
VLSI DESIGN
1999, Vol. 9, No. 2, pp. 181 201
Reprints available directly from the publisher
Photocopying permitted by license only

(C) 1999 OPA (Overseas Publishers Association) N.V.
Published by license under

the Gordon and Breach Science

Publishers imprint.
Printed in Malaysia.

Abstract Architecture Representation Using VSPEC
PHILLIP BARAONA and PERRY ALEXANDER*

Department of Electrical and Computer Engineering and Computer Science,
The University of Cincinnati, Cincinnati, OH

(Received 10 March 1996;In finalform 2 April 1997)

Complex digital systems are often decomposed into architectures very early in the design
process. Unfortunately, traditional simulation based languages such as VnDL do not
allow the impact of these architectural decisions to be evaluated until a complete,
simulatable design of the system is available. After a complete design is available,
architectural errors are time-consuming and expensive to correct. However, there is an
alternative to simulation based techniques: formal analysis of abstract architectures at
the requirements level. This paper describes vs,Ec’s approach for defining and analyzing
abstract architectures. VSl,EC is a Larch interface language for VHDL that allows a
designer to specify the requirements of a vHI entity using the canonical Larch
approach, vi-i)i structural architectures that instantiate vs,c entities define abstract
architectures. These abstract architectures can be evaluated at the requirements level to
determine the impact of architectural decisions. This paper briefly introduces vs,c,
provides a formal definition of vs,c abstract architectures and presents two examples
that illustrate the architectural definition capabilities of the language.

Keywords: Requirements specification, vHII, abstract architecture, Larch, interface specification,
formal methods

INTRODUCTION

Architectural design decisions made early in a
system’s design profoundly affect overall design
quality. Unfortunately, architecture decisions are
rarely evaluated until late in the design process.
Simulation-based design languages such as vHIi

[5,12] do not allow evaluation until complete
models exist. For large systems, simulatable
models appear late in the design process, driving

up the cost of error correction. These models
include not only architectural decisions, but also
component design decisions. The ability to analyze
architectural decisions as they are made would
significantly reduce this cost.
A solution to late architecture evaluation is the

formal analysis of abstract architectures at the
requirements level. An abstract architecture is an
interconnected collection of components where the
requirements of each component are specified

*Corresponding author, e-mail: {pbaraona, alex}@ececs.uc.edu

181

182 P. BARAONA AND P. ALEXANDER

without defining their implementation. Thus, an
abstract architecture describes a class of solutions
with a common structure rather than a single
instance from that class. Formally described
abstract architectures can be evaluated early in
the design process when architecture decisions are
made before component designs exist.

vspEc [7], a Larch interface language [10] for
vnoL [12], is a requirements specification language
that includes formal architecture definition sup-
port. vsPEc describes the requirements of digital
system components using the canonical Larch
approach. Each vnoL entity is annotated with a
pre- and post-condition to specify the entity’s
functional requirements, vs,c-annotated entities
can be connected together using a vni structural
architecture to form abstract architectures. The
vHo architecture indicates interconnection in the
traditional manner, but the vspc specification
defines the requirements of each component
instead of a specific design.
The description of a sorting component illus-

trates the difference between vnI and vs,Ec. In
vH, the simplest way to describe the function of
a sorting component is a behavioral architecture
that implements a quicksort, bubble sort or some
other sorting algorithm. This is actually a descrip-
tion of how the sorting component behaves. In
contrast, a vspEc specification of this component
explicitly describes what the device must do
without defining how it is done. A vspc descrip-
tion of a sorting component is shown in Figure 1.
It states the output has all the same elements as the
input (permutation(output’post, input)) and the
output is in order (ordered(output’post)). Any
sorting algorithm may be used to implement these
requirements, but vspc allows this algorithm to
be chosen later in the design process.

Larch interface languages have been developed
for a variety of programming languages including
C [9], C + + [15] and Modula-3 [14]. At the single
component level, vspc differs very little from
other interface languages. However, defining a
Larch interface language for vnI presents a
problem not found in these other languages. In

entity sort is

port (input in element_array;
output out element_array)

includes SortPredicates

modifies output
sensitive to input event
ensures
permutation(output ’post, input
ordered(output ’post)

end sort;

FIGURE vs,c description of a sort entity.

traditional programming languages, a language
construct executes after the construct immediately
preceding it terminates. In vH, there is no
implicit execution order among process level
constructs and thus no means of determining
when a component’s pre-condition should hold.
VSl,EC addresses this problem by allowing a user to
define an activation condition in addition to the
pre- and post-condition for an entity. When an

entity’s state satisfies its activation condition, its
pre-condition must hold and the entity must
perform its specified transformation.

This paper describes VS’EC, concentrating on the
language’s facilities for describing abstract archi-
tectures. The next section provides a brief sum-
mary of the VSPEC language. After this, we describe
VSpEC abstract architectures, including a definition
of the VSpEC state model and a description of how
a process algebra (CSP [11]) is used to provide a
semantics for the VS’EC activation condition. Next,
two example VSpEC specifications are presented
that illustrate the abstract architecture representa-
tion capabilities of the language. Finally, the paper
concludes with a discussion of related work and a
brief summary.

VSPEC

VSPEC is used to describe what a digital system
should do. It adds a requirements definition
capability to VHL entities analogous to the
requirements definition capability that Larch
interface languages add to traditional procedure

ABSTRACT ARCHITECTURE REPRESENTATION 183

and function signatures. As shown in Figure 2, the
requirements of a vHoi entity can be defined by
describing a relationship from the current inputs
and state of the system to the outputs and the next
state. This section describes how F(x, s) and s are
defined in VSPEC and contrasts these definitions
with VHOL definitions of F(x, s) and s.
As shown in the find entity of Figure 3, a VHOI

entity defines an interface. The output of find
should be the element from the input array with the
same key as the key input. A vHe entity does not
describe functional information such as this. The
entity only defines the component’s interface.
The vI4I architecture construct describes the

function of a component by associating behavior
and/or structure with an entity. Figure 4 is a
behavioral vHoe description of the find compo-
nent’s function. In terms of the state model in
Figure 2, this architecture describes F(x,s) as a
linear search algorithm. This looks very similar to
a C or Pascal function describing how the system
behaves. Unfortunately, this operational descrip-
tion biases the system towards a particular
implementation. Since VSpEC’S purpose is require-
ments specification, it is undesirable to bias the
system to a particular implementation this early in
the design process.

input
pods

enu[y E

xpF(x z,

)
output
ports

FIGURE 2 State-based specification model.

architecture behavior of find is

begin
process (input,key)
begin

for i in input’range loop
if key input(i).key then
output <= input (i)
exit;

end if
end loop;

end process
end behavior;

FIGURE 4 A behavioral VHOL architect.re defining the find
component’s behavior.

VSPEC eliminates this problem by allowing a user
to declaratively specify the requirements of a
digital system. Seven clauses annotate the
entity construct to allow the specification of what a
component should do instead of vH’s descrip-
tion of how the component performs this function.
The requires, ensures and sensitive to clauses are
used to specify the device’s functional require-
ments. Non-functional constraints are described in
the constrained by and modifies clauses. The
component’s internal state is declared in the state
clause and the includes clause is used to make types
and operators from a Larch shared language
description visible in a VSPEC component. The
remainder of. this section briefly summarizes these
clauses. For a more complete description of the
VSPEC clauses, see one of the other VSPEC references
[1,7].
Component function is described in the requires

and ensures clauses. The requires clause defines a
pre-condition over inputs and state variables while
the ensures clause defines a post-condition over
inputs, outputs and state variables. The ensures

entity find is port
(input: in element_array;
key: in keytype;
output: out element);

end find;

input

key >

find

output

FIGURE 3 A VHOL entity defining the interface for a find component.

184 P. BARAONA AND P. ALEXANDER

clause defines legal outputs and the next state
when the requires clause is satisfied. A compo-
nent’s user is responsible for making certain the
requires clause is satisfied whenever the component
is in use. When the requires clause is satisfied, the
described entity is responsible for making the
ensures clause true.

Let cr be the state of a VSpEC entity as defined by
its ports and state variables. If I(cr) is the requires
predicate and O(cr, cr) is the ensures predicate,
then the vsPEc annotation defines the following
requirements:

Vc,. c’. I (c)===>O(cr, (1)

F(cr) is an implementation of these requirements if
the following condition holds:

V7. I (cr)==:>O(r, F (2)

A VSPEC description of a find component is
shown in Figure 5. Notice that the requires clause
predicate is true, meaning this entity will function
correctly for any set of inputs of the proper type.

The ensures clause predicate states that the output
element has the same key as the key input and
output is in the input sequence. In terms of the
state model in Figure 2, the ensures clause
predicate defines the requirements of F(x,s), but
unlike the VHDL description, it does not describe
how to implement the component.
The VSPEC sensitive to clause is used to define

when a component in an abstract architecture is
active. When the sensitive to clatise predicate is

true, a component’s pre-condition must hold and
an implementation must satisfy the post-condi-
tion.

Performance constraints are described in the
constrained by and modifies clauses. Constraints
define requirements, such as clock speed or layout
area, that are not part of the functional descrip-
tion. The constrained by clause defines relations
over constraint variables. Currently, the defined
constraint variables include power consumption,
clock speed, area, pin-to-pin timing, and heat
dissipation. Constraint theories written in the
Larch Shared Language (LSL) [10] define each
constraint type. Users may define their own

entity find is port
(input: in element_array;
key: in keytype;
output: out element);
includes Element(element,keytype,

element_array);
modifies output;
requires true;
ensures forall (e element)

(output e implies
(e.key key
and elem_of(e,input)));

constrained by
power <= 5 mW
and key<->output <= 5 ms

and heat <= 10 mW
and clock <= 50 MHz;

end search;

element
array

key

H

search

ql F(ln)
Vcc CIk

Time

FIGURE 5 The find entity annotated with a VSPEC definition.

Previous versions of VSPEC [1,2, 7] did not have a sensitive to clause.

element

ABSTRACT ARCHITECTURE REPRESENTATION 185

constraints and theories if desired. The modifies
clause lists variables, ports and signals whose
values may be changed by an architecture that
implements the vseFc entity. This clause is useful
when specifying whether an entity modifies a
shared variable. The list of objects an entity
modifies is not a traditional performance con-
straint, but this list does restrict the set of potential
solutions. Examples of the constrained by and
modifies clauses are shown in Figure 5.
The state of a vseEc entity is described by the

port definition and variables in the state clause. In
VnDL, ports maintain their values between entity
invocations so ports are part of a vsPEc entity’s
state. The state clause is used to define internal
state variables that are used only in the vsPc

definition. These variables maintain state informa-
tion that is not recorded in port values. When a
vsPc specification is refined into a VHDL archi-
tecture, these internal state variables will be refined
into signals or variables that represent the same
information. The state clause variable declaration
represents this information during the require-
ments specification phase of the entity’s design. An
example of the state clause can be found in the
Move Machine example.
The includes clause is the final vsPc clause.2

This clause is used to include LSL definitions in a
vsPc description or VHDL package declaration.
(See the Move Machine example.) 3

LSL is used to
define the types and functions used in a vsPEc

specification. An example of the includes clause is
shown in Figure 5; its syntax is the keyword
includes followed by a list of trait references. The
syntax of a trait reference is similar to a trait
reference in LSL. It consists of the trait name
followed by an optional parameter list. The
parameter list is used to rename LSL names to a
name visible in the vsPc entity. Thus, an integer
stack is included in a vsPc specification with this
includes clause: includes Stack(integer, int_stack).

ARCHITECTURES

The previous section briefly described how VHDL

and vsPc are used to define the requirements of a
single device in a digital system. The behavior of a
device can also be described by decomposing it
into smaller pieces and connecting these pieces
together to form an architectural description of the
device. This architectural description represents a
refinement of the device’s behavioral VHDL/VSPC
description. VrtDL provides convenient facilities for
defining architectural descriptions. This section
briefly discusses these facilities and then describes
how VSPFC uses them to form an abstract
architecture.

VHDL Structural Architectures

VHDL uses structural architectures to represent
component composition. A structural architecture
describes how sub-components are connected
together to form a larger component. Figure 6
shows a structural architecture for find. Unlike the
behavioral representation in Figure 4, this archi-
tecture indicates that a sort component connected
to a search component implements the find
function. This structural architecture should per-
form the same function as that specified in the
behavioral description.
The VHDL component construct defines each

component used in a structural architecture. The
structure architecture of find in Figure 6 declares
two types of components that are used in this
architecture: sorter and searcher. One instance of
each of these components (named bl and b2) is
created in the body of this architecture. The port
maps of these component instances are used to
indicate how the components are connected
together. In the structure architecture for find,
the system’s input array is connected to the sorter
input and the sorter output is connected to internal

Previous versions of vsec [1, 2, 7] also contained a based on clause. The modified syntax of the includes clause described here
made the based on clause obsolete.

Allowing includes clauses in package declarations is a change from previous versions of vsec [1,2, 7].

186 P. BARAONA AND P. ALEXANDER

architecture structure of find is

component sorter

port (input: in element_array;
output: out element_array);

end component;
component searcher

port (input: in element_array;
key: in keytype;
value: out element);

end component;
signal y: element_array;

begin
hi: sorter port map(input,y);
b2: searcher port map(y,key,output);

end structure;

entity sort is

port (input" in element_array;
output" out element_array)

end sort

architecture behavior of sort is

begin
process(input) begin

Behavioral VHDL description
of a bubble sort

end process;
end behavior;

entity bin_search is

port (input" in element_array
key" in keytype;
value" out element

end bin_search;

architecture behavior of bin_search is

begin
process (input,key) begin

Binary search algorithm
definition in behavioral VHDL

end process;
end behavior;

configuration test_struct of find is

for structure
for bl:sorter use entity

work.sort(behavior);
end for;
for b2:searcher use entity

work.bin_search(behavior);
end for;

end for;
end test_struct;

Instance bl of
sorter component

input output

find entity

instance b2 of
searcher component

Y input

value

key

output

FIGURE 6 A vHoI architecture representing the composition of a sorting component and a binary search component
implementing the find function.

architecture signal y. The signal y and system input
key are inputs to the searcher component. The
output of the searcher is connected to the device
output.
The vHox configuration construct is used to bind

entity-architecture pairs to component instances.
In this example, the test_struet configuration binds
the bubble sort defined by entity sort with
architecture behavior to the bl instance of the

sorter component. Similarly, the binary search
defined by entity bin_search with architecture
behavior is bound to the b2 instance of searcher.
If there were other architectures for these two
entities (such as a structural architecture), a
different configuration could have been specified
stating that the components in structure mapped to
these architectures. Entirely different entities could
even have been defined.

ABSTRACT ARCHITECTURE REPRESENTATION 187

Since a structural architecture only defines
dataflow between components, an additional
mechanism must be provided to define when a
component activates. VHDL accomplishes this with
sensitivity lists and wait statements. A sensitivity
list is a list of signals. Whenever an event occurs on
one of these signals, the process resumes execution.
The behavior architecture for sort is sensitive to its
single input, while bin_search is sensitive to its
input array and key value. This means the sort
component sorts its input only when new input
arrives. Likewise, a search occurs only when the
key value or input array changes. A wait statement
achieves the same result by waiting on signal
events, conditions or for a specific time interval. In
this example, wait statements could replace sensi-
tivity lists by removing the sensitivity lists and
placing wait statements referencing the same
signals at the end of the process definitions.

These constructs allow VHOI to support archi-
tecture representation. Component declarations
describe the inputs and outputs of each component
type used in the architecture. Instances of these
components are created in the architecture body

and configurations are used to map component
instances to an entity/architecture pair. Net lists
indicate signal flow between component instances
while sensitivity lists or wait statements synchro-
nize component actions.

VSPEC Abstract Architectures

vimi structural architectures containing vsPEc-

annotated components specify abstract architec-
tures. The VHDI architecture remains unchanged,
indicating component instantiation and connec-
tions. However, a vHo architecture is not assigned
to each component instance in the architecture.
Instead, the configuration defines that each com-
ponent references an entity with an architecture
called vsPEc. This architecture signifies that at the
current point in the design, the requirements of this
component are known (via the vspEc description)
but no implementation has been defined.4

The structure architecture of find, shown in
Figure 6, becomes an abstract architecture by refe-
rencing vspc definitions of the instantiated com-
ponents. Figure 7 shows vsec entity definitions

entity sort is

port (input: in element_array;
output: out element_array);

includes SortPredicates;
modifies output;
sensitive to input’event;
ensures

permutation(output’post,input);
ordered(output’post);

end sort;

entity bin_search is

port (input: buffer element_array;
key: in keytype;
output: out element);

includes SortPredicates;
modifies value;
sensitive to key’event or input’event;

requires ordered(input)
ensures output e iff (e.key=k and

element_of (e, input)
end bin_search;

configuration test_vspec of find is

for structure
for hi:sorter use entity

work.sort(VSPEC);
end for;
for b2:searcher use entity

work.bin_search(VSPEC);
end for;

end for;
end test_struct;

FIGURE 7 vseEc definitions for the sort and bin_search components in the find architecture.

This is different than leaving the entity open. When a VHDL entity is left open, the design is being deferred. At the current point in
the design, nothing is known about the function of the entity. In contrast, the requirements of a vsPEc entity are known, even though
an implementation is not.

188 P. BARAONA AND P. ALEXANDER

for the sort and bin_search components in Figure
6. A new configuration, test_vspec, has been
defined for the find entity. It specifies that the
VSeEC descriptions of sort and bin_search should be
used instead of a specific architecture for these two
entities. This configuration describes an abstract
architecture for the find component. Any imple-
mentation satisfying the VSPEC requirements of sort
and bin_search may be associated with the entity
definitions. The architectures specified in Figure 6
represent one such solution, but there are many
others.
The VSPEC description of sort specifies the

requirements for a sorting component: the input
and output must have all the same elements (i.e.,
the output is a permutation of the input) and the
output must be in order. In a similar fashion, the
bin_search specification states that whenever
the component input is sorted, the component must
ensure that the output element contains the same
key as the key input and this element is an element
of the input array. The requires and ensures clauses
of these entities use two predicates (permutation and
ordered) to define these requirements. These pre-
dicates are defined in the LSL trait SortPredicates,
which is included in both vspEc entities.

Although a VnDL architecture referencing VSPEC

definitions defines components and interconnec-
tions, additional information must be added to
specify when the VSPEC components activate. In
traditional sequential programming, a language
construct executes following termination of the
construct preceding it. For correct execution, a
construct’s pre-condition must be satisfied when
the preceding construct terminates. In hardware
systems, components exist simultaneously and
behave as independent processes. No predefined
execution order exists, thus there is no means for
determining when a component’s pre-condition
should hold. Consider the find example. The
precondition of bin_search need hold only when
sort has completed its transformation. At all other
times, bin_search need only maintain its state.
VHDL provides sensitivity lists and wait state-

ments to synchronize entity execution, vsPEc

achieves the same end using the sensitive to clause.
The sensitive to clause contains a predicate called
the activation condition that indicates when an
entity should begin executing. Effectively, the
activation condition defines when a VS’EC anno-
tated entity’s pre-condition must hold. When the
sensitive to predicate is true, the pre-condition
must hold and the implementation must satisfy the
post-condition. When the sensitive to predicate is
false, the entity makes no contribution to the next
state of the system. Like the requires and ensures
clauses, the sensitive to predicate is defined over

entity port definitions and variables defined in the
state clause.

Recall that the structural VHOL architecture for
find (Fig. 6) specified that the sort component
should only activate when its input changes and
the binary search component activates when one
of its inputs changes. Specifying this behavior in
VSPEC would not be possible without the sensitive
to clause. Note the sensitive to clauses defined in
the VSPEC description of find in Figure 7. In VSPEC,

a signal’s’ event attribute is true if and only if the
signal changed value from the previous state.
Thus, both components activate whenever any of
their inputs change value.

Architecture Model Semantics

The previous section provided an informal de-
scription of how VSPEC can be used to define an
abstract architecture. This section provides a more
precise, formal definition of the concepts presented
above. First, the state of a VSPEC description is
defined. After this definition, a precise definition of
how the sensitive to, requires and ensures clauses
define a transformation over this state is presented.
The section concludes with a simple example that
illustrates these points.

State Definition

The state definition for an entity is a map from
port, signal and variable names fo their values.

ABSTRACT ARCHITECTURE REPRESENTATION 189

There are three different views of an entity state:
(1) abstract; (2) component; and (3) concrete state.
The abstract state is defined by a VSpEC description
of an entity. The component state is the state of a

single component in an abstract architecture, and
the concrete state represents the state of all
components of an abstract architecture.
The abstract state includes the ports and state

variables of an entity. The vsPEc sensitive to,
requires and ensures clause predicates are defined
over elements of the abstract state of the entity.
The component state applies to an entity included
as a component in a structural architecture. The
component state is formed by taking the entity’s
abstract state and subjecting it to the renaming

imposed by the signals the component is connected
to in the architecture. This component state is used
to construct the concrete state of the structural
architecture. The concrete state is the union of the
component states for all of the components in an
architecture. This structural architecture repre-
sents a refinement of the vspEc definition of the
entity. There is an abstraction function mapping
the concrete state of the structural architecture to
the abstract state defined by the vseEc description
of the entity the structural architecture refines.

Consider the vseEc entity in Figure 8. The
abstract state of the three entities in this figure are
the inputs, outputs and state variables of the
entities. Thus, the abstract states of these entities

entity system is

port (sys_in in integer;
sys_out out integer;

state (sys_state integer;
end system;

entity compl is

port(inl in integer;
result out integer;)

state (ci_state integer;);
end compl

entity comp2 is

port(inl, in2 in integer;
result out integer;);

state (c2_state integer;)
end comp2

architecture struct of system is

component compl
port (inl in integer;

result out integer;)
end component

component comp2
port (inl, in2 in integer;

result out integer;)
end component

signal x, y integer;

begin
A compl port map(sys_in,x)
B compl port map(x,y);
C comp2 port map(x,y,sys_out);

end struct

compl
instance A

In1 result

(l..state

sys._state

system
comp2

entity instance C

in1 result

In2
compl

instare B o2_.stete

in1 result

cl...state

_sys_out

FIGURE 8 Example VSPEC entity used to explain the differences between abstract, component and concrete state.

190 P. BARAONA AND P. ALEXANDER

are:

ABSTRACTsystem {syn_in H i0,

sys_ out H il,

sys_state H i2 }
ABSTRACTcompl {inl -, i3, result H i4,

c l_state H i5 }
ABSTRACTcomp2 {inl -+ i6, in2 i7,

results i8,
c2_state -, ig }

COMPONENTA ABSTRACTcompl [inl/sys_in,
result/x, cl_state/cl_stateA]

{sys.in, x, cl_stateA)
COMPONENT ABSTRACTcompl [inl Ix,

result/y, c 1_ state/c 1_ state]
{x,y, cl_state}

COMPONENTc ABSTRACTcompz[inl Ix, in2/y,
result/sys_out,
c2_state/c2_statec]

{x, y, sys_out, c2_statec}

where i0, il,..., i9 are all integers. As shown, the
state is a map from names to values. However, for
the purpose of clarity we will show just the names
that form the various states throughout the rest of
this paper.
Within the struct architecture for the system

entity, A’s component state (the first instance of
eompl) is found by taking eompl’s abstract state
and performing the renaming defined by the
signals the component is connected to. In this
case, inl is connected to sys_in and result is
connected to signal x. Thus, in the context of the
struet architecture, inl of component instance A
should be replaced by sys_.in and result replaced by
x. A similar renaming can easily be found for the
inputs and outputs of the other components in the
struet architecture. The renaming for the other
components is shown in the definition A and B’s
component states below.

Since the struet architecture has more than one
instance of the eompl entity, the state variables of
eompl must be renamed to form the component
state. This renaming avoids conflicts when forming
the concrete state of the struet architecture. To
simplify matters, we will always rename a compo-
nent’s state variables even if there is only one
instance of an entity in the architecture. A number
of renaming functions could be chosen, but the
one used here is the state variable name in the
abstract state subscripted with the instance label
from the architecture. The component states of the
components in the struet architecture are:

We are now ready to form the concrete state of
the struet architecture for the system entity. The
concrete state is simply the union of the compo-
nent states for each component in the architecture:

CONCRETEstructsystem COMPONENTAU
U COMPONENToU
U COMPONENTc
{sys_in, sys_out, x, y,

cl_stateA, cl_statee,

c2_statec}

Since an abstract architecture represents a
refinement of the requirements specified by vspc,
an abstraction function can be defined to map the
concrete state of the architecture to the abstract
state defined by the vspc description.

Together, the abstract, component and concrete
states represent the state of a vsPc component.
The examples in this paper use these definitions to
describe how a vsPc description behaves.

Transform Definition

The transform performed by a vs,c architecture
is defined by the sensitive to, requires and ensures
clauses. The formal definition of the requires and
ensures clauses was discussed in the section titled
"vspvc". This definition is very similar to the
transform defined by a traditional Larch interface
language. As described in the section titled "vspc

Abstract Architectures", the sensitive to clause is

ABSTRACT ARCHITECTURE REPRESENTATION 191

used to synchronize components and define when
the requires clause predicate must be satisfied.

Formally, synchronization is easily represented
using a traditional process algebra such as csP [11].
Events are defined as changes in the state of the
entity. Assume that F(St) is a function between
two states of entity P that implements the
requirements specified in P’s requires and ensures
clauses (i.e., F(St) satisfies Eq. (2)). The process
defined by entity P with a sensitive to predicate of
S(St) in any state St is:

process that represents architecture 72 is:

P PollP, ll IIP (4)

Thus, each component in the architecture executes
in parallel. Since a component activates only when
its sensitive to clause predicate is true, this
predicate is used to synchronize component
execution.

Pst t: SEN PF(St) (3)

where SEN is the set of states that satisfy P’s
sensitive to clause: SEN {t[S(t)}. Thus, a
process in state St first waits for its sensitive to
clause to be satisfied and then behaves like the
same process in the state defined by applying F to
the current state.

Equation 3 defines a csP process that describes
the behavior of a single VSPEC entity, cse’s
concurrency operator (1]) is used to define a
process that describes the behavior of an archi-
tecture of VSPEC components. Let P0, P,. P be
the processes represented by Eq. (3) for the set of
VSPEC component instances in architecture 72. The

Formal Model Example

This section presents a simple example to explain
how the concrete state of a VSPEC architecture
changes as its inputs are modified by external
components. Consider the architecture shown in
Figure 9. The abstract, component and concrete
state of the elements of this architecture are:

ABSTRACTcl {x, z}
ABSTRACTc2 {x, z}

COMPONENTbl {i,y}
COMPONENTb2 {y, o}

CONCRETEstructural pie {i, o, y}

entity example is
port(i: in integer; o: out integer);

end example

architecture structural of example is

component c 1

port (input in integer
output: out integer);

end component
component c2

port (input in integer;
output: out integer)

end component
begin

bl: cl port map(i,y);
b2:c2 port map(y,o);

end structural

entity cl is

port (x: in integer; z: out integer);
modifies z
sensitive to z’event
requires i ();
ensures 01(x, zpost);

end cl

entity c2 is

port (x: in integer; z: out integer);
modifies z
sensitive to z’event
requires
ensures 02(x, zposl);

end c2

FIGURE 9 Specification of two components connected serially.

192 P. BARAONA AND P. ALEXANDER

The transformation performed by an architec-
ture is defined from the components comprising it.
Formally, the component requirements for el and
e2 are defined as:

Vx: integer, z: integer. 11 (x) O1 (x, z’post)
Vx: integer, z: integer. I2(x) 02(x, z’post)

The renaming defined by the architecture that is
used to create the component state from the
abstract state of an architecture can also be
applied to these two equations. In this example,
this renaming defines the following logical require-
ments for bl and b2:

Vi: integer, y: integer, h(i) = 01(i,y’post)
Vy: integer, o: integer. I2(y) = O2(y,o’post)

The renaming function is also applied to the
modifies, state and sensitive to clause of el and e2.
After this renaming, the logical definitions of each
component are expressed in the same name space
as the concrete state of the system.
Assume that a, b and c are integer constants and

that f(x) and g(x) are functions that satisfy
requirements for el and e2 respectively. Let the
initial concrete state of the system be ,S’0 {i a,
y b, o H c} and let/’event be true and y’event be
false. This means that el’s sensitive to clause is
satisfied and el’s pre-condition must hold. el will
then make its post-condition hold in the next state.
Instantiating the requirements for el gives:

z: integer. I1 (a) = O1 (a, z) (5)

Knowing that f(x) satisfies el’s requirements
and assuming I1 (a) is true implies that O1 (a,f(a)) is
also true. Additionally, y’event is known to be
false so e2 maintains its state and o does not
change in the next state. Thus, one potential next
state for this system is $1 {iHa, yf(a),
o -, c}. Because the functionf is one of potentially
many functions satisfying el, we cannot claim that
this is the only possible next state.

Since y changed values from $0 to $1, the
predicate y’event is true in $1. Additionally, did
not change values in $1 implying that /’event is
false in ,5’1. Thus, only component e2 activates in
state $1.
Using the same reasoning used for $1, values for

$2 can be produced. Assuming that f(a) satisfies

I2(f(a)) and knowing g(x) satisfies e2’s require-
ments makes O2(f(a), g(f(a))) true. The input
value has not changed, el maintains its state
implying y does not change, and g(f(a)) satisfies
e2’s output condition. Thus, $2 {i a,yf(a),
og(f(a))} is a potential next state for the
system.
An interesting exercise is defining what happens

when the input value changes between states S0
and S1. Assume that changes value from a to d
making $1 {i -+ d, y f(a), o c}. Now i’event
is true in -1 and both components execute on

values from $1. In this case, $2 {id,yf(b),
o - g (f(a))}. Note the value of o does not change
from the previous example because the next state is
defined only on variables defined in the current
state. Using this model eliminates difficulty caused
by instantaneous feedback and "pipelined" update
functions. VHDI solves this same problem by
allowing an infinite number of delta delays
between changes in the modeled simulation time.

Generating Proof Obligations

The vspEc formal model can be used to verify that
a system’s abstract architecture description satis-
fies the requirements described by the vspEc

specification of the system. This verification
provides evidence that the abstract architecture
description satisfies the abstract vspuc specifica-
tion. Finding such evidence depends on: (1) having
the system requirements I and O; and (2) relating a
concrete state produced by the abstract architec-
ture with the abstract state specified for the system.
A system’s vs,uc description provides I and O.
The abstraction function from the concrete to the
abstract state provides the means for comparing
the abstract and concrete states.

ABSTRACT ARCHITECTURE REPRESENTATION 193

Weak bisimulation [19] is used as the correctness
criteria when attempting to verify that an abstract
architecture satisfies a VSPEC description. As shown
in Figure 10, weak bisimulation requires that some
sequence of state changes in the concrete state of
the system result in the correct single state change
in the abstract state. Only the first and last of the
concrete states are significant. The system may
pass through any concrete state as long as the
abstraction function applied to the final concrete
state results in the correct abstract state as defined
by the abstract specification.

In csP, the sequence of states a VSPEC entity
passes through is called a trace. A csP trace of
process P is a finite sequence of symbols represent-
ing the events processed by P. vspEc events are
changes in state and they are represented in a trace
by the state the entity changes to. Thus, a vsPEc

entity satisfies the weak bisimulation criteria if two
conditions hold for all traces of the abstract
architecture. The first condition is that the
abstraction function applied to the initial element
of each trace must result in an abstract state that
satisfies the abstract pre-condition. The second
condition is that the final element of each trace
must either have an abstract projection that
satisfies the abstract post-condition or there must
be some legal sequence of states that can be
appended to the trace to form another trace. This
ensures that the concrete state eventually reaches a
state where the abstract specification is satisfied.
Weak bisimulation is a useful criteria for

evaluating an abstract architecture decomposition
of many systems. However, weak bisimulation

may not be suitable for all systems. Some systems
may require more than just the first and last states
of the abstract and concrete traces to be equiva-
lent. Defining other correctness criteria for vsPEc

abstract architectures is currently an open area of
research.

EXAMPLES

This section presents two examples that illustrate
how vsPEc can be used to describe an abstract
architecture. The first example is a simple tri-state
buffer description that is used to define a simple
two input multiplexor. This example illustrates
what happens when multiple sources drive a single
value in a VSPEC abstract architecture. The second
example is the description of a simple CPU called
the Move Machine. This example illustrates shows
a VSPEC description that is decomposed into an
abstract architecture.

Buffer and Multiplexor Example

A VSPEC description of a simple buffer is shown in
Figure 11. In this example, input and output are
both integers, but the specification could also be
used if input and output were of any other type.
When control is true, this device passes input to
output. When control is false, the device places no
requirements on the value of output in the next
state. The specification allows for output to
maintain its current value in the next state, but
the specification also allows an external device to

Abstract ,e

Concrete ,tato

FIGURE l0 Concrete state changes associated with a single
abstract state change.

entity buffer is

port (input: in integer;
control: in boolean;
output: out integer);

sensitive to control’event or input’event;
ensures control implies output’post input;

end buffer;

FIGURE 11 VSPEC description of a simple buffer.

194 P. BARAONA AND P. ALEXANDER

change the value of output. Consider using this
buffer as a component in the abstract architecture
description of the multiplexor in Figure 12.

This figure shows both a vspEc description of a
multiplexor as well as a refinement of this
description into an abstract architecture. The
vspEc entity mux is a straightforward description
of a multiplexor. The struet architecture uses two
instances of buffer and a not gate to decompose the
multiplexor into an abstract architecture.

Careful examination of this description reveals a
very subtle but important point about vspc

specifications and multiply driven signals. If a
component description does not restrict the value
of an output signal in the next state, other
components in the system can still change the
value of this signal without violating the compo-
nent description. Suppose that the concrete state
of the architecture is:

CONCRETEstructmux {inl 7, in2 3,
select true,
output 7,
select_inv false}

so that the abstract state of buffer instance bl is:

ABSTRACTb {input - 7, control -+ true,
output 7}

Assume that some external device changes the
select input to false. This causes buffer instance
bl’s control input to change to false which
activates the buffer. This device must now make
its ensures clause true in the next state. Since
control is false, the ensures clause will be true in the
next state for any value of output. Thus, buffer
instance b2 can change the output signal of the
architecture to 3 without violating bl’s specifica-
tion. The next state of the device is:

CONCRETEstructmux {inl 7, in2 H 3,
select false,
output - 3,
select_inv -, true}

Thus, the output signal has changed values even
though the bl buffer instance does not cause it to
do so. Even though bl does not force a change in
state, it does not prohibit one either. An external

entity mux is

port (inl, in2: in integer;
select: in boolean;
output out integer)

sensitive to in1’event or

in2 event or select event
e11sures

(select and output’post inl) or
(not select and output ’post in2)

end mux;

mIX

architecture struct of mux is
component buffer
port (input" in integer;

control in boolean;
output out integer)

end component
component not

port (input in boolean;
output: out boolean)

end component
signal select_inv boolean;

begin
bl buffer

port map(inl ,select, output)
b2: buffer

port map(in2, select_inv, output
nl not

port map(select,select_inv)
end struct

FIGURE 12 vsec and abstract architecture description of a two input mux.

ABSTRACT ARCHITECTURE REPRESENTATION 195

device (buffer instance b2) has caused the output
signal to change values. The specification of bl
allows this change to occur.

This description may not seem correct to an
experienced VHDL user because the output signal is
driven by two sources, but no resolution function
is specified. Although this is illegal in VHDL, it is
allowed in VSPEC. In most cases, the csP statement
that defines a vspE entity’s contribution to the
next state of the system will define a single value
for every signal, but a vsPc description may allow
more than one value for a specific signal. This is

legal vsec because vsPc is a specification
language, not a simulation language like VHDL.

This implies that a vsPc specification does not
need to deterministically define a single value for
every signal in the system. It is certainly possible to
do this with vspEc by defining the requirements of
resolution functions, but a vspc specification
could allow a signal to be driven to two (or more)
different values. In these cases, a designer im-
plementing the specification may chose to drive the
signal to any of its allowed values.

The Move Machine

A more complex example is the specification of a
Move Machine [22]. The Move Machine is a

simple CPU that moves data from one memory
location to another. It uses four instructions:
jump, load register from memory, store register
to memory, and halt, and four addressing modes:
absolute, immediate, indirect and relative.
Although the Move Machine is a simple device,
its structure reflects how a more complex system
might be represented.
The first step in specifying the Move Machine is

representing it as a simple instruction interpreter
(Fig. 13). At this level, only one vspc annotated
entity describes the execution of each instruction
and addressing mode. This entity contains state
variables to store the current register contents and
the value of the instruction pointer. The sensitive
to clause states that the machine activates when its
start or reset input is on or when the value of the

instruction pointer changes. The rather complex
ensures clause predicate defines how the machine
behaves for each instruction and addressing mode.
An external entity would use this component by
first applying the reset signal and then the start
signal. This causes the machine to begin executing
the instruction in memory location 0. The result of
each instruction (except halt) cause the contents of
the instruction pointer to change which activates
the machine again in the next state. This continues
until a halt instruction is processed, causing the
machine to stop.
One thing to note about this specification is the

use clause on the first line. In VHDL, types and
functions can be declared in separate packages.
These packages are then included in entity and
architecture descriptions with the use clause. The
mm_types package referenced in this example is
shown in Figure 14. An interesting aspect of this
package is the use of incomplete types to specify
address and word. VHDL uses incomplete types to
allow references to a type before the type is
completely defined (such as in an access type). One
use of this is to allow a record to contain a pointer
to another record of the same type (i.e., to
construct a list).

In VSPEC, incomplete types are used for a slightly
different purpose. The type definitions for address
and word are incomplete because no implementa-
tion is defined. They are declared to be types, but
no additional information is provided. These
incomplete types will be given characteristics by
the specification, but no specific implementation is

implied or mandated. Thus, the designer must
select an implementation at a lower abstraction
level. Using incomplete types allows the designer
to specify a type’s characteristics without specify-
ing its implementation.
The characteristics of the address and word types

are defined in the LSL Instruction trait. This trait is
included in mm_types using a VSPEC includes clause
and the trait is shown in Figure 15. The Instruction
trait provides definitions for conversion functions
that allow instructions, register numbers and
addresses to be obtained from memory words. In

196 P. BARAONA AND P. ALEXANDER

use work.mm_types.all;
entity mm is

port (reset,start in boolean;
mem: inout memory);

state (ip address;
reg regfile);

sensitive to start or reset or

ip’event;
ensures

(reset and ip’post O) or

(not reset and

or (ins(mem(ip)) store and

((am(mem(ip)) ab and

mem(addr(mem(ip)))’post
reg(rnum(mem(ip)))) or

(am(mem(ip)) imm and
mem(ip +I)
reg(rnum(mem(ip)))) or

(am(mem(ip)) ind and

mem(mem(addr(mem(ip))))
reg(rnum(mem(ip)))) or

(am(mem(ip)) rel and
mem(ip + addr(mem(ip)))
reg(rnum(mem(ip)))))))

((ins(mem(ip)) jump and

ip ’post=addr(mem(ip)

or (ins(mem(ip)) load and

((am(mem(ip)) ab and

reg(rnum(mem(ip)))’post
addr(mem(ip))) or

(am(mem(ip)) imm and

reg(rnum(mem(ip)))’post
mem(ip +1)) or

(am(mem(ip)) ind and
reg(rnum(mem(ip)))’post
mem(addr(mem(ip)))) or

(am(mem(ip)) rel and

reg(rnum(mem(ip)))’post
mem(ip + addr(mem(ip))))))

and ((ins(mem(ip)) store or

ins(mem(ip)) load) and

((am(mem(ip)) /= imm and

ip’post ip’post+l)
or (am(mem(ip)) imm and

ip’post ip’post+2))));
end mm;

FIGURE 13 The Move Machine requirements represented as an instruction interpreter.

package mm_types is

type address;
type word;
includes Instruction(word,address,integer);
type control is (fetch,decode,execute,halt);
type memory is array(O to 256) of word;
type regfile is array(O to 15) of word;

end mm_types;

FIGURE 14 Package declaring types used in the Move
Machine.

the final format of the Move Machine instructions
(not shown in this paper), this would be imple-
mented by defining which bits of a memory word
encode the instruction, register number and
address. However, when specifying the initial
requirements of the device, such details should

not be considered. All that must be specified is that
instructions, register numbers and addresses can
be obtained from memory words. This is exactly
what the LSL description allows us to say.
Once the Move Machine’s initial requirements

are defined, the device can be broken up into an
abstract architecture and each of the components
can be synthesized individually. For a CPU such
as the Move Machine, one such architecture is the
canonical fetch-decode-execute structure. An
instruction is retrieved, the addressing modes are
decoded and dereferenced, and the instruction is
executed on its operands. Effectively, the Move
Machine is now three components that execute in
sequence.

Figure 16 shows the fetch-decode-execute
architecture for the Move Machine. The signals

ABSTRACT ARCHITECTURE REPRESENTATION 197

FIGURE 15

Instruction(W,A,N) trait

includes
Natural (N)
mode enumeration of abs, imm, ind, tel

instruction enumeration of halt, jump, load, store

introduces
am: W -* mode

addr: W -* A
ins: W-* instruction

rnum: W -* N

isL support functions for treating memory contents as instructions. Basic types and conversions are defined.

mere, reg, IP, IR, EA and CNTL exchange
memory, registers and control values between
components. The requires and ensures clauses for
each component describe transformations per-
formed on memory and register values while the
sensitive to clauses uses the control value indicates
what component(s) should be active.
Each component’s sensitive to clause indicates

that it should be active when its execution phase
begins. As with the instruction interpreter, the
machine starts by turning on the reset signal. This
causes the fetch component to activate and sets the
instruction pointer to 0. After reset turns off, all
components are inactive until the start signal is
asserted. Feteh’s sensitive to clause is the only
sensitive to clause satisfied by this action, so fetch is
the only component that activates. All other
components have no affect on the concrete state
of the architecture. The fetch component retrieves
the current instruction from memory and places it
in the instruction register (IR). It also sets the entl

signal to decode.
The only component whose sensitive to clause is

satisfied at this point is decode. This component
calculates the effective address based on the
addressing mode specified by the instruction in
the IR and sets the cntl signal to execute. The
execute component then manipulates the registers
and memory based on the current instruction.
When a load, store or jump instruction is executed,
execute sets the cntl signal to fetch which causes

the fetch component to activate and the process
starts again. If the halt instruction is processed,
execute sets cntl to halt. This makes all three

component’s sensitive to clauses false and the
concrete state of the architecture does not change
again until something (such as activating reset)
outside of mm changes it.

RELATED WORK

Software Architecture

The research area most closely related to abstract
architecture representation in vsPEC is software
architecture [8]. Research in this field has led to the
development of several architecture description
languages, including UniCon [23], WRIUT [3, 4]
and RAPIDE [16, 17]. Each of these languages allow
the definition of components and connectors to
define a software architecture. This is similar to the
VI-IDL notion of a structural architecture described
in this paper.

Shaw’s UniCon language [23] is one example of
an architecture description language. A UniCon
description consists of component and connector
definitions. Each of these definitions gives the type
(such as Filter or Process for components and Pipe
or FileIO for connectors), association units

(component players and connector roles) and an

implementation for the component or connector.
The primary product of the UniCon compiler is

Odinfiles, something similar to makefiles that can

be used to construct executables for the described
architecture. Thus, one of the main products of a

UniCon description is a facility that is used to
construct an executable version of the described

198 P. BARAONA AND P. ALEXANDER

use work.mm_types.all;
architecture mm_fde of mm is

component fetch
port (reset,start in boolean;

mem: in memory;
ip inout address;
ir out word;
cntl: inout control);

end component;
component decode

port (mem: in memory;
ip: in address;
ir: in word;
ea: out address;
cntl: inout control);

end component;
component execute
port (mem: inout memory;

reg: inout registers;
ea: in address;
cntl: inout control);

end component;

signal CNTL: control;

signal IP address;
signal IR word;
signal EA address;
signal reg regfile;

begin
bl: fetch port map (reset,start,

mem,IP.IR,ntl);
b2: decode port map (mem,IR,EA,CNTL);
b3: execute port map (mem,reg,EA,CNTL);

end mm_fde;

use work.mm_types.all;
entity fetch is

port(reset,start in boolean;
mem: in memory;
ip inout address;
ir out word;
cntl: inout control);

sensitive to start or reset or

cntl=fetch;
modifies ir,cntl;
requires true;
ensures

(reset and ip’post 0)
or (not reset and
ir’post=mem(ip)
and cntl’post=decode);

end fetch;

use work.mm_types.all;
entity decode is

port (mem: in memory;
ip: in address;
ir: in word;
ea: out address;
cntl: inout control);

sensitive to cntl=decode;
modifies ea,ntl;
requires true;
ensures

((Rm(ir) ab and

ea’post=addr(ir)) or
(am(ir) imm and

ea ’post=ip+l) or
(am(Jr) ind and

ea’post=mem(addr(ir)) or
(am(Jr) rel and

ea post=ip+addr(ir))
and cntl’post=execute;

end decode;

use work.mm_types.all;
entity execute is

port(mem: inout memory;
ip: inout address;
it: in word;
reg: inout regfile;
ea: in address;
cntl: inout control);

sensitive to cntl=execute;
modifies mem,reg,ip,cntl;
requires true;
ensures

(ins(Jr) jump and
ip’post=addr(ir) and

cntl’post=fetch)
or (ins(Jr) load and

reg(rnum(ir)) ’post=mem(ea) and
cntl ’post=fetch and

((am(ir) imm and

ip’post ip+2) or

(am(ir) /= imm and

ip’post ip+l)))
or (ins(Jr) store and
mem(ea)’postmreg(rnum(ir)) and

cntl’post=fetchand
((am(ir) imm and

ip’post ip+2) or
(am(ir) /= imm and
ip’post ip+2)))

or (ins(ir) halt and
cntl’post=halt);

end execute;

FIGURE 16 High level fetch-decode-execute architecture for the Move Machine CPU.

ABSTRACT ARCHITECTURE REPRESENTATION 199

architecture. This is very different from a VSPEC

abstract architecture, which is used to verify that
the class of solutions defined by the architecture
implements the requirements specified by the VSPEC
description of the component.
The WRnx architecture description language

[3, 4] by Allen and Garlan is of particular interest
when discussing abstract architectures in VS’EC. A
WRIGHT description consists of a collection of
components interacting via instances of connector
types. Each part of a WRIGHT description is
defined using a variant of csp [11]. Unlike VSPEC’S
use of csp to define only communications between
components, WRIanX descriptions use csp to
define the behavior of components as well.
WRIUX’S CSP descriptions define the sequence of
events that occur in a component or connector.
Components and connectors interact when one
component/connector observes an event provided
by another. This may cause the second compo-
nent/connector to provide events that cause further
interactions. These interactions are all described
using csP.

RAPIDE [16, 17] is an executable architecture
description language designed for prototyping
architectures of distributed systems. A RAPIDE
architecture consists of a set of module specifica-
tions (called interfaces), a set of connection rules
defining communication between interfaces and a
set of formal constraints that define legal patterns
of communication. A RAPIDE architecture is
executed to produce a partially ordered set of
events (poset) that represents the dependencies
between events inthe architecture. The RAPIDE
tools can then verify this poset does not violate
the formal constraints defined in the architecture.
A major difference between RAPIDE and VS’EC is
that VS’EC descriptions are not executable. They
are intended for formal analysis.

Other VHDL-Related Specification Languages

Odyssey Research Associates (ORA) is developing
Larch/vii)i, an alternative Larch interface lan-
guage for vn)I [13]. Larch/vIDL is targeted for

formal analysis of a vi-iii description and ORA is
defining a formal semantics for vn using s.
The isi representations are used in a traditional
theorem prover to verify system correctness.

Larch/vm)L annotations are added to a specific
vu description to represent proof obligations for
the verification process. In contrast to this
approach, a VS’EC abstract architecture represents
the requirements of a class of solutions that satisfy
a specification (also given in VS’EC).

Augustin and Luckham’s VA [6] is another
attempt to annotate vu). The purpose of a VA

annotation to a vut)L description is to document
the design for verification. VA provides mechan-
isms for mapping a behavioral description to a
structural description. Two VA/VU) descriptions
of a design can be transformed into a self-checking
vI4i program that is simulated to verify that the
two descriptions implement the same function.
This differs from VSpEC because it does not allow
the description of a class of solutions that
implement a specification. Instead, it allows the
verification that a structural description correctly
maps to a behavioral description for the entity.

Larch Interface Languages

Larch interface languages have been developed for
a variety of programming languages, including Lc
[9], Larch/C + + [15] and LM3 [14], interface
languages for C,C+ + and Modula-3, respec-
tively. Each of these languages allow the descrip-
tion of the pre- and post-conditions for procedures
and functions in a sequential programming lan-
guage. The portions of these languages that allow
this type of specification (i.e., requires, and ensures

clauses) are also found in VSpEC, where they are
used to specify the transformation performed by a

single component. However, since C,C + + and
Modula-3 are sequential languages, their Larch
interface languages do not have to deal with how
the Larch-specified procedures and functions
interact when two procedures are executing con-
currently as is the case with VSPEC entities. At the
present time, we are not aware of other work in the

200 P. BARAONA AND P. ALEXANDER

Larch community where pre- and post-conditions
are used to specify the behavior of components in
an abstract architecture.

CONCLUSION

Summary

The ability to evaluate architectural decisions early
in the design process enhances overall design
quality by allowing architectural errors to be
discovered when they are less expensive to fix.
Unfortunately, VHUL does not allow evaluation
until a simulatable model exists. For many
complex systems, simulatable models appear late
in the design process making architectural errors
difficult to correct. An alternative to simulation for
evaluating architectural decisions is formal analy-
sis of abstract architectures at the requirements
level. An abstract architecture is a set of inter-
connected components where the requirements of
each component are known but the implementa-
tion is not. This paper presented YSPEC’S support
for describing and evaluating abstract architec-
tures during requirements specification.
A vspEc abstract architecture is formed by

instantiating each component in a VHuL structural
architecture with a vseEc entity. The vsPc

description of an entity includes a pre-condition,
post-condition and an activation condition that
describe the entity’s functional requirements. If the
current state of the system satisfies the activation
condition for one of the components in the
abstract architecture, that component’s pre-condi-
tion must hold and the component must satisfy its
post-condition in the next state. A refinement of a

vsec entity can be compared with the vsec
specification using weak bisimulation. If some

sequence of state changes in the refinement yields
the correct single state change in the higher-level
description, weak bisimulation holds. This method
can be used to formally determine if a vsPec

abstract architecture is a refinement of the vsPEc

description of the entity it implements.

Status and Limitations

VSPEC provides a specification capability most
appropriate for high levels of abstraction. It is
anticipated that designers will represent system
requirements with VSPEC, gradually refining re-

quirements into architectures and eventually a

VHUL design. During requirements specification
when a designer is defining the essential require-
ments of a system, VSeEC is useful for evaluating
the impact of architectural decisions. When design
details are available, VHUL simulation is a more

suitable analysis activity. Although VSPEC can
model design detail, formal analysis is far less
pragmatic than vuuL simulation in such situations.
A potential limitation to the VSPEC approach is

verifying the refinement of VSPEC requirements into
VHUL design representations. Formalizing the tie
between VSpEC and vm)t. to support verification and
comparison with simulation results is the subject of
current investigations. In addition, techniques for
automatically synthesizing VHUL from VSPEC are

currently under development [21, 20]. Studies of
error analysis reports for safety-critical software
systems suggest that over 90% of safety related
errors arise from incorrect or incomplete specifica-
tions, not transformation of requirements into

implementations [18]. This suggests that the use of
techniques such as those proposed here are
warranted even before a complete verification path
between VSPEC and VHDL exists.

Acknowledgements

Support for this work was provided in part by the
Advanced Research Projects Agency and moni-
tored by Wright Labs under the RASSP Technol-
ogy Program, contract number F33615-93-C- 1316.
The authors wish to thank our sponsors for their
continued support. We would also like to thank
the reviewers for their comments.

References

[1] Alexander, P., Baraona, P. and Penix, J. (1994). Using
Declarative Specifications and Case-Based Planning for

ABSTRACT ARCHITECTURE REPRESENTATION 201

System Synthesis. Concurrent Engineering: Research and
Applications 2, 4.

[2] Alexander, P., Baraona, P. and Penix, J., Application of
Software Synthesis Techniques to Composite Systems. In:
Computer in Engineering Symposium of the ASME ETCE
(Houston, TX, January 1995).

[3] Allen, R. and Garlan, D., Formalizing Architectural
Connection. In: Proc. Sixteenth International Conference
on Software Engineering (May 1994), pp. 71 80.

[4] Allen, R. and Garlan, D., The wright architectural
specification language. Tech. Rep. CMU-CS-96-TBD,
Carnegie Mellon University, September 1996, Draft.

[5] Ashenden, P. (1996). The Designers Guide to vI4m,
Morgan Kaufmann Publishers, Inc., San Mateo, CA.

[6] Augustin, L., Luckham, D., Gennart, B., Huh, Y. and
Stanculescu, A. (1991). Hardware Design and Simulation in
VAL/VI-Im, Kluwer Academic Publishers, Boston, MA.

[7] Baraona, P., Penix, J. and Alexander, P. (1995). VSEAC: A
Declarative Requirements Specification Language for
VHDL. In: High-Level System Modeling." Specification Lan-
guages, Berge, J.-M., Levia, O. and Rouillard, J., Eds., Vol. 3
of Current Issues in Electronic Modeling. Kluwer Academic
Publishers, Boston, MA, Ch. 3, pp. 51- 75.

[8] Garlan, D. and Shaw, M. (1993). An Introduction to
Software Architecture. In: Advances in Software Eng. and
Knowledge Eng., Ambriola, V. and Tortora, G., Eds., Vol.
2, World Scientific, New York, pp. 1- 39.

[9] Guttag, J. V. and Homing, J. J., Introduction to LCL, A
Larch/C Interface Language, Tech. Rep. 74, Digital
Equipment Corporation Systems Research Center, 130
Lytton Avenue, Palo Alto, CA 94301, July 1991.

[10] Guttag, J. V. and Homing, J. J. (1993). Larch." Languages
and Tools for Formal Specification, Springer-Verlag, New
York, NY.

[11] Hoare, C. A. R. (1985). Communicating Sequential
Processes, Prentice-Hall, Englewood Cliffs.

[12] IEEE Standard wI)I Language Reference Manual, New
York, NY (1994).

[13] Jamsek, D. and Bickford, M., Formal Verification of
vHrl Models. Technical Report RL-TR-94-3, Rome
Laboratory, Griffiss Air Force Base, NY, March 1994.

[14] Jones, K. D., LM3: A Larch Interface Language for
Modula-3. A Definition and Introduction. Version 1.0.
Technical Report 72, DEC Systems Research Center, June
1991.

[15] Leavens, G. T. (1995). Larch/C+ + Reference Manual.
Available at: ftp://ftp.cs.iastate.edu/pub/larchc + +/lcpp.
ps.gz.

[16] Luckham, D., Kenney, J., Augustin, L., Vera, J., Bryan,
D. and Mann, W., Specification and Analysis of System
Architecture Using Rapide. IEEE Transactions on Soft-
ware Engineering 21, 4 (April 1995), 315-355.

[17] Luckham, D. and Vera, J., An Event-Based Architecture
Definition Language. IEEE Transactions on Software
Engineering 21, 9 (September 1995), 717-734.

[18] Lutz, R. (1992). Analyzing software requirements errors in
safety-critical embedded systems. Tech. Rep. 92-27,
Department of Computer Science, Iowa State University.

[19] Milner, R., Tofte, M. and Harper, R. (1990). The
Definition of Standard ML. MIT Press, Cambridge, MA.

[20] Penix, J. and Alexander, P., Design representation for
automating software component reuse. In Proceedings of
the First International Workshop on Knowledge-Based
Systemsfor the (re) Use ofProgram Libraries (Nov. 1995).

[21] Penix, J., Baraona, P. and Alexander, P., Classification
and retrieval of reusable components using semantic
features. In: Proceedings of the lOth Knowledge-Based
Software Engineering Conference (Nov. 1995), pp. 131
138.

[22] Roy, J., Kumar, N., Dutta, R. and Vemuri, R., DSS: A
Distributed High-Level Synthesis System. IEEE Design
and Test of Computers (June 1992), 18- 32.

[23] Shaw, M., Deline, R., Klein, D., Ross, T., Young, D. and
Zelesnik, G., Abstractions for Software Architecture and
Tools to Support them. IEEE Transactions on Software
Engineering 21, 4 (April 1995), 314-335.

Authors’ Biographies

Phillip Baraona is a Computer Engineering Ph.D.
candidate at the University of Cincinnati. The
topic of his dissertation research is formally
defining the semantics of the vsPEc language. This
research has led to an interest in topics such as
formal specification languages, process algebras,
software synthesis and hardware verification.
After receiving a B.S. in Computer Engineering
from the University of Cincinnati in 1992. Mr.
Baraona began working in his current position as
a research assistant in UC’s Knowledge-Based
Software Engineering Lab. Mr. Baraona is a
member of IEEE and ACM.

Perry Alexander received the Ph.D. in Electrical
and Computer Engineering, the MSEE, BSEE and
BSCS from the University of Kansas, Lawrence,
KS. He is an assistant professor of Electrical and
Computer Engineering and Computer Science and
director of the Knowledge-Based Software En-
gineering Laboratory at the University of Cincin-
nati. His research interests include design theory,
software synthesis, formal specification, formal
verification, and software reuse. Dr. Alexander is a
member of IEEE, ACM and currently serves as the
chair of the IEEE ECBS Technical Committee
working group on Systems Evaluation.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

