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ABSTRACT
The Rufous-tailed Tailorbird (Orthotomus sericeus)—a Sunda endemic—is divided into 3 morphologically based
subspecies: one in western Sundaland (Malay Peninsula, Sumatra, and associated islands), one from the Natuna Islands
in the South China Sea, and one on Borneo, Palawan, and smaller islands of the Sunda continental shelf east of Borneo.
Previous study, however, suggested that these subspecies do not conform to molecular genetic subdivisions of the
species. We reexamined the morphology and performed molecular phylogeographic and multi-locus coalescent
analysis of two subspecies of Rufous-tailed Tailorbird comprising populations on the Malay Peninsula, Sumatra,
Borneo, and Palawan. We found (1) little morphological difference among the two subspecies, (2) no substantial
genetic differences between the Borneo and western Sunda populations, but (3) marked genetic divergence between
the Palawan and other populations. We conclude that the Bornean and western Sunda populations interbred
extensively during Quaternary glacio-eustatic land connections, whereas the Bornean and Palawan populations did
not. Unlike the other Greater Sunda Islands, Palawan has not been attached by a land bridge to the rest of Sundaland
for at least one million years, and its relative isolation has prevented extensive intermixing between Palawan’s and
other Sunda populations. Thus, the Palawan population appears to be on its own evolutionary trajectory. The ability to
demonstrate extensive interbreeding among some Sunda island populations, but not others, illustrates the practicality
of testing Gill’s (2014) ‘‘null hypothesis’’ that morphologically distinct populations on different islands are different
species unless a compelling argument can be made to the contrary. In this case, Rufous-tailed Tailorbird morphology
provided little or misleading evidence of the extent of interbreeding, whereas modern genetic analysis provided a
clear view.
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Historia de divergencia de Orthotomus sericeus de Sondalandia: Implicancias para la biogeografı́a de
Palawan y la taxonomı́a de las especies de las islas en general

RESUMEN
Orthotomus sericeus—endémica de Sonda—está dividida en tres subespecies en base a la morfologı́a: una del oeste de
Sondalandia (Penı́nsula Malay, Sumatra e islas asociadas), una de las Islas Natuna en el Mar del Sur de China y una en
Borneo, Palawan e islas más pequeñas de la plataforma continental de Sonda al este de Borneo. Estudios previos, sin
embargo, sugirieron que estas subespecies no coinciden con las subdivisiones genéticas moleculares de la especie.
Reexaminamos la morfologı́a y realizamos análisis moleculares filogeográficos y de coalescencia multi-locus de dos
subespecies de O. sericeus abarcando poblaciones de la Penı́nsula Malay, Sumatra, Borneo y Palawan. Encontramos (1)
poca diferencia morfológica entre las dos subespecies, (2) falta de diferencias genéticas substanciales entre las
poblaciones de Borneo y del oeste de Sonda, pero (3) divergencia genética marcada entre la población de Palawan y
otras poblaciones. Concluimos que las poblaciones de Borneo y del oeste de Sonda se entrecruzaron enormemente
durante las conexiones terrestres glacio-eustáticas del Cuaternario, mientras que las poblaciones de Borneo y de
Palawan no lo hicieron. A diferencia de las otras Islas Mayores de Sonda, Palawan no ha estado unida por un puente
terrestre al resto de Sondalandia por al menos un millón de años, y su aislamiento relativo ha impedido una gran
entremezcla entre las poblaciones de Palawan y otras poblaciones de Sonda. Ası́, la población de Palawan parece estar
en su propia trayectoria evolutiva. La posibilidad de demostrar un enorme entrecruzamiento entre algunas
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poblaciones de las islas de Sonda, pero no entre otras, ilustra la practicidad de evaluar la ‘‘hipótesis nula’’ de Gill (2014)
de que poblaciones morfológicamente distintivas en islas diferentes son especies diferentes, a menos de que haya un
argumento de peso en contra. En este caso, la morfologı́a de O. sericeus brindó evidencia limitada o confusa del grado
de entrecruzamiento, mientras que los análisis genéticos modernos brindaron un panorama claro.

Palabras clave: análisis de coalescencia, análisis multi-locus, Borneo, ciclos glaciares, conceptos de especie,
filogeografı́a

INTRODUCTION

Palawan is a large Philippine island (14,650 km2)

connected to the northeastern end of Sundaland (Figure

1), the biogeographic region of Southeast Asia that

encompasses the Sunda continental shelf and its constit-

uent land masses: the Malay Peninsula, Sumatra, Java, Bali,

Borneo, Palawan, and many other islands of the Indo-

Malayan Archipelago (Whitmore 1981, 1987). During the

Pliocene and Pleistocene, the Sunda shelf was exposed as

land numerous times by glacial-eustatic sea level lowering,

periodically uniting the Sunda islands with each other and

the Asian mainland (Voris 2000, Sathiamurthy and Voris

2006). At these times, Palawan formed a peninsula

northeast of Borneo pointing into the heart of the oceanic

Philippine islands. Thus, biogeographers traditionally

assumed Palawan was the main conduit for Asian

vertebrates to reach the Philippines (Dickerson et al.

1928, Delacour and Mayr 1946, Inger 1954, Darlington

1957, Diamond and Gilpin 1983, Heaney 1985, Dickinson

1991). They also assumed that Asian invasions of the

oceanic Philippines occurred relatively recently, i.e. during

the late Quaternary, when glacial events were most

frequent and dramatic. We now know, however, that

invasions of the Philippines by many Asian forest animals

occurred much earlier than the late Pleistocene, and the

route through Palawan was less important than previously

believed (e.g., for birds: Lim et al. 2010, Oliveros and

Moyle 2010, Sheldon et al. 2012, Gamauf and Haring 2004,

Moyle et al. 2007, Jones and Kennedy 2008, Moyle et al.

2009, Sheldon et al. 2009). The Sunda shelf, when exposed

as land, does not simply transform into a wide expanse of

rainforest through which forest animals can easily travel,

but rather it seems to become a matrix of diverse habitats

and montane and river barriers (Brandon-Jones 1998,

Gathorne-Hardy et al. 2002, Meijaard and van der Zon

2003, Gorog et al. 2004, Cannon et al. 2009, Wurster et al.

2010, Slik et al. 2011). Movement though Palawan is

further impeded by water barriers at both ends, making it

act more as a filter or cul-de-sac than a transmigration

facilitator (Esselstyn et al. 2010).

Part of the reason Palawan has been misunderstood as a

biogeographic force is because only recently have we

begun to understand the degree to which it is not a typical

Sunda island. Whereas elements of Borneo, Sumatra, and

even Java have been part of the Sunda continental core

since the Cretaceous (Hall 2002, 2009), Palawan is a

newcomer to the area. It began as a continental fragment

that broke off southern China ~30 Ma and drifted south to

hit the Sunda shelf near northeastern Borneo ~20–10 Ma

(Hall 1998, Zamoros and Matsuoka 2004, Yumul et al.

2009). Although Palawan was originally thought to have

been submerged during all or most of its southward

journey, Blackburn et al. (2010) and Siler et al. (2012) have

argued that little evidence of complete submergence has

been presented. Instead, on the basis of molecular genetic

comparisons of frogs and lizards and a review of geology,

they have suggested that parts of Palawan may actually

have remained emergent during the entire journey.

Moreover, the micro-continental plate on which Palawan

sits would have drifted south with other micro-plates that

later played a role in the accretion of some of the oceanic

Philippine islands (e.g., Panay, Carabao, Mindoro, and the

Romblons). Thus, Palawan may have acted as an ‘‘ark,’’
transporting vertebrates and other organisms to the

oceanic Philippines, as well as to Sundaland and even

Sulawesi (Blackburn et al. 2010). When Palawan reached

its current location, it was thrust upward and took on its

present conformation (Durkee 1993, Hall 2002, Yumul et

al. 2009). As a result of its voyage, Palawan experienced a

much different history than the other Sunda islands. Also,

recent evidence indicates that Palawan has not been

‘‘firmly’’ connected to Sundaland as a result of sea level

lowering. Although sea level models originally suggested a

land connection between greater Borneo and Palawan

during the last glacial maximum (e.g., Rohling et al. 1998),

recent work indicates that during the most extreme glacial

events of the last 700 Ka, sea levels did not fall below 125

m (612 m); before 700 Ka, sea level drops were even less

extreme (Bintanja et al. 2005). Because Palawan is

separated from Borneo by a 140 m channel (Heaney

1986), it has probably been isolated by a narrow water

barrier for much of the Quaternary, if not forever (Bintanja

et al. 2005, Esselstyn et al. 2010). Even if the channel were

completely closed, the coastal habitat spanning Borneo

and Palawan (e.g., mangrove, swamp forest, coastal strand)

may not have been hospitable to most species of the

interior lowland rainforest.

Palawan’s relatively recent and tenuous connection to

Sundaland helps explain the history of its forest avifauna.

Most of its upland birds appear to have colonized from

Sundaland within the last 5–8 Ma; fewer have colonized
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from the oceanic Philippines; none seems old enough to

have ridden the island as an ark from mainland Asia (Lim

et al. 2010, Lohman et al. 2010, Oliveros and Moyle 2010,

Rahman et al. 2010, Oliveros et al. 2012, Irestedt et al.

2013). Among its Sunda colonizers, there appear to be 2

classes of genetic divergence (Table 1): the first represent-

ing earlier colonists, each of which is morphologically and

genetically distinct from its sister taxon in Sundaland; and

the second comprising more recent colonists displaying

little morphological or genetic difference from their

FIGURE 1. Map of Rufous-tailed Tailorbird distribution and sampling sites (black squares). Dark gray indicates the approximate
distribution of the species (Sundaic lowlands). It is absent from light gray areas (mountains) and blank areas (Van Marle and Voous
1988, Madge 2006, Wells 2007, Phillipps and Phillipps 2014).

TABLE 1. Bornean and Palawan sister taxa and their uncorrected proportional mitochondrial divergence values (Lim et al. 2010,
Lohman et al. 2010, Oliveros and Moyle 2010, Rahman et al. 2010, Sheldon et al. 2012, R.G.M. and C.H.O. personal observation).

Palawan taxon1 Bornean taxon1 Main feeding guild Main forest habitat Divergence value

Class 1: Higher morphological
and molecular divergence
Iole palawanensis I. olivacea frugivore 18 & 28 ND2 17%
Malacopteron palawanense M. magnirostre insectivore 18 ND2 14%
Pycnonotus cinereifrons P. simplex frugivore 28 ND2 14%
Ptilocichla falcata P. leucogrammica insectivore 18 ND2 13.5%
Malacocincla cinereiceps M. malaccensis insectivore 18 ND2 12.6%
Alophoixus frater A. bres frugivore 18 ND2 12%
Arachnothera dilutior A. longirostra nectarivore 18 & 28 Cytb 9%
Copsychus niger C. stricklandii insectivore 18 ND2 9%
Pachycephala cinerea plateni P. c. cinerea insectivore 18 & 28 ND2 8.5%
Macronus gularis M. bornensis insectivore 28 ND2 7.9%

Class 2: Lower morphological
and molecular divergence
Orthotomus sericeus O. sericeus insectivore 28 ND2 1.9%
Pycnonotus atriceps P. atriceps frugivore 28 ND2 0.9%
Alcedo meninting A. meninting piscivore 18 & 28 ND2 0.8%
Ceyx erithaca C. erithaca insectivore 18 & 28 ND2 0.3%

1 Classification of Gill and Donsker (2014).
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Bornean sisters. The first group consists entirely of

Palawan endemics, many of which have been recently

accorded status as full species. Among these endemics are

the sister species of some Sunda taxa that are completely

or mainly restricted to mature forest in Borneo, e.g.,

Bornean Wren-Babbler (Ptilocichla leucogrammica),

Short-tailed Babbler (Malacocincla malaccensis), and

Grey-cheeked Bulbul (Alophoixus bres). Such species

would be incapable of dispersing from Borneo to Palawan

without a substantial rainforest corridor connecting the 2

islands (assuming ancestors of these species had the same

habitat requirements as the modern birds). The second

group of Palawan taxa, i.e. those displaying little diver-

gence from their Bornean sisters, includes species that are

expected to be good overwater dispersers: e.g., 2 kingfish-

ers that occur in mangrove—Oriental Dwarf Kingfisher

(Ceyx erithaca) and Blue-eared Kingfisher (Alcedo menint-

ing)—and the highly vagile Black-headed Bulbul (Pycno-

notus atriceps). One species that exhibits little

morphological and only moderate genetic distinctiveness

between its Palawan and Bornean populations is the

Rufous-tailed Tailorbird (Orthotomus sericeus). Unlike the

kingfishers and Black-headed Bulbul, the tailorbird is a

notably poor flier and, presumably, disperser. Thus, it

would not be expected to move back and forth between

Borneo and Palawan without a land bridge.

The Rufous-tailed Tailorbird occurs on the Malay

Peninsula, Sumatra, Belitung, Borneo, Palawan, Natunas,

and various coastal islands (Figure 1). In the Philippines it

is found only on islands that lie on the Sunda continental

shelf, i.e. the Palawan chain (Balabac, Palawan, Busuanga,

Culion), the western Sulu Archipelago (Sibutu, Sitanki,

Omapoy, Sipangkot, Tumindao), and Cagayan Sulu (Dick-

inson et al. 1991). Originally, 4 subspecies of Rufous-tailed

Tailorbird were described: the nominate O. s. sericeus of

Borneo, O. s. nuntius of Cagayan Sulu Island and the Sulu

Archipelago (Bangs 1922), O. s. hesperius of Sumatra,

Belitung, and the Malay peninsula (Chasen and Kloss

1931), and O. s. rubicundulus of the Natuna Islands

(Oberholser 1932). Individuals from Palawan were not

examined in this initial taxonomic process. Later, the

Palawan and other western Philippine populations were

merged into O. s. sericeus because they were considered

undifferentiated from Bornean birds (Peters 1939, Parkes

1960, Dickinson et al. 1991). This arrangement left just 3

morphologically based subspecies: O. s. hesperius, O. s.

sericeus, and O. s. rubicundulus. However, subsequent

molecular comparisons suggest this arrangement may be

wrong. Mitochondrial ND2 sequence comparisons have

indicated that the Palawan population is ~1.9% divergent

from the Bornean population (Sheldon et al. 2012) and

that the Borneo and western Sunda populations have

recently and extensively intermixed (Lim et al. 2011).

In this paper, we explore Rufous-tailed Tailorbird

phylogeography further in an effort to improve our

understanding of the species’ population history and the

historical relationship between Palawan and the rest of

Sundaland. Our investigation proceeds in 2 steps. First, we

reexamine previous findings based on morphological

characteristics and ND2 sequence divergence by compar-

ing a relatively large number of individuals from popula-

tions spanning Sundaland. This step shows that

populations from western Sundaland (Sumatra and the

Malay Peninsula), Borneo, and Palawan are very similar to

one another morphologically, and confirms that the

Palawan population is genetically distinct from the western

Sunda and Borneo populations. Next, we examine the

divergence history of the Palawan population relative to

the combined western Sunda and Borneo populations

using a multi-locus coalescent analysis of ND2 and nuclear

gene sequences. Specifically, we use immigration with

migration analysis (IMa) to estimate the time since

divergence of the 2 populations, levels of gene flow

between them since their divergence, and their effective

population sizes. This analysis provides a fairly clear

picture of the recent biogeographic history of Rufous-

tailed Tailorbird populations. It also illustrates an effective

approach to identifying species limits in an island setting

and, as such, illustrates the practicality of testing Gill’s

(2014) ‘‘null hypothesis’’ that morphologically distinguish-

able populations on different islands be considered

different species unless a compelling argument can be

made to the contrary.

METHODS

Because original descriptions of Rufous-tailed Tailorbird

subspecies were vague and confused (Oberholser 1932,

Peters 1939, Parkes 1960), we reassessed morphological

variation among the populations whose DNA was

compared in this study using specimens borrowed from

the Academy of Natural Sciences of Drexel University,

American Museum of Natural History, Delaware Museum

of Natural History, Field Museum, Louisiana State

University Museum of Natural Science, National Museum

of Natural History (U.S.A), Natural History Museum

(U.K.), University of Kansas Museum of Natural History,

and the Western Foundation. The taxa compared were O.

s. sericeus from Borneo (30 individuals), O. s. hesperius

from western Sundaland (peninsular Malaysia, Singapore,

and Sumatra; 31 individuals), and O. s. sericeus from

Palawan (31 individuals). We did not compare the Natuna

and Cagayan Sulu populations because very few specimens

exist from these sites; almost all are types (Bangs 1922,

Chasen and Kloss 1931, Oberholser 1932), which are

difficult to borrow and which museums are loath to

subsample for DNA; and all are very old (collected in 1893,
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1900, and 1921) and, thus, likely to be faded. Also, we

reasoned that the populations of Natuna, which lies in the

South China Sea between Borneo and the Malay Peninsula

(Figure 1), would have been well connected and likely to

interbreed with western populations during most or all

glacial events (Voris 2000, Cannon et al. 2009). Cagayan

Sulu is biogeographically more interesting than the

Natunas, as it lies at the eastern limit of Sundaland.

Unfortunately, only one specimen is available from this

island, the type for the original O. nuntius (Bangs 1922).

We hope to work with this specimen in the future.

We examined plumage color and measured 7 characters

(all measurements were taken by VLC from adult birds

using standard calipers): culmen length, length from

nostril to bill tip, bill width, and bill depth; wing length;

tail length; and tarsus length. Measurement data were

analyzed using principal components analysis (PCA) and

discriminant function analysis (DFA) using program ‘‘R’’
(R Development Core Team 2008) with the package MASS

(Venables and Ripley 2002). PCA was based on a singular

value decomposition of the data matrix for numerical

accuracy. To test for sex-specific differences, separate

analyses were performed on male and female specimens.

For molecular comparisons, we obtained mitochondrial

ND2 (nicotinamide adenine dinucleotide dehydrogenase

subunit 2) sequences of Rufous-tailed Tailorbird from 51

individuals from 3 areas (Table 2): Palawan (3 individuals);

Malaysian Borneo (44 individuals); and Sumatra and
Singapore (4 individuals). Two outgroup species were used

in the phylogenetic analyses: Grey-backed Tailorbird (O.

derbianus) of the Philippines and Ashy Tailorbird (O.

ruficeps) from Borneo. These species are members of the

clades closest to Rufous-tailed Tailorbird, but are still 9–

11% divergent from it (Sheldon et al. 2012). ND2

sequences of 21 specimens, including outgroups, were

produced in previous studies (Nguembock et al. 2007, Lim

and Sheldon 2011, Sheldon et al. 2012); their GenBank

numbers are listed in Table 2. Seven nuclear loci were

sequenced in 19 individuals (Table 2). Six of the nuclear

loci were autosomal: 16214 (methylmalonic aciduria type

A protein mitochondrial precursor), 20771 (p21-activated

protein kinase-interacting protein), and 27189 (gamma-

tubulin complex component 3) from Backström et al.

(2008a, 2008b); GARS (glythyl-tRNA synthetase intron 11)

from Kimball et al. (2009); and GADPH (glyceraldehyde 3-

PDH) and TGFB (fifth nuclear intron of transforming

growth factor, b2) from Primmer et al. (2002). One was a

Z-linked locus: BRM15 (a core ATPase of the SWI/SNF

ATP-dependent chromatin remodeling complex) from

Borge et al. (2005).

DNA was extracted from ethanol-preserved pectoral

muscle using DNeasy tissue kits (QIAGEN, Hilden,

Germany) or from blood preserved in Queen’s Lysis Buffer

(Seutin et al. 1991) using a standard phenol–chloroform

protocol. PCR was conducted using primers published in

the citations above. PCR products were purified with 20%

polyethylene glycol and cycle-sequenced in both directions

using PCR primers and BigDye Terminator Cycle-Se-

quencing kits version 3.1 (Applied Biosystems, Foster City,

California, USA). Cycle-sequencing products were cleaned

with Sephadex G-50 fine (GEHealthcare, Little Chalfont,

Buckinghamshire, UK) before analysis on an ABI Prism

3100 Genetic Analyzer (Applied Biosystems). The se-

quences were assembled and edited in Sequencher version

4.7 (Gene Codes, Ann Arbor, Michigan, USA). To

determinate allelic phases of non-recombining blocks in

nuclear sequences, we used TA-cloning and computational

procedures described in Lim and Sheldon (2011). GenBank

numbers of sequences produced in this study are

KJ864966–KJ865225.

The phylogeny of Rufous-tailed Tailorbird populations

was estimated from aligned ND2 sequences using maxi-

mum-likelihood and Bayesian approaches, with models of

molecular evolution first estimated with jmodeltest 0.1.1

(Posada 2008). We used MrBayes 3.2 to construct a

majority rule consensus Bayesian tree using the following

parameters: 2 simultaneous runs, number of MCMC

generations ¼ 10 million (sampling every 1,000 trees),

burn-in fraction ¼ 0.25, 4 search chains in each run,

general time reversible model of nucleotide substitution

(nst¼ 6), and gamma-distributed rate variation across sites

(Ronquist et al. 2012). We ascertained that runs in

MrBayes had converged in view of the small average

standard deviation of split frequencies (0.004) and by

inspection of log-likelihood-value and parameter trend

lines in the program Tracer v1.6. For maximum likelihood

phylogenetic analysis, 500 bootstrap replicates were

estimated using a genetic algorithm implemented by the

GARLI web service: http://www.molecularevolution.org/

software/phylogenetics/garli/garli_create_job (Zwickl

2006). GARLI parameters were set as follows: non-

partitioned analysis; general time reversible model of

nucleotide substitution; estimated base frequencies and

proportion of invariant sites; and gamma-shaped, across-

site rate heterogeneity (4 categories).

We evaluated Rufous-tailed Tailorbird population struc-

ture using an analysis of molecular variance (AMOVA) of

the ND2 data in ARLEQUIN 3.5 (Excoffier and Lischer

2010). Following results from phylogenetic analysis (see

Results) and based on our previous observation of genetic

variation (Lim et al. 2011), we partitioned the data by

grouping birds from western Sundaland and Borneo into

one population (BWS) and birds from Palawan into

another. We also constructed a median joining network

from the ND2 data using the program Network v.4.6

(Bandelt et al. 1999) to visualize genetic diversity and

geographical relationships.
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TABLE 2. Orthotomus species and DNA samples used in this study.

Species 1 Subspecies Country
State

or Province
Collection

locality Lat. Long.
Specimen
number 2

ND2
from previous

studies 3

Nuclear
genes

sequenced 4

O. sericeus sericeus Philippines Palawan Puerto Princesa 9.97 118.78 KUNHM 12601 yes
O. sericeus sericeus Philippines Palawan Puerto Princesa 9.97 118.78 KUNMH 12624 yes
O. sericeus sericeus Philippines Palawan Puerto Princesa 9.97 118.78 KUNMH 12631 JX006141* yes
O. sericeus sericeus Malaysia Sabah Tawau Hills 4.4 117.89 LSU B51050
O. sericeus sericeus Malaysia Sabah Tawau Hills 4.4 117.89 LSU B51057
O. sericeus sericeus Malaysia Sabah Serinsim 6.29 116.71 LSU B46975
O. sericeus sericeus Malaysia Sabah Serinsim 6.29 116.71 LSU B46989 HQ011047* yes
O. sericeus sericeus Malaysia Sabah Serinsim 6.29 116.71 LSU B46990
O. sericeus sericeus Malaysia Sabah Serinsim 6.29 116.71 LSU B47010 HQ011048*
O. sericeus sericeus Malaysia Sabah Serinsim 6.29 116.71 LSU B47020
O. sericeus sericeus Malaysia Sabah Ulu Kimanis 5.5 116 KUNHM 17792 JN826602* yes
O. sericeus sericeus Malaysia Sabah Crocker Range 5.4 116.1 LSU B36342 HQ011046* yes
O. sericeus sericeus Malaysia Sabah Crocker Range 5.4 116.1 LSU B36357
O. sericeus sericeus Malaysia Sabah Crocker Range 5.4 116.1 LSU B36370
O. sericeus sericeus Malaysia Sabah Klias 5.33 115.67 LSU B47190
O. sericeus sericeus Malaysia Sabah Klias 5.33 115.67 LSU B47191 HQ011049* yes
O. sericeus sericeus Malaysia Sabah Mendolong 4.85 115.7 LSU B51012 HQ011050* yes
O. sericeus sericeus Malaysia Sabah Mendolong 4.85 115.7 LSU B51034
O. sericeus sericeus Malaysia Sarawak Miri-Bintulu 4.16 114.03 LSU B58177
O. sericeus sericeus Malaysia Sarawak Niah town 3.74 113.79 LSU B58183
O. sericeus sericeus Malaysia Sarawak Batu Niah 3.82 113.76 LSU B58160 yes
O. sericeus sericeus Malaysia Sarawak Tatau Town 2.89 112.87 LSU B58190 yes
O. sericeus sericeus Malaysia Sarawak Tatau Town 2.89 112.87 LSU B58191
O. sericeus sericeus Malaysia Sarawak Kanowit 2.08 112.14 LSU B52213
O. sericeus sericeus Malaysia Sarawak Kanowit 2.08 112.14 LSU B52214
O. sericeus sericeus Malaysia Sarawak Mukah 2.92 112.15 LSU B52224
O. sericeus sericeus Malaysia Sarawak Mukah 2.92 112.15 LSU B52226
O. sericeus sericeus Malaysia Sarawak Mukah 2.92 112.15 LSU B52227
O. sericeus sericeus Malaysia Sarawak Sibu 2.36 111.82 LSU B58208
O. sericeus sericeus Malaysia Sarawak Bako 1.72 110.48 BMNHC 82057
O. sericeus sericeus Malaysia Sarawak Bako 1.72 110.48 BMNHC 82075
O. sericeus sericeus Malaysia Sarawak Bako 1.72 110.48 BMNHC 82078
O. sericeus sericeus Malaysia Sarawak Bako 1.72 110.48 BMNHC 81920
O. sericeus sericeus Malaysia Sarawak Kota Samarahan 1.46 110.45 LSU B58212 HQ011055* yes
O. sericeus sericeus Malaysia Sarawak Kota Samarahan 1.46 110.45 LSU B58216 HQ011056*
O. sericeus sericeus Malaysia Sarawak Kota Samarahan 1.46 110.45 LSU B58217 HQ011057*
O. sericeus sericeus Malaysia Sarawak Kubah 1.65 110.22 BMNHC 82014
O. sericeus sericeus Malaysia Sarawak Kubah 1.65 110.22 BMNHC 82027
O. sericeus sericeus Malaysia Sarawak Padawan 1.18 110.2 LSU B52139
O. sericeus sericeus Malaysia Sarawak Padawan 1.18 110.2 LSU B52144 HQ011052*
O. sericeus sericeus Malaysia Sarawak Padawan 1.18 110.2 LSU B52145
O. sericeus sericeus Malaysia Sarawak Padawan 1.18 110.2 LSU B52136
O. sericeus sericeus Malaysia Sarawak Padawan 1.18 110.2 LSU B52137 HQ011051* yes
O. sericeus sericeus Malaysia Sarawak Padawan 1.18 110.2 LSU B52147
O. sericeus sericeus Malaysia Sarawak Matang 1.61 110.2 LSU 52153 HQ011053* yes
O. sericeus sericeus Malaysia Sarawak Matang 1.61 110.2 LSU B52167 HQ011054*
O. sericeus hesperius Singapore Singapore Pulau Ubin 1.41 103.96 J1165 HQ011060* yes
O. sericeus hesperius Malaysia Singapore Pulau Ubin 1.41 103.96 J1167 HQ011061* yes
O. sericeus hesperius Singapore Singapore Bukit Batok 1.35 103.75 BMNHC 81966 HQ011058* yes
O. sericeus hesperius Singapore Singapore Marina South 1.27 103.85 BMNHC 81969 HQ011059* yes
O. sericeus hesperius Indonesia Sumatra Lunang Town �2.27 101.03 BMNHC 67468 HQ011062* yes
O. derbianus* Philippines Catanduanes Catanduanes Is. 13.7 124.33 FMNH 350975 JX006122**
O. ruficeps* Malaysia Sabah Klias 5.33 115.67 LSU B47143 JX006132*

1 Classification follows Gill and Donsker (2014). * indicates outgroups.
2 BMNHC¼ Burke Museum of Natural History and Culture, FMNH¼ Field Museum of Natural History, KUMNH¼University of Kansas

Natural History Museum, LSU ¼ Louisiana State Museum of Natural Science.
3 GenBank numbers for ND2 sequences obtained from previous studies: *Lim et al. (2011) and Sheldon et al. (2012); and **Nguembock et

al. (2007).
4 ‘‘Yes’’ indicates that nuclear loci were sequenced in this study. Seven loci were sequenced for most individuals; however, KUNHM 12601

lacks GAPDH and 16214; KUNHM 12631 lacks GARS, 16214 and 20771; LSU B58160 lacks BRM15 and 16214; KUNHM 17792 lacks 20771.
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IMa analysis (Hey and Nielsen 2004) was conducted

to determine time of divergence, effective population

sizes, and gene flow between Palawan and BWS. In this

analysis, we used phased sequences of all 7 nuclear

genes and sequences of ND2. Approximate mutation

rates of 4 nuclear genes (BRM15, GAPDH, GARS, and

TGFB) and ND2 were applied so that IMa would

produce results in demographic units (Lim and Sheldon

2011). To determine prior limits and run convergence

characteristics, we performed several short-length (5

million generation) and moderate-length (50 million

generation) IMa runs. We then carried out a final

analysis of 100 million generations with 10 heated

chains (total run time ¼ 343 h; geometric heating

scheme, g1 ¼ 0.8, g2 ¼ 0.9). We recorded results every

100 generations and discarded the first 10% as burn-in.

We set one year as the generation time, as a best guess,

but note that little is known about the breeding cycle of

Rufous-tailed Tailorbird (Van Marle and Voous 1988,

Smythies 1999, Wells 2007). In addition to using IMa to

produce estimates of demographic parameters and

divergence, we also used it to assess the fit of simpler

demographic models nested within the full six-param-

eter divergence model (Hey and Nielsen 2007). In these

nested models (n ¼ 16), simplifications included

assuming populations have the same effective size and

symmetrical gene flow. We assessed the fit of reduced

models to the data by comparing them against their null

models using likelihood ratio tests (LRT). The signifi-

cance of the differences was then determined with

appropriate chi-squared distributions and Bonferroni

correction for multiple comparisons.

RESULTS

We observed no consistent differences in plumage among

the 92 specimens compared, but note that the specimens

from Western Sundaland were old and potentially faded.

PCA of combined male and female measurements

indicated the majority of variance (57%) was distributed

among 2 components: PC1 (40%) and PC2 (17%). Wing

and tail lengths accounted for most of this variation. In

males alone, 50% of the variance was distributed between

PC1 (32%) and PC2 (19%). In females, 55% was in PC1

(38%) and PC2 (16%). None of the PCA scatter plots

indicated a clear difference among populations; the male

plot shows the most difference (Figure 2). DFA of all

individuals was highly influenced by bill depth and total

culmen length, as was the DFA of males. In females, it was
most influenced by bill width and wing length. In jacknife

analysis of all individuals, DFA properly classified 57% of

the Borneo population, 65% of the Palawan population,

and 58% of the western Sundaland population. Overall

classification accuracy was 60%. For males alone, DFA

properly classified 60% to Borneo, 69% to Palawan

population, and 67% to western Sundaland, with overall

accuracy of 65%. For females, DFA accuracy was 73% for

Borneo, 60% for Palawan, and 70% for western Sundaland,

with overall accuracy of 55%. In general, none of the

morphological characters we examined could discriminate

effectively among the 3 populations (western Sundaland,

Borneo, and Palawan) or the 2 subspecies (sericeus and

hesperius).

The ND2 data consisted of 1,038 sites. Among Rufous-

tailed Tailorbirds, 982 sites were invariable, 40 polymor-

phic, 8 unique, and 32 parsimony informative. The average

uncorrected ND2 divergence between the Palawan and

BWS populations was 1.7%. There were 20 haplotypes,

haplotype diversity was 0.933, and nucleotide diversity was

0.00528. The haplotype network (Figure 3) showed a series

of Bornean locations radiating from western Sundaland,

and Palawan was differentiated by 19 steps from all other

populations. AMOVA (Table 3) indicated a high degree of

genetic structure occurring among populations, 63%

(Borneo, Palawan, and Western Sundaland), and less

within, 37%. Phylogenetic analysis of ND2 sequences using

maximum likelihood bootstrapping (Figure 3) and Bayes-

ian methods (not shown) yielded trees with largely

unresolved among-population relationships, but again

with the Palawan population well differentiated from the

others.

IMa analysis yielded good mixing among successive

MCMC chains (minimum swap rate .35%), and conver-

gence in results was observed among different IMa runs.

FIGURE 2. PCA of 6 size characters of male Rufous-tailed
Tailorbird. Open squares: Borneo; closed triangles: western
Sundaland; and stars: Palawan.
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FIGURE 3. (Left) GARLI bootstrap consensus maximum-likelihood tree of Rufous-tailed Tailorbird population relationships from ND2
sequences. Numbers on the tree indicate bootstrap support/posterior probability of adjacent branches (numbers omitted when
bootstrap support less than 70% or posterior probability less than 95%). Outgroups are not included in this figure; they are Ashy
Tailorbird and Grey-backed Tailorbird (Sheldon et al. 2012). (Right) Median-joining network of ND2 haplotypes. Cross hatches on
interconnecting lines indicate number of substitutions (19 on the line to Palawan); circle size denotes number of individuals
sampled.
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For the longest IMa analysis (100 million generations,

results reported here), different parameters were ade-

quately sampled, with the minimum effective sample size

being 311 (for time of divergence). Based on the full six-

parameter IMa model (Table 4), the effective size of the

BWS population (1.3 3 106) is about 7 times larger that of

the Palawan population. Palawan and BWS diverged from

a small ancestral population ~1.2 Mya, although the

confidence interval for divergence time is very large.

Nested IMa models (Table 5) that assume the BWS

population is the same size as Palawan’s or the ancestral

population (model numbers 6, 9, 14, 15) are significantly

worse than their respective null models, which do not

assume so. Gene flow in either direction was low (range:

0–0.0003 migrants per 1,000 generations per gene copy),

and the relative magnitude of directionality is not

distinguishable because of the large confidence intervals.

However, nested models assuming no post-divergence

gene flow (model numbers 4, 8, 10, 13, 16) are significantly

worse than their respective null models, suggesting that

there has been a small amount of gene flow between BWS

and Palawan after the initial population divergence. In

addition, the 2 nested models with unidirectional gene

flow (2, 3) also cannot be rejected. Thus, the evidence is

equivocal regarding which direction has the higher gene

flow rate.

DISCUSSION

Biogeographic Patterns
Our morphological comparisons support traditional taxo-

nomic opinion that Rufous-tailed Tailorbirds of Palawan

‘‘do not differ appreciably’’ from those of Borneo (Peters

1939:110, Parkes 1960). However, our multigene coales-

cent analysis indicates that the populations on Borneo and

Palawan have been largely independent of one another for

~1.2 Ma and have experienced only a small amount of

gene flow since then. Even when the sea level dropped by

its greatest extent—about 125 m during the last glacial

maximum (~20,000 years ago)—and the channel between

Palawan and the rest of Sundaland was at its narrowest,

gene flow was low. This rather decisive break contrasts

strongly with the situation in western Sundaland, where

the Sumatran, Malayan, and Bornean populations have

extensively interbred, presumably during a series of glacial

events, including the last glacial maximum (Lim et al.

2011).We may also assume, with some confidence, that the

Natuna Islands’ population of Rufous-tailed Tailorbird

interbred with Bornean and other western populations

during the late Quaternary because of the Natunas’

intervening position (Figure 1) and the likely paleo-

distributions of appropriate coastal habitats (Voris 2000,

Cannon et al. 2009, Slik et al. 2011). The situation for the

Rufous-tailed Tailorbird populations of Cagayan Sulu and

the Sulu Archipelago east of Borneo, however, remains

unclear, as we have not compared (the rare) specimens

from these islands and are uncertain about the extent and

timing of the islands’ connections to Borneo or (in the case

of Cagayan Sulu) to Palawan.

The precise scenario of division between Bornean and

Palawan populations of Rufous-tailed Tailorbird is un-

known. As a lineage, the Rufous-tailed Tailorbird has been

extant for ~5–10 Ma, and there is evidence that it may be

the sister group of the main clade of Philippine tailorbirds

(Sheldon et al. 2012). Thus, it may have reached Palawan

millions of years ago and colonized Borneo ~1.2 Ma, or it

may have dispersed to Palawan from Borneo for the first

time ~1.2 Ma, or it may have moved back and forth freely

between the 2 islands until ~1.2 Ma.

One million years of almost complete isolation of

Palawan’s Rufous-tailed Tailorbird population has not

been adequate to cause it to diverge morphologically to

any great extent from its Sundaic sisters. This is true even

though the ecological situation for tailorbirds on Palawan

is different than on Borneo and in western Sundaland. On

Palawan, Rufous-tailed Tailorbird is the only species of

Orthotomus, but in the rest of Sundaland at least 2 other

Orthotomus species occur in sympatry with the Rufous-

tailed Tailorbird. Assuming competition among tailorbirds

TABLE 4. Peak estimates and their 95% confidence intervals for current and ancestral population sizes (Ne), divergence time, and
gene flow (with time moving forward, not in the coalescent) from Sundaland (S) to Palawan (P) and from Palawan to Sundaland
based on the full IMa model.

Palawan Ne Sundaland Ne Ancestral Ne Time (years) Gene Flow S�P* Gene Flow P � S*

Peak estimate 1.68Eþ05 1.28Eþ06 7.50Eþ04 1.19Eþ06 0.00Eþ00 3.02E�04
95% confidence interval 6.56Eþ04 to

7.74Eþ05
8.54Eþ05 to

2.11Eþ06
5.15Eþ03 to

3.74Eþ05
3.65Eþ05 to

2.36Eþ06
0.00 to

8.59E�03
5.03E�05 to

2.16E�03

* Average number of migrants per 1,000 generations per gene copy.

TABLE 3. Results of AMOVA among western Sunda, Borneo, and
Palawan populations.

Source of variation d.f.
Sum

of squares
Variance

components
%

of variation

Among populations 2 46.242 3.035 63
Within populations 47 85.238 1.814 37
Total 49 131.48 4.849 100
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(Mitra and Sheldon 1993, Soh 2001, Mahood et al. 2013),

the Rufous-tailed Tailorbird of Palawan has enjoyed

ecological release and would be expected to differ from

other populations, especially in size (Clegg and Owens

2002, Scott et al. 2003). The Palawan population may have

diverged in behavior and song, but we have not

investigated these characters.

The genetic distance between the Rufous-tailed Tailor-

bird populations of Borneo and Palawan—1.7% in this

study and 1.9% in previous studies—falls somewhat in the

middle of the 2 divergence classes evident between

Palawan and Bornean sister taxa in Table 1 (i.e. substantial

divergence versus little divergence). The 2 tailorbird

populations are more distinct genetically than those of

kingfishers (Ceyx erithaca and Alcedo meninting) and

Black-headed Bulbul (Pycnonotus atriceps), but much less

than the other sister pairs. This difference may be

attributed to the tailorbird’s reduced dispersal capabilities

relative to the kingfishers and bulbul (Burney and Brum-

field 2009). Birds in both these groups range widely in

coastal areas in search of food and have wings with

relatively high aspect ratios compared to the short,

rounded wings of tailorbirds. On the other hand, Rufous-

tailed Tailorbird would be expected to disperse across salt

water more readily than ‘‘typical’’ Sunda forest species

because of its regular occurrence in mangroves and other

coastal habitats (Van Marle and Voous 1988, Sheldon et al.

2001, Wells 2007), which likely predominated between

Greater Borneo and Palawan during glacial events. Even

so, it is not easy to explain why the weak-flying tailorbird

should have a smaller pairwise population divergence value

than some of the highly vagile, nectarivorous/frugivorous,

coastal habitat generalist species in Table 1. We would

expect, for example, that the mangrove-dwelling whistlers

and wide-ranging spiderhunters and secondary forest

bulbuls (e.g., Pycnonotus simplex/cinereifrons) would be

able to disperse more readily than tailorbirds between

Borneo and Palawan during times of low sea level. Bird-

community ‘‘relaxation’’ factors (Diamond 1972), such as

competition and extinction, clearly have played a role in

determining the composition of the Palawan avifauna.

Taxonomy
A relatively large proportion of Philippine forest birds are

classified as members of widespread Southeast Asian

species when they are better treated as endemic Philippine

species (Peterson 2006, Lohman et al. 2010). This

underestimation of Philippine species endemicity is largely

a historical artifact, a hangover from taxonomic and

biogeographic thinking of the mid-twentieth century.

Although ornithologists have long recognized the distinc-

tiveness of many Philippine forest-bird populations, they

have purposely treated them as subspecies, not full species.

This occurred because, in the years following World War

TABLE 5. Marginal likelihood and peak estimates of the full and various reduced (nested) IMa models. Likelihood ratio test (LLR)
statistic, models being compared, and significance of the statistic with and without Bonferroni correction (BC) are also shown.
Population 1¼ Palawan; population 2¼ Borneo and western Sundaland. Because IMa analyzes data in the coalescent, m1 indicates
gene flow going from population 2 into population 1 when time is moving forward.

Model no. Model1 log(P) t H1 (A) H2 (B) HA (C) m1 (D) m2 (E) Df1
vs

Model 2LLR P
Significant

without BC2?
Significant
with BC2?

FULL ABCDE �0.5775 1.0601 0.234 3.399 ,0.001 3.948 0.529
1 ABCDD �1.792 1.479 0.407 2.923 0.001 1.075 1.075 1 Full 2.429 0.119 No No
2 ABCD0 �2.471 0.939 0.341 3.000 0.005 5.993 0.000 1* Full 3.786 0.026 Yes No
3 ABC0D �1.451 0.827 1.096 2.997 0.002 0.000 1.893 1* Full 1.747 0.093 No No
4 ABC00 �7.333 0.150 0.843 3.000 1.739 0.000 0.000 2* ABCDD 11.081 0.000 Yes Yes
5 AACDE �3.415 0.886 2.022 2.022 0.007 0.000 3.223 1 Full 5.675 0.017 Yes No
6 AAADE �9.160 1.846 2.070 2.070 2.070 0.000 1.988 2 Full 17.165 0.000 Yes Yes
7 AACDD �5.399 1.320 2.660 2.660 0.007 1.149 1.149 2 Full 9.643 0.008 Yes No
8 AAC00 �14.523 0.163 3.000 3.000 1.776 0.000 0.000 3* AACDD 18.249 0.000 Yes Yes
9 AAADD �10.801 0.640 2.105 2.105 2.105 0.878 0.878 3 Full 20.447 0.000 Yes Yes
10 AAA00 �22.790 0.170 2.624 2.624 2.624 0.000 0.000 4* AAADD 23.978 0.000 Yes Yes
11 ABADE �2.801 0.820 0.469 3.000 0.469 2.052 0.562 1 Full 4.447 0.035 Yes No
12 ABADD �3.047 0.793 0.614 3.000 0.614 0.843 0.843 2 Full 4.940 0.085 No No
13 ABA00 �9.868 0.158 1.656 3.000 1.656 0.000 0.000 3* ABADD 13.642 0.000 Yes Yes
14 ABBDE �5.021 2.755 0.658 3.000 3.000 0.000 1.804 1 Full 8.887 0.003 Yes Yes
15 ABBDD �7.936 1.668 0.517 2.799 2.799 1.261 1.261 2 Full 14.717 0.001 Yes Yes
16 ABB00 �17.096 0.169 0.922 2.708 2.708 0.000 0.000 3* ABBDD 18.319 0.000 Yes Yes

1 Models are based on 5 parameters: (A) size of population 1(H1); (B) size of population 2 (H2); (C) size of the ancestral population
(HA); (D) gene flow going from population 2 (Borneo and western Sundaland) into population 1 (Palawan); (E) gene flow going
from population 1 (Palawan) into population 2 (Borneo and western Sundaland). For models with at least one variable set to 0, the
test chi-squared distribution is a mixture. See Hey and Nielsen (2007) for further details.

2 BC ¼ Bonferroni correction. A lack of significance suggests that the tested model is no worse than the fuller model.
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II, when taxonomic revision of birds was booming, the

study of Southeast Asian bird relationships was dominated

by ornithologists at American museums, including Herbert

G. Deignan, Jean Delacour, Ernst Mayr, Kenneth C. Parkes,

Austin L. Rand, and S. Dillon Ripley, and all of these men

were heavily influenced by the polytypic species approach

of Mayr (1942, 1963). It was quite natural for them to treat

populations of similar-looking congeners that replace one

another geographically as subspecies of widespread

species. This tendency was exacerbated by the prevailing

view of Philippine biogeography at the time, i.e. that

Philippine populations were the result of late Pleistocene

or Holocene expansions of widespread continental species.

The presumed young age of Philippine taxa was all the

more reason to join them as polytypic members of

widespread species. Nowadays, however, we know that

many Philippine forest populations are older than

previously believed, and we have different and more

precise standards of species description as a result of the

promulgation of alternative species concepts that empha-

size smaller groupings (McKitrick and Zink 1988), the

development of more objective methods of morphological

assessment (Rheindt and Eaton 2009, Tobias et al. 2010),

and the widespread use of molecular tools that allow

measurement of divergence among taxa.

As a result of these advances, we are now in a position to

treat the taxonomy of Philippine populations more

objectively. This ability is enhanced by the recent

suggestion of Gill (2014) that physically separated,

moderately divergent populations be treated as distinct

species until compelling evidence of free interbreeding is

produced, upon which the populations may be merged. In

the Rufous-tailed Tailorbird, we have an almost perfect

illustration of such ‘‘compelling evidence,’’ not only for

interbreeding, but lack of interbreeding. Our genetic
comparisons allow us to identify with confidence those

populations that are interbreeding and those that are not.

In this case, the Bornean and western Sunda populations

are genetically intermixed and barely (if at all) differenti-

ated morphologically. We can essentially prove these

populations interbred during the last glacial maximum

and were probably in contact until 10,000 years ago (Lim

et al. 2011). Thus, they can be considered without question

members of the same species. The Palawan population,

however, is genetically distinct. Palawan has not been

regularly attached to the rest of Sundaland by glacio-

eustatic land or habitat bridges, and its population of

tailorbirds has rarely interbred with the Bornean popula-

tion. Thus, the Palawan population appears to be on its

own evolutionary trajectory. However, it has not yet

diverged morphologically, and we know of no non-DNA

characteristics that distinguish it from the Bornean

population, so there is no reason to call it a different

species at this point. If diagnosable differences in song or

behavior are discovered for the Palawan population, it

should then be named a different species.

Our personal preference is not to change the classifica-

tion of Rufous-tailed Tailorbird populations, i.e. maintain

the subspecies as they are. Although the western Sunda

and Borneo populations do not appear to us to differ from

one another morphologically, fresh specimens from

Sumatra and the Malay Peninsula might exhibit plumage

differences from Bornean birds. Naming the Palawan

population as a distinct taxon, e.g., in recognition of its

genetic distinctiveness or in the case of new character

discovery, will have to wait until genetic comparisons are

made between it and the Cagayan Sulu population,

because the Palawan population is subsumed under the

name given the Cagayan Sulu population (Orthotomus

sericeus nuntius) by Bangs (1922).
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