J. Fenstad (Ed.), Proceedings of the Second Scandinavian Logic Symposium, volume 63 of
Studies in Logic and the Foundations of Mathematics (pp. 63 – 92). Elsevier.

149

[28] Gordon, M. (1982). Representing a Logic in the LCF Metalanguage. In D. N’eel (Ed.),
Tools and Notions for Program Construction (pp. 163–185).: Cambridge University Press.

[29] Gordon, M. (1985). HOL : A Machine Oriented Formulation of Higher Order Logic.
Technical Report UCAM-CL-TR-68, University of Cambridge, Computer Laboratory, 15
JJ Thomson Avenue, Cambridge CB3 0FD, United Kingdom, phone +44 1223 763500.

[30] Gordon, M. (1991). Why Higher-order Logic is a Good Formalism for Specifying and
Verifying Hardware.

[31] Gordon, M. (2000). From LCF to HOL: A Short History. In Proof, Language, and
Interaction (pp. 169–186).

[32] Gordon, M. J. C. (1989). HOL: A Proof Generating System for Higher-Order Logic.
In G. Birtwistle & P. A. Subrahmanyam (Eds.), Current Trends in Hardware Verification
and Automated Theorem Proving (pp. 73–128). Springer-Verlag.

[33] Gordon, M. J. C. & Melham, T. F., Eds. (1993). Introduction to HOL: A Theorem
Proving Environment for Higher Order Logic. New York, NY, USA: Cambridge University
Press.

[34] Gordon, M. J. C., Milner, R., & Wadsworth, C. P. (1979). Edinburgh LCF, volume 78
of Lecture Notes in Computer Science. Springer.

[35] Haftmann, F. (2010). From Higher-Order Logic to Haskell: There and Back Again. In
J. P. Gallagher & J. Voigtländer (Eds.), Proceedings of the 2010 ACM SIGPLAN Workshop
on Partial Evaluation and Program Manipulation, PEPM 2010, Madrid, Spain, January
18-19, 2010: ACM.

[36] Haftmann, F. & Wenzel, M. (2007). Constructive Type Classes in Isabelle. In T.
Altenkirch & C. McBride (Eds.), Types for Proofs and Programs, volume 4502 of Lecture
Notes in Computer Science (pp. 160–174). Springer Berlin Heidelberg.

[37] Hall, C. V., Hammond, K., Peyton Jones, S. L., & Wadler, P. L. (1996). Type Classes
in Haskell. ACM Trans. Program. Lang. Syst., 18(2), 109–138.

[38] Halling, B. & Alexander, P. (2013). Verifying a Privacy CA Remote Attestation Proto-
col. In G. Brat, N. Rungta, & A. Venet (Eds.), NASA Formal Methods, volume 7871 of
Lecture Notes in Computer Science (pp. 398–412). Springer Berlin Heidelberg.

[39] Harper, R., Honsell, F., & Plotkin, G. (1993). A Framework for Defining Logics. J.
ACM, 40(1), 143–184.

[40] Harrison, J. (1995). Inductive definitions: Automation and application. In E.
Thomas Schubert, P. Windley, & J. Alves-Foss (Eds.), Higher Order Logic Theorem Prov-
ing and Its Applications, volume 971 of Lecture Notes in Computer Science (pp. 200–213).
Springer Berlin Heidelberg.

150

[41] Harrison, J. (1996). Hol Light: A Tutorial Introduction. In M. Srivas & A. Camil-
leri (Eds.), Formal Methods in Computer-Aided Design, volume 1166 of Lecture Notes in
Computer Science (pp. 265–269). Springer Berlin Heidelberg.

[42] Hindley, R. (1969). The Principal Type-Scheme of an Object in Combinatory Logic.
Transactions of the American Mathematical Society, 146, 29–60.

[43] Homeier, P. (2009). The HOL-Omega Logic. In S. Berghofer, T. Nipkow, C. Urban,
& M. Wenzel (Eds.), Theorem Proving in Higher Order Logics, volume 5674 of Lecture
Notes in Computer Science (pp. 244–259). Springer Berlin Heidelberg.

[44] Hudak, P. (1996). Building Domain-Specific Embedded Languages. ACM Comput.
Surv., 28(4es).

[45] Huffman, B. (2012a). Formal Verification of Monad Transformers. In ICFP (pp. 15–16).

[46] Huffman, B. (2012b). Type Constructor Classes and Monad Transformers. Archive of
Formal Proofs. http://afp.sf.net/entries/Tycon.shtml, Formal proof development.

[47] Huffman, B., Matthews, J., & White, P. (2005). Axiomatic Constructor Classes in
Isabelle/HOLCF. In J. Hurd & T. Melham (Eds.), Theorem Proving in Higher Order
Logics, volume 3603 of Lecture Notes in Computer Science (pp. 147–162). Springer Berlin
Heidelberg.

[48] Hurd, J. (2001). Predicate Subtyping with Predicate Sets. In R. Boulton & P. Jack-
son (Eds.), Theorem Proving in Higher Order Logics, volume 2152 of Lecture Notes in
Computer Science (pp. 265–280). Springer Berlin Heidelberg.

[49] Hurd, J. (2009). OpenTheory: Package Management for Higher Order Logic Theories.

[50] Kaes, S. (1992). Type Inference in the Presence of Overloading, Subtyping and Recursive
Types. In Proceedings of the 1992 ACM Conference on LISP and Functional Programming,
LFP ’92 (pp. 193–204). New York, NY, USA: ACM.

[51] Kaufmann, M. & Moore, J. S. (2008). The ACL2 User’s Manual. http://www.cs.

utexas.edu/users/moore/acl2/#User’s-Manual.

[52] Kleene, S. (1952). Introduction to Metamathematics. North-Holland Publishing Com-
pany. Co-publisher: Wolters–Noordhoff; 8th revised ed.1980.

[53] Klein, G., Derrin, P., & Elphinstone, K. (2009). Experience Report: seL4: Formally
Verifying a High-performance Microkernel. In Proceedings of the 14th ACM SIGPLAN
international conference on Functional programming, ICFP ’09 (pp. 91–96). New York,
NY, USA: ACM.

[54] Klein, G., Sewell, T., & Winwood, S. (2010). Refinement in the Formal Verification of
the seL4 Microkernel. In D. S. Hardin (Ed.), Design and Verification of Microprocessor
Systems for High-assurance Applications (pp. 323–339). Springer US.

151

http://afp.sf.net/entries/Tycon.shtml
http://www.cs.utexas.edu/users/moore/acl2/#User's-Manual
http://www.cs.utexas.edu/users/moore/acl2/#User's-Manual

[55] Köksal, A., Kuncak, V., & Suter, P. (2011). Scala to the Power of Z3: Integrating
SMT and Programming. In N. Bjørner & V. Sofronie-Stokkermans (Eds.), Automated
Deduction – CADE-23, volume 6803 of Lecture Notes in Computer Science (pp. 400–406).
Springer Berlin Heidelberg.

[56] Krauss, A. (2010). Defining Recursive Functions in Isabelle/HOL.

[57] Kreitz, C. (2002). The Nuprl Proof Development System, Version 5: Reference Manual
and User’s Guide. Department of Computer Science, Cornell University.

[58] Leroy, X. (2006). Formal Certification of a Compiler Back-end or: Programming a
Compiler with a Proof Assistant. SIGPLAN Not., 41(1), 42–54.

[59] Leroy, X., Doligez, D., Frisch, A., Garrigue, J., Rémy, D., & Vouillon, J. (2014). The
OCaml system (release 4.02): Documentation and user’s manual. Institut National de
Recherche en Informatique et en Automatique.

[60] Letouzey, P. (2003). A New Extraction for Coq. In Proceedings of the 2002 Interna-
tional Conference on Types for Proofs and Programs, TYPES’02 (pp. 200–219). Berlin,
Heidelberg: Springer-Verlag.

[61] Liang, S., Hudak, P., & Jones, M. (1995). Monad Transformers and Modular Inter-
preters. In Proceedings of the 22Nd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’95 (pp. 333–343). New York, NY, USA: ACM.

[62] Marlow, S. (2010). Haskell 2010 Language Report.

[63] McBride, C. (2005). Epigram: Practical Programming with Dependent Types. In
Proceedings of the 5th International Conference on Advanced Functional Programming,
AFP’04 (pp. 130–170). Berlin, Heidelberg: Springer-Verlag.

[64] Melham, T. (1993). Higher order logic and hardware verification. New York, NY, USA:
Cambridge University Press.

[65] Milner, R. (1972). Logic for Computable Functions: Description of a Machine Imple-
mentation. Technical report, Stanford University, Stanford, CA, USA.

[66] Milner, R. (1978). A theory of type polymorphism in programming. Journal of Com-
puter and System Sciences, 17(3), 348 – 375.

[67] Milner, R., Tofte, M., & Macqueen, D. (1997). The Definition of Standard ML. Cam-
bridge, MA, USA: MIT Press.

[68] Müller, O., Nipkow, T., von Oheimb, D., & Slotosch, O. (1999). HOLCF. In J. Funct.
Program. (pp. 191–223).

[69] Nipkow, T., Wenzel, M., & Paulson, L. C. (2002). Isabelle/HOL: a proof assistant for
higher-order logic. Berlin, Heidelberg: Springer-Verlag.

152

[70] Norell, U. (2009). Dependently Typed Programming in Agda. In Proceedings of the 6th
International Conference on Advanced Functional Programming, AFP’08 (pp. 230–266).
Berlin, Heidelberg: Springer-Verlag.

[71] Paulson, L. C. (1987). Logic and Computation: Interactive Proof with Cambridge LCF.
New York, NY, USA: Cambridge University Press.

[72] Peano, G. (1889). Arithmetices Principia Novo Methodo Exposita. Bocca.

[73] Pfenning, F. (1993). On the Undecidability of Partial Polymorphic Type Reconstruc-
tion. Fundam. Inf., 19(1-2), 185–199.

[74] Pierce, B. C. (2002). Types and Programming Languages. Cambridge, MA, USA: MIT
Press.

[75] Reynolds, J. C. (1974). Towards a Theory of Type Structure. In Programming Sym-
posium, Proceedings Colloque Sur La Programmation (pp. 408–423). London, UK, UK:
Springer-Verlag.

[76] Rushby, J. (1997). Subtypes for specifications. In M. Jazayeri & H. Schauer (Eds.), Soft-
ware Engineering — ESEC/FSE’97, volume 1301 of Lecture Notes in Computer Science
(pp. 4–19). Springer Berlin Heidelberg.

[77] Sculthorpe, N., Farmer, A., & Gill, A. (2015). Making a Century in HERMIT. To be
submitted to the Haskell Symposium, 2015.

[78] Sculthorpe, N., Frisby, N., & Gill, A. (2014). The Kansas University Rewrite Engine:
A Haskell-embedded strategic programming language with custom closed universes. In J.
Funct. Program. (pp. 434–473).

[79] Shaw, J. (2013). The Happstack Book: Modern, Type-Safe Web Development in
Haskell.

[80] Sheard, T. & Jones, S. P. (2002). Template Meta-programming for Haskell. In In
Proceedings of the ACM SIGPLAN Workshop on Haskell (pp. 1–16).: ACM.

[81] Slind, K. & Norrish, M. (2008). A Brief Overview of HOL4. In O. Mohamed, C. Muñoz,
& S. Tahar (Eds.), Theorem Proving in Higher Order Logics, volume 5170 of Lecture Notes
in Computer Science (pp. 28–32). Springer Berlin Heidelberg.

[82] Sonnex, W., Drossopoulou, S., & Eisenbach, S. (2012). Zeno: An automated prover for
properties of recursive data structures. In Proceedings of the 18th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems, TACAS’12 (pp.
407–421). Berlin, Heidelberg: Springer-Verlag.

[83] Sørensen, M. H. & Urzyczyn, P. (2006). Lectures on the Curry-Howard Isomorphism,
Volume 149 (Studies in Logic and the Foundations of Mathematics). New York, NY, USA:
Elsevier Science Inc.

153

[84] Sozeau, M. & Oury, N. (2008). First-Class Type Classes. In O. Mohamed, C. Muñoz, &
S. Tahar (Eds.), Theorem Proving in Higher Order Logics, volume 5170 of Lecture Notes
in Computer Science (pp. 278–293). Springer Berlin Heidelberg.

[85] Sternagel, C. & Thiemann, R. (2014). Certification Monads. Archive of Formal
Proofs. http://afp.sf.net/entries/Certification_Monads.shtml, Formal proof de-
velopment.

[86] Sulzmann, M., Chakravarty, M. M. T., Jones, S. P., & Donnelly, K. (2007). System F
with Type Equality Coercions. In Proceedings of the 2007 ACM SIGPLAN International
Workshop on Types in Languages Design and Implementation, TLDI ’07 (pp. 53–66). New
York, NY, USA: ACM.

[87] Team, C. (2012). The Coq Proof Assistant Reference Manual. http://coq.inria.fr.

[88] Turing, A. M. (1936). On computable numbers, with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society, 2(42), 230–265.

[89] Turing, A. M. (1937). Computability and λ-definability. Journal of Symbolic Logic, 2,
153–163.

[90] Völker, N. (2007). HOL2P - A System of Classical Higher Order Logic with Second
Order Polymorphism. In K. Schneider & J. Brandt (Eds.), Theorem Proving in Higher
Order Logics, volume 4732 of Lecture Notes in Computer Science (pp. 334–351). Springer
Berlin Heidelberg.

[91] Vytiniotis, D., Peyton Jones, S., Claessen, K., & Rosén, D. (2013). HALO: Haskell
to Logic Through Denotational Semantics. In Proceedings of the 40th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’13 (pp.
431–442). New York, NY, USA: ACM.

[92] Ward, J., Kimmell, G., & Alexander, P. (2005). Prufrock: A framework for construct-
ing polytypic theorem provers. In Proceedings of the Automated Software Engineering
Conference (ASE’05) Long Beach, CA.

[93] Wiedijk, F. (2009). Stateless HOL. In TYPES (pp. 47–61).

[94] Wiedijk, F. (2012). Pollack-inconsistency. Electronic Notes in Theoretical Computer
Science, 285(0), 85 – 100. Proceedings of the 9th International Workshop On User Inter-
faces for Theorem Provers (UITP10).

[95] Yorgey, B. A., Weirich, S., Cretin, J., Peyton Jones, S., Vytiniotis, D., & Magalhães,
J. P. (2012). Giving Haskell a Promotion. In Proceedings of the 8th ACM SIGPLAN
Workshop on Types in Language Design and Implementation, TLDI ’12 (pp. 53–66). New
York, NY, USA: ACM.

154

http://afp.sf.net/entries/Certification_Monads.shtml
http://coq.inria.fr

A Select Code from the Verification Plugin

Listing A.1: High-Level Translation Transformations
trans :: TransformH CoreTC HOLTerm

trans = promoteBindT (transform $ \ c -> liftM snd . applyT transBind c)

transBind :: TransformH CoreBind (HOLTerm , HOLTerm)

transBind = nonRecT transVar transExpr (\ (Tm bv) (Tm e) -> (bv, e))

transVar :: TransformH Var HOLSum

transVar = transform $ \ c v ->

let name = pack . unqualifiedName $ varName v in

if isTKVar v then return . Ty . fromRight . mkSmall $ mkVarType name

else do (Ty ty) <- applyT transType c (varType v)

return . Tm $! mkVar name ty

transExpr :: TransformH CoreExpr HOLSum

transExpr =

varT transVar

<+ appT transExpr transExpr transApp

<+ lamT transVar transExpr transLam

<+ letT transBind transExpr transLet

<+ caseT transExpr transVar transType (const transAlt) transCase

<+ typeT transType

Listing A.2: Type and Low-Level Translation Transformations
transType :: TransformH Type HOLSum

transType =

tyVarT transVar

<+ appTyT transType transType transOp

<+ funTyT transType transType

(\ (Ty x) (Ty y) -> Ty $ mkFunTy ’ [x, y])

<+ forAllTyT transVar transType

(\ (Ty x) (Ty y) -> Ty . fromRight $ mkUType x y)

<+ tyConAppT transTyCon (const transType)

(\ x ys ->

if null ys

then let (_, n) = destTypeOp x in

if n == 0 then Ty $ tyApp ’ x []

else TyOp x

else Ty . tyApp ’ x $ map (\ (Ty y) -> y) ys)

transOp :: HOLSum -> HOLSum -> HOLSum

transOp (Ty (TyVar _ x)) (Ty ty) =

Ty $ tyApp ’ (mkTypeOpVar x) [ty]

transOp (Ty (TyApp op tys)) (Ty ty) =

Ty . tyApp ’ op $ tys ++ [ty]

transOp _ _ = error "transOp"

transTyCon :: TransformH TyCon TypeOp

transTyCon = contextfreeT $ \ op ->

if isFunTyCon op then return tyOpFun

else let name = pack . unqualifiedName $ tyConName op

arity = tyConArity op in

return $! newPrimitiveTypeOp name arity

transAlt :: TransformH CoreAlt (Text , [HOLTerm], HOLTerm)

transAlt = altT transAlt ’ (const transVar) transExpr

(\ x y z -> (x, map fromTm y, fromTm z))

where transAlt ’ :: TransformH AltCon Text

transAlt ’ = contextfreeT $ \ ac ->

case ac of

DEFAULT -> return "DEFAULT"

DataAlt dc -> return . pack . unqualifiedName $ dataConName dc

LitAlt _ -> fail "transAlt: literals are not handled currently."

fromTm :: HOLSum -> HOLTerm

fromTm (Tm x) = x

fromTm _ = error "fromTm"

155

Listing A.3: Term Translation Transformations
transApp :: HOLSum -> HOLSum -> HOLSum

-- force type applications if we can

transApp (Tm x@(HC.Var name (UType xty@(TyVar _ bname) ty))) y =

case y of

TyOp op -> Tm . mkVar name $ typeSubst [(mkTypeOpVar bname , op)] ty

Ty ty ’ -> Tm . mkVar name $ typeSubst [(xty , ty ’)] ty

Ty ty ’ -> Tm $ mkTyComb ’ x ty ’

Tm y’ -> Tm $ mkComb ’ x y’

transApp (Tm x) (Ty y) = Tm $ mkTyComb ’ x y

-- erase type class arguments rather crudely

transApp (Tm x@(HC.Var name ty)) (Tm y@(HC.Var cls _))

| T.take 2 cls == "$d" =

let (_, ty ’) = fromJust $ destFunTy ty in

Tm $ mkVar name ty’

| otherwise = Tm $ mkComb ’ x y

transApp (Tm x) (Tm y) = Tm $ mkComb ’ x y

transApp _ _ = error "transApp: type -level application at term level."

transLam :: HOLSum -> HOLSum -> HOLSum

transLam (Ty bv) (Tm bod) = Tm . fromRight $ mkTyAbs bv bod

-- erase type class arguments

transLam (Tm bv@(HC.Var name _)) (Tm bod)

| T.take 2 name == "$d" = Tm bod

| otherwise = Tm $ mkAbs ’ bv bod

transLam _ _ = error "transLam: type -level abstraction at term level."

transLet :: (HOLTerm , HOLTerm) -> HOLSum -> HOLSum

transLet (bv@(HC.Var name _), be) (Tm bod)

-- erase type class arguments

| T.take 2 name == "$d" = Tm bod

| otherwise = Tm mkLet ’

where mkLet ’ :: HOLTerm

mkLet ’ =

let tyLend = mkFunTy ’ [ty, ty]

lend = mkComb ’ (mkVar "LET_END" tyLend) bod

lbod = mkGabs ’ bv lend

tyAbs = typeOf lbod

(ty1 , ty2) = fromJust $ destFunTy tyAbs

tyLet = mkFunTy ’ [tyAbs , ty1 , ty2] in

foldl mkComb ’ (mkVar "LET" tyLet) [lbod , be]

where ty = typeOf bod

mkGabs ’ :: HOLTerm -> HOLTerm -> HOLTerm

mkGabs ’ tm1@HC.Var{} tm2 = mkAbs ’ tm1 tm2

mkGabs ’ tm1 tm2 =

let fTy = mkFunTy ’ [ty1 , ty2]

fvs = frees tm1

f = variant (frees tm1 ++ frees tm2) $ mkVar "f" fTy

bodIn = foldr (mkBinder ’ "!") (mkGeq ’ (mkComb ’ f tm1) tm2) fvs

tyGabs = mkFunTy ’ [mkFunTy ’ [fTy , tyBool], fTy] in

mkComb ’ (mkVar "GABS" tyGabs) $ mkAbs ’ f bodIn

where ty1 = typeOf tm1

ty2 = typeOf tm2

transLet _ Ty{} = error "transLet: types not allowed as bodies of let terms."

transLet _ _ = error "transLet: binding must be a variable."

transCase :: HOLSum -> HOLSum -> HOLSum -> [(Text , [HOLTerm], HOLTerm)]

-> HOLSum

transCase (Tm match) (Tm asVar) (Ty resTy) alts = flip evalState 0 $

do alts ’ <- mapM mkPat alts

let ty’ = mkFunTy ’ [asTy , resTy , tyBool]

tmSeq = mkVar "_SEQPATTERN" $ mkFunTy ’ [ty’, ty ’, ty ’]

clauses = foldr1 (\ s t -> mkComb ’ (mkComb ’ tmSeq s) t) alts ’

tmMatch = mkVar "_MATCH" $ mkFunTy ’ [asTy , ty’, resTy]

res = mkComb ’ (mkComb ’ tmMatch match) clauses

return $! Tm res

where asTy = typeOf asVar

mkPat :: (Text , [HOLTerm], HOLTerm) -> State Int HOLTerm

mkPat (con , bvs , res) =

do x <- pgenVar asTy

y <- pgenVar $ typeOf res

let patTm = mkVar "_UNGUARDED_PATTERN" $

mkFunTy ’ [tyBool , tyBool , tyBool]

tys = map typeOf bvs

conTm = foldr (flip mkComb ’)

(mkVar con $ mkFunTy ’ (tys ++ [asTy])) bvs

bod = mkComb ’ (mkComb ’ patTm (mkGeq ’ conTm x)) (mkGeq ’ res y)

return $! mkAbs ’ x (mkAbs ’ y (foldr (mkBinder ’ "?") bod bvs))

pgenVar :: HOLType -> State Int HOLTerm

pgenVar ty =

do n <- get

put $ succ n

return $! mkVar (pack $ "_GENPVAR" ++ show n) ty

transCase _ _ _ _ = error "transCase: expecting terms , got types."

156

Listing A.4: Primitive HOLTerm Transformations
type TransHOL thry a b = Transform (TheoryPath thry) IO a b

liftHOL ’ :: MonadIO m => TheoryPath thry -> HOL Proof thry a -> m a

liftHOL ’ ctxt x = liftIO $ runHOLProof True x ctxt

htyvarT :: TransHOL thry Bool a -> TransHOL thry Text b

-> (a -> b -> HOL Proof thry c) -> TransHOL thry HOLType c

htyvarT fl i f = transform $ \ c e ->

case e of

TyVar b t -> do b’ <- applyT fl c b

t’ <- applyT i c t

liftHOL ’ c $! f b’ t’

_ -> fail "not a type variable."

htyappT :: TransHOL thry TypeOp a -> TransHOL thry HOLType b

-> (a -> [b] -> HOL Proof thry c) -> TransHOL thry HOLType c

htyappT op ty f = transform $ \ c e ->

case e of

TyApp o tys -> do o’ <- applyT op c o

tys ’ <- mapM (applyT ty c) tys

liftHOL ’ c $! f o’ tys ’

_ -> fail "not a type level application."

hutypeT :: TransHOL thry HOLType a -> TransHOL thry HOLType b

-> (a -> b -> HOL Proof thry c) -> TransHOL thry HOLType c

hutypeT t1 t2 f = transform $ \ c e ->

case e of

UType bv bod -> do bv ’ <- applyT t1 c bv

bod ’ <- applyT t2 c bod

liftHOL ’ c $! f bv ’ bod ’

_ -> fail "not a type quantification."

hvarT :: TransHOL thry Text a -> TransHOL thry HOLType b

-> (a -> b -> HOL Proof thry c) -> TransHOL thry HOLTerm c

hvarT i ty f = transform $ \ c e ->

case e of

Var v t -> do v’ <- applyT i c v

t’ <- applyT ty c t

liftHOL ’ c $! f v’ t’

_ -> fail "not a variable."

hconstT :: TransHOL thry Text a -> TransHOL thry HOLType b

-> (a -> b -> HOL Proof thry c) -> TransHOL thry HOLTerm c

hconstT i ty f = transform $ \ c e ->

case e of

Const v t -> do v’ <- applyT i c v

t’ <- applyT ty c t

liftHOL ’ c $! f v’ t’

_ -> fail "not a constant."

hcombT :: TransHOL thry HOLTerm a -> TransHOL thry HOLTerm b

-> (a -> b -> HOL Proof thry c) -> TransHOL thry HOLTerm c

hcombT t1 t2 f = transform $ \ c e ->

case e of

Comb e1 e2 -> do e1 ’ <- applyT t1 c e1

e2’ <- applyT t2 c e2

liftHOL ’ c $! f e1’ e2 ’

_ -> fail "not an application."

habsT :: TransHOL thry HOLTerm a -> TransHOL thry HOLTerm b

-> (a -> b -> HOL Proof thry c) -> TransHOL thry HOLTerm c

habsT t1 t2 f = transform $ \ c e ->

case e of

Abs bv bod -> do bv’ <- applyT t1 c bv

bod ’ <- applyT t2 c bod

liftHOL ’ c $! f bv’ bod ’

_ -> fail "not an abstraction."

htycombT :: TransHOL thry HOLTerm a -> TransHOL thry HOLType b

-> (a -> b -> HOL Proof thry c) -> TransHOL thry HOLTerm c

htycombT t1 t2 f = transform $ \ c e ->

case e of

TyComb tm ty -> do tm’ <- applyT t1 c tm

ty’ <- applyT t2 c ty

liftHOL ’ c $! f tm ’ ty ’

_ -> fail "not a type abstraction."

htyabsT :: TransHOL thry HOLType a -> TransHOL thry HOLTerm b

-> (a -> b -> HOL Proof thry c) -> TransHOL thry HOLTerm c

htyabsT t1 t2 f = transform $ \ c e ->

case e of

TyAbs ty tm -> do ty’ <- applyT t1 c ty

tm’ <- applyT t2 c tm

liftHOL ’ c $! f ty’ tm ’

_ -> fail "not an type abstraction."

157

Listing A.5: Term and Type Replacement Transformations
replaceTerm :: [(Text , HOLTerm)] -> TransHOL thry HOLTerm HOLTerm

replaceTerm tmmap = repTerm

where repTerm :: TransHOL thry HOLTerm HOLTerm

repTerm =

contextfreeT (\ tm@Const {} -> return tm)

<+ hcombT repTerm repTerm (\ x -> liftO . mkComb x)

<+ habsT (contextfreeT return) repTerm (\ x -> liftO . mkAbs x)

<+ htycombT repTerm (contextfreeT return) (\ x -> liftO . mkTyComb x)

<+ htyabsT (contextfreeT return) repTerm (\ x -> liftO . mkTyAbs x)

<+ hvarT (contextfreeT return) (contextfreeT return) repVar

-- EvNote: has the potential to cause issues if a bound var has

-- a name shared with a mapped constant

repVar :: Text -> HOLType -> HOL Proof thry HOLTerm

repVar i ty =

(tryFind (\ (key , Const name ty ’) ->

if key == i && isJust (typeMatch ty’ ty ([], [], []))

then mkMConst name ty

else fail "") tmmap)

<|> (return $! mkVar i ty)

replaceType :: [(Text , TypeOp)] -> TransHOL thry HOLTerm HOLTerm

replaceType tymap = repTerm

where repTerm :: TransHOL thry HOLTerm HOLTerm

repTerm =

hvarT (contextfreeT return) repType (\ x -> return . mkVar x)

<+ contextfreeT (\ tm@Const {} -> return tm)

<+ hcombT repTerm repTerm (\ x -> liftO . mkComb x)

<+ habsT repTerm repTerm (\ x -> liftO . mkAbs x)

<+ htycombT repTerm repType (\ x -> liftO . mkTyComb x)

<+ htyabsT repType repTerm (\ x -> liftO . mkTyAbs x)

repType :: TransHOL thry HOLType HOLType

repType =

contextfreeT (\ ty@TyVar {} -> return ty)

<+ htyappT (contextfreeT return) repType repTyApp

<+ hutypeT (contextfreeT return) repType

(\ x -> liftO . mkUType x)

repTyApp :: TypeOp -> [HOLType] -> HOL Proof thry HOLType

repTyApp op tys =

do op ’ <- repOp

liftO $! tyApp op’ tys

where repOp :: HOL Proof thry TypeOp

repOp =

case op of

(TyPrimitive i arity)

| i == "fun" -> return op

| otherwise ->

(tryFind (\ (key , op ’) ->

let (_, arity ’) = destTypeOp op’ in

if key == i && arity ’ == arity

then return op ’

else fail "") tymap)

<|> (return $! mkTypeOpVar i)

_ -> return op

158

Listing A.6: Verification Plugin Implementation
ctxt :: TheoryPath HaskellType

ctxt = ctxtHaskell

liftHOL :: HOL Proof HaskellType a -> HPM a

liftHOL = liftHOL ’ ctxt

plugin :: Plugin

plugin = hermitPlugin $ \ _ -> firstPass $

do liftIO $ putStrLn "Parsing configuration files ..."

tyMap <- prepConsts "types.h2h" $ liftHOL types

tmMap <- prepConsts "terms.h2h" $ liftHOL constants

opts <- liftIO $ optParse "config.h2h"

let getOpt :: String -> String -> HPM String

getOpt lbl err =

maybe (fail err) return $ lookup lbl opts

--

liftIO $ putStrLn "Translating from Core to HOL ..."

target <- getOpt "binding" "<binding > not set in config.h2h."

tm <- at (bindingOfT $ cmpString2Var target) $ query trans

--

let pass :: HOLTerm -> HPM HOLTerm

pass x = liftIO $

do x’ <- applyT (replaceType tyMap) ctxt x

applyT (replaceTerm tmMap) ctxt x’

cls <- getOpt "bindingType" "<bindingType > not set in config.h2h."

tm’ <- if cls == "ConsClass"

then do cls ’ <- getOpt "class" "<class > not set in config.h2h."

consClassPass cls ’ tm pass

else let (bvs , bod) = stripTyAbs tm

(bvs ’, bod ’) = stripAbs bod in

do x <- pass bod ’

bvs ’’ <- mapM pass bvs ’

liftHOL $ flip (foldrM mkTyAll) bvs =<<

listMkForall bvs ’’ x

--

liftIO $ putStrLn "Proving ..."

prfType <- getOpt "proofType" "<proofType > not set in config.h2h."

prfMod <- getOpt "proofModule" "<proofModule > not set in config.h2h."

prfName <- getOpt "proofName" "<proofName > not set in config.h2h."

tac <- liftHOL $ if prfType == "HOLThm"

then do thm <- runHOLHint prfName [prfMod]

return (tacACCEPT (thm:: HOLThm))

else runHOLHint ("return " ++ prfName)

[prfMod , "HaskHOL.Deductive"]

liftHOL $ printHOL tm’

liftHOL $ printHOL =<< prove tm’ tac

consClassPass :: String -> HOLTerm -> (HOLTerm -> HPM HOLTerm) -> HPM HOLTerm

consClassPass cls tm pass =

do liftIO $ putStrLn "Translating Arguments ..."

let (_, args) = stripComb tm

args ’ <- mapM trans ’ args

--

liftIO $ putStrLn "Building Class Instance ..."

monad <- liftHOL $ mkConstFull (pack cls) ([] ,[] ,[])

maybe (fail "Reconstruction of class instance failed.") return $

foldlM mkIComb monad args ’

where trans ’ :: HOLTerm -> HPM HOLTerm

trans ’ x@(Var name _) = pass =<< query

(do lp <- lookupBind $ unpack name

case lp of

Nothing -> return x

Just res -> localPathT res trans)

trans ’ x = pass x

lookupBind :: String -> TransformH CoreTC (Maybe LocalPathH)

lookupBind x = catchesT [liftM Just . bindingOfT $ cmpString2Var x

, return Nothing

]

prepConsts :: String -> HPM (Map Text b) -> HPM [(Text , b)]

prepConsts file mcnsts =

do cmap <- liftIO $ parse file

cnsts <- mcnsts

let cnsts ’ = catMaybes $

map (\ (x, y) -> do y’ <- mapLookup y cnsts

return (x, y’)) cmap

return (cnsts ’ ++ mapToList cnsts)

159

	Contents
	List of Figures
	Listings
	Introduction
	Motivation
	A Closed System Approach to Verification
	A Proposal for Type Class Laws
	Augmenting Informal Tests with Formal Proofs

	Background
	Functional Programming
	Church's -calculus
	The Simply Typed -Calculus
	Polymorphic -Calculi (System F and Friends)

	Higher-Order Logic
	Types and Terms
	Theorems and Rules
	Definitional Extension and Theories
	Forward and Backward Proof

	HaskHOL
	Challenges Implementing an LCF-Style Prover with Haskell
	Characterizing an LCF-Style Prover
	A Monadic Approach to the LCF Style
	Type-Directed Extensible State
	Practical Implications of Stateful Monads
	Optimizing Monadic Proof
	Polymorphic Protection

	Stateless Higher-Order Logic with Quantified Types
	A Stateless Kernel
	A Polymorphic Type System

	HaskHOL as a Library
	Verifying Constructor Classes
	Monads in HaskHOL

	HaskHOL as a Plugin
	The HERMIT with the KURE

	A Formalized Translation
	From GHC Core to HaskHOL

	Evaluation
	A HERMIT Plugin for Verification
	Verification Results
	A Case Study in Verifying Type Class Laws
	A Case Study in Formalizing Test Suites

	Observations
	Future Work

	Related Work
	Related Theorem Provers
	Related Verification Efforts

	Conclusion
	References
	Select Code from the Verification Plugin

