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ABSTRACT
We describe how the dynamics of cosmic structure formation defines the intricate geometric
structure of the spine of the cosmic web. The Zel’dovich approximation is used to model the
backbone of the cosmic web in terms of its singularity structure. The description by Arnold
et al. in terms of catastrophe theory forms the basis of our analysis. This two-dimensional
analysis involves a profound assessment of the Lagrangian and Eulerian projections of the
gravitationally evolving four-dimensional phase-space manifold. It involves the identification
of the complete family of singularity classes, and the corresponding caustics that we see
emerging as structure in Eulerian space evolves. In particular, as it is instrumental in outlining
the spatial network of the cosmic web, we investigate the nature of spatial connections between
these singularities. The major finding of our study is that all singularities are located on a set
of lines in Lagrangian space. All dynamical processes related to the caustics are concentrated
near these lines. We demonstrate and discuss extensively how all 2D singularities are to be
found on these lines. When mapping this spatial pattern of lines to Eulerian space, we find a
growing connectedness between initially disjoint lines, resulting in a percolating network. In
other words, the lines form the blueprint for the global geometric evolution of the cosmic web.

Key words: methods: analytical – methods: numerical – cosmology: theory – dark matter –
large-scale structure of Universe.

1 IN T RO D U C T I O N

Over the last three decades, the study of the large-scale structure
has thrived in both observations and theory. This was the conse-
quence of the new insights obtained via large new galaxy redshift
surveys, the tremendous increase of computing power, the related
emergence and advances of computer simulations, and the develop-
ment of new analysis methods and sophisticated theoretical models
of gravitationally driven structure formation. However, while an
overall theoretical framework for the emergence and evolution of
the large-scale structure of the Universe has been gradually taking
shape, there is not yet a comprehensive theory for the formation and
evolution of the intricate and complex structure of the cosmic web.

1.1 Historical overview

Currently, there are a few approximate analytical models describing
a range of features and characteristics of the cosmic web. It is in
particular the theoretical framework of Bond, Kofman & Pogosyan
(1996), responsible for coining the name ‘cosmic web’, which has
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succeeded in combining the aspects of the anisotropic nature of
gravitational collapse with the hierarchical nature of the process
(for a review, see van de Weygaert & Bond 2008). It incorporates
the statistics of peaks in primordial Gaussian fields Bardeen et al.
(1986) with a sophisticated nonlocal description of the hierarchical
evolution of peaks by means of the peak-patch formalism (Bond
& Myers 1996a,b,c). The latter models the non-linear anisotropic
collapse by means of the homogeneous ellipsoid model (Lin, Mestel
& Shu 1965; Icke 1972, 1973; White & Silk 1979), linking its linear
stage to the Zel’dovich approximation (hereafter the ZA).

The former is supposed to work on small scales where density
perturbations have reached the non-linear stage of structure forma-
tion, while on large scales the density perturbations remain linear or
quasi-linear. The boundary separating the two approaches is defined
by a heuristic condition requiring that the multistream flows in the
ZA involve only a small fraction of mass and thus can be neglected.

Zel’dovich himself (1970; see also Shandarin & Zel’dovich 1989)
suggested to use the linear Lagrangian model until the multistream
flows are well – but not overly – developed in the velocity field. The
studies of Coles, Melott & Shandarin (1993) and Melott, Pellman
& Shandarin (1994a) showed that the ZA can be safely used on
all scales down to the scale of non-linearity, Rnl, defined by the
condition σ δ(Rnl) ≈ 1. By this stage most of pancakes have emerged,
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and still remain fairly thin. Up to this stage, the ZA describes
conceptually correct, be it crudely, the emergence of multistream
flow regions, caustics and the structural skeleton of the cosmic web
(Doroshkevich, Ryabenkii & Shandarin 1973; Buchert 1989, 1992;
Shandarin & Zel’dovich 1989; Coles et al. 1993; Melott et al. 1994a;
Melott, Shandarin & Weinberg 1994b; Coles & Sahni 1995; Melott,
Buchert & Weiss 1995; Yoshisato, Matsubara & Morikawa 1998;
Yoshisato et al. 2006).

An additional prominent application of the ZA is that of its use as
a tool for generating initial conditions in the simulations of cosmo-
logical structures (Doroshkevich & Shandarin 1973; Doroshkevich
et al. 1973, 1980; Klypin & Shandarin 1983). Starting with these
studies shortly after its inception, the ZA has become the major
generator of the initial conditions in practically every cosmologi-
cal N-body simulation since 1983. It also has been used in many
theoretical studies of the non-perturbative non-linear stage. How-
ever, its complete description and explanation of what it exactly
predicts has not been provided yet. The first step in this direction
was made twelve years after Zel’dovich had published his paper.
Arnold, Shandarin & Zel’dovich (1982) described the topology of
all generic singularities formed in the two-dimensional case and
Arnold (1982, 1983) found the normal forms of all generic singu-
larities in three dimensions. The two-dimensional study was focused
mostly on the local properties of archetypical singularities while the
global picture was described rather schematically. The authors ob-
viously did not realize the computational complexity of the problem
when promised to do a similar analysis in 3D in the following paper.
However, impressive progress in computational geometry and com-
putational graphics observed in the last couple of decades allows us
to hope for a significant step forward in understanding the geometry
and topology of the structure in the ZA.

1.2 The cosmic skeleton

One of the major new results of this study is the demonstration that a
particular set of lines and points in Lagrangian space form a progen-
itor of the skeleton of the structure at the non-linear stage.1 The first
attempt to reduce the structure to a geometrical skeleton was done in
the adhesion approximation (Gurbatov, Saichev & Shandarin 1989,
2012; Kofman, Pogosyan & Shandarin 1990; also see Hidding, van
de Weygaert & Vegter, in preparation). In the adhesion description,
the skeleton was constructed from the linear gravitational potential
by a geometrical procedure based on the approximate gravitational
dynamics of the ZA. Later, Novikov, Colombi & Doré (2006) and
Sousbie et al. (2008), as well as Aragón-Calvo et al. (2010), also
discussed the skeleton or spine of the large-scale structure, be it
in a rather different context. They constructed a skeleton from the
known non-linear density field on the basis of Morse–Smale theory.
According to this description, the skeleton is traced by the separatri-
ces that connect singularities in the density field. While the former
derives the skeleton from the linear state by using gravitational dy-
namics as approximated by the ZA, the latter is purely a topological
construction derived from the given density field.

Following a philosophy similar to that of our study, Pogosyan
et al. (2009) followed up on the work by Sousbie et al. (2008) with
a profound analysis of the critical lines in a density field. These
were identified with those of the skeleton of the cosmic web. Our
study sheds a different light on the skeleton of the cosmic web, by
connecting it to the dynamical development of the density field. It

1 The skeleton becomes a set of surfaces, edges and vertices in 3D.

accomplishes this by focusing on the linear deformation field in
the primordial density field. Our study demonstrates that the spatial
structure of the cosmic web, as it emerges out of the primordial
Universe, should be identified with critical lines in Lagrangian
space. These lines mark the regions near which all decisive dy-
namical processes take place (see Fig. 1).

1.3 This paper

The principal incentive for our study is the identification of the
spine of the dynamically evolving cosmic web in the primordial
density field. We argue that this is entirely determined by the set
of singularity lines, along which we may trace the caustics that
form in the matter distribution as its phase-space structure attains
an increasingly complex multistream character.

It is hardly feasible, or practical, to analyse the full non-linear
gravitationally evolved mass distribution such as modelled by cos-
mological N-body simulations. However, for our understanding of
the geometric structure of the cosmic web we are greatly helped
by the observation that the fundamental singularity and caustic
structure of the cosmic web is basically entailed in the quasi-linear
description of the ZA. Although the dynamics in the ZA is sub-
stantially simpler than that in cosmological N-body simulations,
the ZA provides all the necessary concepts and language required
for the analysis of the realistic dynamics of cosmological N-body
simulations. It involves the concepts of phase space, Lagrangian
submanifolds, multistream flows and caustics. This fact that the ZA
combines its mathematical flexibility and simplicity with the full
richness of concepts that we find in the more complex reality makes
it unique among all theoretical models that seek to describe the
structure and evolution of the cosmic web.

The main rationale behind our study is therefore that of an attempt
to provide a comprehensive description of what the ZA actually
predicts in terms of the dynamically evolving spine of the cosmic
web. It may seem puzzling that in more than forty years after its
inception, the ZA would still require further discussions and expla-
nations. Instead of presenting another discussion of the accuracy
of the ZA, this paper has the intention to reveal new interesting
and useful aspects of the ZA and demonstrate that the seemingly
simplistic mathematical form of the ZA harbours a rich geometry
and complex topology for the emerging structures it describes.

There are a few characteristics of the ZA that makes its analysis
and understanding drastically different and more difficult than that
of linearly evolving spatial random fields. A first important aspect
is that the evaluation of the Eulerian density field in the ZA requires
both the deformation tensor and the displacement vector fields (see
Section 2). Eulerian linear theory only requires one scalar field, the
initial density field. The geometry and topology of vector and ten-
sor fields are considerably more complex than that of scalar fields
(Tricoche 2002). An important second aspect is that of the stochas-
tic properties of the eigenvalues of the deformation tensor field.
Even when its individual components have a Gaussian distribu-
tion, the eigenvalues have a non-Gaussian distribution in all senses
(Doroshkevich 1970): geometrical, topological and in terms of their
probability distribution function. An additional major complication
is related to the generation of multistream flows. This requires a
nonlocal analysis. We will address these issues in far greater detail
than previous studies have done.

In this study, we restrict our analysis to the two-dimensional case.
While it is considerably simpler than in 3D, the two-dimensional
analysis still reveals many nontrivial features that also emerge in
three dimensions. All basic concepts of two-dimensional theory
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Figure 1. ZA: Lagrangian and Eulerian singularity structure. First panel: the Lagrangian skeleton that we find using the method presented in this paper. In
dark red is the contour of the major eigenvalue corresponding to the time at which we plotted the Eulerian images that occupy the other three panels. Top-right
panel: structural and singularity information from the first panel mapped to Eulerian space, as proscribed by the ZA. Bottom-left panel: density distribution in
Eulerian space. Bottom-right panel: density field in Eulerian space, with the singularity outline superimposed (red edges).

remain the same in 3D, which renders the 2D analysis a useful and
crucial step towards understanding the full three-dimensional case.
The latter is the subject of an accompanying paper in preparation.

Aiming for the cosmological applications, we consider the evo-
lution of a system consisting of collisionless particles interacting
only via gravity and having an extremely low temperature. The ex-
amples of currently popular hypothetical dark matter particles are
neutralinos and axions. For instance, if the mass of the Universe is
dominated by a weakly interacting massive particle with mass of
100 GeV, then there would be ∼1067 such particles in the Milky
Way alone. This implies that the evolution of the dark matter distri-
bution in the Universe can be accurately described by a model of a
cold collisionless continuous medium.

Reading this paper does not require previous knowledge of catas-
trophe theory or even the ZA. We provide a brief summary of the ZA

in Section 2, followed by an informal introduction to the theory of
Lagrangian singularities in Section 3. In the rest of the manuscript,
we analyse the role of singularities in outlining the cosmic skeleton.
Section 4 describes the role of every generic singularity in the ZA.
Subsequently, in Section 5 we explain how the cosmic web is as-
sembled around the progenitor of the skeleton. Finally, in Section 7
we summarize and discuss the major results.

2 THE ZEL’DOV I CH A PPROX I MATI ON

The ZA is particularly simple in comoving coordinates x = r/a(t),
where a(t) is the scalefactor and r are physical coordinates. It re-
lates the initial Lagrangian coordinates q at t → 0 and Eulerian
coordinates x at time t by an explicit relation

x(q,D+(t)) = q + D+(t)s(q), (1)
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where the vector field s(q) is determined by the initial density
perturbations and D+(t) is the linear density growth factor fully
specified by the cosmological parameters. The ZA assumes that the
initial displacement field s(q) is a potential vector field,

s(q) = −∇q�(q) , (2)

in which the scalar displacement potential � is directly proportional
to the linearly extrapolated gravitational perturbation,

�(q) = 2

3Da2H 2�
φlin(q) . (3)

The potential character of the deformation vector is a direct con-
sequence of the potential character of the growing mode of the
gravitational instability in an expanding Universe. An additionally
important aspect of the ZA, reflecting its Lagrangian nature, is the
deformation of mass elements. The deformation is specified by the
deformation tensor,

dij = −∂si/∂qj . (4)

From equation (1) one may easily infer an explicit expression for
the density as a function of Lagrangian coordinates and time. If we
consider the conservation of mass in differential form,

ρ(x, t)dx = ρ̄(t)dq, (5)

the density evolution directly follows from

ρ(x, t) = ρ̄(t) J

[
∂x
∂q

]−1

, (6)

where J [∂x/∂q] is the Jacobian determinant of the map given by
equation (1). It is convenient to write equation (6) in terms of the
eigenvalues λi = (α, β) of the deformation tensor dij,

ρ(q, t) = ρ̄(t)

(1 − D+(t)α(q))(1 − D+(t)β(q))
, (7)

where a commonly used ordering of the eigenvalues α ≥ β is
assumed. On the basis of this equation, we may immediately infer
two key features of structure formation described by the ZA. The
first one is that the density becomes infinite as soon as D(t)α = 1 or
D(t)β = 1. In addition, this collapse is nearly always anisotropic as
in general the eigenvalues2 α �= β.

It is easy to see that Eulerian linear perturbation theory (ELPT)
is a limiting case of the ZA. Expanding the expression for the
Lagrangian density (equation 7) in a Taylor series,

ρ(q, t) = ρ̄(t) + ρ̄(t)D+(t) (α + β) + · · · , (8)

clarifies the relation between the known linear expression for the
density contrast, δlin,

δlin := (ρlin − ρ̄)

ρ̄
= D+(t)(α + β). (9)

Formally speaking, the ZA is valid only in the linear regime
when both |Dα| 	 1 and |Dβ| 	 1. However, Zel’dovich made
the bold prediction that it might be a good qualitative and arguably
even a quantitative approximation up to the beginning of the non-
linear stage, i.e. up to the stage at which |Dα| ≈ 1. Numerous
studies confirmed the conjecture and elaborated on the quantitative
accuracy and limitations of the approximation (Doroshkevich et al.
1973; Shandarin & Zel’dovich 1989; Buchert 1992; Coles et al.

2 In this study, we will demonstrate that the equality of the eigenvalues α

and β only occurs at isolated points.

1993; Melott et al. 1994a,b, 1995; Coles & Sahni 1995; Yoshisato
et al. 1998, 2006, also see references therein).

Technically speaking, the ZA is an extrapolation of Lagrangian
linear perturbation theory (LLPT) beyond the range of its formal
applicability. There are two fundamental differences of LLPT from
its Eulerian counterpart ELPT. As may be inferred from equations
(7) and (9), the calculation of the density LLPT uses the full defor-
mation tensor while ELPT relies only on its trace. The second dif-
ference is due to the necessity in LLPT of mapping from Lagrangian
to Eulerian space in order to evaluate the density field in Eulerian
space. Even at small σ δ , where δ = �ρ/ρ̄, the difference between
LLPT and ELPT can be quite noticeable if the scale of the initial,
i.e. linear velocity field is considerably greater than that of density
fluctuations (Peebles 1980). In this, we assume that σ δ is evaluated
in ELPT. The difference between LLPT and ELPT becomes con-
siderable when both are extrapolated to a larger σ δ . A particularly
obvious problem occurring in ELPT is the emergence of negative
densities, i.e. ρ < 0, in regions with a large initial density deficit.
For example, if ELPT is extrapolated to σ δ = 0.5, the regions with
negative densities occupy approximately 2.3 per cent of the volume.
This fraction increases to almost 15 per cent at σ δ = 1. Evidently,
for a physical model this is an unacceptable circumstance. LLPT
is completely free of this problem: at all times it predicts ρ > 0,
regardless of the magnitude of σ δ .

Equation (1) encapsulates the mapping by the LLPT from La-
grangian space to Eulerian space. Its ramifications can be explored
analytically before an overwhelming fraction of mass elements
starts to experience shell crossing. The mathematical complica-
tions increase rapidly as the number and extent of the multistream
flow regions proliferates. In particular, interesting are those mass el-
ements which are separated by finite distances in Lagrangian space
and end up at the same places in Eulerian space. These caustics are
key manifestations of the dynamically evolving mass distribution
and mark the emerging cosmic web. To understand and assess this
aspect of the ZA, we require numerical modelling, in particular for
the cosmologically relevant situation of random initial conditions.

3 T H E O RY O F SI N G U L A R I T I E S

Before we start our investigation of the spatial network defined by
the ZA, we need an inventory of the individual singularities that
may emerge as the cosmic mass distribution evolves into a web-
like pattern. These singularities define the outline of the principal
components of the cosmic web, while others arrange the spatial
connections that line these components into a pervasive spatial net-
work.

To be able to appreciate this structure, we need to build an in-
ventory of the different caustic geometries that we encounter in the
ZA. Having obtained insight into the character of the individual
singularities, we will be equipped to appreciate their embedding in
an extensive and more realistic network of structures.

For a complete inventory of all possible singularities, we need
to resort to the mathematical branch of catastrophe theory. In this
section, we will present a systematic, yet schematic, inventory of 2D
singularities. While involving a complex mathematical formalism,
within the limited context of the present study we invoke images
to elucidate the key aspects of catastrophe theory and to appreciate
the basic character of each singularity.

In the subsequent sections, we will find how these caustic objects
are the building stones of the evolving network of filaments and
nodes.
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3.1 Singularities and the ZA

When considering the displacement of mass elements from their
Lagrangian location q to their Eulerian position x, according to
the Zel’dovich displacement equation (1), we may imagine this in
terms of the ZA outlining a (hyper)surface in a four-dimensional
phase space. In this case, the four-dimensional phase space (q, x)
is defined by four coordinates, the Eulerian space x coordinates and
the Lagrangian space q coordinates. The hypersurface x(q) is called
a Lagrangian submanifold. Note that this definition of phase space
is different than the classic position–momentum phase space. The
non-dissipative nature of dark matter dynamics allows us to define
a diffeomorphism (being a smooth and differentiable mapping that
is both on-to and one-to-one) between these two concepts of phase
space throughout even the full non-linear dynamical evolution. In
this mapping, all the properties of the projection to Eulerian space
are completely preserved.

The Lagrangian submanifold is a smooth single-valued function
x(q) of Lagrangian coordinates q. While our brains are generally
unable to imagine such a four-dimensional manifold, for the sake
of insight we may illustrate some of the basic qualities for the
equivalent situation of one-dimensional space, i.e. for the equivalent
two-dimensional phase space. This you may find in Appendix A.

When looking at the evolving structure in the Universe, we are
looking at the projection of the full four-dimensional submanifold
on to Eulerian space x. The evolving structure is a direct reflection
of the changing geometry of the Lagrangian submanifold, in terms
the gradual formation of folds in the submanifold and the orienta-
tion of the manifold. The folding is a direct manifestation of the
emergence of multistream regions, where the local number of folds
is determined by the number of streams at that location.

Locally, we may determine the resulting Eulerian density (per-
turbation) δ(x, t) by integrating over the various folds. If at location
x we find an N stream region, each corresponding to a solution q�

for which x = x(q�, t), the Eulerian density is

δ(x, t) + 1 =
∑

x=x(q�,t)

∣∣∣∣ det

(
∂x
∂q

) ∣∣∣∣
−1

q=q�

, (10)

where the sum is taken over all N solutions. It is in the projection
of the four-dimensional Lagrangian submanifold that we find the
appearance of singularities. These appear if one or more solutions
q = q� involve an accumulation of (Lagrangian) mass elements at
the Eulerian location x. This means that det ( ∂x

∂q ) = 0, implying an
infinite local mass density, δ(x, t) = ∞.

The nature of the singularities that appear in the evolving cosmic
mass distribution may vary. There is a limited number of different
classes of singularities. These appear in different circumstances and
configurations, and each play their role in outlining the spine of the
cosmic web.

In the following subsections, we will present a systematic census
of the singularities that may emerge in the two-dimensional reality
of the ZA. We will follow a mostly visual approach. After passing
the basic mathematical concepts of Morse theory and catastrophe
theory, we illustrate the various singularities and caustics as pro-
jections of a higher dimensional phase-space sheet on to Eulerian
space.

3.2 Morse theory

Catastrophe theory (Thom 1972; Zeeman 1977; Arnold 1992) de-
scribes how discrete events and objects emerge in a smoothly be-
having system. It is built on Morse theory Milnor (1963).

Table 1. Singularity character and
Hessian eigenvalue signature.

∇ ij f Singularity

(− −) Maximum
(− +) Saddle
(+ +) Minimum

Morse theory describes the general case of a – smooth and dif-
ferentiable – function f (q), in a mapping from R

n to R. Specific
example of a Morse function are the heights of a mountain land-
scape, or the stochastic spatial random field defined by the mass
distribution in the Universe.

A key aspect of a Morse function f (q) is that at each location q we
can define its gradient, ∇f. Within this gradient field, an exceptional
and special position is taken by the critical points. These points
are the ones where the derivative vanishes, ∇f = 0. Singularities
may have one of d + 1 different identities. In the 2D situation,
we recognize three classes: maximum, saddle point and minimum.
This identity is determined by the signature of the eigenvalues of the
second derivative ∇ ijf of the Morse function, following the listing
in Table 1.

The critical points play an essential role in determining the
topology of a landscape. Considering the example of a cosmo-
logical density field, we may consider the density superlevel sets.
These consist of the regions with a density superseding the defining
threshold value and which have the corresponding density isocon-
tour as boundary. As we lower the threshold value, the superlevel
sets change topology as the threshold isocontour touches a critical
point.

3.3 Catastrophes

Around its critical points, a Morse function may always be trans-
formed into a quadratic form of local coordinates, following a trans-
formation

q = (q1, q2) → (ξ1, ξ2) , (11)

for which

ζ (ξ1, ξ2) = f (q1, q2) = ±ξ 2
1 ± ξ 2

2 . (12)

Any point for which the function cannot be transformed into such
a normal form is degenerate. In general, the degeneracy of these
points will disappear by expanding the function in a Taylor series
in small perturbations of its parameters.

As the function becomes more complex and more parameters
are needed for its description, a growing family of functions is
generated. Most of these functions will not have degenerate points.
However, at certain values of the parameters, degenerate points
may appear. At these parameter values, the function will make a
transition to new, very different behaviour. The parameter set with
these values defines a bifurcation point, and these events are called
catastrophes (Thom 1972; Zeeman 1977; Arnold 1992).

As more parameters are added, and the functions become more
complex, the family of different types of catastrophes grows. The-
ory teaches us that there are only a few topologically different types
of singularities possible, and that these are stable under perturbation
(Thom 1972; Zeeman 1977; Arnold 1982, 1983). In this paper, we
will follow the ADE classification of catastrophes introduced by
Arnold. The name reflects a deep connection of the theory of singu-
larities with simple Lie groups. In total, five point-like singularities
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Figure 2. Caustic formation by projection. The figure illustrates how we may observe different caustics through the projection of a higher dimensional
structure. The image shows a torus at different orientations in 3D space. As we rotate the non-singular torus from a face-on to an edge-on view, we observe the
changing morphology of the projection of the torus on the 2D plane at the bottom of the figure panels change their morphology. In three snapshots, we show
the metamorphosis of the resulting caustics. Left: instantaneous development of a caustic with two swallow-tail points (A4). Centre: splitting of central caustic
into two cusps, an A3 singularity. Right: as the torus rotates further, the cusp points move to the edge.

can be identified, the cusps A+
3 and A−

3 , the swallow tail A4, and the
umbilics D+

4 and D−
4 .

Within the context of the ZA, we are interested in the branch of
catastrophe theory that deals with Lagrangian singularities. Given
the observation that the limited family of possible singularities is
stable under perturbation, we expect that the singularities identified
in the ZA-evolved mass distribution will also be present in the
non-linear case. Within the limited context of the present study, we
restrict elucidation of its key aspects through visualization by means
of images.

3.4 Planar torus projection: catastrophe by example

For the purpose of obtaining an intuitive appreciation of the situa-
tions in which singularities may appear, we may turn towards the
illustration in Fig. 2. The image shows a torus at different orien-
tations in 3D space. As we rotate the non-singular torus from a
face-on to an edge-on view, we observe the changing morphology
of the projection of the torus – the black solid contour lines – on the
plane at the bottom of the figure panels.

The planar projection is shown for three instances. The projection
in the left-hand panel contains A2 and A4 singularities, while the
central panel also contains A3 singularities. The simplest form of
singularity is the fold singularity, the A2 singularity in Arnold’s
ADE classification. We observe it when we look right through the
hole at the centre of the torus. The structure seen in the left-hand
panel emerges when the torus is tilted upwards and at one particular
instant passes through a stage where the centre caustic assumes
to swallow-tail points at its edge. These are the A4 singularities.
The central panel shows how these swallow-tail singularities have
split almost instantaneously into two cusps, A3 singularities. As we
rotate his further, these move further outwards (right-hand panel).
The accompanying loss of two cross-points by the central caustic
is the result of a global change in the projection, and cannot be
predicted from local considerations.

Although the illustration provides us with some visual intuition
of the character and nature of singularities, we should also note that
the configuration of a static and robust torus is not really represen-
tative for the situation we are addressing in this study. Within the
context of the evolving cosmic mass distribution, we will study the

projection of the Lagrangian submanifold. A direct manifestation
of the dynamical evolution of the cosmic mass distribution is that
this four-dimensional manifold itself is continuously changing, and
it is the corresponding evolution of the manifold’s projection that
will result in the emergence of singularities.

3.5 Normal forms

To formalize our understanding of the different singularities, we
describe them in terms of a normal form. Loosely speaking, a normal
form may be defined as the minimal or simplest polynomial that
captures the topology of a singularity. The normal forms represent
a complete description of each singularity: via a transformation
each stable singularity can be smoothly transformed into one of the
normal forms.

We may formalize the concept through the definition of a corre-
sponding family of potential functions, Fμ(q). The manifold x(q),
i.e. the Eulerian position, is the gradient of the potential function,

x = x(q) = ∇qF . (13)

The potential function is parametrized by μ. These are a set pa-
rameters that smoothly change as a function of space or time.
For example, in the context of the ZA the displacement field,
x = q + D+∇qφlin, can be related to the potential function,

F (q) = q2

2
+ D+φlin(q) . (14)

The linear density growth factor D+ functions as parameter. This
expression establishes the link between the ZA and its formulation
in terms of a normal form.

For understanding the topology and geometry of a singularity,
the first derivative of the potential function Fμ(q) is not particularly
interesting. Via a trivial translation, the first-order derivative may be
transformed away. It is the higher order derivatives of the potential
function Fμ(q) which determine the type of a catastrophe.

From Morse theory we know that the critical points of the phase-
space manifold x(q) are the locations at which the first derivative of
the surface x(q), and hence the second derivative of Fμ(q), is zero.
Via a Taylor expansion, we may study the local potential function at
every Lagrangian point q in the domain around these critical points.

 at U
niversity of K

ansas on D
ecem

ber 22, 2015
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


3448 J. Hidding, S. F. Shandarin and R. van de Weygaert

Table 2. Possible catastrophe metamorphoses (or perestroikas) in the two-dimensional ZA. These are the normal
forms as given in Arnold (1983). The formulas give the potentials belonging to each normal form, for a time
parameter t. Each normal form has one or more free parameters, represented by τ and μ. In the context of the
singularities in the ZA, τ and μ are identified with the Lagrangian coordinate q2. The parameter λ inserts the
time dependence into the normal form expressions.

Name ADE F (q) normal form Time

Cusp A3 F (q1) = q4
1 + λq2

1 t = ±λ∓τ 2

Creation A+
3 Birth of a pancake

Annihilation A−
3 Merger of two pancakes

Swallowtail A4 F (q1) = q5
1 + λq3

1 + μq2
1 t = ±λ.

branching of a pancake

Umbilic D4 F (q1, q2) = 3q2
1 q2 ± q3

2 + 3λ(q2
1 ∓ q2

2 ) t = ±λ + x1 + ax2.
Pyramid (elliptic) D−

4 Change in associated eigenvalue for three cusps
Purse (hyperbolic) D+

4 Swap of associated eigenvalue between cusp and fold

In the literature, these local functions are called the germs of the
catastrophe geometries.

By means of a suitable coordinate transformation, we may sub-
sequently – without any loss of generality – write the local potential
functions F (q) in one of the normal form expressions given by
Arnold (Arnold 1983) (see Table 2). Following this formalism, we
may identify any of the catastrophes found in the ZA-modelled
mass distribution with one of the basic catastrophe classes.

3.6 Inventory of 2D singularities

In the following subsections, we provide an inventory of illustra-
tions of each of the fundamental singularities. To this end, Fig. 3
until Fig. 4 present impressions of evolving three-dimensional pro-
jections of the evolving phase-space manifold (q, x) in the vicinity
of the five fundamental classes of 2D catastrophes listed in Table 2.
Table 2 lists the normal forms of these catastrophes following the
formulation given by Arnold (1983). For a more formal description
of the table’s content, we refer to Section 3.7

The images are based on the corresponding normal forms from
Table 2. For practical considerations,3 we have to limit ourselves to
showing a lower dimensional projection of the phase-space sheet.
The figures therefore depict the singularities in the form of three-
dimensional projections of the Euler–Lagrange phase-space sheet
on to the configuration space (x1, x2, q1), consisting of one La-
grangian coordinate – along the vertical direction – and two Eule-
rian coordinates along the horizontal plane. This projection of the
phase-space sheet is the smooth yellow surface.

Each singularity is shown at three different time steps, such that a
row of three images shows evolution of the phase-space sheet along
with the emergence of the caustic structure in the 2D projection on
the Eulerian (x1, x2) plane. A caustic appears where the phase-space
sheet is perpendicular to the Eulerian plane E. Although the images
are rather schematic, these illustrations are fully representative for
the general case that we will encounter in the evolving cosmic mass
distribution.

3.6.1 A-series: folds, cusps and swallow tails

Fig. 3 shows the 3D phase-space sheet projections around the A+
3

(top row), A−
3 (central row) and A4 (bottom row), each with a

sequence of three time steps.

3 Taking into account, as we stated above, that the human brain is not
equipped for processing four-dimensional images.

A fold is the edge of a pancake. As we can see in Fig. 3(a), the
first pancakes form at A+

3 points. They are the transient state where
two cusps are created. Fig. 3(b) shows how two cusps can meet to
merge into two pancakes.

The two operations of cusp creation and annihilation will only
build a network of filaments if there is a way to split a pancake.
Fig. 3(c) shows how this happens in the transient A4 singularity.
We see how the edge of a pancake develops a ‘kink’,4 which
immediately bifurcates into two cusps showing the characteristic
‘swallow-tail’ pattern (hence the name). In practice, one of these
cusps will join another pancake, thereby forming a tripod structure
(see Fig. 15). The subsequent evolution depends on the surrounding
environment, and is explained in Section 4.

3.6.2 D-series: purses and pyramids

The most complicated type of singularities are the umbilics, or
D4 singularities. In terms of the deformation tensor there is a D4

singularity if two eigenvalues are equal. They are presented in Fig. 3.
The D4 singularity involves two types, D+

4 and D−
4 . They are shown

in Figs 4(a) and (b), respectively.
In the D+

4 case, the cusp corresponding to the second eigenvalue
meets with the fold corresponding to the largest eigenvalue at the
middle panel for one instant. The cusp then becomes a fold, and the
fold becomes a cusp.

In the D−
4 case, a curvilinear caustic triangle corresponding to

the largest eigenvalue collapses in the middle panel of Fig. 4(b).
At the same instant, a similar triangle corresponding to the lowest
eigenvalue emerges. This can be seen in the right-hand panel.

Among all singularities in 2D, both types of D4 result in the
highest concentration of mass. Note that the figures seem to show
self-intersecting surfaces. This is an artefact of the lower dimen-
sional projection of the phase-space sheet. If we were to present
them in 4D, we would see this that is no longer the case.

3.7 Lagrangian submanifold geometry and Arnold’s
catastrophe formulation

With respect to the geometry of the catastrophes, and the corre-
sponding phase-space Lagrangian submanifold in four-dimensional
phase space (q, x), we should add a few explanatory remarks with
respect to normal form formulation listed in Table 2.

4 one is tempted to say ‘cusp’, but that would be technically wrong.
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Figure 3. A-series of singularities. The figures shows the 3D projection of the Euler–Lagrange phase-space sheet on to the configuration space (x1, x2, q1),
with q1 along the vertical direction and the Eulerian plane (x1, x2) in the horizontal direction. The smooth yellow surface is the 3D projection of the phase-space
sheet. Each singularity is shown at three different time steps. Each image shows the phase-space sheet at one particular instant, along with the caustic structure
– the black solid lines – in the 2D projection on the Eulerian (x1, x2) plane. Although the images are rather schematic, these illustrations are fully representative
for the general case that we encounter in the evolving cosmic mass distribution. (a) A+

3 , the birth of a pancake. The linear term in the surface counters the cubic
term, generating the singularity when the magnitude of their derivatives matches. This linear term grows with time, faster in the middle. (b) A−

3 singularity and
the merging of two pancakes. The linear term in surface has a minimum in the middle. So this is where the surface tangent goes singular last, joining the two
three-stream regions that are already present. (c) The A4 swallow-tail singularity and the folding of a pancake. In the first image, we see the edge of a pancake.
This pancake develops a singularity, that then unfolds into two cusps moving away from each other.
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Figure 4. The D-series of singularities, limited to the D4 singularities. The figures shows the 3D projection of the Euler–Lagrange phase-space sheet on to the
configuration space (x1, x2, q1), with q1 along the vertical direction and the Eulerian plane (x1, x2) in the horizontal direction. The smooth yellow surface is the
3D projection of the phase-space sheet. Each singularity is shown at three different time steps. Each image shows the phase-space sheet at one particular instant,
along with the caustic structure – the black solid lines – in the 2D projection on the Eulerian (x1, x2) plane. Although the images are rather schematic, these
illustrations are fully representative for the general case that we encounter in the evolving cosmic mass distribution. (a) The D+

4 singularity: the hyperbolic
umbilic. The structure of this singularity cannot be embedded in 3D without having self-intersecting surfaces. Note that the centre image shows a symmetric
surface, but the deprojection of it resembles an earlier (or later) stage of development. The projection of two folds coincides. This will always happen locally
at a D+

4 point. Thom (1969) called this singularity a ‘purse’. (b) The D−
4 singularity: the elliptic umbilic. This singularity produces the steepest density profile

possible in 2D. Thom (1969) called this singularity a ‘pyramid’.

The geometric structure of the catastrophes live in the Eulerian–
Lagrangian phase-space E × L. For a potential F (q, t), we may
define the Lagrangian submanifold as the implicit surface

M(t) =
{

(x, q) ∈ E × L
∣∣∣x = ∇F (q, t)

}
.

In the projection of M(t) on to Eulerian space E, we find caustics
Mc⊂M at those places where the surface M is perpendicular to E.
We may parametrize the submanifold by means of the vanishing
determinant of the Hessian of F,

Mc(t) =
{

(x, q) ∈ M(t)
∣∣∣ detH(F ) = 0

}
.

At any time t, this gives us a set of caustic curves. Over a span
of time these curves trace a surface called the big caustic (Arnold
1983).

To infer the time evolution from the big caustic, we need to define
a second surface intersecting the big caustic. In general this results
in a set of curves. It is the parametrization of this surface that is
given in the last column of Table 2. It allows us to get both cusp

creation and annihilation behaviour from a single definition of the
big caustic.

The general formulation includes a few extra parameters. To
arrive at the results in Fig. 3, the remaining parameter τ may be
identified with q2. Following the same procedure for the case of
the swallow-tail catastrophe, in addition to the substitution of the
time parametrization, we are still left with the free parameter μ. We
identified μ with the remaining Lagrangian coordinate q2 to arrive
at the result in Fig. 3(c).

4 Z E L’ D OV I C H G E O M E T RY: G E N E R I C
SI NGULARI TI ES AS PRI NCI PA L ELEME NTS

The normal forms discussed in the previous section provide a useful
and insightful guide to the local topology of individual singularities.
However, the geometric structure emerging from the gravitational
evolution of the random primordial conditions is far more complex.
Different types of singularities emerge in a variety of combinations.
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In this section, we extend the image of the individual singulari-
ties to more generic circumstances. We will find how this involves
different types of caustics, the conditions and environment in which
they arise, and how these different caustic singularities connect into
a pervading geometric network. The identification of the different
classes of singularities and caustics within their generic cosmo-
logical context will form the basis for the development of a full
geometric understanding of the way in which the ZA outlines the
weblike spine of the megaparsec-scale matter distribution.

In most examples in the following subsections, we select – by
eye – the simplest possible realizations out of a larger field real-
ization. The singularities in these situations are usually located in
relatively isolated environments. Singularities of other types are far
removed from these locations. This usually involves rather artificial
situations. In more generic (random) primordial conditions, the sin-
gularities typically emerge in groups. These groups tend to exist of
various types of singularities, generally clustered and at relatively
close distances to each other.

4.1 Caustics and the deformation field

The two-dimensional version of the cosmic mass distribution evolv-
ing according to the ZA is equivalent to that encountered in geomet-
ric optics (see e.g. Zel’dovich, Mamaev & Shandarin 1983). The
most prominent aspect is that of the anisotropy of the collapsing
structures and the resulting caustic structure, a direct reflection of
the fact that in general the deformation tensor eigenvalues α �= β.

While it represents a complete and correct description of the
patterns encountered in optics, the predicted structure is only an
approximation of the structure forming in a gravitating medium.
This was of course recognized by Zel’dovich himself. In this respect,
one might argue that the ZA becomes qualitatively incorrect when a
significant fraction of mass experiences turns inside out more than
two times in 2D, or three times in 3D.

To locate singularities in a generic situation, we need to study the
deformation tensor

dij := − ∂si

∂qj

, (15)

of the displacement field

s(q, t) = x(q, t) − q , (16)

In the ZA, the displacement vector is factorized in a temporal and a
spatial part,

s(q, D+(t)) = D+s(q) . (17)

As long as the growth of structure is linear or quasi-linear, we
may assume that the flow is a potential flow, s = −∇qφlin. In this
situation, the deformation tensor will be symmetric. Our discussion
of caustic formation is based on this situation and therefore remains
valid into the non-linear flows, for as long as the flow remains
vorticity free.

The study of singularities in the displacement field is based on
the characteristics of the deformation tensor field: critical points in
the displacement field correspond to zero-points in the deformation
tensor dij. For obtaining insight into the nature and position of criti-
cal points, the most instructive approach is to focus on the study of
the deformation field in terms of its eigenvalue fields α(q) and β(q),
and the corresponding eigenvector fields. These fields completely
characterize the deformation field, without loss of generality: the
nature of the critical points is dependent on the signature of the

eigenvalues α and β. Important to note is that, by definition, we
order the eigenvalues such that α > β.

For appreciating the Lagrangian basis of our study, Fig. 5 il-
lustrates the spatial distribution, in a Lagrangian volume, of the
α-component of the deformation field. For a specific realization
of a random initial field, we have depicted the α isocontours as
thin lines. In the same figure, we have indicated the (normalized)
eigenvectors nα of the α eigenvalue field. They are depicted by
means of line segments that are aligned along the direction of the
eigenvectors. Also, the figure indicates the location of special lines
and points – singularities – that will be the subject of extensive
discussion in later subsections. These play a key role in defining the
skeleton of the cosmic web.

The ultimate fate of mass elements q depends on the signature
of the eigenvalues α(q) and β(q). As may be immediately inferred
from the ZA (cf. equation 7, mass elements for which both eigen-
values α and β are negative never reach a singularity). Those which
have only one positive eigenvalue pass through a singularity once,
while the ones with two positive eigenvalues do this twice. When
it passes through a singularity, a mass element is turned inside out
along the direction of the eigenvector.

By definition, structure in the Universe is the result of a collective
response of groups of mass elements to the gravitational force field
responsible for the displacement of mass. In order to understand
the spatial patterns in the evolving mass distribution, we therefore
should not only concentrate on individual singularities, but also on
their surroundings and on the complexes in which they are em-
bedded. In the following subsections, we will seek to identify the
spatial setting and grouping of the different classes of singularities
that were identified in Section 3.

4.2 A2 lines and pancakes

It is not hard to see that if the evolution of the system starts from
smooth initial condition, the location where collapse starts first are
those around the maxima of α(q) in Lagrangian space. These are the
A+

3 points in the field, which in Fig. 5 have been marked accordingly.
The nature of these singularities will be discussed in more detail in
the next subsection.

The subsequent evolution of cosmic structure consists of a grad-
ual progression of Lagrangian regions experiencing collapse. At any
given cosmic time t, these regions consist of the points on the iso-
lines α(q) = 1/D(t) or β(q) = 1/D(t). In Lagrangian space, they
form a set of lines, Aα

2 and A
β
2 . The Aα

2 lines are the isocontours
of the eigenvalue α(q) = 1/D(t) or, in other terms, its eigenvalue
level set.

Points residing on an Aα
2 line pass through an A2 fold singu-

larity (see Fig. 6). When they are mapped to Eulerian space, we
see them emerge as caustics. In the mapping from Lagrangian to
Eulerian space, the lower edge of the A2 line is mapped into the up-
per caustic, while the upper edge moves towards the lower caustic
(Fig. 6). As the matter streams in and around the A2 contour cross
each other’s path. The resulting pancake region demarcates a three-
stream region, enclosed by the fold caustics. At any location within
its interior we find three velocities, each corresponding to one of the
streams. In such multistream regions, mass elements of a different
origin are crossing each other. One of the streams in the pancake re-
gion corresponds to fluid elements that have already experienced a
singular collapse along the direction of the eigenvector nα . We refer
to Appendix (A) for a discussion of the more transparent equivalent
one-dimensional situation.
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Figure 5. Deformation field: a Lagrangian visualization. The contours show the value of the largest eigenvalue and the segments the direction of the
corresponding eigenvector. The thick lines are the A3 lines that track the development of the caustics through time, red belonging to the first eigenvalue, blue to
the second. Note that the A3 lines trace the places where the eigenvector is tangent to the contour. The maxima and minima of the eigenvalues also lie on such
a line, denoted by A+

3 and A−
3 , respectively. At the A4 point, the A3 line has a local maximum, and the line is tangent to the contour of the eigenvalue. The A3

line terminates in a D4 point, continuing as an A3 line of the second eigenvalue. There are two types of D4 points, more about that is explained in Section 4.6.
Note: there is a tiny loop of the Aα

3 line (red) covered by D−
4 symbol; an additional explanation is given in Appendix B.

Figure 6. A3 cusp singularities and related A2 folds. Left-hand panel: the progenitor of the caustic in Lagrangian space – red dashed line with label ‘1’, A3 –
thick red line, a maximum of α – a red dot next to A+

3 label. Right-hand panel: an α-caustic in Eulerian space with two cusps marked as A3.

The two families of emerging caustics are called α- and β-
caustics, while the corresponding isocontours in Lagrangian space
will be referred to as progenitors of caustics. Because nearly all
properties of α- and β-caustics are equivalent, in order to prevent
unnecessary repetitions we refer to both by means of λ, which may
either mean α or β.

The resulting image is one in which the A+
3 points are the buds

of the emerging cosmic structure. At their Eulerian locations, we
observe the first stages of the formation of the cosmic web. Subse-
quently, we witness a gradual progression of α isocontours attaining
the state of Aα

2 line. As this happens, in Eulerian space we see the
expansion of the corresponding fold caustics.
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Figure 7. A3 lines and the eigenvalue landscape. The landscape of the eigenvalues α and β of the deformation tensor is shown for values above a threshold
value. The brown landscape concerns the field of α values within a certain region of space. The blue landscape shows the run of the second eigenvalue in the
same region of space, as far as the value of β is higher than the threshold. The Aα

3 lines are indicated as thick red lines, the A
β
3 lines as blue lines.

4.3 A3 lines: progenitors of cusps

A key element for our understanding of spatial pattern formation in
the ZA is that of the A3 lines in Lagrangian space. The A3 lines in
the Lagrangian deformation tensor field form the backbone of the
emerging structure: they are the progenitors of the cosmic skeleton
in Eulerian space. To develop one’s intuition for the spatial context
and significance of A3 lines with respect to the underlying defor-
mation field, Fig. 7 depicts a 3D impression of the outline of the A3

paths along the crests and slopes of the eigenvalue α (and β) land-
scape. The height of this landscape also depicts the time at which
the local mass element collapses. At any single instance of time the
mass element where the λ-contour and A3 line cross, corresponds to
a point in Eulerian space where we can find a cusp singularity. As
time progresses, and the λ-contour descends on the landscape, the
cusps travel outward along the A3 lines. In this manner, the A3 lines
trace the formation of multistream regions through time, forming
the blueprint for the structure of the cosmic web.

The A3 lines delineate the points where the eigenvalues α and β

are maximal along the direction of the corresponding local eigen-
vector. At these points, the gradient of the eigenvalue λ along the
eigenvector direction is zero, i.e. they are the points where the eigen-
vector nλ is orthogonal to the eigenvalue gradient vector ∇qλ(q) (see
Fig. 5),

nλ · ∇qλ = 0. (18)

Relating this to the eigenvalue isocontours, we observe that these are
the points where the deformation tensor eigenvector nλ is running
tangential to the contour lines of the corresponding eigenvalue λ.
In other words, the Aλ

3 points on a Aλ
2 line are those points where

the eigenvector nλ is tangential to the contour Aλ
2. Moreover, as the

extrema of λ(q) are defined by the condition ∇qλ = 0, they are
always located on Aλ

3 lines.

The physical significance of the A3 ridge defined by equation
(18) may be understood when looking at the way in which a mass
element on the line develops a singularity. To this end, we need to
take along that the deformation of mass elements occurs along the
eigenvector direction nλ. Because of the eigenvalue gradient’s zero
value in that same direction, there is a line-up and accumulation
of neighbouring mass elements which simultaneously pass through
the singularity. When mapped to Eulerian space, this evokes the
formation of an A3 cusp. They are located at the tip of the evolving
A2 fold singularity, which represent the Eulerian manifestation of
the corresponding λ eigenvalue isocontour (see Figs 5 and 6).

Hence, following this observation, we see that the A3 lines trace
the location of the progenitors of A3 cusp singularities. Dependent
on whether it concerns the lines for the first, α, eigenvalue or the
second, β, eigenvalue, we distinguish between the Aα

3 lines and
the A

β
3 lines. In Fig. 5 we have indicated the A3 lines by means of

heavy solid lines, where we have made a distinction between the
Aα

3 lines (red) and the A
β
3 lines. Note that the defining equation (18)

generates a set of lines Aλ
3(q) that identify all points Aλ

3, regardless
of the time when they become singular.

While the solution of equation (18) defines the A3 lines in La-
grangian space, for their full outline we also need to consider the
points where they terminate. Interestingly, while the A3 lines are
continuous smooth lines marking the location of progenitors of
cusps, the lines terminate at isolated points.

One class of termination points relates to the trivial condition
that the formal solution of equation (18) should not involve negative
eigenvalues λ. These are excluded from consideration because they
correspond to an expansion along the corresponding eigen direction,
and will not be able to form a caustic. As a result, the A3 lines are
truncated at the level set λ(q) = 0. In reality, the λ = 0 level set
would never be reached: it would require an infinite time to reach
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Figure 8. A3 eigenvalue profile. The profile of the first eigenvalue α along the top A3 line in Fig. 6. This is the line which runs from the upper box edge to the
right-hand box edge. Along the profile, we have marked the location and identity of the various singularity points along the A3 line.

the singularity. For this reason, in all our figures we fade the A3 lines
as λ nears zero. Note that this condition occurs more frequently for
the A

β
3 lines: because β < α, it has a negative value of a larger swath

of Lagrangian space. A nice example of this can be seen in Fig. 6,

in which the blue fading line indicates the location of the A
β
3 line in

the same area as the progenitor of an α-caustic.
An even more profound and fundamental termination point of

A3 lines occurs in more subtle circumstances. While rare, there are
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points q where both eigenvalues have the same value, α(q) = β(q).
At these points the eigenvectors have no preferred direction, ren-
dering equation (18) meaningless. In Section 4.6, we will elaborate
on this class of points and demonstrate that they concern an isolated
and discrete set of special points. They generate another class of
caustics, the umbilics D4 (of which there are two types). Here, it is
important to note that they do not form crossing points of Aα

3 and
A

β
3 lines, but rather their connecting tips. Fig. 5 marks the location

of the D4 singularities by means of a triangle.
Ideally, one would like to show the lines in a three-dimensional

diagram, with the added dimension being time or, equivalently,
the eigenvalue level α. We would find that no A3 line intersects
another A3 line: no Lagrangian point would ever pass at any one
time through more than one singularity. Note that in Fig. 5 we only
show the Lagrangian plane. Even while the A3 lines for the major
and minor eigenvalues do seem to intersect at places, this has no
physical meaning or implication.

4.4 A3 lines: the emergence and merging of pancakes

In Fig. 8, we have plotted the run of the eigenvalue α along the
large Aα

s line (blue) running from top left to bottom right in Fig. 5.
We can clearly distinguish the maxima of α along this ridge. These
points are marked as A+

3 , and they are the Lagrangian progenitors of
the first cusps emerging in the cosmic density field. The landscape
of α isocontours around one of these A+

3 points is illustrated in the
left-hand panel of Fig. 3.

Once the cusp at the maximum A+
3 has emerged, the value of

α at which a point reaches singularity decreases as time proceeds,
α(q) = 1/D(t). At time t, all points on the corresponding α iso-
contour become singular. These points pass through an A2 fold
singularity and in Eulerian space become visible as α-caustics that
enclose a pancake. Two points stand out, the ones at the intersection
of the A3 line and the α isocontour. They are the ones that in Eulerian
space will be visible as A3 cusps (Fig. 6, right-hand frame).

A particular example of a pancake forming around a maximum
A+

3 is shown in Fig. 6. It shows a simple example of an A+
3 point

and its immediate Lagrangian surroundings (left-hand panel), and
the corresponding α-caustic (pancake) in Eulerian space (right-hand
panel): the isocontours in the left-hand panel are the progenitors of
the caustic in the right-hand panel. The Eulerian image is one of
an expanding and growing pancake, enclosed by its α-caustic and
with two A3 cusp singularities at its tips. In its Lagrangian setting,
we may appreciate how the corresponding singularity state – the
progenitor of the caustic – gradually descends from the hill around
A+

3 . The A3 cusps are clearly special of the caustic progenitor: they
are the points on the Lagrangian progenitor’s outline that traverse
along the A3 line in an opposite direction.

An essential process for the development of the cosmic web is that
of linking different structural elements into a connecting network.
One important representative of this is the linking up between two
growing pancakes. With pancakes emerging around the maxima
A+

3 on A3 lines, their subsequent merging is intimately related to
saddle points in the α eigenvalue field. These saddles are the local
minima A−

3 along the A3 lines (see Fig. 8). Two pancakes that grow
from two maxima A+

3 on the same A3 line, may merge when their
cusps meet and annihilate at the saddle point, A−

3 (see Fig. 3 for the
corresponding normal form illustration).

Fig. 9 shows the merger of two pancakes. The top-left panel shows
the eigenvalue landscape in Lagrangian space. The remaining three
panels illustrate the dynamics of the merging process, with the panel
sequence marked from (1) to (3) in the right corner of each panel.

In the Lagrangian panel, we have marked three caustic progenitors,
two α caustics (red contours) and one β caustic (blue contours).
In the corresponding Eulerian panels, we have indicated them at
the times they become caustics. In panel (1), we see the formation
of two pancakes, each with a characteristic A3 cusp at their tip. In
panel (2), we see the merging of the two pancakes into one structure
and the annihilation of the two cusps. The merger location is the
Eulerian location of the A−

3 saddle, whose Lagrangian position in
the α landscape between the two hills around the A+

3 points is clearly
visible in the top-left panel.

The structure evolving in Fig. 9 also reveals the formation of a
β-caustic. Its progenitor in the Lagrangian map is the hill around the
A+

3 maximum of the β eigenvalue landscape, indicated by means of
blue solid contours. The related A

β
3 line is also visible in the same

panel, as the blue solid line running approximately orthogonal to the
(red) Aα

3 line. In the final (bottom-right) panel, the corresponding
β pancake is seen to emerge in Eulerian space. It is marked by the
two A3 cusps at its tip.

An additional feature visible is the curvilinear triangle visible in
the bottom-left corner of panel (3). It is the result of a D4 metamor-
phosis. It will be discussed later, in Section 4.6.

4.5 A4 points and swallow-tail singularities

The A4 singularity completes the list of generic singularities of the
A-series occurring in two-dimensional potential type maps. The A4

singularities are also known as swallow-tail singularities (for the
corresponding normal form illustration, see Fig. 3).

A4 singularities are defined as the points where the eigen vector
nλ is tangent to the A3 lines. A specific example of an A4 point
in its Lagrangian environment can be seen in the top-left panel of
Fig. 10. A4 singularities are special in that they are the locations in
the eigenvalue field λ at which three particular related vectors are
colinear. These are the (i) the local eigenvector nλ, (ii) the local
tangent to the A2 contour and (iii) the local tangent to the A3 line.
From the definition in equation (18), regarding A3 lines we know that
by definition the eigenvector is always tangent to the Aλ

2 contour.
The fact that at A4 the eigenvector nλ is tangential to both the A2

and A3 lines implies that the magnitude of the eigenvalue – along the
A3 line on which the A4 point is located – reaches a local maximum.
This may be directly appreciated from the example in Fig. 10. The
Lagrangian map shows that the A4 singularity marks the location
where the lower-right A3 line reaches its highest point on the slope
of the hill surrounding maximum A3. The dashed isocontour marks
the points where the eigenvalue λ has the same value as at A4. Along
the lower-right A3 line, in both directions from A4, the value of λ is
lower than at A4. Physically, at the points along the tangent A3 line
we see a confluence of mass elements that almost simultaneously
pass the A3 cusp singularity. This catastrophe leads to the emergence
of a special kind of singularity, more complex than that of the A3

cusp, the A4 swallow tail.
An important observation is that the A4 singularity is a metamor-

phosis. The singularity exists only at one single moment of time,
the moment t at which the value of λ at A4 is equal to λ = 1/D(t).
At this instant the Aλ

2 line, whose identity is continuously evolving,
touches the A3 line at A4. In the situation of Fig. 10 (top-left panel),
at the moment of the A4 metamorphosis is the dashed isocontour
the A2 line.

The significance of the A4 metamorphosis within the context
of structure formation can be best understood by following the
development of a representative example in Eulerian space. The
three Eulerian panels (1)–(3) in Fig. 10 show three stages around
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Figure 9. The merger of two pancakes. Top-left panel: Lagrangian space. Other panels show the evolution of caustics in Eulerian space. The progenitors of
caustics in Lagrangian space are marked in correspondence with the stages shown in Eulerian space. Eulerian panel ‘2’ shows exactly the instant of annihilation
of two cusps at A−

3 point. Notations are similar to Fig. 6.

the instant of A4 metamorphosis. In panel (1), we see the pancake
that has formed around the maximum A+

3 . At this instant, isocontour
(1) in Lagrangian space is the A2 line, which in Eulerian space maps
into the fold caustic of the pancake. At the next time step, we observe
the sudden appearance of a swallow-tail A4 singularity at the tip of
the pancake (panel 2). This instant of A4 metamorphosis is the
moment at which the Lagrangian dashed eigenvalue isocontour (2)
has become the A2 line and touches singularity point A4.

Following this instant of metamorphosis, the swallow tail disap-
pears again and morphs into the complex four-edged configuration
visible in panel (3). At the tip of the pancake, we find a two-wing
protrusion defined by three A3 singularities. To understand this con-
figuration, we should observe that there are three intersections of
A3 lines with the A2 line, i.e. isocontour (3). There is one such in-
tersection with the upper A3 line and two with the lower-right one.

These three are the progenitors of the three A3 cusp singularities that
we see in Eulerian panel (3). The other points on the A2 isocontour
(3) map into the characteristic connecting caustic outline of panel
(3). The first part of the Lagrangian isocontour (3), running from
the left-hand side box boundary to the A3 point near the lower box
boundary, maps into the Eulerian caustic’s top edge and ends at the
lower A3 cusp. The caustic’s lower edge is the result of the mapping
of the top section of the Lagrangian A2 line. The A3 point at the in-
tersection of isocontour (3) with the upper A3 line is the progenitor
of the A3 cusp at the tip of this caustic’s branch. The two winglike
caustic edges connecting to the third A3 cusp are stemming from
the two right-hand sections of Lagrangian contour (3), interspersed
by the A3 point which is the progenitor of the connecting cusp.

The above example illustrates the instrumental role of A4

swallow-tail singularities in establishing the global connections
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Zel’dovich approximation and the cosmic web 3457

Figure 10. Formation of an A4 swallow-tail singularity. Top-left panel: Lagrangian view of the formation of an A4 singularity. The thick contours descend
down α as time increases. The dotted contour shows the moment at which the ‘swallow tail’ is formed. The three time steps indicated by these contours are
shown in Eulerian space in subfigures 1–3. The lines in those figures show the location of the caustics, by mapping the contours in the Lagrangian image to
their Eulerian position.

between different sections of the cosmic web. The A4 singulari-
ties are the junction points at which disjoint pieces of Lagrangian
A3 lines get connected. Observing this on a somewhat larger scale
underlines the significance of this role. Fig. 11 depicts a Lagrangian
region (top panel) and its Eulerian equivalent at the instant at which
the dashed contours have become A2 lines (bottom panel). At this
moment, we may identify three independent sections of the cos-
mic web. The large left-hand structure has already passed the stage
of A4 metamorphosis. It has resulted in the formation of a typical
winglike configuration, established by the A4 singularity which in
the Lagrangian map is located near the inner A

β
2 line. The second,

central, structure is a typical pancake. It is about to merge with the
neighbouring complex once the A2 lines reach the A−

3 saddle point
positioned along the connecting A3 line. The second A4 singularity,

close to the A2 line at the edge of the lower-right island, is on the
verge of its metamorphosis. Once it materializes, it will produce two
cusps that merge with the cusp that is already inside the lowerright
pancake visible in the Eulerian map.

4.6 D4 points: purses and pyramids

The final class of singularities to investigate in their field setting are
the D4 singularities. These belong to a different family than the A-
type singularities that we have discussed in the previous subsections.

The principal difference between the two families of singularities,
the A- and D-type singularities, is that of the number of eigenvalues
on which they depend. Singularities in the A-family depend on only
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Figure 11. Connection of caustic features and network formation. Top panel: deformation field, singularity location and A3 lines around a Lagrangian region
with three disjoint caustic progenitors. Bottom: corresponding Eulerian region, in which the caustics have emerged. The caustic in the form of a simple pancake
crosses the bottom caustic due to mapping. Further details are described in the text, Section 4.5.

one eigenvalue, α or β. D-type singularities, on the other hand,
involve both eigenvalues α and β.

D4 singularities are the points at which both eigenvalues have the
same value, α = β. In Lagrangian space, the singularities occur at
isolated points. At first, this might occur as counterintuitive. In two-
dimensional space, one would expect the solution of an equation

α(q) = β(q) (19)

to define a continuous line. However, upon closer inspection one
may realize that – at any particular instant t – equation (19) is
equivalent to two independent equations, yielding a single point as
solution. Within this context, it is good to realize that we are dealing
with a highly constrained situation, in which the two eigenvalues α

and β are strongly correlated and are conditioned by the requirement
that α ≥ β.

4.6.1 The D4 equation

Given the deformation tensor dik = −∂si/∂qk , its eigenvalues λ are
the solution to the secular equation,

(
d11 − λ d12

d12 d22 − λ

)
= 0 . (20)

This translates into the corresponding secular quadratic equation,

λ2 − (d11 + d22)λ + d11d22 − d2
12 = 0 , (21)

whose two solutions are given by

λ1,2 = 1

2

(
d11 + d22 ±

√
(d11 − d22)2 + 4d2

12

)
. (22)
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In order to have α = β, two independent conditions need to be
satisfied simultaneously,

d11(q) = d22(q) ,

d12(q) = 0 . (23)

Each of these two equations describes a line. Their combined solu-
tion consists of the discrete points q at the intersection of these lines.
The D4 singularities are therefore located at a set of isolated points
(see Appendix B). Note that the identity of these isolated points is
changing as a function of time. Throughout this study, we have used
reverse triangles to indicate the location of the D4 singularities in
the various figures (e.g. Fig. 5).

Because of the equality of the two eigenvalues, the eigenvectors
at D4 are degenerate: any arbitrary 2D vector may function as eigen-
vector. It is yet another manifestation of the non-Gaussian nature of
the eigenvalue λ fields.

4.6.2 The D4 location: A3 lines.

The role of D4 singularities in outlining the cosmic web becomes
clear when evaluating their lo cation in the Lagrangian eigenvalue
field. They have a special position on the Aα

3 and A
β
3 lines. While

located on both lines, they are not found at the crossing of two such
lines. Instead, they are connection points between two such lines,
located at the tip of an Aα

3 line and a connecting A
β
3 line.

The first aspect of importance is the fact that also D4 points are
located on A3 lines. This may be directly understood from the degen-
eracy of the corresponding eigenvectors. Without loss of generality,
the eigenvector nλ at D4 points can always be oriented such that it
is orthogonal to the gradient of the field. It therefore fulfils the A3

condition, nλ · ∇qλ = 0 (equation 18). Because this is true for both
eigenvalues α and β, any D4 point is located on Aα

3 and A
β
3 lines.

It may be instructive to look at the formal derivation of the above.
To this end, we evaluate the inner product Iλ(q) of the normal vector
n(q) and the gradient of the eigenvalue field,

Iλ(q) = nλ · ∇qλ =
(

n1

n2

)
·
(

∂α/∂q1

∂α/∂q2

)

= n1
∂α

∂q1
+ n2

∂α

∂q2
. (24)

To calculate Iλ(q), we recast its expression in terms of the defor-
mation tensor dij and its derivatives

tijk ≡ ∂dij

∂qk

, (25)

and the eigenvector nα , whose components are given by

nα =
(

d12

α − d11

)
. (26)

The tensor tijk has only four independent components: t111, t112, t122

and t222. The other components tijk can be inferred from these on
the basis of symmetry considerations.

Differentiation of the secular equation (21), for eigenvalue λ = α,
yields an expression for the components of the gradient vector ∇qα,

(2α − d11 − d22)
∂α

∂qi

− α(t11i + t22i)

+ (d22t11i + d11t22i) − 2d12t12i = 0. (27)

Multiplication of these expressions for the gradient components
by the corresponding components of the eigenvector nα (see equa-
tion 26) leads to the following expression for the inner product,

Iα(q) = d12[(α − d22)t111 + (α − d11)t122 + 2d12t112]

+ (α − d11)[(α − d22)t112

+ (α − d11)t222 + 2d12t122] . (28)

To obtain this expression, we have used the fact that the trace of the
deformation tensor is equal to the sum of the eigenvalues, so that

2α − d11 − d22 = α − β ,

2β − d11 − d22 = β − α . (29)

By means of some algebraic manipulation, we may rewrite the
expression for Iα(q) into a more convenient form,

Iα(q) = (α − d22) [d12t111 − (α − d11)t112]

+ (α − d11)[d12t122 − (α − d11)t222]

+ 2d12[d12t112 − (α − d11)t122] . (30)

Given that Iα(q) is a scalar quantity, we may evaluate it in the
eigenvector coordinate system, for which d11 = α, d22 = β and
d12 = 0. The situation in which both eigenvalues are equal, α = β,
then leads to the conclusion that

Iα(q) = 0 . (31)

In other words, given that the condition that α = β implies that
Iα(q) = 0 and thus fulfils the A3 line condition stated in equation
(18), we are led to the conclusion that the D4 points are located on
A3 lines.

4.6.3 The D4 location: A3 termination points

Given that D4 points belong to both Aα
3 and A

β
3 lines, one might

at first expect them to mark the crossing point between these lines.
However, this turns out not to be the case. Instead, they mark the
connection points of Aα

3 and A
β
3 lines, both terminating at that

specific D4 point. Thus, D4 are points where Aα
3 and A

β
3 lines meet.

Figure 12. D4 singularities and A3 line connections. The figure shows the
location of three D4 singularities in Lagrangian space. The D4 locations are
indicated by a red dot inside a red circle. The black lines are Aα

3 lines, while

the grey lines are A
β
3 lines. The panel contains two purse singularities (D+

4 )
and one pyramid singularity (D−

4 ).
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We may understand this by considering the three-dimensional
space (q1, q2, λ) defined by the Lagrangian plane and the eigenvalue
λ. This would be the altitude map shown in maps like that of Fig. 5.
When looking at the 2D map in the Lagrangian plane (q1, q2), the
Aα

3 and A
β
3 lines may appear to intersect. However, this is merely

an artefact of the projection of both lines on to the (q1, q2) space.
In reality, they cannot intersect because in general α ≥ β: when a
given Lagrangian position (q1, q2) is located on both an Aα

3 line and
an A

β
3 line, at that location the Aα

3 line will lie at a higher altitude
in the 3D (q1, q2, λ) space. The only exception is when α = β, i.e.
at the D4 points.

The image is one where the Aα
3 line and A

β
3 line meet smoothly

at D4 points. On one side of a D4 point, we find the Aα
3 line, on the

other the A
β
3 line.

4.6.4 Purses and pyramids

There are two classes of D4 points, as can be seen in Fig. 12. One
class is the purse singularity D+

4 . These points connect one Aα
3 with

one A
β
3 line. The structure of caustics and their progenitors in the

vicinity of D+
4 singularity is shown in Fig. 13.

Figure 13. The purse. The set-up of this figure is the same as in Fig. 10. The three sets of contours in the top-left image are shown in Eulerian view in the other
three subfigures. We start at an evolved stage, the red contour has already passed the A+

3 and A4 points, so the separate A3 lines are now a single structure. The
second eigenvalue (blue) has formed a pancake inside this structure. This type of conjunction is often encountered. As the contour of the second eigenvalue is
moving out it passes the D+

4 point. Note that in the Eulerian view this event is mirrored, it happens on the leftmost cusp, due to the change of parity inside the
three-stream region. The cusp changes its colour to red. The second blue cusp is also nearing the red caustic, but as the corresponding D+

4 point lies in a region
where both eigenvalues are negative, they will never join.
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The second class is the pyramid singularity D−
4 . The D−

4 points
form the connections of six lines A3, three Aα

3 and three A
β
3 lines.

We may appreciate this in Figs 5 and 14, which shows the caustics
and their progenitors around a D−

4 singularity. Typically, in the
D−

4 situation, two of three connecting Aλ
3 lines are small loops. In

Fig. 12, we find a small loop of Aα
3 lines (black) and an even smaller

loop of A
β
3 lines (grey). Quite often, these loops are so small that

an image hardly manages to resolve them (see the D4 point in e.g.
Figs 5 and 14, see Appendix B).

The type of the D4 type is determined by the sign of the quantity
sD,

sD ≡ t2
111t

2
222 − 3t2

112t
2
122 − 6t111t112t122t222

+ 4t111t
3
122 + 4t222t

3
112 . (32)

If sD is positive, the singularity is a D+
4 purse singularity. Otherwise,

it is a D−
4 pyramid singularity (Rozhanskii & Shandarin 1984).

4.7 Metamorphoses and transient singularities

The inventory of singularities in Section 3 and the inventory of
their position within the cosmic deformation field in the previous
subsections forms the basis for our understanding of the evolution
of structure in terms of that of the network of caustic structures.

As we may already have appreciated, the evolution proceeds via a
series of metamorphoses. A metamorphosis – perestroika in Russian
– is a transient singularity that may still be considered stable in the
sense that a perturbation of the manifold will only change the time
and location of the event: a metamorphosis cannot be removed by
perturbation.

Figure 14. The pyramid. We return to the setting illustrated in Fig. 5. Almost all singularities that we know of in 2D are represented in this figure. In the first
image we see two pancakes, one of which is close to getting a swallow tail. The resulting cusp merges soon at the bottom most A−

3 point, while the other end
heads for the pyramid D−

4 . The D−
4 is approached from three sides, but those are in a very tiny loop that we do not resolve in this image. The resulting three

β-cusps expand outwards. Two of them will turn to α-cusps at the purses D+
4 .
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Each metamorphosis involving singularities from the A-series
results in a change in the global topology of the network. The
systematic inventory of the fundamental singularities in terms of
their normal forms that we present below allows us to appreciate
how a system of folds and cusps changes topology as it passes
through the transient singularities of metamorphoses.

A nice illustration of the latter is that in terms of the only two sta-
ble types of singularities, stable in the sense that they persist in time.
These are the fold (A2) and the cusp (A3) singularity (see Fig. 6).
Their time evolution is straightforward, in that it only involves their
movement. In Section 4.4, we have seen that the combination of fold
and cusp singularities defines the formation of a pancake. Starting
from its tenuous embryonic state, a pancake grows in length as
the bounding cusps at its tip move apart and the pancake region,
in between the two cusps and enclosed between two fold caustics,
gradually thickens. This growth gradually slows down.

In the physical reality of a gravitational system, these transitions
work to increase the complexity of the system. A direct manifes-
tation of the process in which matter passes through the shocks of
singularities is that matter passes into regions with a larger number
of streams than before.

5 THE COSMIC WEB: ASSEMBLY AND
L AG R A N G I A N B L U E P R I N T

In Section 4, we have noticed the central role of A3 lines in outlining
and defining the structure that emerges as a result of gravitational

evolution. A3 lines form the Lagrangian blueprint of structures found
in the cosmic web, and may be regarded as its spine.

In this section, we investigate the connection between the A3 spine
and the emerging cosmic web. As a step-up towards the systematic
discussion, we first look at a case study of the structure evolving
in a typical specimen of a key region in the cosmic web. Having
established in the previous section the identity and role of the various
A- and D-class singularities, it is instructive and helpful for our
intuition to observe the time evolution of the caustic structure in a
small and characteristic Lagrangian region.

5.1 Caustic synergy: assembly of structure around a node

Fig. 15 shows five stages during the evolution of the caustic structure
around a small Lagrangian region, shown in the top-left panel.
Following the Lagrangian panel is a sequence of five panels showing
the evolving structure in the corresponding region in Eulerian space.
The sequence runs from a very early epoch, in the top central panel,
to a highly advanced one in the bottom-right panel.

The four-dimensional Lagrangian submanifolds that define the
phase-space density field get deformed in time as matter elements
flow pursue their path (q, x). The Eulerian position x of each mass
element is dependent on time, while the projection of their position
in Lagrangian space, q, remains fixed. The projection of the progen-
itors of caustics and A3 lines on to the Lagrangian plane is shown
in the top-left panel of Fig. 15, while the changing projection to the
Eulerian plane is the subject of the additional five panels.

Figure 15. Evolving caustic structure around a cosmic web node. Time evolution of the Lagrangian region shown in the top-left panel. Top-left panel:
Lagrangian space. Aα

3 lines – red, A
β
3 line – blue. Light brown region shows α > 0, blue is the region where β > 0. The top yellow dot shows a maximum

of α, the bottom yellow dot shows A4 and a dot on the left marks a saddle point. A blue dot shows a maximum of β. Top-middle panel: Eulerian space at the
time when α pancake just have emerged as a yellow thick line on the top yellow dot above the blue line. The remaining four panels show the region at different
stages of caustic evolution, representing a highly common sequence of events.
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The projection to Lagrangian space is non-singular and geo-
metrically simpler and more transparent. Moreover, knowledge of
the Lagrangian projection helps substantially in understanding and
making sense of the Eulerian projection.

5.1.1 The Lagrangian spine

In the Lagrangian panel, the light brown shaded region demarcates
the regions of positive deformation tensor eigenvalue α. The light
blue shaded region has a positive eigenvalue β.

Three A3 lines form the spine of the emerging web in this region.
The two red lines are Aα

3 -type lines, the blue line a A
β
3 line. On

the upper Aα
3 line, the yellow dot indicates the position of an A+

3

maximum. Note that it is also located within the light blue region.
Another dot is an A−

3 minimum along the A3 line, a saddle point in
the eigenvalue α field. A blue dot on the A

β
3 line marks the location

of the A
β
3 maximum.

The lower Aα line does not run throughout the entire region: it
stops at the contour α = 0. As has been discussed in Section 4.3,
structure does not develop in regions with negative α. Of high
relevance for the emerging pattern in Eulerian space is that the dot
at the tip of the lower Aα

3 line is an Aα
4 point.

The identity of the various lines and points in the Lagrangian
region determine the nature of the emerging structure in Eulerian
space. The five Eulerian panels show the evolving density field. In
the maps, the density is represented by the colour intensity, running
from white in the underdense regions to dark red in high-density
collapsed regions.

The black solid lines are the mapping of the Lagrangian Aα
3

lines to Eulerian space, while the blue solid line represents the
corresponding mapping of the A

β
3 line. It is very instructive to

follow the displacement and gradual merging, morphing, stretching
and twisting of the A3 lines as we see the development of the
structure in the density field. It immediately reveals the essential
nature of these lines in the formation of the geometric pattern: they
clearly function as the – flexible – spine of the web.

5.1.2 The Eulerian assembly

The earliest depicted time step is that shown in the top central panel.
At this stage, we observe the emergence of the first α pancake. It
forms at and immediately around the A3 + point on the upper Aα

3

line in the Lagrangian panel. At this early stage, the pancake is so
thin that its two caustic edges lie indistinguishably on top of each
other. The next stage is shown in the top-right panel. The central
pancake has grown in extent, and has attained its classical morphol-
ogy in which its inner region is enclosed by two fold caustics, which
are connected into a single closed contour by the two cusps at its
tip. The interior region is a three-stream region. The panel shows
the structure just before the emergence of the Aα

4 swallow-tail sin-
gularity.

Already just before the Aα
4 singularity, we can see that the two

Aα
3 lines are on the verge of connecting into one structure around

a characteristic three-edged backbone. At the next stage, shown in
the bottom-left panel, we find the complex caustic structure that
formed in the aftermath of the Aα

4 singularity. The characteristic
swallow-tail pattern consisting of three protrusions is defined by
four caustic edges connected by four cusps. Three cusps connect
the four caustics at the lower end, while the fourth one closes the
caustic outline at the top of the configuration (also compare
the structure in the bottom-right panel of Fig. 10). While most

of the interior of the caustic configuration involves a three-stream
region, the small internal zone enclosed by four caustics is a region
with a five-stream flow field.

During the most advanced stages of development, shown in the
bottom centre and right-hand panel, we see the growth and expan-
sion of the α-caustic structure that we found in the third time step. In
addition, we find the emergence and formation of β pancake, within
the confines of the large α pancake and around the A

β
3 maximum

(blue dot, Lagrangian map).
The emergence of the β pancake goes along with the formation

of another five-stream flow in its interior. At the last time step, we
find that even a seven-stream region has formed in a small part of
the β pancake. It is the result of the intrusion of the inner A3 cusp
into the interior of the β pancake. This leads to an intersection of
the two five-stream regions, which produces a seven-stream region.

5.2 The role and significance of A3 lines

All point-like singularities are located on A3 lines. The direct im-
plication of this is that all dynamically significant processes and
events take place in the vicinity of the A3 lines. Singularities in the
evolving density field are associated with the maxima, saddle points
and minima of the deformation tensor eigenvalues λ. In addition,
also the special A4 and D4 points are located on A3 lines.

Each α pancake originates at a maximum of α. The pancakes
is enclosed by two fold caustics, whose progenitors are Aα

2 lines.
Two cusps at the tips of the pancake connect the fold caustics into a
closed pancake boundary. The progenitors of the cusps are A3 points
which traverse the A3 line in opposite direction as the pancake grows
in time. In Eulerian space, the pancake enclosed by two caustics is
a three-stream region, where mass elements with from a different
Lagrangian origin are crossing each other.

The saddle points corresponding A−
3 minima along an A3 line are

the progenitors of the points at which the cusps of two pancakes
meet and annihilate, leading to the merging of the two pancakes
into one larger one.

5.3 Global geometry and topology of A3 lines

The global geometry and topology of the caustic structure emerging
as the density field evolves is to a large extent determined by the
characteristics of the α field, i.e. of the spatial distribution of the
first eigenvalue α of the deformation field.

The previous section has taught as that in particular the Aα
3 lines

are instrumental in setting the spatial outline of the cosmic web. The
evolution of the cosmic web, and in particular that of the connec-
tivity between its main elements, can be largely deduced from the
run of the A3 lines and the distribution of singularity points along
their edge. Mainly because collapse along the A

β
3 lines is always

happening – usually substantially – after that along the Aα
3 lines,

their effect on the percolation and topology of the network is at
most marginal.

In principle, an A3 line runs from one D4 point to another. How-
ever, the corresponding eigenvalue may drop below zero. In reality,
structure evolution will not proceed to this point as it would never
reach it within a finite time. One might therefore limit the dynami-
cal evolution to a maximum cosmic time. The limiting time would
limit the range of values for the eigenvalues α and β. For example,
one may limit the time over which the density field has evolved to
a level at which the density perturbations have a σ δ(t�) ∼ 1. At this
stage, the ZA would still give a crude but qualitatively reasonable
approximation to the true evolution of a gravitating medium (Coles
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et al. 1993; Melott et al. 1994a). If at this point of time the linear
growth factor D(t�) = D�, the minimum eigenvalue up to which we
can still follow the evolution would be λ� = 1/D�. For lower values
of λ, we would no longer trust the approximation.

The segments of A3 lines that satisfy the condition that α ≥ λ�

form a set of disconnected lines in L. These segments correspond
to values of the eigenvalue α that will be reached within the time in
which the ZA remains a good description of the full gravitational
evolution. The isolated A3 line segments often contain small loops
and bifurcation points. However, in general they are not connected
to other A3 line segments. By implication, the set of A3 segments
will not be able to form a percolating network in Lagrangian space.

The situation is somewhat different when we turn towards the
emerging structure in Eulerian space. When mapped from La-
grangian to Eulerian space, different structures that are disjunct
in the Lagrangian context get connected. The A4 singularities are
instrumental in settling these connections. We saw a nice illustra-
tion of this in Fig. 11. It shows a pancake which has been mapped
into the interior of another pancake. The latter is on the verge of
passing through an A4 singularity. This will establish a connection
between the corresponding pancake and the small central one. In
turn, the latter will merge by means of an A−

3 saddle point with the
nearby swallow-tail configuration, thereby establishing a pervasive
connection between all structural features in the region.

5.4 Density profiles

For a complete inventory of the cosmic mass distribution in and
around the cosmic web, we not only need to understand the connec-
tivity of the various components but also the density distribution.
The density distribution in the vicinity of all singularities is always
highly anisotropic. Nonetheless, we obtain an adequate first-order
description of the mass distribution around a singularity by evalu-
ating its radially averaged density profile.

Analytical expressions for the radial density profile around singu-
larities are known. In particular, this concerns the averaged profile
ρ̄(r) as a function or radius r (in Eulerian space),

ρ̄(r) = 3 M(r)

4πr3
, (33)

where M(r) is the mass contained within a distance r from the centre
of the singularity.

All singularities have a power-law average density profile,

ρ̄(r) ∝ r−n , (34)

in which the power-law index n is dependent on the identity of the
singularity. Singularities A2, A3, A4 and D4 have power-law slopes
n = 1/2, 2/3, 3/4, and 1, respectively (Vasiljev 1977).

The D4 class singularities, at which the two eigenvalues α and
β have the same value, have the steepest density profiles. Notwith-
standing this observation, it is good to emphasize that the collapse at
these points is highly anisotropic. This may be immediately inferred
from Figs 13 and 14.

5.5 Relation to structure in N-body simulations

Having developed the formalism for the geometrically outlining the
backbone of the cosmic web, and the identification of the defining
singularities and their connections, for assessing its relevance with
respect to the fully developed cosmic mass distribution we resort to
a comparison with the outcome of N-body simulations.

The ZA successfully describes the first stages of the development
of the non-linear mass distribution. These are the stages at which
we see the transition of the cosmic density field from its primordial
Gaussian origins to the far more complex and rich structure that
we observe in the present-day Universe. The cosmic web is the
manifestation of structure evolution at that quasi-linear stage. The
subsequent gravitational evolution of the cosmic mass distribution is
far more complex, and involves the hierarchical build-up of structure
resulting in a rich multiscale spatial pattern of voids, walls, filaments
and clumps characterized by a large range of scales and densities.

Here, we show how A3 lines relate to the structure that developed
in the equivalent two-dimensional N-body simulation. The initial
conditions of the N-body simulation consist of the same Lagrangian
density field used for the singularity analysis. The simulation was
carried out with a standard PM N-body code. The mass resolution
and force resolution are equal. The simulation consists of 10242

particles, and forces are computed on a uniform 10243 grid. The
initial power spectrum is a power-law spectrum,

P (k) ∝ k−1 , (35)

which is statistically equivalent to the three-dimensional power-law
power spectrum P(k) ∝ k−2. The fluctuation field realization has
been Gaussian smoothed on a scale of ‘ngrid’ gridcells.

5.5.1 Phase-space sheet and mass cell parity flips

The identification of the progenitors of structures in Lagrangian
space is based on a novel technique that has been developed within
the context of the phase-space sheet description of cosmic structure
(Tremaine 1999; Shandarin 2011; Abel et al. 2012; Falck et al. 2012;
Neyrinck 2012; Shandarin, Habib & Heitmann 2012; Shandarin &
Hidding, in preparation). The phase-space sheet description looks at
the full six-dimensional phase-space structure of the cosmic mass
distribution. Instead of following the mass distribution by means
of a discrete number of particles, it follows the development of
spatially extended mass elements.

Initially, the mass cells define a space-filling spatial tessellation,
which is the tiling of Lagrangian space. The subsequent gravita-
tional evolution is not only followed on the basis of the displacement
of the cells but also on the basis of their deformation. Deformed
cells of the evolving tessellation start to overlap as matter streams
in the evolving mass distribution start to cross. At any one location
in Eulerian space, one may determine at each epoch the number of
overlapping cells as a direct reflection of the number of streams.

Alternatively, one may assume the Lagrangian view and deter-
mine the number of flips of parity experienced by mass cells. As
they get deformed to the stage at which the cells pass through a
singularity, they undergo a flip. The front- and backside of the cells
get interchanged. The number of flips that the cells undergo cor-
responds directly to the number of times the corresponding mass
element has been passing through a singularity. In turn, this directly
reflects the number of resulting streams (Shandarin & Hidding, in
preparation). For example, mass elements that have experienced
singular collapse only once form the inner stream of pancakes.

As a means of connecting the dynamical state of evolution to
the primordial mass distribution, our analysis follows the number
of flips of mass cells and relates this to the number of times the
mass element has been passing through a singularity. By following
the number of parity flips over time, we count the number of times
a mass element passes through a fold. This fold field is discrete,
given the number of singular collapses can only be discrete. The
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Figure 16. Relating singularities and singularity lines to N-body mass distribution. Left-hand panel: the flip-flop field in Lagrangian space is shown by grey
filled contours. A3 lines are shown by red lines. Points on A3 lines mark the extrema of the λ1 field. Triangles mark D4 points. Right-hand panel: the structure
formed at the non-linear stage in 2D N-body simulation is shown in grey in Eulerian space. The A3 shown in the left-hand panel are mapped to Eulerian space
using the displacement field obtained in the N-body simulation.

morphology of the fold field is similar to the ORIGAMI formalism
and the concept of parity fields introduced by Neyrinck (2012). The
major differences with ORIGAMI and parity fields is that the flip-
flop field values are not limited to two – as in the case of parity fields
– or to three – as in the ORIGAMI formalism. Also, we should point
out that ORIGAMI is based on a different computational technique.

5.5.2 Case study

Fig. 16 makes a comparison between the Lagrangian constellation
around a primordial density peak and the resulting non-linear mass
distribution in Eulerian space.

The central peak in the Lagrangian image (left-hand panel) de-
picts the major progenitor of the halo. The grey-scale field rep-
resents the flip-flop field, with darker shades corresponding to a
higher number of flip-flops and white representing the areas that
still did not experience a state of singularity. The lightest shade of
grey, to be found in the outer parts of the central halo and its nearby
neighbouring regions, indicates the mass elements that have passed
through a singularity only once. Superimposed on the grey-scale
image are the thick solid red lines that indicate the A3 lines connect-
ing to the peak and the ones that are to be found in its surroundings.
Seven major A3 lines are seen to exit from the central peak. In the
Lagrangian plane, the A3 lines pass through progenitors of other
haloes that merged with the central halo. In Lagrangian space, two
of the A3 lines are connected at the centre, while the remaining five
are disconnected. While not connected in Lagrangian space, they
will get intertwined through A4 singularities as they are mapped to
Eulerian space (Sections 5.1 and 5.3).

In the Eulerian image (right-hand panel), the central halo very
much resembles a ‘knitting ball’. This is an immediate consequence
of the multiple collapses of the mass elements making up the halo,
and is a reflection of this process being directed by the A3 lines.

Surrounding the halo, we find six pancakes – of a variety of
lengths – connecting to the central halo. Overall, we may recognize
and identify the various pancakes with the set of A3 lines. These
appear to form a reasonably good skeleton for the structure that
we see emerging in Eulerian space. The pancake in the upper-right
part of the panel is the result of a merger of two pancakes, each
corresponding to a different A3 line in the same region of the La-
grangian plane. The bifurcation of the A3 line is clearly standing
out, and reflects the fact that the merger of the pancakes has not yet
been completed.

5.6 Perturbation power spectrum and skeleton singularity
structure

Having obtained insight into the identity, location, connections and
role of singularities in the build-up of the cosmic web, we may
turn towards the issue of the dependence of the spatial configura-
tion of A3 lines and the related singularities on the cosmological
scenario.

There have not been many systematic studies that address the
dependence of the cosmic web characteristics on the underlying
cosmology. The one exception are several recent studies that have
looked at the properties of voids as probes of the nature of dark
matter (Hellwing, Juszkiewicz & van de Weygaert 2010; Li 2011)
and the nature of dark energy (Park & Lee 2007; Lavaux & Wan-
delt 2010, 2012; Bos et al. 2012). One of the problems for using
filaments and walls as probes for the cosmology is our still exist-
ing lack of a real quantitative understanding of their structure and
connectivity.

In this study, we have demonstrated that most of the structure of
the cosmic web can be condensed in terms of well-established and
defined mathematical concepts, A2 and A3 lines and the classes of
A- and D singularities. In a follow-up publication, we will present
a detailed and systematic study of the spatial distribution of sin-
gularities and A2 and A3 lines as a function of the underlying
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cosmology. Here, we provide a quick impression of what we may
expect.

A good impression of the high sensitivity of the cosmic web
singularity structure in two different cosmologies can be obtained
from Fig. 17. It shows the location of A3 lines and α eigenvalue
contours, along with the corresponding singularity points, for two
realizations of the mass distribution in the Lagrangian plane. The top
panel concerns the pattern for a scenario with a P(k) ∝ k4 power-
law power spectrum, dominated by high-frequency components,
and one with a much more large-scale character, P(k) ∝ k−1. Both
realizations have been smoothed on the same scale.

The spine in the P(k) ∝ k−1 cosmology (lower panel) is dominated
by some very long and stretched A3 lines. The weblike pattern in
the P(k) ∝ k4 cosmology seems to have a much more unordered

complexion. The cosmic web in that scenario is assembled out of
many short A3 lines. Still, it has a clearly outlined cellular structure,
in which the A3 lines appear to loop around areas of low α values
(usually low-density areas).

In summary, we may conclude that the description of the La-
grangian field structure in terms of singularity lines and points is
a very promising and potentially powerful way of exploiting the
cosmological information content of the cosmic web.

6 T H E T H I R D D I M E N S I O N

Following the extensive two-dimensional analysis described in
the previous sections, we need to discuss how it relates to the
structure we find in the fully three-dimensional world. While a

Figure 17. Singularity structure as function of power spectrum. A3 lines for two different power spectra, P(k) = kn, k = 4 (top), k = −1 (bottom) both
smoothed at the same scale. As expected for power spectra with a positive index, the pattern is much more regular. What is even more interesting is that the
clustering statistics of the singularities seem to change in a non-trivial way. This will be the topic of a follow-up paper.
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comparable fully detailed analysis of the three-dimensional sin-
gularity structure in the ZA will be the subject of a separate up-
coming publication, we here discuss some relevant observations.
These pertain mostly to the relevance of the 2D discussion to the
three-dimensional situation.

It may not come as a surprise that the three-dimensional sin-
gularity structure of the patterns generated via the ZA is con-
siderably more complex than in the two-dimensional situation.
Nonetheless, the detailed assessment of the two-dimensional singu-
larity structures presented in this study includes several important
and relevant aspects that can be directly related to the equivalent
three-dimensional situation.

A range of key observations on singularities, caustics and catas-
trophes in 3D may be made. In the following, we shortly discuss
the most important ones.

6.1 Caustic families

In the two-dimensional situation, the two eigenvalues of the de-
formation tensor field express themselves in the existence of two
families of caustics, the α- and β-caustics. Given the three eigenval-
ues of the corresponding deformation tensor in 3D, there are three
families of caustics, the α-, β- and γ -caustics.

On the basis of the corresponding transformation, the global
geometry and topology of the cosmic web in three dimensions is
determined by the set of Aα

3 surfaces. Other singularities live on the
set of Aα

3 surfaces. They are the equivalent of the set of Aα
3 lines,

and A
β
3 lines, that we found in this study as the features that define

the spine of the cosmic web.

6.2 2D singularities and their 3D equivalents

For those 3D singularities that have an equivalent singularity in 2D,
we find – taking into account trivial generalizations – that the struc-
ture of the caustics remain largely equivalent. One particular aspect
for which this is always true is the density profile near singularities.
These turn out to remain the same for equivalent singularities in
different dimensions.

A particular example is that of the simplest caustic, the A2. In 1D,
the A2 caustic is a point and in 2D it is a line. In the equivalent three-
dimensional situation, it is a surface. As was pointed out above, the
A2 caustic retains the same density profile near the singularity as in
two dimensions, ρ(r) ∝ r−1/2.

The other type of singularity which also exists in 1D is the A3

singularity. In one-dimensional space, A3 singularities are located at
a specific set of singular points. At these points, they will only exist
as singularity at one particular instant of time. In two dimensions,
they are located on A3 lines and at any one instant materialize
as cusps at isolated points along those lines. In three-dimensional
space, they are located on surfaces and at any specific instant they
materialize on a set of lines. In both 1D, 2D and 3D, the mean
density profile of these singularities is the same, ρ(r) ∝ r−2/3.

6.3 New singularities

In addition to the classes of singularities that we could also identify
in the two-dimensional situation, there are new types of singularities
in the 3D situation. The emergence of new types of singularities in
higher dimensional situations is not unexpected. For instance, the
A4 and D4 singularities that we found in this 2D study do not exist
in 1D.

In three dimensions, the list of singularity classes is extended by
that of A5 and D5 singularities. They are the only new singular-
ities emerging in the three-dimensional situation. The A5 and D5

singularities have a considerably more complex structure than the
singularities which have two-dimensional equivalents. This is not
unlike the substantially more complex structure of the A4 and D4

singularities with respect to the structure of the A2 and A3 singular-
ities. The latter exist also in 1D and have a more basic geometry.

6.4 A and D singularities: 2D versus 3D

In the previous sections, we had observed that there is a principal
difference between A- and D singularities. While the A singularities
are determined by only one deformation tensor eigenvalue, D singu-
larities are determined by the values of two eigenvalues. Note that
this also implies that D singularities cannot exist in one-dimensional
space.

In three-dimensional space, up to three eigenvalues may be in-
volved in determining a singularity. In principle, one might therefore
expect the existence of an additional new class of singularities. This
turns out not to be the case. There is no additional new singularity
class, with the exception of the trivial case of Dβ = γ singularities.
These have exactly the same topology as Dα = β singularities.

The reason that there are no additional singularities of a new type
is quite straightforward. In a generic deformation field in 3D, there
are no points where α = β = γ .

6.5 The three-dimensional singularity inventory

To summarize, in Table 3 we list the full inventory of catastrophes
that exist in 3D space.

Also in three-dimensional space, it is possible to extract a skeleton
of surfaces, lines and nodes on the basis of a singularity analysis
equivalent to the one discussed for the two-dimensional situation.

Filamentary structures are traced by swallow-tail caustics, as well
as by D4 umbilics. From the experience in the two-dimensional
situation, we know that umbilics are never far from a swallow tail.
However, the inverse need not be true: there are swallow tails that
emerge without any umbilic in their vicinity. Given the fact that the
2D case is to some extent a section of the 3D situation, the same is
still true in three dimensions.

From this, we may conclude that in three dimensions filaments
will have a diversity of morphologies, each marked by a highly
complex structure.

6.6 Singularities in 2D and 3D: differences

An illustration of the three-dimensional structure predicted by the
ZA in 3D is shown in Fig. 18. The caustic surfaces are computed

Table 3. Inventory of 3D singularity classes.

Family Type Name Eulerian dimension

A-series A2 Fold Surface
A3 Cusp Curve
A4 Swallow tail Point
A5 Butterfly Transient

D-series D−
4 Elliptic umbilic (purse) Point

D+
4 Hyperbolic umbilic (pyramid) Point

D5 Parabolic umbilic Transient
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Figure 18. Caustic structure of ZA-evolved mass distribution in 3D. This is a three-dimensional analogy of the top right-panel in Fig. 1. The α-caustics are
shown in green and β-caustics in red. The β-caustics are seen only through the openings in the surface of α-caustics by the box faces. This is the reason why
one cannot see γ -caustics.

using the tessellation of the Lagrangian submanifold and subse-
quently projected to Eulerian space, following the description by
Shandarin et al. (2012). The resulting figure is a three-dimensional
analogy of the top right panel of Fig. 1, including the β-caustics
shown in red.

Comparing the characteristic weblike structure in Fig. 18 with
that obtained by topological techniques for the dissection of the
cosmic mass distribution on the basis of the watershed transform
(Platen, van de Weygaert & Jones 2007). Telling examples for re-
lated results are those that are obtained by the spineweb technique
of Aragón-Calvo et al. (2010) and the skeleton technique described
in Sousbie, Colombi & Pichon (2009). Also other methods for
the dissection of the cosmic spatial mass distribution into its in-
dividual structure components, such as the multiscale morphology
MMF/Nexus formalism (Aragón-Calvo et al. 2007; Cautun, van de
Weygaert & Jones 2013) and the tidal and shear tensor methods,
advocated by Hahn et al. (2007), Forero et al. (2008) and Libeskind
et al. (2012), produce spatial patterns that resemble the one seen in

Fig. 18. For example, fig. 8 in Aragón-Calvo et al. (2010) (also see
fig. 15 in van de Weygaert et al. 2009) and fig. 4(a) in Sousbie et al.
(2009) reveal a striking qualitative similarity of the weblike struc-
ture obtained by the topological spineweb and skeleton techniques
and the geometric singularity structure in the ZA shown in Fig. 18.

In one sense, there is a profound link between topology-based
pattern identification and the description of the dynamically evolv-
ing mass distribution in terms of its singularity structure. Both are
intimately linked to Morse theory. In terms of the structural analy-
sis of the cosmic mass distribution, Morse theory was first invoked
by Colombi, Pogosyan & Souradeep (2000). They used it to char-
acterize the structure of the primordial field of Gaussian density
fluctuations. However, a complete characterization in terms of the
full array of complex structural components seen in the observed
pattern of the cosmic mass distribution became only possible after
Platen et al. (2007) had introduced the watershed transform.

The similarity between the topology-based identification of the
components of the cosmic web and the structure encountered in the
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ZA demonstrates that the latter represent a viable framework for
the analysis of N-body simulations. In particular, this concerns the
relation between the initial density and potential field in Lagrangian
space and the resulting web in Eulerian space.

We should emphasize that the topological structure identification
advocated by Aragón-Calvo et al. (2010) and Sousbie et al. (2009)
is applied to the evolved matter distribution at a particular cosmic
epoch. They are not dynamical descriptions that invoke the initial
field of density fluctuations. Instead, they are more intent on con-
necting the outcome of N-body simulations to the structure seen in
the observational reality.

Instead, when the analysis described in this paper is extended
to its three-dimensional setting, it will provide a dynamical for-
malism for connecting the primordial Lagrangian density field to
the weblike structure obtained in simulations. We expect that the
combination of the topological structure identification methods and
our dynamical formalisms will lead to a set-up in which observa-
tional structures can be more directly and significantly related to the
initial cosmological conditions than hitherto possible with existing
techniques.

7 SU M M A RY A N D O U T L O O K

In this study, we have presented and extensively discussed a compre-
hensive geometric model for the formation of the caustic structure in
the frame of ZA (Zel’dovich 1970; Shandarin & Zel’dovich 1989).
Via the identification of singularities appearing in the evolving mass
distribution, and by establishing the geometric nature of their con-
nections, our model represents a direct analytical description of the
dynamical origin of the spine of the cosmic web (Bond et al. 1996;
van de Weygaert & Bond 2008).

In this study, we have restricted ourselves to the two-dimensional
equivalent of the full three-dimensional system. Because of the
complexity of the mathematics involved, catastrophe theory of La-
grangian singularities, it is necessary to build an intuition for the rel-
evant mathematical and physical context before one can embark on
the considerably more complex three-dimensional situation. More-
over, although the two-dimensional case cannot really be directly
compared with the full three-dimensional structure of the cosmic
web, it turns out to provide us with most of the concepts, principles
and language that pertain in 3D space.

The ZA (Zel’dovich 1970; Shandarin & Zel’dovich 1989) has
been demonstrated to be a good theoretical model for the evolution
of cosmic structure into the mildly non-linear regime of structure
formation. It crudely, yet conceptually correctly, describes the on-
set of the non-perturbative quasi-linear regime. This includes the
emergence of multistream flow regions and caustics (Doroshkevich
et al. 1973; Buchert 1992; Shandarin & Zel’dovich 1989; Coles
et al. 1993; Melott et al. 1994a,b; Coles & Sahni 1995; Melott et al.
1995; Yoshisato et al. 1998, 2006). Its main virtue is that of a good
approximate description of structures on scales larger than the scale
of non-linearity, while erasing structures on smaller scales. In the
currently popular hierarchical scenarios of structure formation, such
as the �CDM standard cosmology, small-scale structure does not
heavily influence the structure that emerges on larger scales (see
e.g. Little, Weinberg & Park 1994). This implies the ZA to remain
a reasonably good description for the large-scale Universe.

We have put the ZA into the geometric framework used in the
mathematical theory of singularities and catastrophes (Thom 1969;
Zeeman 1977; Arnold 1982, 1983). Our analysis is directed to-
wards understanding the structure and projections of the Lagrangian
submanifold, the four-dimensional phase-space (q, x). From catas-

trophe theory, it is known that there are only a limited number of
different singularity classes. We commence our study with a system-
atic identification of these singularities. We follow the well-known
ADE classification of catastrophes introduced by Arnold, yielding
the cryptic notation of A2 singularities for fold singularities, the A3

cusp singularities, the A4 swallow-tail singularity and the D4 um-
bilic singularities. Central in this characterization is the analysis of
the Lagrangian spatial structure of the two fields of eigenvalues α

and β of the deformation tensor that characterizes the displacement
field in the ZA. We study the singularities in Lagrangian space, in
their identity as the progenitors of caustics in Eulerian space. We
combine this with an assessment of the corresponding evolution of
the Eulerian environment of the emerging caustics.

A crucial and fundamental singularity is the A2 fold singular-
ity, which is the progenitor of the well-known pancake that has
become one of the most familiar features in the structure that we
see emerge in Zel’dovich descriptions of the evolving cosmic mass
distribution. In addition, we provide an impression of the additional
point-like singularities – A+

3 , A−
3 , A4,D

+
4 and D−

4 – on the basis of
illustrations of three-dimensional projections of the corresponding
phase-space manifolds. Crucial in the dynamical context that we are
considering is that they are stable under perturbation. This implies
that they remain in existence, in one form or the other, into the
non-linear regime of gravitational instability.

The key finding of our study is that in Lagrangian space all point-
like singularities – A+

3 , A−
3 , A4, D

+
4 and D−

4 – are located on char-
acteristic one-dimensional lines, the A3 lines. In Lagrangian space,
the outline of these lines is defined by the fundamental structure
equation (18). This definition is entirely motivated by the dynamics
of the ZA.

The A3 lines delineate the sites where all dynamical activities
involved in the build-up of the cosmic web are taking place. They
form the site around which we find the emergence and merger of
pancakes, the bifurcation of cusps in Eulerian space and the merger
of caustics. The most complex dynamical processes take place at
the crossings of pancakes. These usually involve singularities of
different types and usually are the places where most haloes are
formed. It is worth stressing that the collapse is highly non-spherical.
This is true for intersections of pancakes and for regions around D4

singularities, where α = β.
When mapped to Eulerian space the A3 lines outline the spine

of the cosmic web. In essence, as the structure equation (18) only
involves quantities at one point it represents a local definition of the
skeleton of the cosmic web. Geometrically it can be defined either
as a set of points where the gradient of one of the eigenvalues is
orthogonal to the corresponding eigenvector or, equivalently, as a
set of points where the eigenvector is tangential to the level contour
of the corresponding eigenvalue.

In summary, we find that the complex geometry of cosmic struc-
ture can be understood to a large extent by the α fields of the
principal eigenvalue α of the deformation tensor, and through these
specifically through the outline of the Aα

3 lines. The role of β field
is considerably more modest. This is largely due to the fact that the
first collapse of mass elements is directed towards Aα

3 lines. The A
β
3

lines tend to bend and wrap around Aα
3 lines. Nonetheless, locally

the A
β
3 lines play a significant role in the highest concentrations of

mass, i.e. the locations where haloes form.
In this study, we have also made a beginning with the comparison

of the spinal structure outlined by our geometric description and that
found in fully non-linear two-dimensional N-body simulations. By
identifying the A3 lines in the (Lagrangian) displacement field of
the 3D N-body simulations, and mapping them to Eulerian space we
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can compare the resulting network with the cosmic web skeleton
that emerged in the simulation. We find that it indeed encapsulates
quite an accurate skeleton of the cosmic web.

As yet, we do not present a statistical study of the two-
dimensional case. One of the reasons is that the structure in three
dimensions will differ significantly from that in two dimensions.
We therefore refer such a study to the upcoming extension of our
analysis to three dimensions. A more extended comparison with
cosmological N-body simulations is also referred to such a 3D
study.

This study has paved the road towards a profound dynamical
analysis of the detailed and intricate structural aspects of the cos-
mic web. We expect that its combination with the outcome of large
N-body simulations will help us towards a considerable improve-
ment of our understanding of the processes involved in the build-up
of structure, not only limited to the highly non-linear formation
and virialization of fully collapsed dark haloes but also that of the
prominent filamentary features that appear to dominate the maps
produced by large galaxy surveys.
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A P P E N D I X A : L AG R A N G I A N SU B M A N I F O L D
I N T H E O N E - D I M E N S I O NA L C A S E

The middle panel in the top row of Fig. A1 shows the Lagrangian
submanifold embedded in a two-dimensional space where the hor-
izontal axis is Lagrangian coordinate q and the vertical axis is
Eulerian coordinate x. Three curves show three qualitatively dif-
ferent states of the evolution of a sinusoidal perturbation. The red
diagonal line sows the initial state when x = q, the green line shows
the instant of the origin of A3 singularity at the origin. Finally, the
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Figure A1. One-dimensional phase-space manifold evolution. The evolution of singularities in the most simple one-dimensional example of the ZA, a
sinusoidal perturbation. In this case, we find a single transient A3 cusp singularity (black line), immediately followed by two A2 folds (blue lines). Centre panel:
Lagrangian (q, x) manifold at three subsequent time steps. Left-hand panel: velocity streams, i.e. velocity as function of Eulerian position x, around Eulerian
catastrophe. Right-hand panel: density structure δ(x) around Eulerian catastrophe. Bottom panel: velocity u of Lagrangian mass elements q.

blue line shows the state with three streams between two singular-
ities of A2 type. Three panels surrounding the central panel shows
the initial velocity ∝s(q) (the bottom panel), the evolution of the
phase space (the left-hand panel) and the density field in Eulerian
space (the right-hand panel). Three density fields are the projec-
tions of either the phase-space lines from the left-hand panel or
the Lagrangian submanifolds from the central panel on Eulerian
coordinate x at the corresponding times. The information content of
the phase-space and the Lagrangian submanifold is similar but it is
greater than that of the density field. Singularities do exist neither
in the phase space nor in the Lagrangian submanifold, they emerge
as a result of the projection to Eulerian space only. The caustics are
located at the points where the projecting direction is tangent to the
phase-space curve or the Lagrangian submanifold. All geometrical
features just described are similar in two and three dimensions. The
major difficulty is due to complexity of projection the Lagrangian
submanifolds from four- or six-dimensional spaces to two- or three-
dimensional Eulerian spaces, respectively. As a result the number of
archetypical singularities increases with the growth of the number
of dimensions.

A P P E N D I X B : A B O U T L O O P S N E A R D−
4

SINGU LARITIES

The small loops near D−
4 singularities form a salient feature in our

results. In this appendix, we show how this result can be understood
in terms of the higher order D5 catastrophe. The D5 catastrophe
in 3D marks the transition from a D−

4 to D+
4 catastrophe. As we

mentioned before, the D4 singularity is a location where both eigen-
values are equal, and we derived the following equation from the
deformation tensor dij, that if α(q) = β(q), then

d11 = d22 and d12 = 0. (B1)

To determine the type, we had to look at the higher derivatives of
the potential.

Formally, the amount of D+
4 and D−

4 singularities are exactly
equal. This can be seen from the topology of the method by which we

Figure B1. The two different geometries of D4 singularities are in the
space of d11 − d22 and d12 each other’s mirrors. This illustration shows why
topologically there must always be as many D−

4 as D+
4 singularities.

find them. The two fields U1 = d11 − d22 and U2 = d12 are Gaussian
and uncorrelated. The zero-levelset is the boundary between regions
that are negative and positive. A point where both fields are zero
exists then in two kinds, illustrated in Fig. B1. In practice, some
of these points have a corresponding eigenvalue that is negative, so
these points are not considered in our figures.

A D5 singularity corresponds to the situation where the zero-
sets of U1 and U2 touch exactly.5 In general, this never happens;
however, the probability that a D4 point is close to that is very high.
This means that the global geometry of a D−

4 tends to look a lot like
that of a D5 singularity.

If we now look at Fig. B2, we can see what a geometry close
to a D5 looks like. In the first of the three images, if we take an
intersection and move it from right to left, we start with a single

5 In the language of geometry, to have a stable configuration, the sets must
cross transversally.
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Figure B2. The D5 catastrophe. Here, we plotted the caustic surface of the catastrophe in 3D. To interpret its significance in 2D, we need to take a cross-section
of this image, moving in time from the front-right plane to the left-back or vice versa. In this sense, each of these three images shows an evolution history of
caustics in 2D. The 3D evolution shows us how this evolution might change if we smoothly change some parameter determining the character of the 2D field.
For example, by slowly changing some of the phases in a random realization of the potential, we can change a D−

4 on the left into a D+
4 on the right.

cusp. This cusp is then joined by two swallowtails to form a triangle
of cusps. This triangle contracts to a D−

4 , and then expands again
as a triangle of cusps in the second eigenvalue. By the same recipe
we can approach the D+

4 catastrophe, seen in the rightmost panel
in Fig. B2. We start out with an α-cusp. This cusp is joined by a β

pancake, which is soon thereafter pierced by the α-cusp. The cusp
‘changes colour’ and through the D+

4 becomes a β-cusp. Both these

scenarios are frequently encountered in the ZA, even if they do not
result in an eventual D4 singularity, as is evident from Figs 9, 10,
11, 13 and 14.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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