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Abstract

In data mining, decision rules induced from known examples are used to classify

unseen cases. There are various rule induction algorithms, such as LEM1 (Learning

from Examples Module version 1), LEM2 (Learning from Examples Module version

2) and MLEM2 (Modified Learning from Examples Module version 2). In the real

world, many data sets are imperfect, either inconsistent or incomplete. The idea of

lower and upper approximations, or more generally, the probabilistic approximation,

provides an effective way to induce rules from inconsistent data sets and incomplete

data sets. But the accuracies of rule sets induced from imperfect data sets are expected

to be lower. The objective of this project is to investigate which kind of imperfect data

sets (inconsistent or incomplete) is worse in terms of the quality of rule induction.

In this project, experiments were conducted on eight inconsistent data sets and eight

incomplete data sets with lost values. We implemented the MLEM2 algorithm to in-

duce certain and possible rules from inconsistent data sets, and implemented the local

probabilistic version of MLEM2 algorithm to induce certain and possible rules from

incomplete data sets. A program called Rule Checker was also developed to classify

unseen cases with induced rules and measure the classification error rate. Ten-fold

cross validation was carried out and the average error rate was used as the criterion

for comparison. The Mann-Whitney nonparametric tests were performed to compare,

separately for certain and possible rules, incompleteness with inconsistency. The re-

sults show that there is no significant difference between inconsistent and incomplete

data sets in terms of the quality of rule induction.
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Chapter 1

Introduction

As we encounter exponential growth of data acquisition in recent years, it is of great interest

to discover the hidden information lying beneath the data, so that explanation of patterns and

prediction of new examples are possible. Data mining is a research area aiming to extract such

previously unknown information. Classification is a type of problems in which the decision values

are category labels, and the decisions of training examples are known. One way to represent the

extracted knowledge of classification problems is to use decision rules.

There are many rule induction algorithms. In this project, we focused on the LERS (Learning

from Examples based on Rough Set) learning system, which is a data mining system that induces

a rule set from examples represented as a decision table, and classifies unseen examples using the

previously induced rule set (Grzymala-Busse, 1992). LEM1 (Learning from Examples Module

version 1), LEM2 (Learning from Examples Module version 2) and MLEM2 (Modified Learning

from Examples Module version 2) are different rule induction algorithms frequently used in LERS

system.

Ideally we want training sets to be consistent and complete, from such sets rule sets with high

accuracy could be induced. However, in the real world, we usually have imperfect data sets, either

inconsistent or incomplete, which make rule induction more difficult. Lower and upper approxima-

tions, or more generally, probabilistic approximations, provide an effective and practical way to in-
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duce certain and possible rules from inconsistent data sets and incomplete data sets (Pawlak, 1982)

(Pawlak, 1992) (Clark & Grzymala-Busse, 2011) (Grzymala-Busse & Siddhaye, 2004) (Grzymala-

Busse et al., 2014). The approximation is based on "indiscernibility relation", which is an equiv-

alence relation on inconsistent data sets. For incomplete data set, the indiscernibility relation is

reflexive, but is not necessarily symmetric or transitive. Therefore the approximation on incom-

plete data set is not unique. One has several choices on which approximation to use, for example,

subset approximation, concept approximation, or local approximation. However, no matter what

approximation is used, the qualities of rule sets induced from inconsistent data sets and incomplete

data sets are expected to be lower than rules induced from perfect data set. Since inconsistent data

sets and incomplete data sets are very common, it is worth the effort to investigate which one is

worse.

The objective of this project is to find out which type of imperfect data sets, inconsistent or

incomplete, has more negative effects on rule induction. In this project, we implemented the

conventional MLEM2 algorithm and the local probabilistic version of MLEM2 algorithm. We

also developed a program to classify cases from testing set and measure the classification error

rate. Experiments were carried out on eight inconsistent data sets and eight incomplete data sets.

For inconsistent data sets, certain rules and possible rules were induced with MLEM2 algorithm.

For incomplete data sets, we only considered one type of missing attribute values, which are lost

values (denoted by ?), and applied the local probabilistic version of MLEM2 algorithm to induce

certain rules and possible rules. Ten-fold cross validation was conducted on each data set, and the

average error rate was used as the criterion for comparison. The Mann-Whitney nonparametric

test was performed to compare, separately for certain and possible rules, incompleteness with

inconsistency. The results show that inconsistent data sets and incomplete data sets are comparable

with each other in terms of the quality of rule induction. There is no significant difference between

the two types of imperfect data sets.
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Chapter 2

Data Representation

2.1 Decision Table

In this thesis, we follow the terminologies of the LERS system (Grzymala-Busse, 1992). In

the LERS system, an input data set is presented as a decision table. Each row of a decision table

is called a case, and each column corresponds to a variable. One special variable is selected as

decision, and the other variables are attributes. Conventionally, we use d to denote decision, U to

denote the entire set of cases, and A to denote the set of all attributes. Table 2.1 is an example of

a decision table which keeps a record on the symptoms of a patient and whether he/she has flu or

not. In this table, U = {1,2,3,4,5,6,7}, d = Flu, and A = {Temperature,Headache,Cough}.

Table 2.1: An example of a decision table

Attributes Decision

Case id Temperature Headache Cough Flu

1 100.6 yes yes yes
2 102.4 yes no yes
3 98.0 no yes yes
4 102.4 yes no no
5 98.0 yes no no
6 98.0 no yes no
7 102.4 yes no no

3



Table 2.2: All attribute-value blocks of Table 2.1

(a,v) [(a,v)]

(Temperature,98.0) {3,5,6}
(Temperature,100.6) {1}
(Temperature,102.4) {2,4,7}

(Headache,yes) {1,2,4,5,7}
(Headache,no) {3,6}
(Cough,yes) {1,3,6}
(Cough,no) {2,4,5,7}

"Headache" and "Cough" are symbolic attributes because the values of these attributes are

discrete labels. On the contrary, "Temperature" is a numerical attribute because the values of

this attribute are continuous numerical numbers. Numerical attributes are usually discretized to

intervals. The MLEM2 algorithm handles discretization at the same time with rule induction,

which will be discussed in Chapter 3.

Let a denote an attribute, x denote a case, v denote a value of a particular attribute. The pair

(a,v) is called an attribute-value pair. For example, (Headache,yes) is an attribute-value pair.

The attribute-value pair block, denoted by [(a,v)] for complete data sets is defined as

[(a,v)] = {x|x ∈U,a(x) = v} (2.1)

A full list of all attribute-value blocks of Table 2.1 is summarized in Table 2.2.

Similarly, we could define concept, which is the block of a decision-value pair.

[(d,w)] = {x|x ∈U,d(x) = w} (2.2)

In Table 2.1, there are two concepts: [(Flu,yes)] = {1,2,3} and [(Flu,no)] = {4,5,6,7}. With

the knowledge of attribute-value pair blocks and concepts, we are able to discuss consistency,

completeness, and approximations.
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2.2 Inconsistent Data Sets

2.2.1 Indiscernibility Relation and Elementary Sets

A decision table is consistent if there does not exist more than one case that share the same

values for all attributes, while belong to different concepts. A formal definition is based on indis-

cernibility relation of cases, which is denoted by ∼
B

. Let x and y be two cases and B be a subset

of all variables (B ⊆ A∪{d}). Case x is indiscernible from case y by B if and only if for every

element a in B, a(x) = a(y) (Pawlak, 1982), as is shown in Equation 2.3.

x∼
B

y⇔∀a ∈ B,a(x) = a(y) (2.3)

In Table 2.1, we have

1∼
A

1 2∼
A

2 2∼
A

4 2∼
A

7

3∼
A

3 3∼
A

6 4∼
A

2 4∼
A

4 4∼
A

7

5∼
A

5 6∼
A

3 6∼
A

6 7∼
A

2 7∼
A

4 7∼
A

7

Observe that the indiscernibility relation on a complete data set is reflexive, symmetric and

transitive. In other words, the indiscernibility relation on complete data sets is an equivalence

relation on U . Therefore, the idea of partition could be used to describe pairwise indiscernibility

relations in a more concise way. The set of all cases that are indiscernible from x by B, denoted by

[x]B, is called an equivalent set.

[x]B = ∩{[(a,a(x))]|a ∈ B} (2.4)

For example, in Table 2.1, [1]A = {1}, and [2]A = {2,4,7}.

Partition B∗ of U is the set of all equivalent sets of indiscernibility relation generated by B.

B∗ = {[x]B|x ∈U} (2.5)
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If B = A, the equivalent sets of A∗ are called elementary sets.

For Table 2.1,

{Temperature}∗ = {{1},{2,4,7},{3,5,6}}

{Headache}∗ = {{1,2,4,5,7},(3,6}}

{Cough}∗ = {{1,3,6},{2,4,5,7}}

{Temperature,Cough}∗ = {{1},{2,4,7},{3,6},{5}}

Consider two partitions on U , partition P∗ is said to be smaller than or equal to partition Q∗ if

and only if for each block E ∈ P∗, there exists a block E ′ ∈ Q∗, such that E is a subset of E ′. For

example, in Table 2.1, {Temperature,Cough}∗ 6 {Temperature}∗.
The consistency of a data set is based on the inequality of partitions. A decision table is said to

be consistent if and only if A∗ 6 {d}∗.
Table 2.1 is inconsistent because

A∗ = {Temperature,Headache,Cough}∗ = {{1},{2,4,7},{3,6},{5}}

{d}∗ = {Flu}∗ = {{1,2,3},{4,5,6,7}}

A∗ 
 {d}∗

Note that when we discuss consistency, we assume the decision table to be complete, i.e., there

are no missing attribute values. If a decision contains missing attribute values, it is categorized as

incomplete data set.

2.2.2 Lower and Upper Approximations

For consistent data sets, rules for a concept could be directly induced with algorithms like

LEM1 and LEM2 without preliminary processing. However, for inconsistent data sets, we need to

use approximations of concepts to induce rules (Pawlak, 1992) (Grzymala-Busse, 1992). Consider

an inconsistent data set, given a set X ⊆U and a set B ⊆ A, the B-singleton lower approximation

6



of X , denoted by apprsingleton
B (X) is defined as follows

apprsingleton
B (X) = {x|x ∈U, [x]B ⊆ X} (2.6)

The B-subset lower approximations of X , denoted by apprsubset
B (X) is defined as follows

apprsubset
B (X) = ∪{[x]B|x ∈U, [x]B ⊆ X} (2.7)

The B-concept lower approximations of X , denoted by apprconcept
B (X) is defined as follows

apprconcept
B (X) = ∪{[x]B|x ∈ X , [x]B ⊆ X} (2.8)

The B-singleton upper approximation of X , denoted by apprB
singleton(X) is defined as follows

apprsingleton
B (X) = {x|x ∈U, [x]B∩X 6= /0} (2.9)

The B-subset upper approximation of X , denoted by apprsubset
B (X) is defined as follows

apprsubset
B (X) = ∪{[x]B|x ∈U, [x]B∩X 6= /0} (2.10)

The B-concept upper approximation of X , denoted by apprconcept
B (X) is defined as follows

apprconcept
B (X) = ∪{[x]B|x ∈ X , [x]B∩X 6= /0} (2.11)

For example, the singleton, subset, and concept lower and upper approximations of concept

[(Flu,yes)] = {1,2,3} of Table 2.1 are

apprsingleton
A (X) = apprsubset

A (X) = apprconcept
A (X) = {1}

apprsingleton
A (X) = apprsubset

A (X) = apprconcept
A (X) = {1,2,3,4,6,7}
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Table 2.3: Probabilistic approximations for [(Flu,yes)] of Table 2.1

α apprα,A({1,2,3})
1/3 {1,2,3,4,6,7}
1/2 {1,3,6}

1 {1}

For inconsistent data sets, the singleton, subset and concept definitions of lower and upper

approximations give the same results. Thus sometimes we could omit the word singleton, subset

or concept, and simply say lower and upper approximations.

2.2.3 Probabilistic Approximations

Lower and upper approximations are special cases of a more generalized approximation called

probabilistic approximation. For inconsistent data sets, the singleton, subset and concept defini-

tions of probabilistic approximations also give the same approximation results. Therefore we do

not distinguish the three definitions. Given a set X ⊆U , and a set B⊆ A, the probabilistic approx-

imations of X with a parameter α , 0 < α 6 1, are defined as follows (Clark & Grzymala-Busse,

2011)

apprsingleton
α,B (X) = apprsubset

α,B (X) = apprconcept
α,B (X) = ∪{[x]B|x ∈U,P(X |[x]B) > α} (2.12)

where

P(X |[x]B) =
|X ∩ [x]B|
|[x]B| .

The probabilistic approximations of concept [(Flu,yes)] = {1,2,3} of Table 2.1 are listed in

Table 2.3. Observe that with very small α , the probabilistic approximation of X equals to the

B-lower approximation of X , and with α = 1 the probabilistic approximation of X becomes the

B-upper approximation of X .
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2.3 Incomplete Data Sets

2.3.1 Missing Attribute Values and Characteristic Sets

Although Table 2.1 is inconsistent, it is complete since every attribute value is specified. In

the real world, there are many incomplete data sets with missing attribute values due to a lot of

reasons. We consider three interpretations of missing attribute values: lost values, "do not care"

values and attribute-concept values.

• Lost values, denoted by ?

If the original value of an attribute is erased or is never obtained, we interpret it as a lost

value. For lost values, we have no idea to guess what the original values are. Therefore, if

a(x) =?, x is not included in any [(a,v)] blocks for all specified values v of attribute a.

• "Do not care" values, denoted by *

"Do not care" values could be replaced by any specified values from the attribute domain.

This usually happens when people do not feel comfortable to reply to some unpleasing ques-

tions, like age, income, and so on. If the corresponding value of case x is "do not care" value

for attribute a, x is included in all [(a,v)] blocks for all specified values v of attribute a.

• Attribute-concept values, denoted by -

The property of attribute-concept values lies somewhere between lost values and "do not

care" values. The original attribute value is lost, but it is reasonable for us to replace it by

"typical" attribute values of other cases from the same concept to which the case belongs.

When computing attribute-value pair blocks, if a(x) = -, x is included in blocks [(a,v)] for

all specified values v ∈V (x,a), where

V (x,a) = {a(y)|a(y) is specified,y ∈U,d(y) = d(x)} (2.13)

9



Table 2.4: An incomplete data set

Attributes Decision

Case id Wind Humidity Temperature Trip

1 low low medium yes
2 - low * yes
3 * medium medium yes
4 low ? high maybe
5 medium - medium maybe
6 medium high low no
7 ? high * no
8 low low high no

Table 2.5: All attribute-value blocks of Table 2.4

(a,v) [(a,v)]

(Wind, low) {1,2,3,4,8}
(Wind,medium) {3,5,6}
(Humidity, low) {1,2,8}

(Humidity,medium) {3}
(Humidity,high) {6,7}

(Temperature, low) {2,6,7}
(Temperature,medium) {1,2,3,5,7}

(Temperature,high) {2,4,7,8}
Note: V (2,Wind) = {low}, and V (5,Humidity) = /0

Table 2.4 is an example of an incomplete data set, and the attribute-value pair blocks of this

decision table is shown in Table 2.5.

In Section 2.2.1 we have defined elementary sets for complete data sets. For incomplete data

sets, the idea of elementary sets is extended to the idea of characteristic sets (Grzymala-Busse,
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2004) denoted by KA.

KA(x) =
⋂

a∈A

K(x,a)

where K(x,a) =





[(a,a(x)] if a(x) is specified

U if a(x) =?, or a(x) = ∗, or a(x) = - and V (x,a) = /0

⋃
v∈V (x,a)

[(a,v)] if a(x) = - and V (x,a) 6= /0

(2.14)

For the data set of Table 2.4, the characteristic sets are computed as

KA(1) = {1,2,3,4,8}∩{1,2,8}∩{1,2,3,5,7}= {1,2}

KA(2) = {1,2,3,4,8}∩{1,2,8}∩U = {1,2,8}

KA(3) = U ∩{3}∩{1,2,3,5,7}= {3}

KA(4) = {1,2,3,4,8}∩U ∩{2,4,7,8}= {2,4,8}

KA(5) = {3,5,6}∩U ∩{1,2,3,5,7}= {3,5}

KA(6) = {3,5,6}∩{6,7}∩{2,6,7}= {6}

KA(7) = U ∩{6,7}∩U = {6,7}

KA(8) = {1,2,3,4,8}∩{1,2,8}∩{2,4,7,8}= {2,8}

Note that for incomplete data set, the indiscernibility relation is reflexive, but is not necessar-

ily symmetric or transitive. Thus the indiscernibility relation on incomplete data sets is not an

equivalence relation, which will make approximations not unique for incomplete data sets.

2.3.2 Lower and Upper Approximations

In Section 2.2.2, we have discussed the lower and upper approximations of concepts from an

inconsistent (but complete) data set. For incomplete data sets, the lower and upper approxima-

tions could be defined similarly by replacing the elementary sets by characteristic sets in all equa-
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tions (Grzymala-Busse & Siddhaye, 2004). Consider an incomplete data set, given a set X ⊆U

and a set B⊆ A, the B-singleton lower approximationof X , denoted by apprsingleton
B (X) is defined

as follows

apprsingleton
B (X) = {x|x ∈U,KB(x)⊆ X}. (2.15)

The B-subset lower approximations of X , denoted by apprsubset
B (X) is defined as follows

apprsubset
B (X) = ∪{KB(x)|x ∈U,KB(x)⊆ X}. (2.16)

The B-concept lower approximations of X , denoted by apprconcept
B (X) is defined as follows

apprconcept
B (X) = ∪{KB(x)|x ∈ X ,KB(x)⊆ X}. (2.17)

The B-singleton upper approximation of X , denoted by apprB
singleton(X) is defined as follows

apprsingleton
B (X) = {x|x ∈U,KB(x)∩X 6= /0}. (2.18)

The B-subset upper approximation of X , denoted by apprsubset
B (X) is defined as follows

apprsubset
B (X) = ∪{KB(x)|x ∈U,KB(x)∩X 6= /0}. (2.19)

The B-concept upper approximation of X , denoted by apprconcept
B (X) is defined as follows

apprconcept
B (X) = ∪{KB(x)|x ∈ X ,KB(x)∩X 6= /0}. (2.20)
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For example, for the concept [(Trip,yes)] = {1,2,3} of Table 2.4, the approximations are

apprsingleton
A (X) = {1,3}

apprsubset
A (X) = {1,2,3}

apprconcept
A (X) = {1,2,3}

apprsingleton
A (X) = {1,2,3,4,5,8}

apprsubset
A (X) = {1,2,3,4,5,8}

apprconcept
A (X) = {1,2,3,8}

Observe that for incomplete data sets, the three definitions (singleton, subset and concept) of

lower and upper approximations could give different results, which is different from approxima-

tions on inconsistent data sets.

2.3.3 Probabilistic Approximations

Lower and upper approximations are special cases of probabilistic approximations with very

small α and with α = 1 respectively. Similar to the discussion in 2.2.3, we can also define the

general probabilistic approximations for incomplete data sets (Grzymala-Busse et al., 2014). Given

a set X ⊆U , and a set B⊆ A, the probabilistic approximations of X with a threshold α , 0 < α 6 1,

are defined as follows

apprsingleton
α,B (X) = {x|x ∈U,P(X |KB(x]) > α} (2.21)

apprsubset
α,B (X) = ∪{KB(x)|x ∈U,P(X |KB(x) > α} (2.22)

apprconcept
α,B (X) = ∪{[KB(x)|x ∈ X ,P(X |KB(x)) > α} (2.23)

where

P(X |KB(x)) =
|X ∩KB(x)|
|KB(x)| .

13



Table 2.6: Probabilistic approximations for [(Trip,yes)] of Table 2.4

α apprα,A({1,2,3}singleton) apprα,A({1,2,3}subset) apprα,A({1,2,3}concept)

1/3 {1,2,3,4,5,8} {1,2,3,4,5,8} {1,2,3,8}
1/2 {1,2,3,5,8} {1,2,3,5,8} {1,2,3,8}
2/3 {1,2,3} {1,2,3,8} {1,2,3,8}
1 {1,3} {1,2,3} {1,2,3}

The probabilistic approximations of concept [(Trip,yes)] = {1,2,3} of Table 2.4 are summa-

rized in Table 2.6.

The singleton, subset and concept definitions of probabilistic approximations are also not

unique on incomplete data sets. There is no absolute answer to the question "which definition

would give the best results for rule induction". However, it is found that in many cases, if the

approximation is closer to the original concept, the quality of induced rules is better. Also, it has

been proved in (Clark et al., 2014) that for any concept X and a subset B⊆ A,

apprsingleton
α,B (X)⊆ apprsubset

α,B (X)

apprconcept
α,B (X)⊆ apprsubset

α,B (X)

Consider that apprA(X)⊆ X ⊆ apprA(X), if one is using lower approximation for rule induc-

tion, it is recommended to start with subset definition, and if one is using upper approximation,

concept definition might be a good choice. Singleton definition is not recommended because it

may not be locally definable, which will be discussed in the next section.

2.3.4 Local approximations

In Section 2.3.3, we have mentioned that singleton approximations are not always locally defin-

able. Let B be a subset of A, T be a set of attribute-value pairs, i.e. T = {t1, t2, ...tn}, ti = {ai,vi}.

If all ai are distinct and belong to B, T is called a B-complex. If B = A, we simply say T is a

complex. T is nontrivial if [T ] =
n⋂

i=1
[(ai,vi)] 6= /0. A set X is globally definable if and only if X is a

union of some characteristic sets KA(x),x ∈U . X is locally definable if and only if it is a union of
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intersections of attribute-value pair blocks from some complexes.

Definability of a set is very important because decision rules and the rule induction algorithms

we are going to discuss in Chapter 3 only work on locally definable sets (Grzymala-Busse &

Rzasa, 2006).

We also mentioned in 2.3.3 that usually we would like to choose an approximation that is close

to the original set. Sometimes subset and concept probabilistic approximations are not satisfying.

For example, consider the incomplete data set in Table 2.7, the (a,v) blocks and characteristic sets

are

[(Age,under−21)] = {1,8} [(Age,21−40)] = {3,5,7}

[(Age,41−and−over)] = {4} [(Education,elementary)] = {1,3,6,8}

[(Education,secondary)] = {2,3,6,7} [(Education,higher)] = {3,4,6}

[(Gender,male)] = {1,4,8} [(Gender, f emale)] = {2,5,6,7,8}

KA(1) = {1,8} KA(2) = {2,6,7}

KA(3) = {3,5,7} KA(4) = {4}

KA(5) = {5,7} KA(6) = {2,5,6,7,8}

KA(7) = {7} KA(8) = {1,8}

The subset and concept probabilistic approximations of concept [(Hobby, f ishing)] = {1,2,3}
are listed in Table 2.8. If we restrict to subset and concept probabilistic approximations, we only

have two choices on which approximation to use to induce rules for concept [(Hobby, f ishing)],

either {1,2,3,5,6,7,8} or {1,8}. However, since any locally definable set could be expressed by

a rule set, a more promising choice of approximation of concept [(Hobby, f ishing)] could be

{1,3,7,8}= [(Age,under−21)]∪ ([(Education,secondary)]∩ [(Age,21−41)])

= {1,8}∪ ({2,3,6,7}∩{3,5,7}).
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Table 2.7: An incomplete data set

Attributes Decision

Case id Age Education Gender Hobby

1 under-21 elementary male fishing
2 ? secondary female fishing
3 21-40 * ? fishing
4 41-and-over higher male hunting
5 21-40 ? female hunting
6 ? * female jogging
7 21-40 secondary female jogging
8 under-21 elementary * jogging

Table 2.8: Probabilistic approximations for [(Hobby, f ishing)] of Table 2.7

α apprα,A({1,2,3}subset) apprα,A({1,2,3}concept)

1/5 {1,2,3,5,6,7,8} {1,2,3,5,6,7,8}
1/3 {1,2,3,5,6,7,8} {1,2,3,5,6,7,8}
1/2 {1,8} {1,8}

1 /0 /0

Therefore, we introduce local lower approximation, local upper approximation, and local prob-

abilistic approximation (Grzymala-Busse & Rzasa, 2006) (Clark et al., 2012).

• B-local lower approximation, denoted by LBX , is defined as

LBX = ∪{[T ]|T is a nontrivial B-complex of X , [T ]⊆ X} (2.24)

For example,

L(A){6,7,8}= ([(Education,elementary)]∩ [(Gender, f emale)])

∪ ([(Age,21−40)]∩ [(Education,secondary)]∩ [(Gender,male)])

= {6,7,8}
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• B-local upper approximation, denoted by LBX , is defined as

LBX = {[T ]|∃ a family T of nontrivial B-complexes of X ,T ∈ T, [T ]∩X 6= /0} (2.25)

Local upper approximations are not unique, for example, {6,7,8} and {1,2,6,7,8} are both

local upper approximations of concept [(Hobby, jogging)].

Note:{1,2,6,7,8}= [(Age,under−21)]∪([(Education,secondary)]∩ [(Gender, f emale)]).

• B-local probabilistic approximation, denoted by apprlocal
α (X), is defined as

apprlocal
α,B (X) = ∪{[T ]|∃ a family T of nontrivial B-complexes of X ,T ∈ T,P(X |[T ] > α)}

(2.26)

Local probabilistic approximations are also not unique.

The local lower and upper approximations are special cases of the local probabilistic approxi-

mation. Local approximations are very promising choices of approximations for rule induction on

incomplete data sets. However, since local approximations are not unique, finding the optimal ap-

proximation (i.e. the approximation that is closest to the original set) is quite time consuming. One

needs to examine all possible combinations of (a,v) pairs, which could not be done in polynomial

time. A heuristic approach called local probabilistic version of MLEM2 algorithm to calculate a

single local probabilistic approximation (sub-optimal) and induce rules from incomplete data sets

will be discussed in Chapter 3.
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Chapter 3

Rule Induction

3.1 Decision Rules

A rule is represented in the LERS format as shown in Equation 3.1

number1,number2,number3

(a1,v1)&(a2,v2)&(a3,v3)& . . .&(am,vm)→ (d,w)
(3.1)

where ai ∈ A, vi ∈V (ai), ∀i = 1,2,3, . . . ,m.

The three numbers are specificity, strength, and the rule domain size respectively, which are

important features of a rule (Gryzmala-Busse & Wang, 1996).

• Specificity

The attribute-value pairs on the left-hand side of a rule are called conditions. The total num-

ber of conditions indicates the complexity of a rule, which is called specificity. Specificity is

usually a concern in the health and medication field, where conditions are often associated

with results of lab tests. The more conditions a rule contains, the more tests a patient need

to take to obtain the diagnosis.

• Rule Domain Size

If the attribute values of a training case x are in accord with all the conditions of a rule r,
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we say that case x is covered by rule r. The total number of training cases that completely

match the left-hand side of a rule is called the rule domain size. (The idea of training cases

and testing cases are discussed in Chapter 4.) In general, we want a rule to cover as many

cases as possible.

• Strength

Apart from the rule domain size, we are also interested in the correctness of a rule. The

total number of training cases that are correctly classified by a rule is called strength. If all

the cases that are covered by a rule r are also correctly classified by r, we say that rule r is

consistent with the data set.

In most cases, a single rule only covers a few cases, thus we need a set of rules to cover as many

cases in a decision table as possible. A rule set R is complete if and only if for any case i∈U , there

exists a rule r, such that case i is covered by r. A rule set R is consistent with the decision table if

and only if every rule r ∈ R is consistent with the decision table. The most common rule induction

task is to induce a rule set R that is both complete and consistent with the decision table.

3.2 The LEM2 Algorithm

The LEM2 (Learn from examples, module version 2) algorithm is a module of the LERS learn-

ing system, which computes a local covering for every concept of the training data set. Then the

local coverings are converted to a rule set (Grzymala-Busse, 1992).

In Section 2.3.4, we have defined complex T = {t1, t2, . . . , tn}, where t1, t2, . . ., tn are attribute-

value pairs with distinct attribute names. Observe that T corresponds to the left-hand side of a rule.

Let B represent a nonempty concept or an nonempty approximation of a concert. T is a minimal

complex of B if and only if (1) [T ] =
n⋂

i=1
ti ⊆ B ; (2) There does not exist a subset T ′ ⊂ T such that

[T ′]⊆ B. Let T= {T1,T2, . . . ,Tm} be a nonempty set of nontrivial complexes. T is a local covering

of B if and only if it satisfies the following conditions:

1. Each member of Ti ∈ T is a minimal complex of B, ∀i = 1,2, . . . ,m.
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Table 3.1: A decision table for demonstrating LEM2 algorithm

Attributes Decision

Case id Wind Humidity Temperature Trip

1 low low medium yes
2 low low low yes
3 low medium medium yes
4 low medium high maybe
5 medium low medium maybe
6 medium high low no
7 high high high no
8 medium high high no

2.
⋃

T∈T
T = B.

3. T is minimal, i.e., if any T is removed from T, the second condition is violated.

As is mentioned earlier, a local covering could be converted to a set of rules. Condition 1

ensures that every rule in the rule set only covers cases belong to B, and every rule is as simple

as possible. Condition 2 guarantees that every case in B is covered by the rule set, and condition

3 indicates that there are no redundant rules. The following example illustrates how to convert a

local covering to a set of rules.

Consider a decision table as shown in Table 3.1, a local covering of concept [(Trip,yes)] =

{1,2,3} isT= {{Wind, low),(Humidity, low)},{(Humidity,medium),(Temperature,medium)}},

which is corresponding to two rules for concept [(Trip,yes)]:

(Wind, low)→ (Trip,yes)

(Wind,medium)→ (Trip,maybe)

(Temperature,high)→ (Trip,no)

The first rule covers case 1 and case 2, and the second rule covers case 3. Both rules are

consistent with the data set, and there are no more cases of concept [(Trip,yes)] that are not covered

by the two rules. Also, both rules are minimal because no conditions could be removed to maintain
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the consistency of the rules. Furthermore, there is no redundant rule, both rules are necessary

to cover all cases in [(Trip,yes)]. Similarly, we can find rules for concepts [(Trip,maybe)] and

[(Trip,no)].

Therefore, an effective way to induce a rule set from a decision table is to compute a local

covering for every concept. The LEM2 algorithm is designed to find a single local covering for a

given concept. The essential part of the LEM2 algorithm is to select the best attribute-value pair

t from all available attribute-value pairs. Given a goal G, which is a set of cases that need to be

covered, the criteria of selecting t are

1. Select a t such that t is most relevant to G. ⇔ |G∩ [t]| is maximum.

2. If a tie occurs from criterion 1, select a t such that the conditional probability P(G|[t]) is

maximized.

Note that the order of the criteria brings a bonus of simplifying the computation of conditional

probability. Consider P(G|[t]) = |G∩ [t]|/|[t]|, the first criterion makes sure that if multiple t

(t1, t2, . . . , tk) give the same maximum relevance, we must have |G∩ [t1]| = |G∩ [t2]| = . . . = |G∩
[tk]|. Then smaller cardinality size of [t] results in larger value of P(G|[t]). Thus we only need to

pick up a t with the smallest |[t]|, and it will automatically give the largest P(G|[t]).
The procedure of LEM2 is described by Algorithm 1. In this algorithm, |X | denotes the cardi-

nality of set X .

Here is an example showing how the LEM2 algorithm would work on Table 3.1. First, all

attribute-value pairs are computed.

[(Wind, low)] = {1,2,3,4} [(Wind,medium)] = {5,6,8}

[(Wind,high)] = {7} [(Humidity, low)] = {1,2,5}

[(Humidity,medium)] = {3,4} [(Humidity,high)] = {6,7,8}

[(Temperature, low)] = {2,6} [(Temperature,medium)] = {1,3,5}

[(Temperature,high)] = {7,8}
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Algorithm 1 LEM2 Procedure
Input: a nonempty set B, which is a concept, or some approximation of a concept
Output: a single local covering T of set B

1: begin procedure
2: G := B;
3: T := /0;
4: while G 6= 0 do
5: T := /0;
6: T (G) := {t|[t]∩G 6= /0};
7: while T = /0 or [T ]* B do
8: select a pair t ∈ T (G) such that |t ∩G| is maximum; if a tie occurs, select a pair t ∈ T (G)

with the smallest cardinality of [t]; if another tie occurs, select first pair;
9: T := T ∪{t};

10: G := [t]∩G;
11: T (G) := {t|[t]∪G 6= /0};
12: T (G) := T (G)−T ;
13: end while
14: for each t ∈ T do
15: if [T −{t}]⊆ B then
16: T := T −{t};
17: end if
18: end for
19: T := T∪T ;
20: G := B− ⋃

T∈T
T ;

21: end while
22: for each T ∈ T do
23: if

⋃
S∈T−{T}

[S] = B then

24: T := T−{T};
25: end if
26: end for
27: end procedure
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Let us induce rules for concept [(Trip,yes)] = {1,2,3}. Initially, B = G = {1,2,3}. The set of

all relevant attribute-value pairs is T (G) = {(Wind, low),(Humidity, low),(Humidity,medium),

(Temperature, low),(Temperature,medium)}. Among all t ∈ T (G), (Wind, low) yields to the

maximum |t∩G|. Therefore (Wind, low) is selected and T = {(Wind, low)}. Since T *B, we have

to go through another iteration of the inner while loop (lines 7 to 13 of Algorithm 1) to select the

next attribute-value pair with G = {1,2,3} and T (G) = {(Humidity, low),(Humidity,medium),

(Temperature, low),(Temperature,medium)}.
In the second iteration, both (Humidity, low) and (Temperature,medium) give the maximum

|t ∩G| = 2, and both attribute-pairs have the same cardinality of 2. We select (Humidity, low) by

the heuristic of choosing first pair, then T is updated to {(Wind, low),(Humidity, low)}. The inner

while loop is terminated because [T ] = {1,2} ⊆ B.

Next, we need to check if T is minimal by running the first for loop (lines 14 to 18 of Algo-

rithm 1), and find that no pairs could be dropped from T . As a result, {(Wind, low),(Humidity, low)}
is the first minimal complex of B. Then G is updated to {3} and we identify the second minimal

complex, which is {(Humidity,medium),(Temperature,medium)}. The new G is now an empty

set. As we come out from the outer while loop, we need to examine if T is minimal by running the

second for loop (lines 22 to 27 of Algorithm 1). It is found that both complexes should be kept.

Eventually, the local covering of concept [(Trip,yes)] = {1,2,3} is

T= {{(Wind, low),(Humidity, low)},{(Humidity,medium),(Temperature,medium)}}.

3.3 Discretization and MLEM2 Algorithm

Consider some attributes like height, age, interest rate, speed and so on, usually the values of

these attributes are continuous (numerical). Numerical attributes need to be discretized for rule

induction. In general, there are two ways to handle data sets with numerical attributes. The first
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way is to perform a preliminary discretization step, and then apply rule induction algorithms. Fre-

quently used discretization methods include dominant attribute approach, multiple scanning ap-

proach, and many other approaches. The second way is to include the discretization procedure into

the rule induction procedure. In this project, we focus on the second approach, and adapt a mod-

ified version of the LEM2 algorithm named MLEM2 for rule induction with data sets containing

numerical attributes (Grzymala-Busse, 2008).

Consider an attribute a with numerical values from an interval [b,c], the discretization pro-

cedure is to divide interval [b,c] into subintervals [b1,b2), [b2,b3), . . ., [bm−1,bm] where b1 = b,

bm = c, and bi−i < bi,∀i = 1,2,3, . . . ,m. The numbers b2, b3, . . ., bm−1 are called cut points. We

use "bi−1..bi" to represent the interval [bi−1,bi) for i < m, and use "bm−1..bm" to represent the

interval [bm−1,bm].

The MLEM2 algorithm is analogous to LEM2 in searching for best attribute-value pairs and

identifying a local covering for each concept. The main difference between MLEM2 and LEM2

algorithms is the calculation of candidates t1, t2, . . ., tn (also called elementary conditions) in the

searching space. In LEM2 the elementary conditions are (a,v) pairs. In MLEM2, the elementary

conditions for symbolic attributes are also (a,v) pairs, while the elementary conditions for numer-

ical attributes are presented as (a,bi−1..bi), which means the value of attribute a is in between of

bi−1 and bi. Another difference between MLEM2 and LEM2 is the updating of T (G) at the end of

each iteration of the inner while loop. In LEM2, T (G) := T (G)−T , which means only the selected

elementary conditions are deleted from T (G). While in MLEM2, ∀t = (at ,x..y) ⊆ T , if at is an

numerical attribute, the set {t ′|t ′ = (at ,u..v), t ′ ⊆ T (G),x..y and u..v are disjoint , or x..y⊆ u..v} is

also subtracted from T (G). This is because selecting t ′ won’t bring any benefit in making T (G) a

subset of B.

Let us show how MLEM2 works using the following example. The decision table is shown in

Table 3.2. There is one numerical attribute (Temperature) and two symbolic attributes (Headache

and Cough). First, we calculate all the cut points for attribute "Temperature" as follows:

1. Sort the distinct numerical values of "Temperature" in ascending order.
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Table 3.2: A decision table containing numerical for demonstrating MLEM2 attributes

Attributes Decision

Case id Temperature Headache Cough Flu

1 101.6 yes yes yes
2 102.4 yes no yes
3 100.8 no yes yes
4 101.6 yes no no
5 98.8 yes no no
6 98.0 no no no
7 102.4 no yes no

98.0 98.8 100.8 101.6 102.4

2. Calculate the average of two adjacent numbers, which are the cut points.

(98.0+98.8)/2 = 98.4 (98.8+100.8)/2 = 99.8

(100.8+101.6)/2 = 101.2 (101.6+102.4)/2 = 102.0

Therefore, cut points are 98.4, 99.8, 101.2, and 102.0.

Second, all elementary conditions are determined and the blocks of elementary conditions

are computed. For symbolic attributes "Headache" and "Cough", the elementary conditions are

attribute-value pairs. For numerical attribute "Temperature", we create two elementary conditions

for every cut point bi as (Temperature,start-number..bi) and (Temperature,bi..end-number), where

start-number is the smallest numerical value and end-number is the largest numerical value of the

attribute. The blocks of such elementary conditions are calculated as

[(a,start-number..bi)] = {x|start-number 6 a(x) < bi}

[(a,bi..end-number)] = {x|bi < a(x) 6 end-number}

Let us induce rules for concept [(Flu,yes)] = {1,2,3}. We need to identify a local covering

for {1,2,3}, and the criteria of selecting the best elementary condition t are the same as in the
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LEM2 algorithm. Initially, B = G = {1,2,3}. All the available elementary conditions are listed as

follows.

[(Temperature,98.0..98.4)] = {6} [(Temperature,98.4..102.4)] = {1,2,3,4,5,7}

[(Temperature,98.0..99.8)] = {5,6} [(Temperature,99.8..102.4)] = {1,2,3,4,7}

(Temperature,98.0..101.2) = {3,5,6} [(Temperature,101.2..102.4)] = {1,2,4,7}

[(Temperature,98..102.0)] = {1,3,4,5,6} [(Temperature,102.0..102.4)] = {2,7}

[(Headache,yes)] = {1,2,4,5} [(Headache,no)] = {3,6,7}

[(Cough,yes)] = {1,3,7} [(Cough,no)] = {2,4,5,6}

The set of all relevant attribute-value pairs is

T (G) = {(Temperature,98.4..102.4),(Temperature,99.8..102.4),

(Temperature,98..101.2),(Temperature,101.2..102.4),

(Temperature,98..102.0),(Temperature,102.0..102.4),

(Headache,yes),(Headache,no),(Cough,yes),(Cough,no)}

.

Among all t ∈ T (G), (Temperature,98.4..102.4) and (Temperature,99.8..102.4) both give the

maximum |t ∩T (G)|. Since |[(Temperature,99.8..102.4)]| is smaller than |[(Temperature,

98.4..102.4)]|, the first elementary condition t selected by MLEM2 algorithm is (Temperature,

99.8..102.4). Because [(Temperature,99.8..102.4)] = {1,2,3,4,7} * B, we need to select the

next elementary condition t. To update T (G), (Temperature,99.8..102.4) should be deleted be-

cause it is already selected. (Temperature,98..98.4) should also be deleted since the two intervals

[99.8,102.4] and [98,98.4) have no intersection.

The next selected elementary condition is (Cough,yes). Since [(Temperature,99.8..102.4)]∩
[(Cough,yes)] = {1,3,7}* B, we need to select the third elementary condition, which is
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(Temperature,98..102.0). The first minimal complex of B is

T = {(Temperature,99.8..102.4),(Cough,yes),(Temperature,98..102.0)}.

T is minimal, all the three elementary conditions are necessary. However, (Temperature,

99.8..102.4) and (Temperature,98..102.0) could be combined to (Temperature,99.8..102.0). The

procedure of combining elementary conditions for numerical attributes is called merging intervals.

The second minimal complex of B could be identified in a similar way, and finally we get a

local covering of B as

T= {{(Temperature,99.8..102.0),(Cough,yes)},

{(Temperature,102.0..102.4),(Headache,yes)}}.

The rules for [(Flu,yes)] are

2,2,2

(Temperature,99.8..102)&(Cough,yes)→ (Flu,yes)

2,1,1

(Temperature,102.0..102.4)&(Headache,yes)→ (Flu,yes)

So far we only discussed how to induce rules with LEM2 and MLEM2 from consistent data

sets. In Chapter 2, we discussed approximations of concepts. For inconsistent data sets and incom-

plete data sets, we could apply LEM2 and MLEM2 algorithms by replacing the original concept by

some approximation (e.g. lower approximation, probabilistic approximation, etc.) of the concept.

Rules that are induced with lower approximations are called certain rules, and those induced with

upper approximations are called possible rules.
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3.4 Local Probabilistic version of MLEM2 Algorithm

We introduced local approximations for incomplete data sets. It has been mentioned that lo-

cal approximations are quite promising. However, one needs to check all possible combinations

of elementary conditions t to find the optimal approximation, the computation complexity is ex-

ponential to the total number of t. The local probabilistic version of MLEM2 algorithm is a

heuristic approach which identifies one single local approximation and induce rules at the same

time (Grzymala-Busse & Rzasa, 2010). Note that the identified local approximation may not be

the optimal approximation, but we are able to finish calculation in polynomial time.

The procedure of the local probabilistic version of MLEM2 algorithm (LocalPrMLEM2) is

analogous to MLEM2 except for the following modifications.

1. In MELM2, we check if [T ]⊆B each time an elementary condition is selected, and B remains

the same during the procedure of rule induction. While in LocalPrMLEM2, we introduce a

set D, and check if [T ] ⊆ D. Originally, D = X , and D is updated during the rule induction

procedure. X is some concept.

2. For incomplete data sets, one may not get [T ]⊆D when one runs out of available elementary

conditions. In this case, the conditional probability P(X |[T ]) = |X ∩ [T ]|/|[T ]| is calculated.

If P(X |[T ] > α , then D = D∪ [T ], indicating that all the cases belong to [T ] are included

into the approximation. Otherwise, we introduce a set of "junk complexes" J, and update

J := J∪ [T ], which means all the cases belong to [T ] are excluded from the approximation,

and T is excluded from the local covering T.

3. When the algorithm terminates,
⋃

S∈T
[S] represents a single local approximation of X , and T

could be converted into rules.

The full description of LocalPrMLEM2 is shown in Algorithm 2. If the input parameter α

equals to 1, the algorithm induces certain rules. If α is very small, possible rules are induced.

To demonstrate how LocalPrMLEM2 works, let us induce rules for [(Hobby, f ishing)]= {1,2,3}
of Table 3.3 with α = 0.5. Initially G = D = X = {1,2,3} and J= /0. After selecting (Eduction,
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Algorithm 2 Local Probabilistic version of MLEM2 Procedure
Input: a set X (a subset of U) and a parameter α
Output: a single local probabilistic covering T of set X

1: begin procedure
2: G := X ; D := X ;
3: T := /0; J := /0;
4: while G 6= 0 do
5: T := /0; Ts := /0; Tn := /0;
6: T (G) := {t|[t]∩G 6= /0};
7: while (T = /0 or [T ]* D) and T (G) 6= /0 do
8: select a pair t = (at ,vt) ∈ T (G) such that |t ∩G| is maximum; if a tie occurs, select a pair

t ∈ T (G) with the smallest cardinality of [t]; if another tie occurs, select first pair;
9: T := T ∪{t};

10: G := [t]∩G;
11: T (G) := {t|[t]∪G 6= /0};
12: if at is symbolic{ let Vat be the domain of at} then
13: Ts := Ts∪{(at ,v)|v ∈Vat};
14: else
15: {at is numerical, let t = (at ,u..v)} Tn := Tn ∪ {(at ,x..y)|disjoint x..y and u..v} ∪

{(at ,x..y)|x..y⊇ u..v};
16: end if
17: T (G) := T (G)− (Ts∪Tn};
18: end while
19: if PT (X |[T ]) > α then
20: D := D∪ [T ]; T := T∪{T};
21: else
22: J := J∪{T};
23: end if
24: G := D− ⋃

S∈T∪J
[S];

25: end while
26: for each T ∈ T do
27: for each numerical attribute at with (at ,u..v) ∈ T do
28: while (T contains at least two different pairs (at ,u..v) and (at ,x..y) with the same numer-

ical attribute at) do
29: replace these two pairs with a new pair (at ,common part of (u..v) and (x..y));
30: end while
31: end for
32: for each t ∈ T do
33: if [T −{t}]⊆ D then
34: T := T −{t};
35: end if
36: end for
37: end for
38: for each T ∈ T do
39: if

⋃
s∈(T−{T})

[S] =
⋃

S∈T
[S] then

40: T := T−{T};
41: end if
42: end for
43: end procedure
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Table 3.3: An incomplete data set for demonstrating the local probabilistic version of MLEM2
algorithm

Attributes Decision

Case id Age Education Gender Hobby

1 under-21 elementary male fishing
2 ? secondary female fishing
3 21-40 * ? fishing
4 41-and-over higher male hunting
5 21-40 ? female hunting
6 ? * female jogging
7 21-40 secondary female jogging
8 under-21 elementary * jogging

elementary), (Age,under−21) and (Gender,male) successively, we run out of available elemen-

tary conditions and [T ] = {1,8} * D. Therefore, we need to calculate the conditional proba-

bility, which is P(X |[T ]) = |{1,2,3} ∩ {1,8}|/|{1,8}| = 0.5. Since P(X |[T ]) > α , we update

D := D∪ [T ] = {1,2,3,8}, and

T= {{(Education,elementary),(Age,under−21),(Gender,male)}}.

The new goal G becomes {2,3}, and in a similar way we obtain the second T as {(Education,

secondary),(Age,21−40)} and update D to {1,2,3,7,8}.

Next, we continue to identify another T for the goal G = {2}. This time we end up with

T = {(Education,secondary),(Gender, f emale)}. Since [T ] = {2,6,7}*D, we calculate the con-

ditional probability P(X |[T ]) = |{2}|/|{2,6,7}|= 0.333. Because P(X |[T ]) < α , T is put to J and

[T ] = {2,6,7} is subtracted from G, which makes the new G to be an empty set. Then we run the

for loops (lines 26 to 42 of Algorithm 2) to merge intervals and remove redundancy.

Eventually the approximation of concept [(Hobby, f ishing)] is
⋃

S∈T
[S] = {1,3,7,8}, the local

covering is

T= {{(Age,under−21)},{(Education,secondary),(Age,21−41)}},

30



and the rules for concept [(Hobby, f ishing)] with conditional probability larger than or equal to 0.5

are

1,1,2

(Age,under−21)→ (Hobby, f ishing)

2,1,2

(Education,secondary)&(Age,21−41)→ (Hobby, f ishing)
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Chapter 4

Experiments

The objective of this project is to investigate which type of data sets, inconsistent or incomplete,

would have more negative effects on rule induction. In order to answer this question, we conducted

experiments to induce rules from inconsistent data sets and incomplete data sets, classify testing

cases with induced rules, and measure the error rate of classification. The data set from which

rules are induced is called training set, and the data set on which the accuracy of classification

with the induced rules is measured is called testing set. The method of classifying unseen cases

is introduced in Section 4.1, the idea of ten-fold cross validation is discussed in Section 4.2. Sec-

tion 4.3 described the set up and procedures of the experiments, and the results of the experiments

are presented in Section 4.4.

4.1 Classification System

In this project, we followed the classification method of the LERS learning system (Gryzmala-

Busse & Wang, 1996). The determination of which concept should an unseen case be classified

to depends on three factors: strength, support, and partial matching factor. Strength is defined in

Chapter 3 as the total number of training cases that are correctly classified by the rule. For concept

C, the support of C is defined as the sum of products of strength and specificity for all the complete
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matching rules that refer to concept C.

Support(C) = ∑
completely matching rule r describing C

Strength(r)×Speci f icity(r) (4.1)

If several rules r1,r2,r3, . . . ,rn completely match a case x, and all refer to the same concept C,

x will be classified as a member of C. However, if the complete matching rules refer to different

concepts, supports of every concept are calculated. The concept C with the largest support will be

the winner, and x will be classified to C.

If complete matching is impossible for a case x, we will search for all partially matching rules.

Partial matching means the attribute values of a case only match some of the conditions of a

rule. Partial matching factor (pmf ) is defined as the number of matched conditions divided by the

total number of conditions. When complete matching is impossible, the support of concept C is

calculated as

Support(C) = ∑
partially matching rule r describing C

pm f (r)×Strength(r)×Sepci f icity(r) (4.2)

Again, case x is classified to the concept C with the largest support.

For example, consider the following two cases and four rules,

Caseid Temperature Headache Cough Flu

1 high yes yes yes

2 high no no no
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2,12,15

(Temperature,high)&(Headache,yes)→ (Flu,yes) (r1)

2,14,20

(Temperature,high)&(Cough,yes)→ (Flu,yes) (r2)

2,16,18

(Temperature,high)&(Cough,yes)→ (Flu,no) (r3)

3,20,25

(Temperature,normal)&(Headache,no)&(Cough,no)→ (Flu,no) (r4)

For case 1, there are three completely matching rules r1, r2, and r3. Rules r1 and r2 would

classify case 1 to concept [(Flu,yes)], and the support of [(Flu,yes)] is 12×2+14×2 = 52. Rule

r3 would classify case 1 to [(Flu,no)], and the support of this concept is 16× 2 = 32. Therefore

case 1 is classified as a member of [(Flu,yes)].

For case 2, there is no complete matching. However, we are able to find partial matching rules

r1, r3 and r4, with partial matching factors 0.5, 0.5 and 0.667 respectively. Rule r1 refers to concept

[(Flu,yes)] and the support is 12×2×0.5 = 12. Rules r3 and r4 refer to concept [(Flu,no)] and

the support is 16×2×0.5+20×3×0.667 = 56. Therefore case 2 would be classified as a member

of [(Flu,no)].

4.2 Ten-fold Cross Validation

Ten-fold cross validation is commonly accepted as a standard method to measure the accuracy

of classification with a rule set. In ten-fold cross validation, the data set is randomly shuffled. The

re-ordered cases are divided into ten mutually disjoint subsets, and each subset contains roughly

10% cases. For each subset Si, the other nine subsets S1,S2, . . . ,Si−1,Si+1, . . . ,S10 are combined as
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the training set for rule induction, and Si is used as the testing set. The rule set induced from the

training set is used to classify every case from the testing set, and the error rate is measured as

error_rate =
number of incorrectly classified cases

number of total cases
×100% (4.3)

In total, ten runs of rule induction and classification are conducted and the average error rate is

used to measure the accuracy of classification.

4.3 Experiment Procedure

We implemented the conventional MLEM2 algorithm and the local probabilistic version of

MLEM2 algorithm for rule induction. We also developed a program to classify cases with induced

rule sets and measure the classification error rate. Experiments were conducted on eight inconsis-

tent data sets and eight incomplete data sets. The data sets were obtained by making modifications

on a data set called Iris. The original Iris data sets contains 150 cases, 5 numerical attributes, and

3 concepts. There are no missing attribute values or inconsistent cases in the original Iris data

set. Incomplete data sets were created by replacing a certain percentage of existing attribute values

to lost values (denoted by ?). We obtained eight incomplete data sets, with 0%, 5%, 10%, 15%,

20%, 25%, 30%, 35% missing attribute values respectively. To set up inconsistent data sets, we

discretize the data set to a point such that there were some inconsistent cases. The inconsistent

data sets were discretized using a method based on agglomerative cluster analysis. Eight incon-

sistent data sets were created in this way, with 6, 16, 26, 39, 49, 59, 80, and 92 inconsistent cases

respectively.

The procedure of the experiments is shown in Figure 4.1. For every inconsistent experiment

data set, we applied MLEM2 algorithm to induce two sets of rules: certain rule set and possible

rule set (using lower approximation and upper approximation). For every incomplete experiment

data set, the local probabilistic version of MLEM2 algorithm was applied with α = 1 to induce

certain rules, and with α = 0.0001 to induce possible rules. Ten-cross validation was conducted
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Figure 4.1: Experiment procedure

to measure the average error rates of classifications with certain and possible rule sets separately.

In this project, we exclude specificity (set specificity to 1) in the classification procedure, because

this set up usually gives better results from previous experience (Grzymala-Busse & Zou, 1998).

4.4 Experiment Results

The average error rates of ten-fold cross validation for inconsistent data sets are shown in Ta-

ble 4.1, the percentage of inconsistency of an inconsistent data set was calculated as the ratio of

the number of inconsistent cases and the number of total cases. From the table, it is observed that

although there are some exceptions, the average error rates tends to be higher as the percentage of

inconsistency gets larger. This conclusion holds for both certain rules and possible rules. This is

because the if two inconsistent cases are covered by a rule, no matter what concept the rule refers

to, at least one case is incorrectly classified. Therefore when there are many inconsistent cases, the

error rate of classification is expected to be higher.
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Table 4.1: Average error rates of inconsistent data sets

Avg. error rate (%)
Percentage of inconsis-
tency (%)

Certain rules Possible rules

4.0 4.67 5.33
10.7 6.67 6.67
17.3 12.67 6.00
26.0 8.67 6.67
32.7 25.33 25.33
39.3 26.00 16.67
53.3 26.00 26.00
61.3 34.00 36.67

Table 4.2: Average error rates of incomplete data sets

Avg. error rate (%)
Percentage of missing
attribute values (%)

Certain rules possible rules

0.0 4.67 4.67
5.0 8.67 8.00
10.0 7.80 6.67
15.0 7.33 6.00
20.0 11.33 10.00
25.0 14.67 11.20
30.0 15.33 15.33
35.0 14.67 13.33

The average error rates for incomplete data sets are shown in Table 4.2. The similar tendency

is observed that as the percentage of missing attribute values gets larger, the error rates for both

certain rules and possible rules would be higher. It makes sense because with a lot of missing

attribute values, useful information is lost, and the lack of information results in lower quality of

rule induction.

In Figure 4.2, the blue curve shows the average error rates of certain rules induced from incon-

sistent data sets versus the percentage of inconsistency, and the yellow curve represents the average

error rate of certain rules induced from incomplete data sets versus the percentage of missing at-

tribute values. To compare the two curves, we concentrate on 4% to 40% inconsistency or missing
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Figure 4.2: Comparison of error rates of certain rules for inconsistent and incomplete data sets

Figure 4.3: Comparison of error rates of possible rules for inconsistent and incomplete data sets
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attribute value. In this interval, the two curves intersect three times, and it is hard to say in general

that certain rules induced from which data sets would have higher error rates.

A comparison of average error rates of possible rules for inconsistent and incomplete data sets

is shown in Figure 4.3. The blue curve shows the results related to inconsistent data sets and the

results of incomplete data sets are plotted as the yellow curve. We also concentrate on 4% to 40%

inconsistency or missing attribute values. It seems that possible rules induced from incomplete

data sets have higher error rates than those induced from inconsistent data sets, however, the Mann-

Whitney nonparametric test shows there is no significant difference.

To check if there is significant difference in error rates between inconsistent and incomplete

data sets, the Mann-Whitney nonparametric test was conducted (Mann & Whitney, 1947). Since

the error rates get higher when the percentage of inconsistency or the percentage of missing at-

tribute values is larger, the result would be more precise if we only compare error rates with similar

percentage of inconsistency and percentage of missing attribute values. Therefore, we focused on

the data of error rates from the interval of 4% to 40% inconsistency or missing attribute values.

Table 4.3 shows the ranking details of Mann-Whitney test to compare inconsistent data sets

with incomplete data sets for certain rules. In this test,

n1 = 6 n2 = 7

R1 = ∑ ranks in group 1 = 43.5 R2 = ∑ ranks in group 2 = 47.5

U1 = n1n2 +n1(n1 +1)/2−R1 = 19.5 U2 = n1n2 +n2(n2 +1)/2−R2 = 22.5

U = min{U1,U2}= 19.5

The critical value of two-sided level with n1 = 6, n2 = 7, and 0.05 significance level is 6. Since

19.5 > 6, there is no significant difference between inconsistent data sets and incomplete data sets

in terms of average error rates of certain rules.

Similarly, the ranks of Mann-Whitney test for the two types of data sets for possible rules are
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Table 4.3: Ranking details of Mann-Whitney test to compare the error rates of certain rules induced
from inconsist and incomplete data sets

Error rates of inconsis-
tent data sets

Rank
Error rates of incom-
plete data sets

Rank

4.67 1 8.67 5.5
6.67 2 8.00 4
12.67 10 7.33 3
8.67 5.5 11.33 7
25.33 12 14.67 8.5
26.00 13 15.33 11

14.67 8.5

Table 4.4: Ranking details of Mann-Whitney test to compare the error rates of possible rules
induced from inconsist and incomplete data sets

Error rates of inconsis-
tent data sets

Rank
Error rates of incom-
plete data sets

Rank

5.33 1 8 7
6.67 5 6.67 5
6 2.5 6 2.5
6.67 5 10 8
25.33 13 12.0 9
16.67 12 15.33 11

13.33 10

shown in Table 4.4. In this test,

n1 = 6 n2 = 7

R1 = ∑ ranks in group 1 = 38.5 R2 = ∑ ranks in group 2 = 52.5

U1 = n1n2 +n1(n1 +1)/2−R1 = 24.5 U2 = n1n2 +n2(n2 +1)/2−R2 = 17.5

U = min{U1,U2}= 17.5

The critical value of two-sided level with n1 = 6, n2 = 7, and 0.05 significance level is 6. Since

17.5 > 6, we do not have sufficient evidence to conclude which kind of data sets has higher error

rates for possible rules.
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Chapter 5

Summary

5.1 Conclusions

In this project, we investigated which kind of imperfect data sets, inconsistent or incomplete,

would have worse performance on the quality of induced certain and possible rules. To find an-

swers to this problem, we implemented the MLEM2 algorithm and the local probabilistic version

of MLEM2 algorithm. Eight inconsistent data sets with different levels of inconsistency, and eight

incomplete data sets with different percentages of missing attribute values were created from Iris

data set. For inconsistent data sets, we induced certain and possible rules with MLEM2 algorithm,

and for incomplete data sets, certain and possible rules were induced with the local probabilistic

version of MLEM2 algorithm. We also implemented a rule checker program to classify cases from

testing data set and measure the classification error rate.

With the rule induction program and rule checker program, we conducted ten-fold cross val-

idation for every data set, and the average error rate was used to measure the quality of induced

rule sets. The experiment results were further analyzed with Mann-Whitney nonparametric tests

to compare, separately for certain and possible rules, incompleteness with inconsistency.

Three main conclusions could be drawn from the experiment results.

1. For inconsistent data sets, although there are some exceptions, the average error rates for
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both certain and possible rules tend to be higher as the percentage of inconsistency gets

larger. The similar tendency was also seen on incomplete data sets. As the percentage of

missing attribute values gets larger, the error rates for both certain rules and possible rules

would be higher.

2. The Mann-Whitney nonparametric test shows that there is no significant difference between

inconsistent data sets and incomplete data sets in terms of average error rates for certain

rules. For possible rule sets induced from inconsistent data sets and incomplete data sets,

we do not have sufficient evidence to conclude which kind of data sets has higher error rates

either.

3. Therefore, we may conclude that the experiment results of this project indicate that incon-

sistent data sets and incomplete data sets have similar effect on the quality of rule induction.

5.2 Future Work

In this project, we only considered lost values for incomplete data sets. Future work could be

conducted to include all three types of missing attribute values (lost values, "do not care" values,

and attribute-concept values). In addition, all the experiment data sets were obtained by modifying

Iris data set in this project. In the future, we may conduct more experiments on some other data

sets and see if we could draw more conclusions.

Moreover, we only tested the error rates of certain and possible rules in this project. However,

rules may be induced with other conditional probability threshold α . It might be interesting to

compare the error rates for those rules.
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