
Executables from Program Slices for
Java Programs

Jason M. Gevargizian

Submitted to the graduate degree program in Electrical
Engineering and Computer Science and the Graduate Faculty

of the University of Kansas School of Engineering in partial
fulfillment of the requirements for the degree of Master of Science.

Thesis Committee:

Dr. Prasad Kulkarni: Chairperson

Dr. Andy Gill

Dr. Perry Alexander

Date Defended

The Thesis Committee for Jason M. Gevargizian certifies

That this is the approved version of the following thesis:

Executables from Program Slices for Java Programs

Committee:

Chairperson

Date Approved

i

Acknowledgements

I thank my advisor, Professor Prasad Kulkarni, for mentoring me throughout

my research projects. He often goes above and beyond the call of professorship

and without his guidance none of this would have been possible.

I thank all of the other professors who have taught and advised me during

my time at the University of Kansas. I would especially like to thank Professors

Perry Alexander and Andy Gill, who, along with my labmates, have made me feel

welcome in the Computer Systems Design Laboratory and, with whom, I have

enjoyed cross-interest collaboration.

I thank my close friend, Zachary Hoffman, who has encouraged me throughout

the years through inspiration and friendly competition in my computer science

career.

Finally, I would like to thank my family for their love and support; they mean

the world to me.

Thank you all.

ii

Abstract

Program slicing is a popular program decomposition and analysis technique

that extracts only those program statements that are relevant to particular points

of interest. Executable slices are program slices that are independently executable

and that correctly compute the values in the slicing criteria. Executable slices can

be used during debugging and to improve program performance through paral-

lelization of partially overlapping slices.

While program slicing and the construction of executable slicers has been stud-

ied in the past, there are few acceptable executable slicers available, even for pop-

ular languages such as Java. In this work, we provide an extension to the T. J.

Watson Libraries for Analysis (WALA), an open-source Java application static

analysis suite, to generate fully executable slices.

We analyze the problem of executable slice generation in the context of the

capabilities provided and algorithms used by the WALA library. We then employ

this understanding to augment the existing WALA static SSA slicer to efficiently

track non-SSA data dependence, and couple this component with our executable

slicer backend. We evaluate our slicer extension and find that it produces accurate

executable slices for all programs that fall within the limitations of the WALA

SSA slicer itself. Our extension to generate executable program slices facilitates

one of the requirements of our larger project for a Java application automatic

partitioner and parallelizer.

iii

Contents

Abstract iii

Table of Contents iv

List of Figures vi

1 Introduction 1

2 Related Work 5

2.1 Technology Background . 5

2.1.1 Program Slicing . 5

2.1.2 Executable Program Slicers 7

2.1.3 Static vs. Dynamic Slicers 8

2.2 WALA . 8

2.2.1 Shrike IR and Shrike Instrumentor 9

2.2.2 SSA, the SDG, and the SDG Builder 9

2.2.3 SSA Slicer . 11

3 Methodology 12

3.1 Breakup of Multi-branch Merge Points 16

3.2 SDG Build and non-SSA Data Dependence 20

3.3 Single Static Assignment Backwards Slice 24

3.4 Generate Complete Slice / Recover Stack & Local Instructions . . 25

3.4.1 Main Recovery . 25

3.4.2 Special Considerations and Fixes 28

3.4.3 Generate Executable . 31

iv

4 Experimental Results and Analysis 33

4.1 Benchmarks . 33

4.2 Slice Comparisons . 34

4.3 Performance of Executable Slice Extensions to WALA 36

5 Future Work 38

5.1 WALA Limitations . 39

6 Conclusions 40

References 42

v

List of Figures

2.1 Examples of static program slices 6

3.1 Executable slice pipeline. 13

3.2 Simplified phi node or SDG. 17

3.3 Divided phi node or SDG. 18

3.4 Running example’s SDG. 22

3.5 Running example’s SSA Slice. 24

3.6 Running example’s Slice Recovery. 26

4.1 Trace Ratios - Statically Sliced Trace Size / Original Trace Size. . 34

4.2 Slicer Extension Overhead. 36

vi

Chapter 1

Introduction

Program slicing is a popular program decomposition and analysis technique

that extracts only those program statements that are relevant to particular points

of interest [5,22,23,27]. A program slice is the set of instructions that the specific

criteria is dependent upon. Program slicing is a useful technique and has found ap-

plication in program debugging [1,8,10,13], program parallelization [25], program

differencing and integration [16, 17], software maintenance [14], testing [3, 15],

reverse engineering [4, 9], and compiler tuning [20].

Program slicing algorithms and the slices they generate can be categorized in

many ways. One useful categorization is between executable and non-executable

slices. An executable slice is program slice that is independently executable and

that correctly computes the values in the slicing criteria. Simple program slicers

often do not generate executable slices and can ignore many key elements that

are required by the language definition. The control and data dependence rela-

tionships between instructions do not express all invoke dependency relationships,

which carry with them many language specific considerations. Thus, slicers gener-

ating executable slices need to do additional work to find and maintain such depen-

1

dence relationships in the final slice, as well as include only the other statements

that are necessary to generate a syntactically and semantically valid program.

Executable program slices are useful to us to test the correctness of the slicer

by ensuring the computed state in the slice is equivalent to the original programs

computed state at the point of the slice criteria. Executable slices are useful in

isolating behaviors of a program when all behaviors are not desired. Executable

slices can provide improved program performance through program parallelization

with partially overlapping slices. Executable slices are necessary for the software

maintenance techniques proposed by Gallagher and Lyle and the regression testing

reduction algorithm proposed by Binkley [5]. A (section of) the program may

interleave the computation of multiple independent tasks, which may later all

be needed to realize some program action. For example, computing the partial

program state to initiate a slow security check, like invoking a remote certificate

authority (CA), may be done in parallel to running the remaining program tasks

that occur earlier or are independent of the security check. With the use of slicing,

programs can be partitioned to allow such partially overlapping program states

to be computed in parallel, thus freeing many instructions from costly delays and

speeding-up overall program execution.

A simple program slice can be augmented to be executable by tracking invoke

dependencies and enforcing other language specific rules. As such, the nature of

the problem will vary by language. In the case of Java, work must be done to

include information from the exception table, which is a mapping for potential

branches not expressed by the program statements (and thus not present in a

simple slice). Also, slices are often computed and expressed in an intermediate

form that may not exactly match the initial source language nor the final binary

2

representation. In such cases, a mapping criteria must be established to return to

the original form. Furthermore, if the intermediate form is a lossy form (as is the

case with WALA’s SSA form), the unrepresented data must be tracked alongside

the intermediate form to produce a complete and accurate slice. Java also has

other rules, like the need for invokes to constructors and super constructors that

often do not have simple data or control dependence over any of the instructions

in the simple slice.

WALA, Watson Libraries for Analysis, contains a static SSA slicer designed

primarily for analysis of Java programs. WALA uses an SSA, single static as-

signment, intermediate representation to generate a simplified system dependence

graph, which represents program statements along with both control and data de-

pendence. This SSA slicer was designed and works extremely well for some types

of analysis but does not generate an executable slice. Furthermore, this SSA form

does not represent local variable and stack information present in Java bytecode.

In this thesis, we build a system that extends the WALA Slicer to produce a

fully executable slice. This extension accurately tracks the additional non-SSA

data dependences and produces a fully executable slice from the SSA-only slice.

We have produced this system and have used it to test the performance of the

framework.

This thesis is organized as follows. Chapter 2 will present related work, dis-

cussing program slicing in more depth and then covering the WALA features that

were used most heavily in our framework. In Chapter 3, we will discuss the

methodology of the extended slicer by discussing the phases of the slicer’s execu-

tion and simultaneously showing an example Java program being processed from

Java source all the way to an executable slice. In Chapter 4, we will discuss the

3

future work and how we intend to use our frameworks for program parallelization

by program partitioning. In Chapter 5, we present our conclusions.

4

Chapter 2

Related Work

2.1 Technology Background

2.1.1 Program Slicing

Program slicing is a popular program decomposition technique that extracts

only those program statements that are relevant to particular points of interest [5,

22,23,27]. These points of interest are called slicing criteria, and each is typically

comprised of the location of a program statement p and a set of program variables

v which are in scope at p. As such, a slice is defined as the subset of the original

program statements that includes all of the instructions upon which the states of

variables in v at statement p is dependent, for all slicing criteria. Figures 2.1 (b)

and (c) show examples of static executable slices for two different slicing criteria

for the example program in Figure 2.1(a). Figure 2.1(b) shows a program slice

with respect to the criteria (9, sum), and 2.1(c) shows the slice for the criteria

(10, prod).

Program slicing was first proposed by Mark Wieser as a conceptual abstraction

people implicitly use during program debugging [23,24,26], and recommended ex-

5

(1) read(n);
(2) i = 1;
(3) sum = 0;

(5) while (i < n) do {
(6) sum = sum + 1;

(4) prod = 1;

(7) prod = prod * i;
(8) }
(9) write(sum);
(10) write(prod);

read(n)
i = 1;
sum = 0;

while (i < n) do {
 sum = sum + 1;

}
write(sum);

read(n)
i = 1;

prod = 1;
while (i < n) do {

 prod = prod * i;
}

write(prod);

(a) Example program (b) program slice for
criteria (9, sum)

(c) program slice for
criteria (10, prod)

Figure 2.1. Examples of static program slices

plicit tools to aid the process. Program slicing for debugging was further explored

by several researchers [1, 8, 10, 13], and interactive slicer tools for program under-

standing and debugging are now available [18,21]. Program slicing techniques have

since found numerous other applications is areas as varied as program paralleliza-

tion [25], program differencing and integration [16,17], software maintenance [14],

testing [3, 15], reverse engineering [4, 9], and compiler tuning [20].

Program slices can be derived in a variety of ways. One of the most im-

portant distinctions is between a static and a dynamic slice. A static slice is

computed without making assumptions regarding a program’s input, whereas the

dynamic slice depends on some specific test case [2,28]. Our proposed paralleliza-

tion model uses an executable static program slice, as first proposed by Wieser [23].

Executable slices are supersets of their non-executable counterparts in that an ex-

ecutable slice may contain additional program statements that are required to

maintain proper language syntax or to otherwise ensure that the slice can be exe-

cuted independently of the main program. Both the program slices in Figures 2.1

(b) and (c) are examples of executable static slices.

Detailed empirical studies on the size of program slices reveal that for a pre-

cise slicer and without optimizations, the average program slice contains under

6

one-third of the program [6, 7]. While slices for smaller programs tend to include

most program statements, the slices for larger programs have been observed to be

considerably smaller than the original program. At the same time, previous inves-

tigations show that compiler optimization techniques can improve the accuracy

of slices and reduce their size further [11,12]. Researchers have also reported that

sizes for highly optimized and accurate speculative slices for instructions caus-

ing branch mispredictions and cache misses were less than 10% of the program’s

dynamic instruction stream for a window of 512 closest instructions [29]. Gener-

ating minimal and precise program slices forms a core component of our proposed

research as is described in Chapter 3.

2.1.2 Executable Program Slicers

Executable program slicers produce independently executable slices; id est,

complete programs. Executable slices are supersets of their non-executable coun-

terparts in that an executable slice may contain additional program statements

that are required to maintain proper language syntax or to otherwise ensure that

the slice can be executed independently of the main program. For example, Gram-

matech’s CodeSurfer is a commercial C static slicer that can produce executable

slices.

Indus is a collection of program analysis and transformation tools for Java,

and includes an executable static Java program slicer. The Indus Java Program

Slicer was implemented as part of a project to work with Bandera, a tool set for

model checking of concurrent Java applications. However, the Indus (slicer) code

base has several dependencies on old (and, often, unavailable) Java libraries that

makes this slicer difficult to use with modern software. For example, Indus does

7

not support slicing of Java programs more recent than those compiled in JDK4.

Other issues with the Indus static slicer are mentioned in an earlier work [19].

2.1.3 Static vs. Dynamic Slicers

A static slice is computed through static analysis and thus produces a slice

that is correct for any arbitrary input. A dynamic slice is computed from a single

dynamic trace and thus is a correct slice for only one set of program inputs.

Static slicers produce static slices; a static slicer will typically compute full

control and data dependence graphs to then attempt to find reachability to pro-

gram statements from the specified criteria to arrive at the slice. Dynamic slicers

produce dynamic slice; a dynamic slicer generates a dynamic trace and then works

backward through dependencies from the slice criteria to calculate the dynamic

slice.

WALA is a Java static analysis suite and has implemented a static SSA slicer,

see Section 2.2 for details. Saarland University’s JavaSlicer and Wang & Roy-

choudhury’s JSlice are example of dynamic slicers for Java.

For our application of automatic program partitioning and subsequent execu-

tion for arbitrary program input (more details in Chapter 5), we require a static

slicer such as WALA.

2.2 WALA

WALA is the T.J. Watson Libraries for Analysis. WALA provides many static

analysis and manipulation capabilities that our executable slicer makes use of, in-

cluding but not limited to, a Java bytecode instrumentor, SSA system dependence

graph builder, and SSA slicer.

8

2.2.1 Shrike IR and Shrike Instrumentor

Shrike is an intermediate representation that is, with few exceptions, a 1-to-

1 mapping of Java bytecode instructions. For all program analysis in WALA,

Java program bytecode is first loaded and translated into collections of Shrike

statements, by class and method.

WALA has a Java bytecode instrumentor that allows loading Java programs,

performing manipulations, and then outputting a new Java executable. This is

implemented as the Shrike instrumentor, which makes modifications to the Shrike

intermediate form. This functionality is utilized by the executable slicer to output

the final executable slice. After the executable slice set is determined the original

Jar is manipulated using the shrike instrumentor to match the slice.

2.2.2 SSA, the SDG, and the SDG Builder

For the WALA slicer and other analysis, WALA can generate a System De-

pendence Graph (SDG). The SDG is a graph that represents both a program’s

data and control dependence for its instructions. The SDG nodes represent in-

dividual WALA SSA IR instructions and the edges between the nodes represent

control and data dependence. The SDG that it generates is in a single static

assignment form (SSA) and thus does not keep track of the java stack and local

map instructions. The SDG node are SSA statements, and thus are not 1-to-1

mappings with the Shrike code nor the Java bytecode. Single static assignment

form treat all possible states of variables as a new constant and this SSA form,

specifically, does not express the local map data nor the virtual stack interaction

represented in the Java bytecode. As such, many instructions are not in the SDG;

e.g. the push instructions, pop instructions, dup instructions, load instructions,

9

and store instructions.

The WALA SSA form is sufficient for various types of analysis like WALA’s

SSA slice, but it is not sufficient to produce a fully executable program. Getting

from the SSA SDG and SSA slice to a fully executable slice is described in Chapter

3.

The SDG builder works as a non-deterministic simulator of the input Java

program, which is processed in the Shrike intermediate form. As the simulation

runs, the SDG is built with state meta-data that is tracked along the way. As

statements are visited for the first time, SSA versions of the statements are created

as nodes in the SDG, if there is an SSA translation (others are omitted).

The simulator is non-deterministic in the sense that it takes all branches rather

than just one actual execution path. During the simulation, the system states are

tracked in a similar fashion to the Java runtime. In the Java runtime environment,

a single state is maintained and is comprised of primarily a stack and a localmap;

the stack is a stack of values and the local map is value mapped to a given local

number. In the SDG build simulator, multiple states are maintained for all paths

the execution can take and each state is comprised of also a stack and a local

map. For the SDG simulator, the stack and local map contain references to an

abstract constant. Each constant has a created-by relationship with the node that

originally made it.

10

i Instruction Creates Uses

1 iconst 0 1

2 store 0 1

3 iconst 5 2

4 load 0 1

5 addi 3 1, 2

6 store 1 3

Table 2.1. WALA constant tracking.

For example, a binary op (addi) instruction creates a new constant (the result)

and uses two existing constants (the operands). See Table 2.1.

As the simulation runs, the SDG nodes are built for the instructions that are

visited. Data dependence edges are made when a constant is used; the edge is

between the node that used it and the node that created it.

As control statements are visited, scopes are maintained and control dependence

edges are added to the SDG.

2.2.3 SSA Slicer

The SSA slicer uses the SSA SDG and user specified criteria instructions to com-

pute the SSA slice. This done by determining reachability from the slice criteria

node to all other nodes; nodes that are reachable have either data or control

dependence and are therefore part of the slice.

Again, this slice is not sufficient for an executable program as it does not contain

information about the stack and local-map instructions.

11

Chapter 3

Methodology

The goal of this thesis is to extend the WALA SSA Slicer and dependent tools

to produce a fully executable slice. The WALA SDG builder has been extended

to track the non-SSA data dependence between instructions. A new executable

slice backend has been designed to take an SSA Slice, using the non-SSA data

dependence, and compute a complete executable slice. The Shrike instrumentor

is then used to manipulate the original Java bytecode to produce an executable

Jar from the resulting slice.

Non-SSA data dependence speaks to any dependence not captured in the SSA

form. The SSA form does not express the Java virtual stack, thus push-pop

relationships are non-SSA. The SSA form does not have local variables, thus

load-store relationships are non-SSA.

Some other patches/fixes have been employed to deal with special cases and lim-

itations of the WALA SDG build and WALA SSA slicer that cause issues for the

generation of an executable slice. These fixes are described in Section 3.4.2.

Figure 3.1 shows the stages of the executable slice generation; WALA compo-

nents, modified WALA componenets, and executable extension components are

12

Figure 3.1. Executable slice pipeline.

illustrated. This Chapter will discuss the methodology of the phases of the ex-

ecutable slicing system in execution order from Java source input to executable

slice output. A running example, input Java program with slice criteria, will be

used to illustrate the process. The phases, and organization of this chapter, are

as follows:

1. Slice problem preparation and breakup of the multi-branch merge points

2. SDG Build and tracking of non-SSA Data Dependence

3. Single Static Assignment Backwards Slice

4. Complete Slice Generation

(a) Recovery of non-SSA instructions

(b) Special cases handling (Exception Table and Exception Handlers, Un-

used Invoke Pops, Constructors for News, Recovery Phases and Fixed

Point)

5. Executable Generation

We use a simple example program to illustrate and explain our approach. The ini-

tial source for our running example is shown in Listing 3.1 and the corresponding

13

Java bytecode is shown in Listing 3.2.

Listing 3.1 Running Example’s Java Source

public class Sample {

public static void main(String[] args) {

int x = 0;

int y = 1;

int z = 2;

if (z == 3) {

x = 4;

}

z = foo(x);

System.out.println(z);

}

public static int foo(int v) {

System.out.println(v);

v++;

return v;

}

}

Listing 3.2 Running Example’s Java Bytecode

public class Sample extends java.lang.Object{

public Sample();

Code:

0: aload_0

1: invokespecial #1; //Method java/lang/Object."<init>":()V

4: return

public static void main(java.lang.String[]);

Code:

0: iconst_0

1: istore_1

2: iconst_1

3: istore_2

14

4: iconst_2

5: istore_3

6: iload_3

7: iconst_3

8: if_icmpne 13

11: iconst_4

12: istore_1

13: iload_1

14: invokestatic #2; //Method foo:(I)I

17: istore_3

18: getstatic #3; //Field

java/lang/System.out:Ljava/io/PrintStream;

21: iload_3

22: invokevirtual #4; //Method java/io/PrintStream.println:(I)V

25: return

public static int foo(int);

Code:

0: getstatic #3; //Field

java/lang/System.out:Ljava/io/PrintStream;

3: iload_0

4: invokevirtual #4; //Method java/io/PrintStream.println:(I)V

7: iload_0

8: iconst_1

9: iadd

10: istore_0

11: iload_0

12: ireturn

}

15

3.1 Breakup of Multi-branch Merge Points

First, the original jar is modified to separate multi-branch merge points so that

phi-nodes remain distinct.

Multi-branch merge points are points in execution where two or more execution

paths merge; in other words, it is an instruction that is the target of at least

two branches. The number of possible incoming paths merged at a point in the

program is the number of branches that target the specified point plus one, for

fall through from the previous instruction.

The WALA SSA system dependence graph builder automatically simplifies the

phi-nodes of multi-branch merge points into separate, mathematically equivalent,

phi nodes. This simplification is useful for some types of analysis but does not

allow the WALA Slicer to differentiate the control dependence of one branch vs

another that share the same target.

EXAMPLE:

The following example shows how the PHI node simplication can result in an

incorrect slice. Algorithm 1 shows the source program. Algorithm 2 and Figure

3.2 shows the source with the simplified Phi nodes. Algorithm 3 and Figure 3.3

shows the source with the divided Phi nodes.

Algorithm 1 Source

1: x← 0
2: y ← 0
3: if c1 then
4: x← 1
5: y ← 1
6: if c2 then
7: y ← 2

8: print(x)

16

Algorithm 2 SSA with Simplified Phi Node

1: x0 ← 0 //in slice
2: y0 ← 0
3: if c1 then //in slice
4: x1 ← 1 //in slice
5: y1 ← 1
6: if c2 then //in slice
7: y2 ← 2

8: y3 ← φ(y0, y1, y2)
9: x2 ← φ(x0, x1, x1) //in slice
10: print(x2) //slice criteria

Figure 3.2. Simplified phi node or SDG.

17

Algorithm 3 SSA with divided phi nodes

1: x0 ← 0 //in slice
2: y0 ← 0
3: if c1 then //in slice
4: x1 ← 1 //in slice
5: y1 ← 1
6: if c2 then
7: y2 ← 2

8: y3 ← φ(y1, y2)
9: nop

10: y4 ← φ(y0, y3)
11: x2 ← φ(x0, x1) //in slice
12: print(x2) //in slice

Figure 3.3. Divided phi node or SDG.

18

The WALA system dependence graph builder simulates the execution of the ap-

plication and keeps track of all paths and their representative states. When a

point in execution is visited that has already been visited, this is considered a

meet, and a phi node is created or extended for the representative states. States

from previous visits are merged, via the phi node, with the current state.

Because the phi node for X in the simplified example is created with information

from both the path taken flow for the branch at 6 and the not-taken flow, the

SDG will be built with control dependence edges from both if-statements. Conse-

quently, the WALA slicer will include both branch statements in the slice because

of this control dependence relationship.

In the divided example, a nop instruction is inserted at the merge point to make

the targets of the two if-statements different; the inner if-statement now targets

the nop while the outer if-branch targets the print(). Consequently, the WALA

SDG builder does not combine the meets for the two branches; the SDG can be

seen with separate phi nodes of only two incoming states in Figure 3.3. Now, the

x variable has control dependence only with the outer if-statement thus allowing

the slicer to successfully include the outer if-statement and omit the inner.

We found that a trivial modification of the WALA SDG builder to simply not

merge the states was not an option. This phi node merging is necessary in many

cases; for example, loops that meet on the same point multiple times often need

to have updated versions of their SSA variables added to the phi node. Without

additional static data (like the nop separators), there is no way for the SDG build

simulator to differentiate between states that come from the same or different

branches.

19

3.2 SDG Build and non-SSA Data Dependence

The prepared bytecode is passed along to the WALA SDG builder, which pro-

duces the SDG. At this point the user specified class exclusions and main class

specification is necessary.

The class exclusions define a set of classes to be ignored in the call graph build.

This was used by our tests, in Chapter 4, to slice on only the application libraries

as opposed to the application libraries and the Java libraries. The main class

specification is required to give the SDG builder a start point to build the SDG.

WALA’s SDG builder is described in more detail in Section 2.2.2

The SDG builder has been extended to track non-SSA data dependence for the

non-SSA instruction recovery for the final executable slice. A table, sourcetable,

has been implemented to keep track of push-pop and load-store relationships

between instructions. Hook-ins have been inserted into the SDG build to update

the source table as the SDG simulator executes.

In sync with the SDG simulator states, the sourcetable keeps track of simulation

states as well. Like an actual JVM runtime state and the WALA simulator state,

the non-SSA data states contain a local map and a stack. Instead of the ac-

tual values (like the JVM), or the constant values (WALA simulator), the source

instruction index is maintained.

For Example; Table 3.1 shows the tracking of the non-SSA data dependence after

bytecode instructions executed sequentially.

20

i Instruction Localmap after Stack after PushForPop StoreForLoad

i1 iconst 0 {} $, i1 {} {}

i2 store 0 {l0 = i2} $ {i1} {}

i3 iconst 5 {l0 = i2} $, i3 {} {}

i4 load 0 {l0 = i2} $, i3, i4 {} {i2}

i5 addi {l0 = i2} $, i5 {i3, i4} {}

i6 store 1 {l0 = i2, l1 = i6} $ {i5} {}

Table 3.1. Sample non-SSA tracking and non-SSA Data Depen-
dence Table.

.

We can see that the stack holds reference to the instructions that pushed the

would-be value and the localmap contains references to the instructions that would

have stored the would-be value. For each instruction, PushForPop and StoreFor-

Load mappings are tracked. These mappings are used to recover the non-SSA

instruction in the final slice recovery. For example, if i6 is in the slice, we know i5

must be included as well since there is a Push-Pop relationship between the two.

In Figure 3.4, the running example’s resulting SDG is shown. In Table 3.2, the

source table is shown with the non-SSA data dependence.

-

-

-

-

-

-

-

-

-

-

21

Figure 3.4. Running example’s SDG.

-

-

22

i Instruction PushForPop StoreForLoad

main

0 iconst 0

1 istore 1 {0}

2 iconst 1

3 istore 2 {2}

4 iconst 2

5 istore 3 {4}

6 iload 3 {5}

7 iconst 3

8 if icmpne... {6, 7}

11 iconst 4

12 istore 1 {11}

13 iload 1 {1, 12}

14 invokestatic... {13}

17 istore 3 {14}

18 getstatic...

21 iload 3 {17}

22 invokevirtual... {18, 21}

25 return

foo

0 getstatic...

3 iload 0 {p0}

4 invokevirtual... {0, 3}

7 iload 0 {p0}

8 iconst 1

9 iadd {7, 8}

10 istore 0 {9}

11 iload 0 {10}

12 ireturn

Table 3.2. Running example’s non-SSA Data Dependence Table.

23

3.3 Single Static Assignment Backwards Slice

The WALA Slicer uses the SDG to generate the SSA slice. The SSA slice is a

collection of SSA statements that the criteria instruction(s) are dependant upon.

The WALA SSA Slicer is described in Subsection 2.2.3.

Figure 3.5 shows the resulting SSA slice for the running example code and criteria

statement.

Figure 3.5. Running example’s SSA Slice.

24

3.4 Generate Complete Slice / Recover Stack & Local

Instructions

The SSA slice is not sufficient to generate an executable. First, the Java instruc-

tions that relate to the Java virtual stack and local map must be recovered.

3.4.1 Main Recovery

The sourcetable is used to recover the non-SSA data dependent instructions.

These non-SSA data dependencies are the stack push-pop relationships and the

local load-store relationships.

For every instruction in the SSA slice, the Java bytecode equivalent is included in

the final slice. Then, for each of these instructions the sourcetable is used to find

and include any instructions that have push-pop or load-store relationships with

the given instruction. Upon the newly included instructions, the same process is

repeated until all non-SSA data dependencies have been exhausted (and included

in the final slice). The results are stored the final slice map, a mapping from each

instruction to a bytecode-manipulation operation (include, omit, replacewithpop)

to be carried out during executable generation.

Figure 3.6 shows the final slice and the non-SSA data dependence as edges. Table

3.3 shows the final slice for the running example.

25

Figure 3.6. Running example’s Slice Recovery.

26

i Instruction Operation

main

0 iconst 0 Include

1 istore 1 Include

2 iconst 1 Omit

3 istore 2 Omit

4 iconst 2 Include

5 istore 3 Include

6 iload 3 Include

7 iconst 3 Include

8 if icmpne... Include

11 iconst 4 Include

12 istore 1 Include

13 iload 1 Include

14 invokestatic... Include

17 istore 3 ReplaceWithPop

18 getstatic... Omit

21 iload 3 Omit

22 invokevirtual... Omit

25 return Include

foo

0 getstatic... Include

3 iload 0 Include

4 invokevirtual... Include

7 iload 0 Omit

8 iconst 1 Omit

9 iadd Omit

10 istore 0 Omit

11 iload 0 ReplaceWithPush

12 ireturn Include

Table 3.3. Running example’s Final Executable Slice.

27

3.4.2 Special Considerations and Fixes

There are special considerations for a few cases that the main recovery process

does not cover to make sure the Java rules are adhered to for actual execution.

3.4.2.1 Dup Instructions

DupInstructions are instructions that duplicate items on the stack. This is essen-

tially a pop of the stack and multiple pushes of the value. There are also some

variations of dup that involve duplicating items other than the top element of the

stack.

For the executable slicer and non-SSA recovery, it is possible to have a dup in-

struction included in the slice without the pops for both duplicates in the slice.

In this case the dup instruction is removed as it is not utilized in the slice.

i Instruction Before Fix After Fix

1 iconst 1 X X

2 dup X -

3 istore 0 - -

4 istore 1 X X

Consider the above example where we have a push followed by a dup followed by

two pops. In this case the instruction at 4 (istore 1) is already in the slice. From

the pop at 4 (istore 1) we recover the push at 2 (dup) and from the pop at 2 (dup)

we recover the push at 1 (iconst 1). Now we have the dup[2] in the slice, which

has the stack signature [value → value value], but only one corresponding pop is

included. Since istore 0()[3] is not to be part of the slice we can simply remove

the dup[2].

28

3.4.2.2 Recover Super Constructors

The WALA SDG build does not create dependence relationships for object con-

structors and their super constructors unless the super constructor explicitly ini-

tializes variables that are used later in the slice. This suffices for some forms of

analysis but not execution of Java code because Java requires super constructors

to be called all the way back to the object class.

For all constructors that are included in the slice, corresponding super constructors

must be recovered. This recovery phase looks at all init functions that are included

in the slice and finds the superconstructors within them to be included (init invokes

within inits).

3.4.2.3 Exception Handlers

The WALA SDG build does not observe the control dependencies between in-

structions and their exception handlers because non-executable slicers do not need

them. To build an executable slice, all instructions in the slice that throw excep-

tions need to have handlers.

For all exception handlers in the exception table, this phase determines the set of

exception handlers that handle exceptions for instructions that are in the slice. For

these exceptions, an exception handler is required for the generated executable.

The original exception handler is checked to see if it is included in the slice. If the

exception handler is not already in the slice itself (because of side effects), this

recovery phase replaces it with a generic exception handler.

The generic exception handler is a sequence of two instructions: 1) a goto for the

non-exceptional path to jump over the handler, and 2) a pop for the exception

handler object.

29

It should be noted that since the slice is defined as the set of instructions the

criteria instructions are dependant upon, exception handlers are only necessary

in so far as they are required by the Java code verification process to execute.

Unless, the criteria is directly dependent upon or within the exception handler

itself; this is generally not the case.

3.4.2.4 Unused Invoke Pops

There are cases where invokes to methods that return a value will be included in

the slice because of some side effect but the return value itself will not be needed.

In this case, the invoke will be included in the slice but the corresponding pop

will not. This violates the stack rules for Java execution as some other instruction

will pop this element undesirably.

These instructions needed to be handled by adding generic pop instructions that

throw away unused return values. This recovery phase identifies invoke pushes

that do not have corresponding pops and adds generic pop instructions after the

invoke.

3.4.2.5 Constructors for the ’New’ Instruction

The WALA SDG build does not create a dependence relationship between the

NEW instruction and the invoke of init for said object unless there are elements

in the init that are later used in the slice. This works for some types of analysis but

not for actual execution because in Java all objects must have their constructor

called to initialize memory.

The invokes that are not included in the slice need to be recovered. This recovery

phase finds the corresponding invoke to init for all included NEW instructions

30

and includes them if they are not in the slice already.

3.4.2.6 Recovery Phases and Fixed Point

The aforementioned recovery phases can lead to the inclusion of new elements

that need the operation of other phases to be applied again.

For example, a super constructor’s inclusion may require another object’s con-

structor which may in turn require it’s super constructor and potentially in turn

require another constructor and so on and so forth. Or, consider that any one of

these phases may have dependencies that cause the inclusion of new instructions

that have exception handlers.

To handle this, the phases all run and repeat until a fixpoint is reached; that is,

a full run of all phases where no changes are no longer made. To handle this,

changes made to the final slice are recorded in a transaction log.

3.4.3 Generate Executable

The WALA shrike instrumentor is used to modify the original jar to reflect the

changes described by the final slice operation map produced by the complete slice

generation.

The final slice map is a mapping from each instruction to a bytecode-manipulation

operation. All instructions are iterated through and the corresponding action in

the final slice map is applied. The operations act as follows:

1. For every instruction that is marked as included, the instruction is left alone

to appear in the final jar as is.

2. For any instruction that is marked as omitted, the shrike instrumentor is

used to replace said instruction with an empty code block, thus removing

31

the instruction from the final jar.

3. For any instruction that is marked as replacewithpop, the shrike instrumentor

is used to replace said instruction with a the PopInstruction.

Finally, the shrike passes are terminated and the output jar is produced.

32

Chapter 4

Experimental Results and

Analysis

In this chapter, we present some results and observation from experiments to

study the quality of the WALA slicer and correctness of our executable slicer

implementation.

4.1 Benchmarks

Certain limitations in the current implementation of the original WALA slicer

prevented the use of larger/standard benchmarks to evaluate our executable slicer.

We explain these limitations in Section 5.1. Therefore, we constructed our own

benchmark set consisting of smaller but realistic programs to test our project.

Our slice criteria allowed the majority of the program to appear in the slice.

We include the following programs in our benchmark set. (a) QuickSort: imple-

mentation of the quicksort sorting algorithm, (b) HeapSort; implementation of

the heapsort sorting algorithm; (c) MergeSort; implementation of the MergeSort

33

sorting algorithm, (d) TransposeAMatrix; program to compute the transpose of

an arbitrary matrix, and (e) TSPNearestNeighbor; program to compute the so-

lution of the traveling salesman problem using an implementation of the nearest

neighbor algorithm. These programs implement standard algorithms in Computer

Science.

4.2 Slice Comparisons

Full Trace App Only

Benchmark Original Static Sliced Original Static Sliced

QuickSort 599,614 574,137 894 840

HeapSort 64,328 33,802 833 727

MergeSort 59,616 39,988 1,585 1,536

TransposeAMatrix 1,732,431 1,593,387 4,574 4,235

TSPNearestNeighbor 1,335,005 1,324,365 5,832 5,811

Table 4.1. Trace size comparisons (# of bytecodes executed).

Figure 4.1. Trace Ratios - Statically Sliced Trace Size / Original
Trace Size.

34

The Hotspot VM was used to generate traces of the original and statically sliced

benchmarks for comparison. The traces instruction counts are compared above in

Table 4.1. The trace size ratios are shown in Figure 4.1; the bars show the ratio

of the size of the statically sliced program trace to the size of the original program

trace.

Most of the statically sliced program traces were 90% or greater the size of the

original program trace for both the full trace and the application only subset. This

is as expected as the benchmarks are simple algorithms with little side effects; id

est, most of the program should be needed in the static slice to produce the correct

output.

The HeapSort and the Mergesort deviated from this expectation with the full

trace of the sliced program at 52.55% and 67.08% the size of the original program

traces, respectively. The application only traces however are back in the 80-

100% range. With these two benchmarks there are a few program statements

that produce inconsequential output; id est, output not needed in the static slice.

These statements are invokes inside the application classes to functions outside

the application classes (mainly System.out.println()). The invokes themselves

comprise a very small portion of the application classes trace but their callee

functions comprise a very large portion of the full trace; which is why we see most

of the instructions appearing in the application only trace but not the full trace.

35

4.3 Performance of Executable Slice Extensions to WALA

Heap Usage (B) Duration (ms)

Benchmark WALA All WALA All

QuickSort 719,022,344 733,059,118 3,497 3,724

HeapSort 728,685,230 745,328,660 3,191 3,503

MergeSort 744,654,237 757,513,290 3,946 4,084

TransposeAMatrix 712,579,912 717,016,988 3,408 3,467

TSPNearestNeighbor 725,464,171 781,390,128 3,336 3,644

Table 4.2. Maximum utilization of heap and slice computation du-
ration.

Figure 4.2. Slicer Extension Overhead.

Table 4.2 shows the maximum heap usage and the computation duration when

WALA is run to compute the WALA structures only and for the WALA struc-

tures extended with the executable slice components, respectively. The WALA

only represents the costs of computing the System Dependence Graph for the in-

put program and the WALA SSA Slice. The All columns represent the WALA

components and the additional computation for the non-SSA source table and the

36

generation of the executable slice.

Figure 4.2 shows the maximum heap usage and the computation duration as a

ratio of the extended computation cost to the WALA only computation cost for

each of the benchmarks.

The maximum heap usage ranged from 100.62% (TransposeAMatrix) and 107.71%

(TSPNearestNeighbor). The computation time ranged from 101.73% (Trans-

poseAMatrix) and 109.23% (TSPNearestNeighbor). The overhead for both met-

rics for the executable slice extensions were always below 10%. The average over-

head across all benchmarks for heap utilization is 2.86% and for computation time

is 6.14%.

37

Chapter 5

Future Work

One of the eventual goals for the executable slicer, is automatic program par-

titioning and subsequent program parallelization. The ability to automatically

compute executable slices allows a program to be partitioned out by sections

based on control and data dependence. Partitioning of this nature can be very

useful in optimizing single processor ready programs to make use of multiprocessor

environments, today’s commonplace.

Many programs are still built to be only single processor conscious. The ability

to parallelize these programs automatically is highly appealing.

It is often the case that components of single threaded programs delay later exe-

cuting components that have no data or control dependence relationships. In these

cases, there are independent states that can be computed in parallel. Though there

will likely always be some overlap among these partitions, the redundant compu-

tation of common state will in most cases be offset by the benefits of parallelizing

the computation of unique state. Furthermore, the redundant computation of

common state can often be limited via various synchronization mechanisms.

38

5.1 WALA Limitations

WALA SDG builder has several limitations when it comes to static variables,

aka globals. The SDG builder does not attempt to determine which writes to a

specific static variable can affect what reads. The SDG simply includes all read

edges to the same node and all writes go out from that node. As such, the SDG

seems to suggest that all writes affect all reads, which is not necessarily true. This

simplification is represented in the slice as follows: when a read is in the slice, all

writes in the entire program to that static variable are included. This reality is

very unsatisfying and greatly limits the ability of the slicer to cut down the size

of any program that uses static variables at all.

The WALA SDG builder suffers a similar limitation when it comes to instances

of classes and invokes of their methods. If there are multiple instances of a single

class, but the slice only requires one of those instances, invokes on all may show

up in the slice. This happens when a private variable of an instance class is needed

for one instance but not all and a method is invoked to alter that private variable;

the result is that all invokes to that method are included.

E.g. We create two instances of class MyClass: Instance1 and Instance2. They

both have a private instance variable Count. They both have a public method

Increment(), which increases the value of Count for the given instance. If a single

invoke of Increment is included for a single method because of the value Count

being important, all calls to Increment on all other objects will be included as

well.

This instance class limitation is also quite debilitating as virtually any program

that uses instance classes will include many instructions that do not belong in the

slice, thus increasing the size.

39

Chapter 6

Conclusions

We have produced extensions to the WALA slicer framework to compute fully

executable slices. Our tool can generate a correct and fully executable slice as long

as the WALA slicer can generate a correct SSA slice. Fully executable slices have

been produced for a number of programs and criteria (subject to WALA’s original

limitations) and correct execution and output of the resulting statically sliced

programs have been observed. A few programs were selected, the benchmarks,

for analysis. Across these benchmarsk, the overhead introduced by our extensions

to generate an executable slice for heap utilization averaged at 2.86% and the

computation time overhead averaged at 6.14%. This overhead includes the cost

of the tracking all non-SSA information, which makes for a significant portion of

the program’s data dependence, and the computation of the executable slice using

the data dependence information.

Undocumented limitations of the original WALA slicer were discovered during

this work. While we have resolved the limitations necessary to generate correct

executable program slices, some other limitations to improve the scalability of the

slicer have yet to be addressed. There unresolved limitations are described in our

40

Section 5.1.

41

References

[1] H. Agrawal, R. A. Demillo, and E. H. Spafford. Debugging with dynamic slicing

and backtracking. Softw. Pract. Exper., 23(6):589–616, 1993.

[2] H. Agrawal and J. R. Horgan. Dynamic program slicing. Technical Report SERC-

TR-56-P, Purdue University, 1989.

[3] S. Bates and S. Horwitz. Incremental program testing using program dependence

graphs. In POPL ’93: Proceedings of the 20th ACM SIGPLAN-SIGACT sym-

posium on Principles of programming languages, pages 384–396, New York, NY,

USA, 1993. ACM.

[4] J. Beck and D. Eichmann. Program and interface slicing for reverse engineering.

In ICSE ’93: Proceedings of the 15th international conference on Software Engi-

neering, pages 509–518, Los Alamitos, CA, USA, 1993. IEEE Computer Society

Press.

[5] D. Binkley and K. Brian Gallagher. Program slicing. Advances in Computers,

43:1–50, 1996.

[6] D. Binkley, N. Gold, and M. Harman. An empirical study of static program slice

size. ACM Trans. Softw. Eng. Methodol., 16(2):8, 2007.

[7] D. Binkley and M. Harman. A large-scale empirical study of forward and backward

static slice size and context sensitivity. In ICSM ’03: Proceedings of the Interna-

tional Conference on Software Maintenance, page 44, Washington, DC, USA, 2003.

IEEE Computer Society.

42

[8] J.-D. Choi, B. P. Miller, and R. H. B. Netzer. Techniques for debugging parallel

programs with flowback analysis. ACM Trans. Program. Lang. Syst., 13(4):491–

530, 1991.

[9] M. Daoudi, L. Ouarbya, J. Howroyd, S. Danicic, M. Harman, C. Fox, and M. P.

Ward. Consus: A scalable approach to conditioned slicing. In WCRE ’02: Pro-

ceedings of the Ninth Working Conference on Reverse Engineering (WCRE’02),

page 109, Washington, DC, USA, 2002. IEEE Computer Society.

[10] R. A. DeMillo, H. Pan, and E. H. Spafford. Critical slicing for software fault

localization. In ISSTA ’96: Proceedings of the 1996 ACM SIGSOFT international

symposium on Software testing and analysis, pages 121–134, New York, NY, USA,

1996. ACM.

[11] M. D. Ernst. Practical fine-grained static slicing of optimized code. Technical

Report MSR-TR-94-14, Microsoft Research, Redmond, WA, July 1994.

[12] J. Field, G. Ramalingam, and F. Tip. Parametric program slicing. In POPL

’95: Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on Principles

of programming languages, pages 379–392, New York, NY, USA, 1995. ACM.

[13] P. Fritzson, N. Shahmehri, M. Kamkar, and T. Gyimothy. Generalized algorithmic

debugging and testing. ACM Lett. Program. Lang. Syst., 1(4):303–322, 1992.

[14] K. B. Gallagher. Using program slicing in software maintenance. PhD thesis,

University of Maryland at Baltimore County, Catonsville, MD, USA, 1990.

[15] R. Gupta, M. J. Harrold, and M. L. Soffa. An approach to regression testing using

slicing. In Proceedings of the Conference on Software Maintenance, pages 299–308,

Orlando, FL, USA, 1992.

[16] S. Horwitz. Identifying the semantic and textual differences between two versions

of a program. In PLDI ’90: Proceedings of the ACM SIGPLAN 1990 conference

on Programming language design and implementation, pages 234–245, New York,

NY, USA, 1990. ACM.

43

[17] S. Horwitz, J. Prins, and T. Reps. Integrating noninterfering versions of programs.

ACM Trans. Program. Lang. Syst., 11(3):345–387, 1989.

[18] G. Inc. 2002. The codesurfer slicing system. last retrieved from

http://www.grammatech.com/products/codesurfer, June 2009.

[19] D. Iyer. Exploring the suitability of existing tools for constructing executable java

slices. Master’s thesis, University of Kansas, January 26 2012. Can be downloaded

from http://www.ittc.ku.edu/∼kulkarni/CARS/thesis/Divya thesis.pdf.

[20] J. Larus and S. Chandra. Using tracing and dynamic slicing to tune compilers.

Technical Report CS-TR-93-1174, University of Wisconsin-Madison, August 1993.

[21] V. P. Ranganath and J. Hatcliff. Slicing concurrent java programs using indus and

kaveri. Int. J. Softw. Tools Technol. Transf., 9(5):489–504, 2007.

[22] F. Tip. A survey of program slicing techniques. Journal of Programming Languages,

3(3):121–189, September 1995.

[23] M. Weiser. Program slicing. In ICSE ’81: Proceedings of the 5th international

conference on Software engineering, pages 439–449, Piscataway, NJ, USA, 1981.

IEEE Press.

[24] M. Weiser. Programmers use slices when debugging. Commun. ACM, 25(7):446–

452, 1982.

[25] M. Weiser. Reconstructing sequential behavior from parallel behavior projections.

Information Processing Letters, 17(3):129–135, 1983.

[26] M. D. Weiser. Program slices: formal, psychological, and practical investigations

of an automatic program abstraction method. PhD thesis, University of Michigan,

Ann Arbor, MI, USA, 1979.

[27] B. Xu, J. Qian, X. Zhang, Z. Wu, and L. Chen. A brief survey of program slicing.

SIGSOFT Softw. Eng. Notes, 30(2):1–36, 2005.

[28] X. Zhang and R. Gupta. Cost effective dynamic program slicing. In PLDI ’04:

Proceedings of the ACM SIGPLAN 2004 conference on Programming language

design and implementation, pages 94–106, New York, NY, USA, 2004. ACM.

44

[29] C. B. Zilles and G. S. Sohi. Understanding the backward slices of performance

degrading instructions. SIGARCH Comput. Archit. News, 28(2):172–181, 2000.

45

	Abstract
	Table of Contents
	List of Figures
	Introduction
	Related Work
	Technology Background
	Program Slicing
	Executable Program Slicers
	Static vs. Dynamic Slicers

	WALA
	Shrike IR and Shrike Instrumentor
	SSA, the SDG, and the SDG Builder
	SSA Slicer

	Methodology
	Breakup of Multi-branch Merge Points
	SDG Build and non-SSA Data Dependence
	Single Static Assignment Backwards Slice
	Generate Complete Slice / Recover Stack & Local Instructions
	Main Recovery
	Special Considerations and Fixes
	Generate Executable

	Experimental Results and Analysis
	Benchmarks
	Slice Comparisons
	Performance of Executable Slice Extensions to WALA

	Future Work
	WALA Limitations

	Conclusions
	References

