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Abstract

Intelligent transportation systems (ITS) have become common in public transit 
systems, particularly providing real-time transit information. For new implementa-
tions, it remains difficult to predict and quantify system and user benefits of tech-
nology implementation. Although previous studies have quantified the operational 
benefits of real-time transit traveler information systems, a gap in knowledge exists 
around passenger benefits of such systems. The objective of this research was to 
create a refined method for evaluating transit rider benefits from real-time traveler 
information and predict changes in traveler behavior. The study was conducted on 
a rural university campus, isolating the impacts of the system from the multiple 
influences that often affect transportation in larger metropolitan areas. This study 
uniquely integrated transit system performance, pedestrian travel times, and traffic 
simulation to determine travel times and predict mode split. Findings indicated that 
reducing passenger waiting anxiety was the most significant measure of traveler 
benefit from such a system. While the benefits found were specific to the study site, 
the methodology can be used for other transit systems evaluating real-time transit 
technology investments in rural or urban environments.
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Introduction
Intelligent transportation systems (ITS) are used to improve transportation quality 
and efficiency through the integrated use of communications and technologies, 
but anticipating the effect of technology investment in the multimodal and multi-
faceted transportation system is daunting. Within the scope of ITS, advanced pub-
lic transportation systems (APTS) focus on public transit, and the Federal Transit 
Administration has invested significant research funding in this area since the mid-
1990s. Past research has endeavored to capture the effects of traveler information 
on transit operations, traveler wait time, and willingness to ride. In many cases, 
the research involved examining a change in one variable, such as attractiveness 
of transit, without examining corresponding changes in the transportation sys-
tem, such as more transit riders leaving space on the road for more vehicles. An 
examination of the impact of APTS on the full transportation system is needed to 
provide a true predictive tool for the impacts of ITS investment.

The objective of this research was to create a refined method for evaluating transit 
rider benefits from real-time transit information (RTTI) and predict changes in 
traveler behavior. This study was conducted to quantify the benefit that a pro-
posed automatic vehicle location (AVL) and transit traveler information system 
could provide to transit riders. The real-time traveler information system was antic-
ipated to provide pretrip information via the Internet and enroute information on 
displays at key transit stops. The new method incorporates the simulation of traffic 
and the stochastic estimation of pedestrian travel times as modes competing with 
the transit system performance. The results of this method can provide decision 
makers with information about the potential value of advanced public transporta-
tion systems to passengers in smaller communities and university campuses.

Previous Research into the Impacts of ITS
Designers of RTTI systems have aimed to streamline management of operations 
and provide benefits for riders. This section describes the current state of knowl-
edge on the impacts of real-time transit traveler information.

System Benefits
Previous studies on RTTI significantly focused on improving operational efficiency 
through vehicle allocation (Crawford 2010) and other management means (Pangili-
nan et al. 2008; Khattak and Hickman 1998; Law et al. 1998; Nace and McKay 1997; 
Kontaratos et al. 1996), but not particularly on the user benefit of such systems. 
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The following subsections indicate research findings on the impacts to individual 
travelers.

Ridership Generation
As a primary system benefit for public transit, ridership generation has received 
much research attention. The factors found to increase the use of a new service, 
such as a new route or stop, have included younger riders, frequent riders, riders 
without a car, and the presence of riders closer to the new service than to exist-
ing (Chatterjee and Ma 2007). The ridership influence from RTTI appeared in the 
results of a 2002 intercept survey of 928 tourists and local residents riding the Island 
Explorer system serving Acadia National Park and surrounding communities on 
Mount Desert Island in Maine. In this study, 85 percent of bus riders surveyed said 
real-time information relieved uncertainty about when the bus would get to the 
stop, and 80 percent of bus riders surveyed said real-time information helped them 
decide to use the bus. The statement “I would plan to use this information if visiting 
in the next 12 months” met with agreement from 92 percent of the users (Zimmer-
man et al. 2004). This latter study indicated both a system benefit of generating 
ridership and a user benefit of time savings.

Mode Shift
The behavioral factors surrounding a traveler’s tendency to shift modes away 
from personal vehicles also has been frequently studied. Throughout the world, 
programs have begun to encourage car drivers to explore new modes of transpor-
tation such as transit, walking, or biking (Jones 2003; Cairns et al. 2004; Brog 1998; 
Department of Transport 2000; Ampt and Rooney 1999; Rose and Ampt 2001; Tan-
iguchi et al. 2002; Taniguchi et al. 2003). These encouragements typically increased 
awareness of travel alternatives through marketing and are generally termed travel 
feedback programs. These programs have induced reductions in car use between 
7 and 19 percent in Australia, the European Union (Jones 2003), and Japan (Fujii 
and Taniguchi 2006). Most recently, Taniguchi and Fujii found that little differ-
ence exists between the benefits of diverse types of travel feedback programs and 
that travel feedback programs were the most effective method of changing travel 
behavior because they impacted either the behavioral intentions or the implemen-
tation intentions of travelers (Taniguchi and Fujii 2007). These findings suggest that 
although travel behaviors are difficult to change, particularly with travelers who 
habitually use automobiles, a travel feedback program has the most potential to 
encourage less personal car use, compared to other methods. Specifically, provid-
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ing RTTI can provide a part of a traveler feedback program, thereby playing a role 
in discouraging personal vehicle usage and encouraging transit ridership.

Traveler Information and User Benefits
The following subsections indicate research findings on the impacts to individual 
travelers.

In-Vehicle Travel Time
Various research areas have related to the value of in-vehicle transit travel time. 
Some have evaluated the impact of traveler multitasking on the value of their travel 
time —for example, talking on the phone while riding on the bus. The researchers 
of one study hypothesized that because travelers viewed long waits and travel 
times negatively and because multitasking can make these times seem shorter or 
at least more pleasurable and useful, then multitasking can make the perceived 
cost of travel and wait times lower. Through a stated-preference survey of over 200 
Dutch travelers in the Eindhoven region, researchers found that riders who enjoy 
multitasking perceive the time cost of their travel 32 percent lower than those who 
prefer to sit and wait for or on transit vehicles (Ettema and Verschurne 2007). 

Intelligent transportation systems have a small role, at best, in encouraging multi-
tasking to reduce the perceived cost of in-vehicle travel time. On-board announce-
ments of upcoming stops can help alert multitasking people who would otherwise 
feel the need to focus on watching out the window for landmarks. Even so, a stron-
ger benefit to real-time information lies in the potential to reduce the cost/utility 
of time that travelers spend waiting for a transit vehicle to arrive. 

Out-of-Vehicle Wait Time
Several studies have focused on real-time information for transit riders. One such 
study used numerical methods and focused on the importance of capturing the 
wait time of those passengers that miss a bus due to its early arrival compared to 
the schedule. The findings suggested that as the standard deviation of bus arrival 
increases, information systems should predict that buses will arrive earlier than 
expected, thus reducing the number of passengers who “just miss” a bus (Chien 
et al. 2006).

Other studies have focused on measuring the reduction of perceived wait time 
when RTTI is provided, finding a wide range of results. Wardman (2003) used a 
face-to-face survey, finding that between 21 and 65 percent of riders perceived a 
shorter wait time with RTTI. Kronborg et al. (2002) found that although travelers 
using RTTI still overestimated their wait time (9-13%), those without arrival infor-
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mation perceived wait time even longer (overestimating 24-30%). Further studies in 
London and the Netherlands found that providing RTTI reduced the perception of 
wait time by 26 percent (Schweiger 2003) and 20 percent (Dziekan and Kottenhoff 
2007), respectively. While these studies identify a range of overestimation for urban 
transit riders, none focuses on the unique population of a college campus.

Mishalani et al. (2006) recently examined the difference between perceived and 
actual bus rider wait times at stops on and around the Ohio State University cam-
pus, finding that for bus headways between 3 and 15 minutes, riders perceived 
their wait time approximately 15 percent longer than it actually was (Mishalani et 
al. 2006), providing a foundation for the study described in this article. 

Another study has investigated the perception of transit riders towards the value of 
real-time information. The findings of this work suggested that while the expected 
ridership increases are modest, passengers put enormous value on “… knowing 
when the next bus will arrive …[,] knowing how long the delay is …[, and] improving 
on-time performance” (Peng et al. 2002). While no quantifications of these values 
were undertaken in this study, subsequent work has evaluated the impact of AVL 
on schedule performance, discovering that on-time performance can be improved 
by such systems (Pangilinan et al. 2008).

These last studies lend themselves back to the works discussed earlier. As individual 
travel experience improves, ridership improves. User benefit and system benefit are 
closely linked. Also, the previously-mentioned Island Explorer survey findings pose 
that traveler information might directly improve the user experience by helping 
riders save time. 

Summation of the Literature Review
As presented, the most decisive findings of advanced public transportation systems 
have focused on operational efficiency benefits of real-time transit information, 
not on user benefits. User benefits have been described qualitatively (multitasking 
as a preferred activity) or quantified through rider surveys, yet surveys have shown 
that perceptions of wait time inaccurately reflect actual wait times. 

When decision makers are considering investing in intelligent transportation sys-
tems, they need an objective way to evaluate costs and benefits. This study sought 
to quantify user benefits of real-time transit information.
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Methodology
As identified in the introduction, the objective of this research was to create a 
refined method for evaluating transit rider benefits from real-time traveler infor-
mation and predict changes in traveler behavior. This method uniquely integrates 
transit system performance, pedestrian travel times, and traffic simulation to 
determine travel times and predict mode split. Figure 1 depicts the method devel-
oped. The next subsections detail the implementation of this procedure.

Figure 1. Process for quantifying the effects of  
real-time transit Information.

Clemson Area Transit (CAT) served as the test system for this study. Located in 
rural South Carolina (Figure 2), this bus system has operated as the only public 
transit serving Clemson University and the cities of Clemson, Seneca, Central, 
and Pendleton. CAT served a 2009 year-round residential population of 13,002 in 
Clemson and university enrollment of 19,111 (Table 1). CAT ridership for 2009 was 
reported at 1.4 million (Howard 2010).
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Table 1. 2009 Estimated Local Populations and Student Enrollments Served

2009
Estimate

City of Clemson 13,002

City of Seneca 7,832

Town of Central 4,079

Town of Pendleton 3,153

Clemson University 19,111

Tri-County Technical College 6,758

 Sources: U.S. Census Bureau, Clemson University Fact  
 Book, Tri-County Technical College “At a Glance.”

The rural and small-town environment in which CAT operates provides an ideal 
scenario for isolating transportation impacts because many factors are controlled. 
Travel alternatives such as taxis and overlapping transit routes are relatively non-
existent. Roads are uncongested, which eliminates routine delay as a contributing 
factor to outcomes. Also, CAT is a well-performing system; it has been recognized 
as a national leader for generating the highest ridership of a fare-free municipal 
transit system (Miller 2001). 

CAT has not yet deployed ITS technology, so the system provides a base case for 
research at a time when service facilitation through technology makes sense. Sys-
tem management is investigating feasible ways to implement a prototype AVL sys-
tem on buses and methods for disseminating this information. Management has 
expressed interest in communicating this information to passengers via displays at 
key stops and on the Internet. At the start of this research project, finding the value 
of a transit real-time information system by measuring user benefit was of great 
importance to CAT and Clemson University. 

Find Travel Times
Travel times included walking time to the transit stop, wait time at the stop, travel 
time on the bus, and walking time to the final destination. The following sections 
detail how these times were estimated.

Gravity Model Development for Pedestrian Walk Times
To determine the location to which each transit passenger would likely walk on 
campus, a gravity model was built. Initially, an AutoCAD file of the entire campus 
was used, and a coordinate system was set around each stop in the study area. 
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The locations of nearby campus buildings, such as dorms, labs, and classrooms, 
were identified in the AutoCAD file. Next, the number of students residing in each 
dorm was determined, and the number of credit hours offered was calculated for 
key campus classroom buildings. Last, data from a 2005 on-campus travel pattern 
survey (Adams et al. 2005) was used to estimate that 60 percent of all bus travelers 
were going to class and 10 percent were going to their residence. The remaining 30 
percent were traveling to other destinations such as shopping or eating. Using this 
information, researchers divided the transit riders between the class and residence 
destinations surrounding each campus bus stop. Because Eom et al. (2010) found 
that student registration is directly comparable to campus building activity level, 
the gravity for classroom buildings was determined using the number of contact 
hours in each building. Contact hours were calculated by multiplying the number 
of students per class by the number of credit hours for each class and summing 
the products for all of a building’s classes. For example, if a particular building 
had only one three-credit class, with 10 students, the building’s gravity would be 
represented by 30 contact hours (3 credits x 10 students). The researchers logically 
neglected buildings that were closer to other bus stops along each route, assuming 
travelers would find the fastest combination of transit and walking trips to reach 
their destination. The average gravity for classrooms was determined using Equa-
tion 1, where x denotes the east-west distance (ft) from the bus stop, y denotes the 
north south distance (ft) from the bus stops, and Ch represents contact hours. Simi-
larly, for determining the gravity of residence locations nearby campus bus stops, 
Equation 2 was used where x and y are defined above, and R denotes the number of 
residents living at each location, for example, the Clemson House dormitory.

 (1)

 (2)

 
To finish developing the pedestrian gravity model, the results from equations 1 and 2 
were again weighted using the aforementioned ridership data; therefore, the gravity 
from class buildings was more significant than those from residence buildings. The 
gravity model was used to determine a representative walking distance and location 
that transit riders would access from each stop. These equations assume that pedes-
trians are familiar with the area, choose rather linear routes, and have no significant 
(larger than a building) obstacles to/from their bus stop and building. 
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After identifying these locations, representative walking times were collected for 
key bus stops and between certain bus stops. These walk times were used to create 
a normal distribution of walk times for each bus stop. 

Transit Rider Arrivals and Wait Times
Passenger arrival rates have been studied frequently, and there is consensus that for 
headways greater than 10-12 minutes, the arrival distribution is not random (Csikos 
and Currie 2008). Although others have approximated arrivals with respect to head-
ways (Luethi et al. 2007), there exist multiple models from around the world. The 
availability of video data at the study sites allowed the authors to observe transit 
rider arrivals in the study network from 10 AM to 2 PM (peak campus occupation), 
and calculate their wait time. During the observation, the bus arrival headway was 
consistent, and the authors assumed negligible impacts to the arrival distribution 
measured. Passenger arrivals did not follow the smooth bell shape of a normal dis-
tribution; instead, they more closely followed an exponential distribution, as shown 
in Figure 3. In addition to the normal and exponential distributions, the authors 
also examined the Weibull, Poisson, and lognormal distributions for goodness of 
fit, finding the exponential slightly better than the Weibull distribution, as shown in 
Table 2. This similarity is no coincidence because the Weibull distribution is merely 
a special case of the more-general exponential distribution. 

Figure 3. Passenger arrival probability distribution for  
Red Route bus stops (Fries et al. 2009).
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Table 2. Distributions’ Goodness of Fit to Passenger Arrival

Distribution Goodness of Fit (r2)

Normal 0.572

Poisson 0.383

Lognormal -0.823

Weibull 0.779

Exponential 0.780

Researchers also examined the activities of those awaiting bus arrival. Findings 
suggest that 54 percent of waiting travelers multitask. To allow the applicability 
of previous research (Ettema and Verschurne 2007), multitasking was considered 
as participating in any task while waiting for the bus. Because multitasking can 
decrease the time-cost of waiting for a bus, this factor was used to determine an 
appropriate time value.

Three different bus routes were examined in this analysis (Red, Blue, Pendleton), 
and the scheduled headways are displayed in Table 3. Passenger arrival data were 
collected for Red route (30-minute headways) passengers, and the passengers arriv-
ing at stops for the Pendleton route (60-minute headways) were assumed to follow 
the same distribution of arrival because both routes have long enough headways 
to cause travelers to plan their arrival at the transit stop. Thus, it was assumed that 
riders of both routes would arrive approximately 5 minutes before the bus and 
rarely arrive more than 10 minutes prior. Because of the Blue route’s short head-
ways (5.7 minutes), riders would not likely refer to schedules and were assumed to 
arrive randomly (McLeod 2007). 

Table 3. Scheduled and Observed Bus Headways

Bus Route

Scheduled 
Headways 

(mins)

Observed Avg. 
Headway  

(mins)

Standard  
Deviation 

(mins)

Error (E) for  
95% Confidence 

(mins)

Red 30 29.7 2.1 0.7

Blue 6 5.7 1.6 0.4

Pendleton 60 59.8 3.1 1.8

Bus Arrival Distributions
Bus arrival distributions were collected from video data similar to passenger wait 
times and, in some cases, during the same viewing. To increase the number of 
observations, bus headways also were used from videos containing no stops by 
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recording the frequency a certain bus passed by, assuming it would arrive at stops 
with roughly the same headway and variance. The aggregated data for these bus 
arrivals is shown in Table 3. Note that the average headway of each bus has been 
captured with 95% confidence and an error that was no more than three percent 
of the headway (maximum found for Pendleton route).

Travel Time Calculation
After finding the characteristics of walk times, rider wait times, and bus headways, 
the travel times were found. To account for the variable nature of transporta-
tion network demand and travel times, particularly for transit vehicles without 
dedicated rights-of-way, a traffic simulation model was used. The model was built 
using VISSIM and included approximated 13,000 links, over 700 parking lots, and 
12 traffic signals around campus. Because multiple routes were available between 
each origin and destination, a dynamic assignment approach was taken to model 
the background traffic. Further, multiple classes of vehicles were defined to mimic 
the parking restriction differences between faculty and staff, students, visitors, 
local residents, and university vehicles. This model was extensively calibrated and 
validated as described in Fries et al. (2010). Calibration included checking volumes, 
adjusting link costs, verifying signal operations, and comparing travel times, then 
adjusting driver characteristics until travel times were within one percent of 
observed. The validation included verifying volumes were within one percent of 
observed, comparing travel speeds, and conducting face-validation, a visual com-
parison of the simulated traffic and the observed daily traffic. 

CAT operates eight transit routes: Orange Route, Red Route (eastbound and west-
bound), Blue Route, Pendleton Route, Central Maverick Route, Seneca Express 
Route, Anderson Route, and Lightsey Bridge Route. These routes serviced 29 stops 
in the model and, while several routes may service the same stops, passenger loads 
were modeled uniquely for each line according to the 2007 Ridership Count Sur-
vey (Connectics 2007). Dwell times were not specified; instead, dwell times were 
determined based on the number of passengers observed to either board or alight 
at a stop. 

The simulation model also was used to quantify the impact of varying traffic 
demands. Seven scenarios were simulated, each representing a different percent of 
the average traffic demand, including 50, 75, 100 (base scenario), 125, 150, 175, and 
200 percent. During these simulations, the average travel times were recorded for 
buses and private vehicles (considered as all vehicles other than buses). 
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Summing the total travel time for transit riders, a random number generator 
selected 100 walk times to each bus stop based on a normal distribution from 
the collected data. Next, another random number generator selected 100 wait 
times from an exponential distribution developed from the observed wait time 
data. After that, 100 bus travel times were found from the simulation model using 
the base scenario (100% traffic demand). Last, 100 samples were taken randomly 
from a normal distribution of walk times from the destination stop. Adding each 
sample together provided 100 stochastic travel times for each pair of origins and 
destinations selected. For example, one traveler on the Red route took 5.1 minutes 
to walk to the bus stop, waited 2.1 minutes for the bus to arrive, spent 9.8 minutes 
on the bus, and walked an additional 2.4 minutes to reach his/her final destination, 
therefore spending 19.5 minutes traveling. Authors reviewed the data to ensure 
that the riders reducing their travel time by using pre-trip information did not 
benefit also from reduced utility for that same time (that he/she would have been 
at the bus stop), thereby preventing the model from counting the same benefited 
time twice.

Quantifying Impacts
The impacts sought in this research were in four categories: pre-trip time savings, 
en-route time value, mode change savings, and impact of varying traffic. The pre-
ceding paragraphs discuss how these impacts were determined.

One way that travelers can benefit from transit real-time information would be 
planning their arrival at stops. The methodology for this analysis referred to the 
Intelligent Transportation Systems Deployment Analysis Software (IDAS) to deter-
mine that in 2008, approximately nine percent of transit travelers in the U.S. will 
use pre-trip travel information to better-plan their trip (McTrans, Inc. 2003). Due 
to the prevalence of tech-savvy students on and around a college campus, this 
assumption is conservative. Because pre-trip information will benefit only those 
who would have arrived at the bus stop excessively early, compared to arrival of 
the bus, this approach assumed that those who were planning to arrive at the stop 
earlier-than-average (5.2 minutes prior to the Red bus) would instead arrive at that 
average time. Because not all travelers will have an opportunity to save time using 
pre-trip information, the time savings were averaged over all 100 travelers, where a 
value of zero was noted for those travelers who could not save any time using pre-
trip information. Using this overall savings - for example, 0.5 minutes - and applying 
it to the nine percent of riders who might use such a service, the total time savings 
was estimated. 
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To quantify the time savings into dollars, IDAS was again referenced. Applying the 
recommended inflation rate of 3 percent to the 1995 values of transit traveler time 
and accounting for the observed multitasking, the 2008 time values were found as 
$19.96/hour. This cost was determined from the IDAS estimation of $24.14 (2008) 
and accounting for those multitasking (54% observed), valuing their time 32 percent 
less (Ettema and Verschurne 2007). While other works have explored the non-linear 
value of waiting time (Denuit and Genest 2001; Osuna 1985), many assumptions were 
required to fit a value curve to travel times at Clemson, and this analysis was consid-
ered beyond the scope of this study. The benefit for pre-trip traveler information is 
considered solely as time saved by passengers waiting at the bus stop less. 

The proposed system was not being evaluated for operational improvements, 
again making the estimate conservative. Instead, the benefits were taken from the 
reduction of passenger anxiety/utility, reducing the uncertainty and thus the utility 
of the time, while awaiting a bus. Various studies have confirmed that travelers are 
uneasy waiting for buses and perceive time to be longer than it actually is (Dziekan 
and Kottenhoff 2007; Schweiger 2003; Nijkamp et al. 1996). One study on a college 
campus was the most applicable to the study site, finding that awaiting passengers 
perceived their wait time 15 percent higher than it actually was (Mishalani et al. 
2006). In quantifying the benefits, the perceived 15 percent extra wait time is con-
sidered the savings because of the reduced uncertainty of passengers and is valued 
at $19.96/hour for CAT passengers, as previously discussed. For example, a particu-
lar passenger arrived at her stop 2.1 minutes prior to the bus, perceived her wait as 
2.4 minutes, and could have reduced the utility of her wait type by 0.3 minutes if 
she knew when the bus was arriving. 

Between certain on-campus origins and destinations, providing real-time bus arrival 
data could encourage would-be riders to walk instead, to save time. The walk time 
distributions to and from the centroid of each bus stop area were taken from the 
previous data collected and compared to the predicted travel time including wait-
ing, riding on the bus, and walking from the bus stop. After finding the percentage 
of riders that had an opportunity to save time by walking, a sensitivity analysis was 
conducted to predict the savings under different passenger decision conditions. 
For example, the analysis sought the benefits if all passengers walked if they could 
save time doing so. Because various factors influence mode choice, developing a 
model such as a logit model was beyond the scope of this analysis.

Because traffic is ever-increasing in the Clemson area, and it is unclear when the 
proposed transit traveler information system will be implemented, an examination 
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of traffic variation was conducted. The procedure simply compared the change in 
private vehicle travel time with the change of transit travel time, attempting to 
identify the volume at which private vehicle travel time increases significantly more 
than transit vehicles due to parking space searches. 

Findings
Enroute savings was the most significant benefit of the proposed system, particu-
larly at locations with high ridership, such as the P1 parking lot. Mode change rep-
resented the least benefit from the proposed system. Table 4 and Figure 4 show the 
anticipated benefits if the proposed system were fully operational and if different 
numbers of passengers decide to change mode because of the bus arrival data. The 
column titled “Possible Riders Shifting” displays the number of riders per day that 
might save time if they decided to walk instead of waiting for the next bus. Because 
it is not likely that all riders will decide to change modes to save time, the table 
illustrates the value if different percentages of riders are willing to shift modes to 
save themselves travel time. These findings indicate little financial benefit for riders 
to shift modes, supporting previous work by Hickmann and Wilson (1995).

Table 4. Daily Mode Change Findings

Origin Destination
Avg Time Savings 

(mins)
Possible Riders 

Shifting

Sikes Hall Hendrix Center 3.73 8

Hendrix Center Lot P1 0.10 70

Lot P1 Hendrix Center 0.06 6

 
Figure 4. Daily mode shift value.
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Table 5 shows the compiled results from all three of these benefits areas. Note that 
the mode change value was used at the 50-percent level and was not found for 
most sites because walking between the origin and destination was not reasonable. 
The annual values were determined accounting for only the Fall and Spring semes-
ters of normal operation. Also, the total does not add benefits of anxiety reduction 
and mode shift because both reduce the same wait time (at the same value) and 
their addition would incorrectly count a portion of saved travel time.

Table 5. Transit Real-time Information System Benefits per Stop

Bus Stop Route(s)

Value Per Day (Weekday)

Annual 
Value

Anxiety 
Reduction

Pretrip 
Savings

Mode Shift 
Savings Total

Lot P1 Blue $2,592 - $5 $2,592 $414,745

E. Library 
Circle

Blue,  
Pendleton $2,158 $41 - $2,197 $351,508

Hendrix 
Center Red, Blue $852 $72 $105 $924 $147,773

Sikes Hall Red $387 $103 $447 $489 $78,319

Lemans Red $424 $86 - $510 $81,626

University 
Village Red $222 $67 - $289 $46,178

Tri-County 
Tech Pendleton $94 $27 - $122 $19,447

Tigertown 
Village Pendleton $31 $12 - $43 $6,879

 
The true value of such a system is likely much higher than found by this conserva-
tive estimate. For one, operational improvements of the bus system, though well-
documented elsewhere, were not the focus of this analysis and were not included in 
the benefits. Second, the percent using the pre-trip data is conservative. Students at 
a university campus present a unique population to transportation system designers. 
Because students are increasingly tech-savvy, the proportion of students who would 
use such a service could be significantly higher than the national average, as specified by 
IDAS. Further, the availability of computers and networking on campus provides a fer-
tile environment for the growth of pre-trip traveler information. In this study, pre-trip 
travel was valued for only those stops where users would walk to from their origin (i.e., 
home or class), not from commuter lots where another mode would have influenced 
departure time. In these cases, the core value of the real-time information, for example, 
at lot P1, would be making the wait time more pleasurable and, therefore, less costly. It 
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also should be noted that the small urban area in which Clemson University is located 
does not encounter as much travel time variability as the areas around larger cities.

This analysis did not include the impact of information error such as predicting an 
incorrect bus arrival time. Other transit traveler information systems, such as Next 
Bus in and around Washington, D.C., have provided prediction accuracy of over 
90 percent (WMATA 2007), and prediction accuracy was found to increase as the 
transit vehicle nears a stop (Lin and Bertini 2002); therefore, information error was 
not considered as a significant factor impacting the utility of waiting riders.

Another interesting finding of this study was the impact of changing traffic volumes 
on the travel times of buses versus personal vehicles. As Figure 5 shows, private vehicle 
travel times change as significantly as transit vehicle travel times as future traffic vol-
umes grow. While transit travel times increase with heavier road volumes, the total net-
work travel delay is more significantly impacted by private vehicles than transit vehicles 
due to their numbers. As heavier road volumes can delay transit vehicles, real-time 
transit information can quell the anxiety of awaiting passengers, and increased personal 
vehicle travel times has the potential to shift more travelers towards riding transit.

Figure 5. Travel time changes compared to ADT changes 
(Fries et al. 2009).

Conclusion
The most significant benefit of real-time transit information was reducing the utility of 
rider wait time at a stop. Specifically, reducing the anxiety level of waiting passengers 
was found to be the largest category of benefits to riders. Transit information provided 



Journal of Public Transportation, Vol. 14, No. 2, 2011

46

over the Internet can save riders waiting time at a transit stop, and the information 
provided to riders at a bus stop reduces the utility of that wait time. These two tools 
complement each other, first, possibly by saving travelers time at the stop, and next by 
making the true time at the stop more useful and less inopportune. Because both of 
these tools benefit individual riders, larger ridership creates more significant benefits; 
thus, ridership was the most significant factor influencing the studied benefits.

This study also investigated if real-time transit traveler information would encour-
age mode shift away from transit and towards walking across campus. Multiple 
factors influence mode change, in addition to pre-trip information and informa-
tion provided at bus stops. These include weather, fitness of the rider, disabilities, 
familiarity with the area, trip chaining, and cargo to carry. Due to these consider-
ations, the mode change savings found were not considered significant between 
walking and riding the bus; therefore, researchers do not anticipate this tool will 
significantly decrease the mode share of college campus transit but could encour-
age students to walk when buses are late.

Other agencies can use the methods presented in this study to examine similar 
applications on urban transit systems. Operators of college campus transit systems 
can use the findings of this study to help justify appropriate expenditures on real-
time transit traveler information.

Future research should identify what proportion of commuters would shift 
towards bus and away from personal vehicles because of real-time transit informa-
tion because the shift between private vehicles and transit has the potential to 
impact the transportation systems on multiple levels. Additionally, incorporating 
a non-linear value of travel time and developing a Logit model for mode-split at 
Clemson can provide further detail to these findings.
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