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Abstract 

Heparan sulfate proteoglycans (HSPGs) are cell adhesion molecules that have 

been shown to be involved in a myriad of different aspects of development such as 

embryogenesis, dorsal-ventral axon guidance and cell migration. Despite knowing the 

phenotypes caused by mutations in HSPGs, little is known about the ligands working 

with HSPGs during development. Identification of HSPG ligands will provide insight 

into how HSGPs function during embryogenesis and later in neural development. 

Chapter II describes two Caenorhabditis elegans cell adhesion proteins SDN-

1/Syndecan and PTP-3/LAR-RPTP as important regulators of polarization and cell 

migration during embryogenesis. Loss-of-function (LOF) mutations in either ptp-3 

or sdn-1 resulted in low penetrance embryonic developmental defects. We used 

double mutant analysis to test whether ptp-3 and sdn-1 function in a linear genetic 

pathway during C. elegans embryogenesis and found that double mutants of sdn-1 

and ptp-3 exhibited a highly penetrant synthetic lethality (SynLet), with only a small 

percentage of animals surviving to adulthood. Analysis of the survivors 

demonstrated that these animals had a synergistic increase in the penetrance of 

embryonic developmental defects. Taken together, these data strongly suggested 

that PTP-3 and SDN-1 function in parallel during embryogenesis. We subsequently 

used RNAi to knockdown the function of ~3,600 genes predicted to encode secreted 

and/or transmembrane molecules to identify genes that interacted with ptp-3 or 

sdn-1. We found that the Wnt ligand, lin-44, was SynLet with sdn-1 but not ptp-3. We 

used 4-dimensional time-lapse analysis to characterize the interaction between lin-

44 and sdn-1. We found evidence that loss of lin-44 caused defects in the polarization 
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and migration of endodermal precursors during gastrulation, a previously 

undescribed role for lin-44 that is strongly enhanced by the loss of sdn-1. 

In chapter III the interaction between SDN-1, LIN-44 and EGL-20 during 

DD/VD (Dorsal D-type and Ventral D-type motorneurons, respectively) axon 

outgrowth and termination is described. Double mutant analysis between sdn-1, lin-

44 and egl-20 suggests SDN-1 acts extrinsically to inhibit the activation of BAR-1/β-

catenin during axon outgrowth of the D-type motorneurons specifically, DD6 and 

VD13.  Then SDN-1 acts intrinsically within the Wnt signaling pathway to ensure 

proper outgrowth termination of those axons. These results show for the first time 

that the same Wnt signaling pathways are both positively and negatively regulated 

by SDN-1 during axon growth.   

Altogether, our genetic analysis suggest that axon outgrowth and termination 

occurs in two steps with Wnt ligands acting with SDN-1 in a combinatorial fashion 

and are not simply working in a parallel manner as previously reported.  
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 Predictions indicate that around 20-30% of the human genome encodes for 

proteins that are present in the extracellular matrix (ECM) [1, 2]. Predictions for 

other organisms are similar, suggesting that these numbers are accurate [3, 4]. 

Understanding how the proteins present in the ECM function during development in 

a spatio-temporal manner is vital to understanding how these same molecules can 

contribute to different developmental diseases such as, osteogenesis imperfecta, 

Ehlers-Danlos Syndromes, Marfan syndrome, fibrosis, chondrodysplasias and some 

cancers [5]. 

Secreted and transmembrane molecules have multiple roles in the 

development and maintenance of all cell types.  Proteins present in the ECM provide 

adhesion and support as well as positional and instructional cues to cells 

throughout development, particularly during nervous system development. 

Through the ECM and particularly with the help of cell adhesion molecules, cells are 

able to gather and respond to extracellular cues that are critical for cell 

differentiation and migration. During nervous system development, when a neuron 

has migrated to the correct position it must then respond to more instructional cues 

in order to extend an axon to the proper location and form a synapse. The dynamics 

of the ECM are tightly regulated to ensure proper development. Abnormal ECM 

dynamics can lead to improper cell processes that can in turn lead to disease [5]. 

The ECM is a heterogeneous network that allows for cellular communication 

and is comprised of interlocking fibrous proteins and glycoproteins. The basal 

lamina, or basement membrane of the ECM is of particular importance because it 

provides an attachment substrate for cells during development. The composition of 
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the basal lamina varies upon developmental timing and location, but it is mainly 

composed of laminins, collagens, nidogens and heparan sulfate proteoglycans 

(HSPGs) [2]. These proteins not only provide trophic support and adhesion but 

positional and instructional cues as well.  

 

Cell adhesion molecules (CAMs) provide multiple functions during the 

development and homeostasis of an organism.  

 Research on molecules present in the ECM has identified cell adhesion 

molecules as a class of proteins that are needed for multiple critical aspects of 

development [6]. Cell adhesion proteins allow cells to communicate with one 

another and their surrounding environment. They control the complex signaling 

pathways in which alterations can lead to substantial changes in cell behavior 

including division, differentiation and migration.  

 LAR/PTP-3 and syndecan/SDN-1 [7-9], among others, have been identified 

to contribute during embryonic development and later to neural development. 

LAR/PTP-3 is a member of the type IIa family of tyrosine phosphatases [10]. LAR 

family members, including C. elegans PTP- 3, are involved in epidermal closure, axon 

guidance and synaptogenesis [9, 11-14]. Additionally, the cell-surface associated 

HSPGs, syndecans have been implicated in a broad range of developmental events 

such as, epidermal closure, ventral neuroblast migration, axon guidance and neuron 

migration [15-17]. In this work I will discuss our findings regarding the interaction 

of ptp-3 and sdn-1 during embryogenesis and how their synthetic lethal (SynLet) 
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relationship can help to identify other potential genes involved in embryonic 

development.  

 We found that ptp-3 and sdn-1 function in parallel signaling pathways during 

C. elegans embryogenesis. ptp-3; sdn-1 double mutants exhibit a highly penetrant 

SynLet phenotype, with development arresting during embryogenesis or in the first 

larval stage (L1). We conducted an RNAi screen using the SynLet phenotype to 

identify potential ptp-3 and sdn-1 interactors from a library of clones encoding for 

molecules either attached to the membrane or secreted into the extracellular space. 

One candidate gene, lin-44 displayed a strong SynLet phenotype with sdn-1 but not 

ptp-3.  Further analysis showed that lin-44 works in the same pathway as ptp-3 

during early gastrulation events and in parallel to sdn-1. 

LIN-44 is a member of the highly conserved Wnt family of secreted 

glycoproteins. Wnt signaling has been shown to be involved in neuronal migrations, 

cell polarity, axon guidance and synapse formation along the anterior-posterior (AP) 

axis, all of which are important in neural circuit assembly in C. elegans, Drosophila 

and mice [18-22]. Organisms that have mutations in Wnt pathways exhibit a range 

of developmental defects such as axis duplication, AP  patterning defects, embryonic 

lethality, central nervous system defects, limb defects, and cancers [23, 24].  

 

C. elegans D-type motorneurons as a model for axon outgrowth and 

termination 

Work in Chapter III of this dissertation is centered on understanding how 

SDN-1 and Wnt signaling genetically interact during the outgrowth and termination 
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of the DD/VD motorneurons. Wnts provide both long and short range signals that 

contribute to the formation and patterning of complex body structures like the 

metazoan nervous system.  As with other tissues, cells of the nervous system must 

be able to respond to the appropriate cues throughout development.  Alterations in 

this developmental signaling can lead to neurological disorders and even cancer [23, 

24].  Therefore, it is important to understand the signaling pathways that control the 

development and maintenance of the nervous system.   

Like the human nervous system, the C. elegans nervous system consists of 

cells with specific segmental or tiling identity, where some neurons grow to the 

boundary and then terminate growth, while others grow into other segments [25-

28].  This “neighborhood” hypothesis proposed by White et al., 1983 and 1986, 

supposes that C. elegans axons grow by following “neighborhood-specific surface 

molecules as recognition cues” [25, 29]. The conserved family of Wnt ligands 

contribute to the tiling of the nervous system and have been implicated in 

neurological disease and cancer.  Wnt ligands are expressed in a gradient along the 

anterior-posterior (AP) axis of the C. elegans body and are capable of signaling 

through multiple receptors such as the HSPG, Syndecan, among others. In this 

context, Syndecans function as an activator or an inhibitor of Wnt signaling in a cell 

type dependent manner during vertebrate and invertebrate development [30-35]. 

However, in vertebrates and invertebrates we don’t understand how cells of the 

same type are able to respond differently to extracellular cues to form the segmental 

pattern of the nervous system.  
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We utilize the green fluorescently labeled marker, juIs76 in the model 

organism C. elegans to study the effects of disruptions in Wnt signaling and sdn-1 

function to better understand how these genes genetically interact. The juIs76 strain 

contains GFP driven by the GABAergic specific promoter unc-25, which has been 

widely used as a marker for DD/VD motorneurons [36-39]. The C. elegans nervous 

system is made up of 302 neurons. Nematode nervous system development is highly 

conserved with the nervous system development in humans, making it an ideal 

model for studying neurodevelopmental disorders [25]. The same directional 

growth decisions (anterior-posterior and dorsal-ventral) made by neurons in the 

mammalian brain must also be made in C. elegans neural development. The D-type 

motorneuron cell bodies are located along the ventral nerve cord (VNC). The 6 DD 

neurons form during embryogenesis followed by the 13 VD neurons during the 

L1/L2 larval stages. These neurons innervate body wall muscles and are responsible 

for reciprocal inhibition during locomotion. The DD/VD neurons extend a process 

anteriorly, bifurcate and send a process dorsally. Once they reach the dorsal nerve 

cord (DNC), they bifurcate again to send a process anteriorly and posteriorly (Figure 

1.1).  

The work in this dissertation focuses on the development of the two most 

posterior DD/VD cells, DD6 and VD13 (Figure 1.1). In the dorsal nerve cord, the 

DD/VD axons fasciculate to form a bundle with only two axons overlapping at a 

time, terminating at stereotyped positions along the anterior-posterior axis. 

Furthermore, the DD6 and VD13 axon form a bundle in which the DD6 axon 

terminates at the posterior edge of the corresponding cell body on the ventral nerve 
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cord and the VD13 axon extends slightly farther posteriorly, terminating at the 

posterior edge of the VD13 cell body (Figure 1.1) [40]. Despite these data, the 

molecular events underpinning these stereotyped morphologies are not well 

understood. Because of these stereotyped neuronal tracts, the D-type motorneurons 

in C. elegans present an opportunity to study how a neuron differentially responds 

to the same cues for axon outgrowth and termination. 

 

Axon outgrowth is combinatorially controlled by SDN-1 and the Wnt ligands, 

LIN-44 and EGL-20 

 As stated above, during our SynLet genetic screen we identified lin-44 as a 

potential ligand for ptp-3, working in a parallel pathway to sdn-1 [41]. Because of 

this early interaction with lin-44 we sought to determine whether ptp-3 or sdn-1 

interacted with lin-44 in axon guidance.  

LIN-44 is one of five Wnt ligands encoded by the C. elegans genome and is 

expressed primarily in hypodermal cells located in the tail [42-45]. Wnts are one 

family of secreted molecules that serve to pattern the embryo and also provide axon 

guidance cues in later developmental stages [46]. Loss of lin-44 in C. elegans causes 

the DD6 and/or VD13 axons to over-extend into the posterior region of the animal 

(Figure 1.2) [40].  Traditionally, Wnt/LIN-44 was thought to control the 

transcription of target genes via canonical Wnt signaling pathway that includes 

Frizzled/LIN-17, Dishevelled/MIG-5, Axin/PRY-1, GSK3β/GSK-3 and β-

catenin/BAR-1 (Figure 1.3). EGL-20, another posteriorly expressed Wnt ligand was 

previously thought to work in a redundant pathway to ensure proper axon 
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termination due to the synergistic phenotype seen in lin-44;egl-20 double mutants 

[40]. However, in this work we show that the mechanism for axon termination is not 

as simple as a one-to-one parallel pathway and indeed sdn-1 plays a pivotal role in 

the posterior growth and termination of the D-type motorneurons. 

 We found that LOF mutations in sdn-1 caused the DD6 and/or VD13 axons to 

over-extend as well as under-extend. This phenotype was similar to lin-17/Frizzled 

and mig-5/Dishevelled, mutations in the canonical Wnt pathway [40]. Complete LOF 

mutations in sdn-1 suppress the over-extension exhibited in the lin-44 single 

mutants comparable to sdn-1. However, lin-44;sdn-1 double mutants display under-

extension defects similar to those in sdn-1 LOF mutants. These data suggest that sdn-

1 is epistatic to lin-44 in a genetic pathway needed for both axon outgrowth and 

termination. 

 Since egl-20 has been shown to have a synergistic relationship with lin-44 for 

axon termination we analyzed whether sdn-1 interacts with egl-20 [40]. EGL-20 is 

another Wnt ligand that is produced from hypodermal cells located anterior to 

where LIN-44 is expressed. EGL-20 can act as a long range and short range signal for 

Q neuroblast and distal tip cell migration [31, 45]. In contrast to what was 

previously observed in egl-20 mutants, we found that total loss of egl-20 causes the 

axons to over-extend in a higher percentage of animals than in the weak LOF allele. 

This difference is most likely due to the fact a weak LOF allele was used before 

instead of a null allele [40].   Double mutant analysis of sdn-1 and a putative egl-20 

null allele revealed that sdn-1 acts downstream of egl-20 in a pathway that is 
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important for axon outgrowth and that they both have smaller roles in axon 

termination alongside LIN-44. 

 The side chains of SDN-1 are important for axon guidance, cell migration and 

early development [15, 17, 47-52].  After side chain addition by EXT enzymes, the 

chains are modified by an N-deactylase-N-sulfotransferase. Then an epimerase 

(HSE-5) and two sulfotransferases (HST-2 and HST-6) modify the sugar moieties 

that regulate specific receptor-ligand interactions [52, 53].  Single mutants of each 

gene displayed variable phenotypes similar in either under or over-extension to sdn-

1 mutants. When HS modifier genes were mutated in combination with either Wnt 

ligand the HS mutants did not fully recapitulate the phenotypes seen in sdn-1;Wnt 

double mutants. These suggest there may be another proteoglycan and/or 

modifying enzyme involved in these two processes. Further analysis will be needed 

to confirm this hypothesis. 

 Since SDN-1 is expressed in both the nervous system and surrounding 

tissues we sought to determine where SDN-1 is functioning during axon outgrowth 

and termination. We employed the use of two separate Mos-SCI (Mos1 mediated 

Single Copy transgene Insertion) strains, each containing a single copy of the full-

length sdn-1 gene under its endogenous promoter. Both strains were able to rescue 

the under-extension of the axons but not the over-extension, which may be due to 

missing regulatory elements. Next we used a cell specific construct to determine if 

SDN-1 is acting specifically in the DD/VD neurons. We found that at two separate 

concentrations our construct decreased the penetrance of the over-extension 

phenotype but not under-extension as seen with the Mos-SCI strains. 
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 In summary, we created a screening paradigm that allows for the 

identification of signaling molecules that may be missed in traditional forward 

genetic screens. The findings from our screen allowed us to identify a novel function 

for LIN-44 during gastrulation. Based on our later axon guidance studies, we 

determined that SDN-1 and LIN-44 act together along with downstream Wnt 

effectors to ensure proper DD/VD axon outgrowth and termination. By using null 

mutations, we have revealed new insights as to how the original pathways are 

thought to function in these processes. Specifically, we found that LIN-44 and EGl-20 

do not simply function in a one-to-one signaling pathway but function 

combinatorially during these two separate processes. 
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Section 1.1 Figures 

Figure 1.1  
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Figure 1.1 DD/VD GABAergic motorneurons grow to stereotyped positions 

along the anterior-posterior body axis (A) A schematic of the DD/VD 

motorneurons. Blue indicates the approximate location of the six DD motorneurons. 

White indicates the approximate location of the VD motorneurons. (B) The posterior 

most motorneurons, VD12, DD6 and VD13 (asterisks) are visualized with juIs76. The 

arrowhead indicates the termination of the DD6 axon in the dorsal nerve cord. The 

arrow indicates the stereotyped termination point for the VD13 axon at the poster 

edge of the cell bodies located in the ventral nerve cord. 
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Figure 1.2  
  
   

A. 

B. 
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Figure 1.2 LIN-44 and EGL-20 work in parallel pathways for axon termination 

(A) Over-extension defects occur in lin-44(n1792) and egl-20(n585) mutants. The lin-

44(n1792) over-extension is quantitatively more severe than what is seen in egl-

20(n585) (not shown). (B) lin-44(n1792);egl-20(n585) double mutants display the 

most severe over-extension defects suggesting they work in parallel for axon 

termination. wyIs75 [Punc-47::DsRed] was used to visualize the DD/VD 

motorneurons. Arrow indicates stereotyped termination point. Asterisk indicates 

mutant termination point [40].  
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Figure 1.3  
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Figure 1.3 Canonical Wnt signaling pathway in C. elegans (A) In the absence of a 

Wnt ligand the Axin/APC/GSK3β complex phosphorylates β-catenin and targets it for 

degradation. Transcription of Wnt target genes is repressed. (B) In the presence of a 

Wnt ligand, the Frizzled receptor activates Dishevelled which then inhibits the 

Axin/APC/GSK3β complex from phosphorylating β-catenin. β-catenin then builds up 

in the cytoplasm and enters the nucleus to initiate the transcription of Wnt target 

genes.  
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Chapter II 
A synthetic lethal screen identifies a role for lin-44/Wnt in 

Caenorhabditis elegans embryogenesis 
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Section 2.1 Abstract 

Cell adhesion molecules such as the Leukocyte-common antigen related 

receptor, LAR/PTP-3  and the heparan sulfate proteoglycan (HSPG) syndecan, SDN-

1 have been shown to be involved in multiple developmental events, including but 

not limited to neurogenesis in mammals, Drosophila and C. elegans [15, 16, 54-60]. 

Previously, we have demonstrated that the ptp-3B isoform is needed for cell 

migration and proper axon guidance, while the ptp-3A isoform regulates synapse 

formations and lacks other phenotypes associated with alleles common to all ptp-3 

isoforms.  

 Syndecans are short single pass transmembrane proteins with short 

intracellular domains. The extracellular domains are decorated with heparan sulfate 

and chondroitin sulfate side chains and the intracellular domain links to cytoplasmic 

signaling via a PDZ like motif. The C. elegans genome encodes for one syndecan, sdn-

1, which is most similar the human syndecan-2. Syndecan has been shown to bind to 

DLar with high affinity during embryogenesis and synaptic development in 

Drosophila [7, 58]. LAR family members have also been shown to physically and 

genetically interact with HSPGs in Zebrafish trigeminal and Rohon-Beard neuron 

development [61]. In C. elegans, both ptp-3 and sdn-1 have been shown to function 

in multiple developmental events, including but not limited to, cell migration, 

synapse development and axon guidance [7, 15, 47, 62]. 

 We found that in C. elegans ptp-3 and sdn-1 genetically function in parallel, 

and do not simply function in a one-to-one signaling pathway as in other organisms.  
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Although ptp-3 and sdn-1 single mutants each have a low level of embryonic or 

larval lethality ptp-3;sdn-1 double mutants exhibit a highly penetrant synthetic 

lethality (SynLet). The majority of ptp-3;sdn-1 double mutants fail to enclose during 

embryogenesis or arrest during early larval stages. This combinatorial effect 

suggests that ptp-3 and sdn-1 function in parallel pathways essential for 

development.  

 Making use of the commercially available Ahringer RNAi library [63], we 

conducted an enhancer screen to identify secreted proteins using a SynLet 

approach. We screened ~3,600 predicted to encode for proteins present in the 

extracellular matrix or cell membrane using two strains containing a mutation in the 

C. elegans LAR homolog, ptp-3 or the syndecan homolog, sdn-1. Using this reverse 

genetic approach allowed for the identification of genes that may have been missed 

in previous forward genetic screens due to partially penetrant phenotypes and/or 

redundant gene function.  

 Of the genes searched we isolated 25 genes that were SynLet with ptp-3 

alone, sdn-1 alone, both ptp-3 and sdn-1, and with our control strain alone. In 

particular, the Wnt ligand, lin-44 displayed synthetic lethality with sdn-1. We also 

identified defects that have not been previously described in the organization and 

migration of endodermal precursor cells during gastrulation. These defects can be 

enhanced by the loss of sdn-1, suggesting that lin-44 functions in a genetic pathway 

with ptp-3 and in parallel to sdn-1.  
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Section 2.2 Introduction 

Cell adhesion molecules (CAMs) provide multiple functions during the 

development and homeostasis of an organism. In C. elegans, multiple CAMs 

contribute to early embryonic development and loss-of-function (LOF) mutations in 

these can result in cellular, tissue and/or organismal abnormalities [64-67]. 

Interestingly, these molecules often appear to act in semi-redundant ways, where 

input from multiple CAMs are required for the fidelity of a specific developmental 

event [12, 14, 66, 68]. This can be best observed when LOF in a single gene has a 

modest effect on viability, but LOF in two genes in combination can have severe 

effects leading to highly penetrant lethality or arrest. This synergistic effect, known 

as Synthetic Lethality (SynLet), can be harnessed to uncover genetic interactions 

between functional pathways [69-75].  

We and others have previously described developmental defects associated with 

ptp-3, the C. elegans Leukocyte-common antigen related (LAR)-like receptor protein 

tyrosine phosphatase (RPTP) [11-14, 76]. LAR is a member of the type IIa family of 

tyrosine phosphatases [10]. Vertebrates have three type IIa family members; LAR 

(PTPRF), RPTPσ (PTPRD) and RPTPδ (PTPRS) [77]. LAR-like RPTPs have been 

implicated in multiple aspects of nervous system development [78-85]. LAR is also 

required for proper mammary gland development in mice [86] and the LAR 

genomic locus is frequently deleted in breast, colon, and other cancers of epithelial 

origin [87]. Together, the pleiotropic nature of these observations highlights the 
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importance of LAR-like receptor tyrosine phosphatases in organismal development 

and homeostasis. 

LAR-like RPTPs are receptors for extracellular matrix molecules, including 

laminin, chondroitin sulfate proteoglycans and heparan sulfate proteoglycans 

(CSPGs and HSPGs, respectively) [82, 88-90]. In Drosophila DLAR has been shown to 

bind syndecan and glypican, two cell-surface associated HSPGs [7, 58], consistent 

with reports from vertebrates demonstrating that LAR binds HSPG molecules [88, 

90]. LAR family members have also been shown to physically and genetically 

interact with HSPGs in Zebrafish trigeminal and Rohon-Beard neuron development 

[61]. Importantly, Drosophila genetic studies, in addition to mammalian sensory 

neuron explant assays demonstrate that competition between distinct HSPG/CSPG 

ligands for LAR-like RPTPs can exert opposing effects on neural development [7, 

90]. 

Syndecans are cell-surface associated HSPGs that have been implicated in a 

broad range of developmental events, and have been linked to the modulation of 

several secreted morphogens including Wnts and Fibroblast Growth Factors (FGFs) 

[91-98]. The extracellular domain of syndecans can be post-translationally modified 

with HS- or CS-side chains and the intracellular domain can interact with 

cytoplasmic signaling effectors via a PDZ binding motif. The C. elegans genome 

encodes a single syndecan, SDN-1, which, by sequence, is most similar to human 

syndecan-2 (SDC2) [15, 31, 99].  

Here we provide genetic evidence that ptp-3B and sdn-1 function in parallel 

signaling pathways during C. elegans embryonic development. ptp-3; sdn-1 double 
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mutants exhibit a highly penetrant SynLet phenotype, with development arresting 

during embryogenesis or in the first larval stage (L1). A small percentage of animals 

do progress to adulthood, but exhibit sterility or low fecundity with all offspring 

arresting during development. 

Using an RNAi library comprised primarily of predicted secreted proteins, we 

screened for genes that exhibited a SynLet phenotype with worms homozygous for 

either ptp-3 or sdn-1 LOF mutations. From a screen of 3,652 clones, we isolated 25 

candidate SynLet genes, and several additional candidate genes displayed an 

increase in lethality or slow growth phenotype in either the ptp-3 or sdn-1 

background, but did not meet our threshold criteria for synthetic lethality. Among 

the candidate genes, we found that the Wnt ligand, lin-44, was strongly SynLet with 

sdn-1, but not ptp-3. Using a time-lapse microscopy approach we found defects in 

the ingression of the endodermal precursor cells Ea and Ep in lin-44 mutants. This 

phenotype was significantly enhanced when sdn-1 was also removed. This is the 

first data indicating that LIN-44 contributes to gastrulation events in C. elegans and 

demonstrates the power of using double mutant analyses to uncover novel roles for 

well-characterized genes. 
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Section 2.3 Results 

Dual loss of ptp-3 and sdn-1 results in synthetic lethality 

Both ptp-3 and sdn-1 have previously described roles in C. elegans embryonic 

development [12, 14-16]. The ptp-3 locus encodes three distinct transcripts, each 

with independent promoters [11] (Figure 2.1). Mutations in ptp-3B exhibit a low 

level of embryonic (Emb) and larval lethality (Lva) as well as Variable-abnormal 

body morphology defects (Vab) (Figure 2.2 and Table 2.1). However, most ptp-3 LOF 

mutants are superficially normal in appearance. Similarly, sdn-1 mutants exhibit low 

levels of Emb and Lva offspring (Table 2.1), but most grow to adulthood, where they 

exhibit uncoordinated movement (Unc) and egg-laying defects (Egl). 

Based on the low penetrance viability defects in ptp-3 mutants, and previous 

observations that the Drosophila LAR receptor, DLAR, can bind syndecan [7, 58], we 

asked whether ptp-3 and sdn-1 could be interacting genetically during C. elegans 

development. If PTP-3 and SDN-1 were acting as a ligand-receptor pair, we would 

have expected that ptp-3; sdn-1 double mutants would exhibit embryonic lethality at 

a rate similar to the single mutant genetic backgrounds. In contrast we found that 

animals lacking both sdn-1 and ptp-3 were essentially inviable (Table 2.1). To score 

the development of these animals we generated sdn-1(zh20) homozygotes where a 

strong ptp-3 LOF mutation, mu245, was balanced with a chromosomal inversion, 

mIn1, which is marked with a recessive mutation (dpy-10), and a dominant 

pharyngeal GFP insertion, mIs14 (phGfp) (see Materials and methods). 

We found an increase in the embryonic and larval lethality in offspring from 

sdn-1(zh20); ptp-3(mu245)juIs76/mIn1mIs14 mothers compared to sdn-1(zh20); 
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juIs76 or ptp-3(mu245)juIs76 alone. Compared to the expected 25% of the brood, 

only 12.6% of live hatchlings were ptp-3; sdn-1 (126/1000 offspring from a total of 5 

mothers). Further, when these broods were analyzed on the first day of adulthood, 

only 2% (2/114 offspring) of the adults were sdn-1(zh20); ptp-3(mu245)juIs76). 

Surviving sdn-1(zh20); ptp-3(mu245)juIs76 adults appeared sickly, were largely 

paralyzed and had no viable offspring (78 Emb and 5 Lva L1s from 4 mothers). 

SynLet phenotypes were also observed when we tested other strong ptp-3 LOF 

mutations including ptp-3(mu256) and ptp-3(op147), and a second deletion allele in 

sdn-1, ok449. None of the ptp-3; sdn-1 double mutant combinations were viable as 

homozygous strains, and each had to be maintained as balanced ptp-3/mIn1mIs14 

heterozygotes for propagation. In addition, RNAi targeting sdn-1 was lethal in ptp-

3(mu245) animals, and RNAi targeting ptp-3 was lethal in sdn-1(zh20) animals. 

These data confirm that the SynLet phenotypes observed are due to the alleles in 

question and not caused by closely linked background mutations. 

We more closely analyzed the sdn-1(zh20); ptp-3(mu245) homozygous 

animals to determine the point at which they were arresting. We found instances of 

early embryonic arrest (pre-morphogenesis), embryonic rupture during epidermal 

enclosure, and arrest at the L1 stage as misshapen larvae. These are similar arrest 

points to those observed in embryos from sdn-1(zh20); ptp-3(mu245)/mIn1mIs14 

mothers. However, the higher rate of embryonic arrest in the offspring of sdn-

1(zh20); ptp-3(mu245) animals than from sdn-1(zh20); ptp-3(mu245)/mIn1mIs14 

mothers strongly suggests a maternal contribution of ptp-3 to embryonic 

development. Since the offspring of sdn-1(zh20); ptp-3(mu245) animals, which 



 25 

should lack any maternal contribution, demonstrated a variable arrest point, we 

concluded there are likely several stages of development to which both SDN-1 and 

PTP-3 contribute, in partially compensatory ways. However, we cannot completely 

discount that defects that occur early in development may present as variable arrest 

phenotypes. Overall these results indicate that ptp-3 and sdn-1 have overlapping 

function during embryogenesis and that loss of both genes results in dire 

consequences for organismal survival. 

We previously demonstrated that two of the isoforms produced by the ptp-3 

locus have differential localization [11, 12]. PTP-3A localization is restricted to 

synapses, while PTP-3B is associated with cell-cell junctions during embryogenesis 

but also localizes to axons during axon outgrowth. Consistent with their different 

localizations, PTP-3A and PTP-3B appear to function as distinct genetic units as loss 

of ptp-3A has no embryonic patterning or axon guidance defects, yet exhibits a fully 

penetrant synaptic morphology defect that is equivalent to a complete loss of 

function for the ptp-3 locus [11]. Similarly, PTP-3B is capable of rescuing the 

embryonic development, cell migration and axon outgrowth defects associated with 

ptp-3 LOF mutations [9, 12, 13, 64]. The ptp-3(mu245) lesion specifically affects the 

PTP-3A and PTP-3B isoforms, and we did not observe a SynLet phenotype when we 

used a LOF mutation in ptp-3 that specifically affects the PTP-3A isoform, ptp-

3A(ok244) (Figure 2.1). This is consistent with our previous results suggesting that 

PTP-3A does not obviously contribute to epidermal development, while PTP-3B 

does. 
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To better understand what might be contributing to ptp-3; sdn-1 lethality 

during embryogenesis, we used 4D time-lapse microscopy to observe cell division 

and migration during the first 10 hours of embryonic development. The first cell 

migration event that occurs during C. elegans development is the onset of 

gastrulation, where the gut precursor cells, Ea and Ep, ingress into the center of the 

embryo [29]. In wild-type embryos, Ea and Ep ingress in concert, side-by-side, with 

the space vacated by their ingression filled by movements from six surrounding 

cells [100]. The next major developmental event occurs when cells of the 

endodermal and mesodermal lineage begin to ingress at the posterior end, leaving a 

transient gastrulation cleft on the ventral surface (Figure 2.3) [101]. Onset of cleft 

opening was phenotypically normal in the embryos observed (n = 10) although one 

embryo showed a gastrulation cleft opening at the anterior end. However, the 

relative timing of gastrulation cleft opening was significantly delayed in ptp-3 

embryos when compared to Ea/Ep ingression and comma stage. The gastrulation 

cleft is flanked by neuroblasts; in wild-type embryos, these normally migrate 

towards the midline of the ventral surface, closing the cleft in about 55 minutes [16]. 

These subsequently form a substrate for epithelial cell migration, which intercalate 

and extend from the dorsal and lateral surfaces to enclose the embryo during 

epiboly. 

In ptp-3; sdn-1 mutants, 8/14 embryos showed gastrulation clefts that 

persisted until epithelial extension and ventral enclosure (Figure 2.3). All of these 

embryos ruptured prior to comma stage, at the onset of embryonic elongation (class 

I phenotype, [102]). Two large cells were frequently seen in the center of these 
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enlarged clefts that showed no adhesion to the cells surrounding them. Based on 

previous cell lineage experiments, we tentatively identified these as the germ line 

precursor cells Z2 and Z3 (M. L. Hudson, unpublished observations). Additional 

embryos showed gross disorganization during development, with lateral loss of cell 

– cell contacts on the embryo surface prior to cleft opening. In the embryos that 

survived ventral enclosure, defects were also observed in tail morphology. While 

gastrulation cleft opening appears to be significantly delayed in ptp-3; sdn-1 mutants 

compared to ptp-3 alone, only 3/10 ptp-3; sdn-1 mutants could be scored for this 

phenotype as most embryos rupture prior to reaching comma stage, and hence 

cannot be scored for the final developmental timeline marker. As such, this apparent 

suppression of ptp-3 developmental timing defects may be misleading. Overall, the 

most common cause of embryonic lethality was failure to close the gastrulation cleft 

prior to ventral enclosure. These data confirm previously identified roles for SDN-1 

and PTP-3 in embryonic morphogenesis [12, 16], and suggest that SDN-1 and PTP-3 

function in parallel, part-redundant pathways to control either cell adhesion, 

neuroblast migration or both. 

 

An RNAi screen for SynLet interactions with ptp-3 and sdn-1 

The observation that simultaneous LOF in ptp-3 and sdn-1 resulted in a 

highly penetrant SynLet phenotype suggested that we could use these backgrounds 

to identify additional genes that contribute to embryonic development [69]. We 

employed RNAi knockdown to systematically screen for genes that lead to a 

synergistic SynLet phenotype in either ptp-3(mu256) and/or sdn-1(zh20) mutant 
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backgrounds. RNAi clones that were identified from the first round of screening 

were retested at least four times to confirm the results. The threshold for declaring 

an interaction as synthetic lethal was >75% Emb. We also identified genes that were 

SynLet with both ptp-3 and sdn-1, suggesting these may function in yet another 

independent parallel pathway, or may contribute in overlapping fashion to both the 

ptp-3 and sdn-1 pathways. 

We found 11 genes that showed a SynLet phenotype in ptp-3(mu256) 

animals, but only limited or no lethality in a wild type background (Table 2.2, 

Supplemental Table 1). Two of these genes, vab-1 and unc-40, have previously been 

found to be SynLet with ptp-3, indicating that our screen was capable of identifying 

relevant genetic interactions [12-14, 31]. We also found genes that are known to be 

individually lethal via complete loss-of-function mutations, including bli-3 and mek-

2. However, in our assays, RNAi knockdown in the wild type background was 

insufficient to cause highly penetrant lethality. We conclude that this approach 

enabled us to identify genetic interactions that might be missed using traditional 

loss-of-function alleles. 

Seven of the genes found to be SynLet in the ptp-3 background had an 

attenuated effect when knocked down in the sdn-1 background (Table 2.2). These 

genes are candidates to function in sdn-1 mediated development. Of these, several 

have been associated with the formation or function of the nervous system 

(including unc-40, vab-1, mek-2 and C27C7.5). Because syndecans are associated 

with neural development it suggests either failures in neural development can 

interfere with normal embryogenesis, or that these molecules perform non-neural 
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developmental functions, with more evidence for the latter [65, 103]. A second 

theme that emerged when analyzing the list of candidate genes is that several of the 

genes have an association with gametogenesis or the germline. For example, perm-4 

is expressed in oocytes, and regulates an interaction with sperm, while the C04F12.7 

gene is co-expressed with several sperm-specific genes. VAB-1 has also been linked 

to the function of germline maintenance [104]. Finally, the ZC190.5 has been 

previously identified as a suppressor of the egl-9 locus [105]. EGL-9 encodes a 

proline hydroxylase that negatively regulates HIF-1 signaling [106], but also 

participates in neural development [107]. Thus, it will be interesting to determine 

whether the identification of these genes implicates syndecan in oxygen sensing or 

germline development/function. 

We isolated 15 clones that generated a SynLet phenotype in sdn-1 mutants, 

but had no effect, or an attenuated one, when knocked down in ptp-3 animals. One of 

the most interesting candidates to emerge was the Wnt ligand, lin-44 (see below). 

Wnt ligands contribute to multiple facets of organismal development throughout the 

animal kingdom. Interestingly, a recent paper describes an interaction between sdn-

1 and another C. elegans Wnt ligand, mom-2, where SDN-1 concentrates the MIG-

5/Dishevelled protein in early embryogenesis [30]. 

We also identified several genes that may contribute to post-translational 

modifications of proteins, possibly including Wnts, such as an O-acyltransferase 

(oac-9), a mannosidase (mans-1), a pterin-4-β-carbinolamine dehydratase (pcbd-1), 

a putative sugar transporter (B0041.5), a subtilisin-like endoprotease (bli-4) and a 

dual-oxidase (bli-3). It should be possible to use the lin-44 – sdn-1 interaction we 



 30 

describe below to tease out potential contributions of these molecules to Wnt-

dependent functions. Two of the genes are likely involved in mitochondrial function 

(stl-1, and F43G9.3), although it is unclear whether this function is contributing to 

the embryonic lethality when knocked down in sdn-1. 

An unanticipated outcome of the RNAi SynLet screen was the discovery of 

three genes where RNAi was lethal to our control strain yet showed incomplete 

penetrance in ptp-3 or sdn-1 mutant backgrounds. Two of those genes, C18B12.4 

and mnp-1 are reported to cause lethality when mutated, or when knocked down in 

wild-type animals via RNAi [108-111]. The third gene, F17B5.6, is predicted to code 

for a glycosyl transferase and has not previously been reported to have a role in 

embryonic development. mnp-1, which encodes a 781 amino acid protein related to 

the M1 family of metalloproteinases, is required during embryonic development to 

facilitate muscle cell migrations from lateral to dorsal and ventral positions [111]. 

Previous work has demonstrated that mnp-1 genetically interacts with the Eph 

Receptor vab-1, which is SynLet with ptp-3, suggesting that the interactions between 

these genes maybe more complicated than previously suggested. Interestingly, mnp-

1 is predicted to be catalytically inactive due to the lack of three of four essential 

zinc-binding amino acids, and thus may function in more of a structural role, 

perhaps by occluding peptidase sites to promote structural integrity. 

In the course of our screen we found other genes that interacted genetically 

with ptp-3 and/or sdn-1, but these interactions were either too variable, or did not 

repeat in multiple assays, to formally conclude their role in embryonic and larval 

development (Supplemental Table 1). Some of these caused slowed growth (Gro) or 
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an apparent sickness (Sck) that lead to decreased viability over the experimental 

window, while others may have caused increased changes in the body morphology 

defects (Bmd or Vab) (Supplemental Table 1). Although these were not included in 

the list of SynLet candidates, the genes may merit analysis in the future when 

attempting to further understand how PTP-3 or SDN-1 contribute to 

morphogenesis. 

 

Epidermal junction defects do not correlate with SynLet phenotypes  

PTP-3B is associated with cell junctions during the cellular migrations and 

tissue rearrangements that occur during embryogenesis, and ptp-3B mutants exhibit 

low-penetrance epidermal morphology (Vab) defects [12]. SDN-1 also localizes to 

the plasma membrane, being concentrated at cell-cell junctions in early embryos 

[30]. We hypothesized that lethality might arise from disruption of epidermal 

junction formation or patterning. To assay this we examined a marker for epidermal 

junctions, AJM-1::GFP, in sdn-1 or ptp-3 mutants alone and when grown on enhancer 

gene RNAi expressing bacteria. 

In wild type animals, AJM-1::GFP can be seen accumulating at cell junctions 

outlining the epidermal cells, starting around the lima bean stage of embryogenesis, 

and persisting throughout development (Figure 2.4). Epidermal cell junctions in 

wild-type animals are well organized, and only rarely display gaps or misshapen 

cells. In contrast, we found that both ptp-3 and sdn-1 mutants had apparent cell-

shape changes consistent with defects in either cell positioning or cell polarity 

(Figure 2.4, Table 2.3). 
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Interestingly, the presence of disorganized cells as visualized by AJM-1::GFP 

did not correlate with the embryonic or larval lethality in the various mutant 

backgrounds assayed. For example, only 4% (4/100) ptp-3 mutants had obvious 

defects in the AJM-1::GFP pattern (Table 2.3). In contrast, 87% (87/100) of sdn-1 

mutants exhibited abnormalities in AJM-1::GFP expression. Despite this, the rate of 

embryonic lethality in these two backgrounds is similar. Also, when we used RNAi to 

knock down gene expression in our SynLet screen, we found no correlation between 

the effect of RNAi on embryonic development and changes in the expression pattern 

of the epidermal junction marker. Overall this suggests that while these genes may 

contribute to the positioning of epidermal cells or the organization of epidermal 

junctions, the proper localization of AJM-1::GFP to these sites is insufficient to 

explain the lethality observed in the different genetic backgrounds. This is similar to 

previous reports for cell adhesion molecules in C. elegans, e.g. loss of the E-cadherin-

like HMR-1, results in lethality, but animals can form and maintain intact epidermal 

junctions [112].  

 

The Wnt ligand LIN-44 functions in gastrulation 

One of the strongest SynLet interactions uncovered in our screen was 

between the Wnt ligand lin-44 and sdn-1 (Figure 2.3, Table 2.1). Wnts and syndecan 

have been shown to function together in multiple developmental contexts in both C. 

elegans and other systems [31, 98, 113, 114]. The C. elegans genome encodes five 

Wnt ligands; cwn-1, cwn-2, egl-20, lin-44 and mom-2. Of these only mom-2 has been 

shown to function in embryonic development, as loss of function in mom-2 results in 
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maternal-effect embryonic lethality [100], although loss of multiple Wnts can result 

in a more penetrant lethality [115]. In our screen, knockdown of lin-44 caused a 

robust increase in the embryonic and larval lethality of sdn-1 mutants, but not in 

ptp-3 or wild-type animals. We did not observe lethality in sdn-1 animals treated 

with egl-20 or cwn-2 RNAi, while mom-2 knockdown caused embryonic lethality in 

all backgrounds tested. cwn-1 was not present in our RNAi library hence was not 

assayed. 

To better understand the morphogenetic defects behind the lin-44 and sdn-1 

interaction, we built and analyzed a double LOF line, lin-44(n1792); sdn-1(zh20). lin-

44(n1792) is predicted to be a complete loss of function mutation at the lin-44 locus, 

hence this strain was genetically null for both genes in question. We found that sdn-

1; lin-44 double mutants showed a significant increase in the penetrance of 

embryonic lethality compared to either single mutant (Table 2.1).  

Using time-lapse video microscopy, we found highly penetrant defects in the 

migration of endodermal precursor cells Ea and Ep, in lin-44; sdn-1 double mutants 

at the 24-cell stage of development (Figure 2.5). In wild type animals gastrulation 

begins when Ea and Ep rotate and then ingress from the surface of the embryo to 

the center [51]. In lin-44; sdn-1 double mutants, 48% of embryos (11/24) showed 

defective Ea/Ep ingression, compared to 21% of lin-44 (5/23) and 20% of sdn-1 

(3/15) single mutant embryos. As a comparison, we also examined ptp-3; sdn-1 

embryos for Ea/Ep ingression failure. 29% (2/7) embryos showed defects in this 

process. In one embryo, the Ea/Ep cells completely failed to ingress, while in 

another, Ep ingressed before Ea. These data are not significantly different from sdn-
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1 mutants alone, suggesting that ptp-3 has no obvious role in early gastrulation. 

These defects in Ea/Ep ingression often resulted in endodermal cells appearing on 

the embryo’s surface later in development (Gut on the exterior, or Gex phenotype), 

with catastrophic consequences for subsequent epithelial cell migrations (Figure 

2.5). Further analysis of our time-lapse data revealed that 15% (3/20) of lin-44 

embryos showed defects in neuroblast migration as manifested by an increase in 

gastrulation cleft duration and failure of epithelial cells to enclose the embryo 

(Figure 2.5). This is likely due to mis-positioned gut cells inhibiting or blocking 

epithelial cell migrations, or causing defects in overall embryonic organization. 

While the lin-44; sdn-1 Ea/Ep ingression phenotypes appear to be additive when 

compared to each single mutant, the increase in embryonic lethality is clearly 

synergistic (Table 2.1). As such, it appears that small defects in Ea/Ep ingression 

early in development lead to severe consequences in later developmental events. 

Together these results indicate that both lin-44 and sdn-1 contribute to the normal 

migration of Ea and Ep cells at the onset of gastrulation, and that ptp-3 has no 

obvious role in this process. In addition, both lin-44 and sdn-1 may also be involved 

in controlling neuroblast migration and gastrulation cleft closure later in 

embryogenesis, although in the case of lin-44, we cannot rule out that defects at 

later time points are a consequence of earlier defects in Ea/Ep migration.  

In other contexts LIN-44 has been shown to signal through the LIN-17 

Frizzled-like receptor. We made double mutants of lin-17 with sdn-1, but found no 

significant increase in the Emb phenotype compared to sdn-1 animals alone (Table 

2.1). lin-17; sdn-1 double mutant adults were strongly Unc, and often died early, 
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around day 2-3 of adulthood, compared to sdn-1 adults, which live for ~7-10 days 

(B.D. Ackley unpublished observations). This suggests that LIN-44 affects 

gastrulation via a different receptor, and does not specifically function via LIN-17. 

Finally, we examined whether ptp-3 loss of function also synergized with lin-

44. We found that double mutants of ptp-3(mu245); lin-44(n1792) exhibited Emb 

lethality at a rate similar to ptp-3(mu245) single mutants (Table 2.1), although there 

was a slight increase in larval lethality in the double mutants compared to each single 

mutant background. This suggests that lin-44 and ptp-3 may be functioning in the 

same genetic pathway during embryonic development. Overall, our results are 

consistent with ptp-3 contributing to lin-44-dependent gastrulation, and that at least 

one of the potential reasons that ptp-3; sdn-1 double mutants die is because of a 

disruption in the lin-44 / ptp-3 signaling pathway.   
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Section 2.4 Discussion 

Embryonic development requires an orchestrated set of cell migrations and 

rearrangements, and the proper modulation of cell adhesion is critical to this 

process. Here we have demonstrated that the type IIa RPTP, ptp-3 and the syndecan 

ortholog, sdn-1, contribute to parallel genetic pathways during C. elegans 

embryogenesis. The dual loss of these molecules results in developmental failure 

due to defects in two major cellular rearrangements, gastrulation and epiboly. Both 

sdn-1 and ptp-3 have roles at the onset of gastrulation, which is the first major 

cellular rearrangement seen in C. elegans development. In addition, both are clearly 

required for cell migration events later in development at gastrulation cleft closure. 

Failure to close the gastrulation cleft leads to subsequent defects in hypodermal 

enclosure and developmental failure via ventral rupture at the onset of embryonic 

elongation.  

At first glance our results seem at odds with data from other organisms, 

where LAR-RPTPs and syndecans have been found to function as a ligand-receptor 

pair [7, 58]. In the Drosophila neuromuscular junction, cis-interactions on the neural 

membrane between DLar and syndecan interfere with trans-interactions between 

neural DLar and muscle-derived glypican. The binding of DLar to syndecan reduces 

the adhesion at the NMJ and serves to permit expansion of the structure. However, 

the C. elegans isoform most similar to DLar, shown to bind syndecan, is PTP-3A, 

which is genetically and functionally distinct from the isoform we found to cause 

embryonic defects, PTP-3B. In our assays ptp-3A had no effect on embryonic 
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viability, either alone or in combination with sdn-1, suggesting that the differences 

between our observations and others are due to the isoform being analyzed. 

The PTP-3B isoform that our data implicate as functioning in parallel to SDN-

1 appears to be conserved evolutionarily in vertebrates, but is not obviously found 

in Drosophila. In vertebrates a short isoform of the LAR/PTP-3F receptor has been 

identified that has the same domain architecture as PTP-3B, being comprised of 5 

Fibronectin type III domains in the extracellular portion and two tandem 

phosphatase domains intracellularly (Uniprot - H0Y4H1). Thus, it is possible that 

the interaction we have observed between LAR and syndecan is conserved in 

vertebrates as well. 

Our results suggest that in C. elegans embryonic development, the syndecan 

and LAR proteins have overlapping roles, and can partially compensate for the 

absence of each other. Further, we found that animals lacking both ptp-3 and sdn-1 

exhibited variable points of developmental arrest. This was most apparent in the 

animals that lacked any maternal ptp-3 contribution, which arrested embryogenesis 

during epiboly or at hatching, after completing embryogenesis. The variable arrest 

points of the sdn-1; ptp-3 double mutants suggests that there are likely multiple 

phases of development in which SDN-1 and PTP-3 function in parallel to provide 

essential functions. However, an alternative hypothesis is that an early defect at the 

onset of gastrulation can lead to a variable arrest point later in development. Based 

on our time-lapse analysis, our data favor the former, but it is possible that subtle 

defects during early development are occurring. To address this point we will need 
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to identify the mechanism(s) that underlie the lethality of the ptp-3; sdn-1 double 

mutant animals. 

Additional factors likely provide some compensatory function in the absence 

of both PTP-3 and SDN-1, permitting animals to get through critical developmental 

periods. For example, some sdn-1; ptp-3 embryos fail to complete epiboly; if this 

were the earliest function of PTP-3 and SDN-1, and they could not be compensated 

for during this process, we would expect 100% of the embryos to arrest at that point 

in development. However, we find that some animals complete epiboly, but arrest at 

a later time point. The variable arrest points seen in the double mutants suggest that 

there are potentially multiple proteins that could partially compensate for the loss 

of ptp-3 and/or sdn-1 during development, including the Eph-ephrin, and slit-robo 

pathways, which have previously described roles in this process [14, 68, 102]. 

The SynLet phenotype observed in ptp-3; sdn-1 double mutants provided us 

with a powerful platform to identify novel genetic interactions required for 

embryonic development. We found that we can induce lethality in either the ptp-3 

or sdn-1 mutant backgrounds by knockdown of orthogonal genes using RNA 

interference (RNAi). Like most screens using RNAi we observed some variability in 

the efficacy, compared to known loss-of-function mutations. While this may 

complicate the interpretation of epistatic relationships, we found RNAi had a robust 

effect for the purposes of discovery.  

Based on the results of our SynLet screen, we propose that there are at least 

three, and likely more, different cell-adhesion pathways functioning semi-

redundantly during C. elegans development, at least two of which utilize ptp-3 and 
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sdn-1. This is not surprising, as development requires an integrated symphony of 

cell movements, wherein adhesion must be transiently changed in an orchestrated 

fashion. However, it is interesting to note that some cell adhesion proteins, e.g. 

laminin, perlecan, collagen IV and integrins are categorically essential to embryonic 

viability, whereas others, like ptp-3 or sdn-1, have a more flexible requirement. As 

laminin, perlecan and collagen IV are all components of the basal lamina, and 

integrins receptors for some of these proteins, it suggests that the basal lamina is a 

crucial reference point for cell migrations. Cell adhesion, via proteins like PTP-3B or 

SDN-1, appears to be a more redundant process, with multiple proteins capable of 

contributing to this role.  

Our SynLet screen has identified multiple genes with previously 

undiscovered roles in embryonic development. The identification of mnp-1 as a 

suppressor of ptp-3 and sdn-1 lethality suggests a complex interplay between cell 

adhesion and matrix remodeling proteins during embryogenesis. The Eph receptor 

vab-1 has previously been shown to function in parallel with mnp-1 during C. 

elegans embryonic muscle cell migration [111]. vab-1 also functions in parallel with 

ptp-3 to regulate epidermal migration during morphogenesis [12]. The genetic 

interactions we observe suggest that loss of ptp-3 was protective to animals where 

mnp-1 had been knocked down. Thus, it will be interesting to determine if this 

reveals a previously unknown role for ptp-3 in muscle cell migration, or a role for 

mnp-1 in epidermal cell migration. 

One of the interactions we uncovered using our SynLet RNAi approach was a 

genetic interaction between sdn-1 and lin-44, one of the five Wnt ligands encoded by 
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the C. elegans genome [44]. Prior to this, mom-2 was the only Wnt ligand that had 

been demonstrated to affect gastrulation. However, it has been shown that in other 

Wnt ligands can influence this as cwn-1 and cwn-2 mutations enhance the mom-2 

lethal phenotype. The fact that the cwn-1;cwn-2;mom-2 triple mutants exhibit a fully 

penetrant lethality indicates at least some functional redundancy of Wnt ligands in 

embryogenesis [115]. mom-2 contributes both to endodermal specification and 

gastrulation through partially overlapping functions [100]. Ultimately, MOM-2, 

functioning through the frizzled-like receptor MOM-5, results in the 

phosphorylation of myosin light chain to induce constriction of the apical surfaces of 

the Ea and Ep cells to induce their internalization. Recent work has also uncovered a 

novel role for SDN-1 in embryogenesis, where it functions in a MOM-2-dependent 

pathway to control the orientation of the mitotic spindle earlier in embryogenesis (6 

to 8 cell stage of development) [30]. 

Here we find that lin-44 also affects the internalization of the Ea and Ep cells, 

albeit to a lesser extent than mom-2. The loss of sdn-1 significantly enhances the 

penetrance of Ea and Ep ingression defects, and synergistically causes a highly 

penetrant embryonic lethality. Further, genetic evidence suggests that the LIN-17 

frizzled-like receptor does not function in this event, although previous reports have 

generally found that LIN-44 signals through LIN-17 [116-120].  

Previous work suggested that LIN-44 appears to prime cells for other Wnt-

signals. For example, in the PLM mechanosensory neurons, LIN-44 activity was 

required to induce asymmetric localization of LIN-17 which then acted as a receptor 

for the EGL-20 Wnt ligand [117, 120]. One possibility is that LIN-44 also primes the 
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Ea and Ep cells to respond to the MOM-2 ligand, although this remains to be 

determined.  

The use of parallel genetic backgrounds to identify SynLet interactions 

allowed us to immediately assign a candidate gene into a genetic pathway, based on 

the outcome of the screen. For instance, lin-44 RNAi knockdown strongly enhanced 

sdn-1 LOF phenotypes, yet showed no synergistic phenotypes in a ptp-3 mutant 

background. This suggests that ptp-3 somehow functions in the Wnt pathway during 

C. elegans embryonic development. Interestingly though the lin-44; ptp-3 double 

mutants did have an increase in larval lethality over the single mutant backgrounds, 

although it did not result in complete synthetic lethality as nearly 70% of the 

animals survived to adulthood. This may indicate though that during larval 

development ptp-3 and lin-44 function in parallel pathways. Our future studies 

harness sdn-1 synergistic effects to allow us to further explore the mechanisms by 

which lin-44 and ptp-3 affect gastrulation in C. elegans. 
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Section 2.5 Materials and Methods 

Genetics 

The following alleles were used in this report:  N2 (var. Bristol), sdn-1(zh20), 

sdn-1(ok449), ptp-3(mu254), ptp-3(mu256), ptp-3A(ok244), ptp-3(op147), lin-

17(n671), lin-44(n1792), eri-1(mg366), juIs76 [Punc-25::gfp], jcIs1 [Pajm-1::AJM-

1::GFP] and mIn1mIs14. Strains were maintained at 18-22 ºC, using standard 

maintenance techniques as described [121]. All lethality counts were conducted 

with animals maintained at 20 ⁰C. 

To score the synthetic lethality of the ptp-3; sdn-1 double mutant animals we 

generated sdn-1(zh20) homozygotes where ptp-3(mu245), was balanced with a 

chromosomal inversion, mIn1, which is marked with a recessive mutation (dpy-10), 

and a dominant pharyngeal GFP insertion, mIs14 (phGfp). We further marked the 

mu245 lesion by linking it to a GABAergic neuronal marker, juIs76 [Punc-25::gfp] 

(nGfp). Progeny from the sdn-1(zh20); ptp-3(mu245)juIs76/mIn1mIs14 mothers 

were expected to define the following three phenotypic classes and their 

corresponding genotypes:   

Dpy+phGfp - (sdn-1(zh20); mIn1mIs14/mIn1mIs14) 

phGfp+nGfp+NonDpy - (sdn-1(zh20); ptp-3(mu245)juIs76/mIn1mIs14) 

NonDpy+NonphGfp+nGfp - sdn-1(zh20); ptp-3(mu245)juIs76.   

 

RNAi feeding control strains used 

RNAi clones were compiled from the Ahringer library [63]. Three RNAi 

controls were used during each round of screening, an empty vector (L4440), and 
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clones targeting ptp-3 (II-7J03; Overlapping CDS:  C09D8.1) or sdn-1 (pEVL202). The 

sdn-1 fragment designated for RNAi was obtained by polymerase chain reaction 

(PCR) from N2 genomic DNA. The fragment was then cloned into the pCR8 TOPO 

cloning vector (Life Technologies) and recombined via an LR reaction into a L4440 

feeding vector. The resulting plasmid was transformed into the HT115(DE3) RNase 

III-deficient E. coli strain. The following primer pairs were used for PCR 

amplification of sdn-1: forward 5’-TTTTCTTTTAGAACCCTTTTGC-3’ reverse:  3’-

CATCAATTTATCATCTCGCAAC-5’. 

 

RNAi feeding assay (6-well format) 

HT115 bacterial strains, containing the RNAi clones of interest, were grown 

overnight at 37 °C in 1.5 mL LB plus ampicillin, tetracycline and nystatin. 100 μl of 

the overnight cultures were aliquoted on single 6-well plates of NGM containing 

carbenicillin, tetracycline, and 1mM IPTG and grown overnight at 37 °C. 

Approximately 3-4 L4 worms were dispensed in M9 into the top wells (1, 2 and 3) 

on the 6-well plates. The plates were left at approximately 20 °C for five days before 

the worms were scored for phenotypes and 3-4 L4 worms were transferred to the 

bottom wells (4, 5 and 6). The bottom wells were then scored after six more days. 

The experimenter was blind to the RNAi clone being tested in all assays. All clones 

that exhibited any level of SynLet were rescreened as described above to verify the 

interaction. Clones were then rescreened if they displayed SynLet or slow growth 

with any of the query strains. We categorized SynLet as embryonic lethal (Emb), 

larval lethal (Lvl) or adult lethal (Adl). The following additional phenotypes were 
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also scored:  Lethal (Let), body morphology defects (Bmd), uncoordinated (Unc), 

sickness (Sck), sterility (Ste), slow growing (Gro), protruding vulva (Pvl), dumpy 

(Dpy) and/or egg laying defective (Egl). All phenotypes were compared between the 

strains on that 6-well plate alone.  

 

RNAi clone sequencing 

  Clones isolated from the screen were grown as single clones in liquid LB 

cultures containing ampicillin, tetracycline and nystatin. Cultures were purified 

using a Qiagen spin mini-prep kit then sequenced using a modified forward T7 

primer (5’-ACTCACTATAGGGAGACCGG-3’). 

 

Time-lapse microscopy of embryonic development 

4-dimensional video microscopy was carried out using an Olympus BX61 

microscope equipped with a 63x magnification oil immersion objective and 

motorized z-axis stage. Z-stacks (27-35 slices) were collected every 2 minutes at 1 

micron spacing using a Retiga camera (Q-Imaging). Data sets were analyzed via the 

Bioformats-Importer and 4D Browser plugins in ImageJ [122, 123]. The following 

time points were collected; Ea/Ep ingression, gastrulation cleft opening, cleft 

closure, and comma stage. Analysis of developmental time points was normalized 

relative to Ea/Ep ingression and comma stage. Embryonic lethal phenotypes were 

categorized according to [102]. Ea/Ep ingression behavior was scored as follows; I, 

normal (Ea/Ep ingress together); II, no ingression (Ea/Ep remain on the outer 

surface of the embryo); III, skewed (either Ea or Ep ingresses before its partner); IV, 
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unclassified (Ea/Ep migration obscured or unclear). (4d analysis was conducted by 

Dr. Martin Hudson at Kennesaw State University.) 

 

Lethality analysis 

  A single L4 hermaphrodite was placed on a single NGM plate to initiate the 

assay. Every 24 hours the hermaphrodite was transferred to a new plate. 24 hours 

after the removal of the hermaphrodite the plate was analyzed for embryos (Emb) 

or dead L1 larvae (Lva). The plate was rescreened 24 hours later for later larval 

lethality (Lva). Adults were transferred until they died, or until they stopped giving 

rise to offspring. All animals were maintained at 20 ⁰C, except during scoring. 

Experimenter was blind to the genotype during scoring. (Lethality analysis was 

conducted by Dr. Brian Ackley.) 

 

Epithelial morphology assays 

Epithelial tight junctions were visualized with jcIs1 [ajm-1::GFP], which 

localizes to epithelial junctions, essentially outlining all epithelial cells from about the 

lima bean stage onwards. Multiple embryos were harvested by bleaching and > 100 

assayed for epithelial morphology. Embryos that had cells that were obviously mis-

positioned, e.g. dorsal cells on ventral side, or misshapen in a way that was strikingly 

different from wild-type, e.g. rounded cells along lateral aspect where cuboidal cells 

are normally present, were scored as a mutant. We also recorded time-lapse movies 

of embryonic development using a Zeiss LSM700 confocal microscope. (Time-lapse 
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data was recorded by Dr. Martin Hudson and epithelial analysis conducted by Curtis 

Yingling.)  
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Section 2.6 Figures 

Figure 2.1 
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Figure 2.1 Genomic and protein structure of ptp-3 and sdn-1 A schematic of the 

gene and protein structures of ptp-3 and sdn-1 are presented with lesions used in 

this report indicated. (A) The ptp-3 genomic locus gives rise to at least three 

independently generated transcripts, ptp-3A, ptp-3B and ptp-3C. The ptp-3(ok244) 

deletion specifically affects ptp-3A, ptp-3(mu245) is a premature stop that affects 

ptp-3A and ptp-3B, ptp-3(op147) is a Tc1 transposon insertion and ptp-3(mu256) is a 

frameshift and premature stop that affects all three transcripts. (B) The three PTP-3 

protein isoforms differ by the composition of the extracellular domains. See key at 

bottom of figure for domain architecture. (C) The sdn-1 genomic locus produces a 

single transcript. The two deletion alleles, sdn-1(zh20) and sdn-1(ok449), both 

remove a large portion of the sdn-1 coding segment and are strong loss of function 

alleles. (D) The SDN-1 protein has three SG motifs (vertical lines) that are predicted 

to be targets for the addition of heparan sulfate side chains. 
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Figure 2.2 
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Figure 2.2 Loss of function in ptp-3 and sdn-1 results in low penetrance 

embryonic and larval defects (A) ptp-3(mu245) mutant animals can hatch as 

normal looking L1 larvae (arrow), but can also die during embryogenesis (asterisk 

shows an embryo that ruptured at elongation). (B) ptp-3 mutants can exhibit defects 

in ventral neuroblast migration (B1 outlined area), which result in a persistent 

gastrulation cleft on the ventral surface. When these fail to close, internal cells 

extrude through the opening (arrowheads) during elongation, leading to embryonic 

lethality. (C) ptp-3 mutants can also exhibit variably abnormal herniations in body 

morphology (empty arrowhead). (D) sdn-1(zh20) mutants also exhibit low 

penetrance embryonic lethality (asterisks show ruptured embryos). (E) 

Gastrulation cleft closure defects are observed in some sdn-1(zh20) mutant embryos 

(outlined area). Again, this can lead to embryonic rupture at ventral enclosure 

(arrowhead shows cells oozing from within). (Image acquisition and analysis done 

by Dr. Martin Hudson.) 
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Figure 2.3 
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Figure 2.3 The dual loss of ptp-3 and sdn-1 results in synergistic defects during 

embryogenesis (A) Using 4D time-lapse microscopy we monitored embryogenesis 

in N2 wild-type, ptp-3, sdn-1, lin-44 single mutants, and lin-44; sdn-1 and ptp-3; sdn-1 

double mutants. The gastrulation clefts (outlined regions) present in the single 

mutants are more likely to close during development than the clefts in the double 

mutants. The arrowhead indicates cells that have extruded from the internal region 

of the embryo through the open gastrulation cleft (panel 418 minutes). (B) Terminal 

fates of the embryos plotted by genotype. (Image acquisition and analysis done by 

Dr. Martin Hudson.) 
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Figure 2.4 
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Figure 2.4 Epidermal junctions can be maintained in cell-adhesion mutants 

and RNAi treated animals We used an AJM-1::GFP transgene (jcIs1) to examine 

epidermal morphology in animals being tested. (A) In wild-type jcIs1 animals, AJM-

1::GFP is localized to cell junctions (arrow) and outlines epidermal cells. Here a view 

of the dorsal epidermal cells is visible. (B) A dorsal view of an sdn-1(zh20) animal 

showing disorganized epidermal cells in the posterior half of the embryo. (C) 

Ventro-lateral view of a wild-type embryo just after ventral enclosure. Asterisks 

mark the hexagon-shaped lateral seam cells. Note the regular morphology. (D) A 

sdn-1(zh20) animal treated with lin-44 RNAi. While some lateral seam cells 

(asterisks) are correctly. (Experiments and analysis were carried out by Curtis 

Yingling and Samantha N. Hartin.) 
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Figure 2.5 
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Figure 2.5 sdn-1 mutations enhance lin-44 gastrulation defects. (A) In C. 

elegans, gastrulation is initiated by the inward migration of the endodermal 

precursor cells Ea and Ep (black asterisks). In sdn-1 and ptp-3 mutant animals, the 

cells ingress, become completely surrounded by neighboring cells, then divide 

laterally (white asterisks). Note that Ea and Ep are completely internalized prior to 

the lateral cell division. In lin-44 and sdn-1 mutants, Ea/Ep ingression is often 

asynchronous. In addition, some lin-44 embryos show a more severe phenotype, 

where the Ea/Ep cells completely fail to ingress. The subsequent lateral cell division 

positions two of the daughter cells onto the surface of the embryo, generating a “Gut 

on the exterior”, or Gex phenotype [77]. Similar but more penetrant defects are 

observed in lin-44; sdn-1 double mutants. (B) Summary of Ea and Ep cell ingression 

behavior by genotype. The lin-44; sdn-1 double mutants exhibit a higher rate of Ea 

and Ep ingression defects than either single mutant. (C) Relative timing of 

developmental milestones as a function of genotype. Note the lin-44; sdn-1 double 

mutants have a significantly longer period in which the gastrulation cleft is open. 

(Image acquisition and analysis done by Dr. Martin Hudson.)  
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Section 2.7 Tables 

Table 2.1 Lethality by genotype analyses 

 

a Listed genotype is the maternal genotype 
b average total brood size of five mothers 
c percent of animals displaying phenotype from mothers of indicated genotype 
d total number of offspring analyzed 
† Significantly different from sdn-1(zh20) p<0.01 (Students t-test) 
‡ Significantly different from lin-44(n1792) p<0.01 (Students t-test) 
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Table 2.2 SynLet Genes by Genotype Affected 
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Table 2.3 AJM-1::GFP analysis by genotype 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N/D not determined 
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Chapter III 

C. elegans sdn-1 modulates Wnt signaling to ensure proper axon 

outgrowth and termination in motorneurons   
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Section 3.1 Abstract 

Heparan sulfate proteoglycans (HSPGs), such as syndecan, regulate many 

aspects of neural development including cell migration, axon guidance and synapse 

formation. HSPGs have also been shown to be important modulators of extracellular 

growth factors including Wnts. Wnts are among the long and short range signaling 

molecules that contribute to the formation and patterning of complex body 

structures like the nervous system. However, many questions remain about how 

HSPGs and Wnts interact in vivo.  

The nervous system of C. elegans has a well-defined, stereotyped pattern of axon 

outgrowth, including the positions where axon growth is terminated. Previous work 

has shown that loss-of-function (LOF) in either lin-44 or egl-20 Wnt ligands results 

in an over-extension of the DD6 and/or VD13 axon into the posterior region of the 

animal where the Wnt ligands are expressed, consistent with the Wnts acting as 

repulsive cues. lin-44;egl-20 double mutants have a more significant over-extension 

phenotype suggesting partial redundancy between these ligands.  

We have identified genetic interactions between sdn-1, the C. elegans syndecan 

HSPG, and the lin-44 and egl-20 Wnt ligands. In sdn-1 null mutants the posterior 

growing DD6/VD13 axons exhibit both under-extension and over-extension 

phenotypes. Unlike the Wnt ligand single mutants, which have only over-extended 

axons, the lin-44;sdn-1 and egl-20;sdn-1 double mutants exhibit both under- and 

over-extension of these axons.  

We propose a two-step model in which SDN-1 interacts with LIN-44 and EGL-20 

for proper axon outgrowth and termination. We hypothesize that SDN-1 controls 
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Wnt signaling non-autonomously during axon outgrowth and then autonomously 

for proper axon termination. Understanding how SDN-1 interacts with these Wnt 

ligands will provide a better mechanistic view of the relationships that exist 

between HSPGs and Wnt growth factors. 
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Section 3.2 Introduction  

 The development of the nervous system is a highly ordered and complex 

process that requires multiple molecular cues to form functional circuits. During 

development axonal growth cones are guided to their correct position by external 

cues presented in the extracellular matrix (ECM). The nematode C. elegans provides 

a valuable model in which to study nervous system development. There are a 

plethora of genetic tools that can be used in C. elegans including but not limited to, 

chromosomal balancers, gene knock-outs, transgenic manipulations and fluorescent 

reporter proteins. C. elegans have 959 somatic cells of which, 302 are neurons that 

can be visualized in vivo with fluorescently labeled proteins. During the L1 larval 

stage the DD motorneurons are born along the ventral nerve cord and extend an 

axon anteriorly, which then bifurcates and sends a process dorsally. When the 

process reaches the dorsal nerve cord it bifurcates a second time and grows 

anteriorly and posteriorly. During late the L1/early L2 stage the VD motorneurons 

develop in the same manner, fasiculating with the DD motorneurons in along the 

nerve cords to form bundles. The growth and termination of these GABAergic 

motorneurons has been long studied in C. elegans with multiple molecules being 

implicated [26, 37, 124, 125].  

 Heparan sulfate proteoglycans (HSPGs) have been shown to act as 

modulators of signals that are crucial for proper axon guidance [15, 17, 62, 126-

129]. HSPGs are present in the ECM as secreted proteins or are bound to the cell 

membrane. The extracellular domain is decorated with heparan sulfate side chains 

[17, 62, 130]. The individual sugars on these side chains are modified by 
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sulfotransferases and an epimerase before being transported to the cell membrane 

[47, 131]. These side chains bind multiple signaling molecules such as Wnts, and 

BMPs (Bone morphogenetic proteins), and can also act as co-receptors for other 

components of the ECM [34, 48, 60, 88, 129, 132, 133]. One of the major families of 

HSPGs are syndecans. These HSPGs not only have HS side chains but also feature an 

intracellular domain that contains a PDZ-like motif, suggesting that syndecans can 

also link to cytoplasmic signaling [134].  

Most mammalian genomes encode for four syndecan proteins, while the C. 

elegans genome only encodes one, named sdn-1. In C. elegans, SDN-1 functions 

autonomously in the Hermaphrodite Specific Neurons (HSNs) to control cell 

migration and axon outgrowth, and in DDs and VDs to guide commissure growth 

along the dorsal-ventral axis [15]. SDN-1 has also been shown to regulate the 

guidance of non-neural tissues including the distal tip cells (DTC) that migrate along 

the anterior-posterior axis to form the gonad during larval development [31].  

DTC guidance by SDN-1 is also mediated by the Wnt ligand, EGL-20, and 

recent reports have demonstrated genetic interactions between SDN-1 and Wnt 

ligands [30, 31, 113]. In early embryogenesis SDN-1 functions in a MOM-2/Wnt-

dependent signaling event to direct cell specification [30]. We previously 

demonstrated that sdn-1 and lin-44 function in genetically-redundant pathways 

during gastrulation. Together these data indicate that SDN-1 is likely to function in 

Wnt growth factor signaling in C. elegans as has been demonstrated in vertebrates. 

Here we show that SDN-1 along with three of the five C. elegans Wnts work in 

a combinatorial manner to control the termination of GABAergic motor neurons 
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within the dorsal nerve cord along the anterior-posterior body axis. Rescue 

experiments suggest the effects of SDN-1 on axon termination were both cell-

autonomous and non-autonomous. Additional epistasis experiments suggested that 

sdn-1 was genetically downstream of Wnt ligands, but upstream of Wnt effectors, 

e.g. Dishevelled or β-catenin. Similar results have previously been demonstrated in 

Wnt signaling for the CAM-1/Ror tyrosine kinase [135-141]. Our results suggested 

that SDN-1 is likely to be functioning in a co-receptor or Wnt patterning role to 

regulate D-type neuron axon termination in the dorsal nerve cord. 
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Section 3.3 Results 

Syndecan is an anterior/posterior axon guidance factor 

 The GABAergic D-type motorneuron cell bodies are located along the VNC. 

The six DD and thirteen VD cell bodies extend a neuronal process anteriorly, 

bifurcates and send a process dorsally, then bifurcates again at the DNC and sends a 

process anteriorly and posteriorly. In the DNC, the DD processes fasciculate with 

those of the VD neurons and terminate at stereotyped positions along the anterior-

posterior axis [25]. The most posterior DD and VD processes extend as a bundle that 

terminates at the anterior-posterior position superior to the locations of the DD6 

and VD13 cell bodies, which are located on the ventral side[40](Figure 3.1). It is this 

stereotyped development that allows for easy detection of aberrant axon outgrowth. 

We observed that sdn-1(zh20) mutants had defects in the termination point 

of the GABAergic axons in the dorsal nerve cord (DNC), similar to what was 

previously characterized by Maro, Klassen et al., 2009. We found that in 39.5% of 

sdn-1(zh20) mutants (a sdn-1 null allele) the D-type axons failed to reach the correct 

termination point, and that in 51% of sdn-1(zh20) mutants the axons extended 

further into the tail (posteriorly) when compared to wild-type animals (Figure 3.2). 

We also tested a second LOF allele, sdn-1(ok449) which results in an in-frame 

deletion that produces a truncated form of SDN-1. This shortened form lacks two of 

the major conserved heparan sulfate attachment sites in the extracellular domain 

[99]. We found that animals with the ok449 mutation had similar defects to those 

found with the zh20 allele. The remainder of our study was conducted using the 
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zh20 allele since that has been demonstrated to be a genetic and molecular null [15, 

30].  

The VD neurons are formed at the end of the first larval stage (L1) and finish 

their initial outgrowth during the beginning of the second larval stage (L2). We 

initially scored animals in the fourth larval stage (L4). Between the L2 and L4 stages 

animals approximately double in length. To determine if sdn-1 axon outgrowth 

errors were due to developmental failures or a failure to keep up with the growth of 

the animal we scored DNC termination in zh20 animals at the L2 stage. We found 

that like those scored at later stages, zh20 animals at the L2 stage had both over- 

and under-extended GABAergic axons in the DNC, suggesting that the initial 

formation of the GABAergic axons is defective, although we cannot completely rule 

out a secondary role whereby SDN-1 also ensures allometric axon growth with body 

length. It is worth noting that in other genetic contexts where D-axon termination 

has been investigated, it is common to observe both under- and over-extension 

defects in the same genotypes [40, 142]. 

To determine if the effects of axon guidance along the anterior-posterior axis 

were limited to the D-type neurons we examined the axons of the six 

mechanosensory neurons using an integrated GFP reporter, muIs32. In wild-type 

animals the Anterior Lateral Mechanosensory (ALMs) and the Posterior Lateral 

Mechanosensory (PLMs) neurons extend anteriorly-directed axons from their cell 

bodies and have a characteristic termination point, with the PLMs terminating just 

posterior to the ALM cell bodies and the ALMs terminating just posterior to the nose 
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of the animal (Figure 3.3). In addition, the axons are largely parallel to the dorsal 

and/or ventral nerve cords, and do not appear to deviate in the dorsal-ventral axis, 

except where they make branches into the ventral nerve cord (PLMs) or the nerve 

ring (ALMs). 

When we examined the ALM and PLM neurons in sdn-1(zh20) mutant 

animals we found significant disruptions in the outgrowth of theses neurons. As had 

been previously reported the ALM cell bodies were frequently displaced posteriorly, 

likely due to incomplete cell migration. As such we did not further examine axon 

outgrowth errors in the ALM axons. The PLM neurons do not undergo long-range 

cell migrations, and the cell bodies were in grossly normal positions in zh20 

mutants. We found that PLM axons frequently terminated prematurely, but also 

showed evidence of failure to terminate growth, and could “hook” toward the 

ventral nerve cord [37, 142] We also observed defects in the outgrowth of the AVM 

and PVM axons. In wild-type animals, the AVM and PVM axons grow towards the 

ventral midline before turning anteriorly. In sdn-1(zh20) mutants we observed some 

AVM and PVM axons that were first directed anteriorly prior to making a ventral 

turn (Figure 3.3). Together with previously published results and our data for the D-

type neurons we conclude that SDN-1 is a determinant of anterior-posterior axon 

guidance and termination in C. elegans. 
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Syndecan function is required in multiple tissues to regulate D-type neuron 

outgrowth 

We were able to partially rescue the outgrowth phenotypes associated with 

the zh20 lesion by reintroducing SDN-1. We obtained a Mos1 single copy insertion 

(Mos-SCI), juSi119, in which a GFP-tagged version of SDN-1 under the regulation of 

endogenous sdn-1 promoter elements had been inserted on the second chromosome 

(LG II) (Figure 3.4). The zh20;juSi119 animals had no undergrowth in the DNC (6% 

vs. 39.5% in zh20, P<0.0001), but still had a high rate of DNC overgrowth (56%). To 

determine if this was due to the GFP insertion we obtained a second Mos-SCI, 

wpSi12, which is inserted in the same chromosomal position, but is not GFP tagged. 

We observed equivalent rescue of the under-extension phenotype (1% vs. 39.5% in 

zh20, P<0.0001). We generated zh20 homozygotes in which juSi119 was 

heterozygous (zh20;juSi119/+) and found no change in the ability of the transgene 

to rescue the under-extension phenotype (36% vs 39.5% in zh20), but a partial 

rescue of the over-extension phenotype (22% vs. 51% in zh20). Thus we are able to 

rescue both aspects of the outgrowth phenotype, both under- and over-extension of 

the GABAergic axons in the DNC, by endogenous sdn-1 expression (Figure 3.4). 

To test whether sdn-1 could be functioning cell-autonomously we drove the 

expression of sdn-1 specifically in the GABAergic neurons using the unc-25 promoter 

(injected at 1 ng/μl). We found that when we cell-specifically expressed sdn-1 we 

were able to partially rescue the over-extension phenotype in zh20 (21% vs. 51%, 

P<0.0001), but the rate of under-extended axons was unchanged (30% vs. 39.5%). 
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We generated a second transgene at a higher concentration (5 ng/μl) and found no 

differences in rescue. We were still unable to rescue the under-extension defects 

(34% vs 39.5) and there was no increase in the efficiency of rescuing the over-

extension defects (19% vs. 51%) (Figure 3.4).  However, at the higher concentration 

we did observe an increase in the axon guidance defects in other aspects of 

outgrowth suggesting we were likely to be reaching an over-expression effect. These 

data suggest that the over-extension of axons is due, at least in part, to the cell-

autonomous loss of sdn-1, and that the under-extension likely requires sdn-1 

function in other tissues.  

The SDN-1::GFP expressed by juSi119 is present broadly throughout the 

animal, including in the DNC and tissues surrounding it, including the muscle, 

epidermis and intestinal cells in the posterior of the animal. We further examined 

whether SDN-1 was expressed in the D-type neurons using a cytoplasmic RFP 

(Punc-25::mCherry). In L1 animals, after DD neurons have formed, but prior to the 

formation of the VD neurons, SDN-1GFP was present in the nervous system, but we 

found no evidence of expression in the D-neurons. However, later in development, 

after the VD neurons have formed, SDN-1::GFP was clearly being expressed in the 

GABAergic motorneurons. This is consistent with a model whereby SDN-1 functions 

early to promote axon outgrowth non-autonomously, but functions, cell 

autonomously later in development to restrict growth. 
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sdn-1 is required for Wnt-dependent axon outgrowth and termination 

Previous work has demonstrated that Wnt signaling can regulate axon 

termination of the D-type neurons [40]. Consistent with those observations we also 

found that animals with mutations in the most posteriorly expressed Wnt ligand, lin-

44(n1792), caused the DNC axons to over-extend in 97% of animals (Figure 3.5). 

Previously we have found that sdn-1 and lin-44 exhibit a synthetic lethal genetic 

interaction in early development, with ~75% of double mutants dying during 

embryogenesis [41]. To determine whether sdn-1 was functioning in lin-44 

dependent outgrowth we generated double mutants. We were able to score the 

axons in the surviving animals, and found that they exhibited both under and over-

extended DNCs that were not significantly different from sdn-1 single mutants (P<.3, 

N=200). 

Another Wnt ligand, egl-20, has also been found to affect DNC termination. 

We obtained two putative null alleles of egl-20, lq42 (pers. comm. Erik A Lundquist) 

and gk453010 from the Million Mutation Project [143]. Both lq42 and gk453010 

create premature stop codons in the egl-20 mRNA, unlike the reference allele, n585, 

which is a missense mutation. We found that in both egl-20(lq42) and egl-

20(gk453010) the DNC axons over-extended into the posterior in about 69% of the 

animals (Figure 3.5). Qualitatively, we observed that the extent to which the axons 

extended past the expected termination point was lower in egl-20 mutants than in 

lin-44 mutants. 
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We generated lin-44; egl-20 double mutants, and found that DNC axons 

extended past the wild-type termination point, and that consistent with previous 

reports, the axons grew further posteriorly than in either single mutant. However, 

we also observed that complete loss of both Wnt ligands also resulted in axons of 

the DNC appearing to be under-extended, terminating prior to the expected position 

(Figure 3.5). These results suggest there are two Wnt-mediated events in the growth 

of the GABAergic neurons in the DNC. First, a growth promoting function, which 

ensures that axons grow from the commissure to the normal termination point, and 

second, growth restricting function, which prevents axons from extending past the 

normal termination point. 

Based on our results from the zh20 rescue we inferred that the mechanisms 

of SDN-1-dependent axon extension from the commissure to the normal 

termination point is distinct from those that prevent the axon from growing past the 

termination point. The former appears to be a cell non-autonomous function of SDN-

1, while the latter appears to be at least partially cell-autonomous for the GABAergic 

neurons. Thus, to simplify the analysis we first focused on the combined role of 

Wnts and SDN-1 on the outgrowth of axons from the commissure to the normal 

termination point, failures in which caused the DNC to appear under-extended. 

sdn-1 functions in a Wnt signaling pathway to promote axon extension 

We found that the rate of axon under-extension was equivalent in the sdn-1 

single mutants to the lin-44; egl-20 double mutants. These data argue that the Wnt 

ligands are both partially redundant and promote axon outgrowth from the 
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commissure. Wnt signaling has been well studied, and in a canonical signaling 

pathway, activation of Frizzled receptors by Wnt ligands activates the cytosolic 

protein Dishevelled. Dishevelled then inhibits the GSK3, Axin, APC destruction 

complex. This inhibition allows β-catenin to activate the transcription of target 

genes with the help of TCF-LEF transcription factors [144]. 

Consistent with Wnt signaling being both growth promoting and restricting, 

we found that mutations in other Wnt signaling components, including lin-

17/Frizzled (24%) and mig-5/Dishevelled (44%) can result in under-extension of 

the DNC, as had been reported [40]. We created double mutants of sdn-1 with lin-17 

and mig-5 and found these animals exhibited under-extension (lin-17; sdn-1 – 31% 

(P = 0.08), mig-5; sdn-1 – 44% (P >0.05)) that were not significantly different from 

the single mutants. In contrast, the loss of bar-1/β-catenin, results in a highly 

penetrant under-extension phenotype (96% - our observations); [40]). Removing 

sdn-1 from bar-1 mutants had no effect on axon growth as 95% of the double 

mutants exhibited an under-extension phenotype. From these we conclude that for 

axon extension sdn-1 is functioning in the Wnt pathway at a level equivalent with 

the Frizzled and Dishevelled proteins, upstream of β-catenin. 

Since loss of lin-44; egl-20 resulted in only a 45% under-extension phenotype 

we asked whether a third Wnt ligand, mom-2, could also function in this pathway. 

The mom-2 gene is expressed in the L1 stage, in the posterior of the animal near the 

region where the DNC is forming. We examined mom-2(or77) mutants and found no 

evidence of under-extension in the DNC, although we did see over-extension (see 
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below). Double mutants of mom-2 with lin-44 (0%) and egl-20 (3%) did not result in 

under-extension defects. Triple mutants were sick and difficult to obtain, so we used 

RNAi to knockdown mom-2 in lin-44; egl-20 double mutants. Although mom-2 RNAi 

caused a highly penetrant embryonic lethality we were able to obtain sufficient 

numbers of escapers to analyze the DNCs. Compared to the double mutants alone 

we actually observed a decrease in the rate of under-extension (9% vs. 46.5% in lin-

44;egl-20) in escapers. Thus, it is unlikely that MOM-2 is functioning redundantly 

with LIN-44 and EGL-20 to activate BAR-1 to promote axon extension from the 

commissure to the termination point. 

sdn-1 functions in a Wnt signaling pathway to inhibit axon extension  

Interestingly, loss of function in sdn-1 and Wnt signaling genes, with the 

exception of bar-1, also result in axons that grow past the normal termination. A 

necessary first step in the DNCs being able to be over-extended could be that they 

reach the wild-type termination point. Thus, to evaluate over-extension we counted 

the DNCs that were extended past the normal termination point as a fraction of 

those that were not under-extended. Thus, in sdn-1 mutants 51% of all animals had 

over-extended DNC, but when we removed animals with under-extension defects 

we found that 84% of axons that reached the wild-type termination point were 

over-extended. When we removed either lin-44 or egl-20 or both from sdn-1 animals 

we observed similar rates of over-extension (lin-44;egl-20 – 46.5% (P=.42 vs sdn-1) 

lin-44; sdn-1 – 58.5% (P>.29 vs sdn-1), egl-20; sdn-1 – 66% (P>0.003 vs sdn-1), lin-

44; egl-20; sdn-1 – 67% (P>0.002 vs sdn-1)). These suggest that the Wnt ligands and 
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SDN-1 are in the same pathway to promote axon termination at the wild-type 

position. 

We subsequently examined over-extension in the lin-17/Frizzled and mig-

5/Dishevelled mutants. The lin-17 mutants had an over-extension phenotype in 

56% of animals, and removal of sdn-1 in that background resulted in over-extension 

47.7% of the time (P=0.1143 vs lin-17, P=0.5394 vs sdn-1). When corrected for 

multiple tests, we concluded that there is no significant difference between the 

double mutants and either single mutants. For mig-5 we observed over-extension in 

46% of single mutants and in 35.6% of animals lacking both mig-5 and sdn-1 

(P=0.1178 vs mig-5, P=0.004 vs sdn-1). The penetrance of these is suggestive that 

mig-5 is required for sdn-1 mutants to be over-extended, likely placing it 

downstream of sdn-1.  

HS modifications are important for SDN-1 to interact with LIN-44 and EGL-20 in 

a context dependent manner. 

 The glycosaminoglycan side chains on SDN-1 are modified by two 

sulfotransferases, HST-2 and HST-6 and an epimerase, HSE-5 [62, 145]. Each 

enzyme has been shown to be involved in multiple aspects of neural development 

through the specific modifications each makes [15, 17, 47, 127]. We examined the 

loss of function mutation for each of the modifying enzymes to determine which 

heparan sulfate sugar modifications are important for the interaction between SDN-

1, LIN-44 and EGL-20. We found that all three enzymes are need for both processes 

(Figure 3.8). 
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HSE-5 is a C5-epimerase that is predicted to catalyze the chain-modifying 

epimerization of glucuronic acid to iduronic acid during heparan sulfate 

biosynthesis. HSE-5 is expressed in the hypodermis and intestine [47]. Previously, 

HSE-5 has been shown to function in parallel to SDN-1 for D-type motorneuron 

dorsally directed commissure outgrowth and VNC fasciculation [15]. We found that 

hse-5 LOF significantly decreased the penetrance of over-extension seen in sdn-1 

(29% lin-17 vs. 51% sdn-1, P<.0001) but did not significantly change the penetrance 

of under-extension defects (43.5% lin-17 vs. 35.5% sdn-1) (Figure 3.8). Suggesting 

that another proteoglycan that is modified by hse-5 is involved in the termination 

process and can partially compensate for the loss of sdn-1. These data also suggest 

the initial modification of SDN-1 by HSE-5 may be important for axon outgrowth. 

When mutated with lin-44, hse-5 did not significantly enhance the penetrance of 

under-extension seen in lin-44;sdn-1 double mutants (37% lin-44;hse-5 vs. 34% lin-

44;sdn-1, P= .06) suggesting HSE-5 is important for the interaction between SDN-1 

and LIN-44 during axon outgrowth. When both hse-5 and egl-20 are mutated 

together the penetrance of over-extension is not significantly different from egl-20 

alone. Loss of hse-5 and egl-20 is not significantly different than the loss of egl-20 

and sdn-1 (62%-over, 7%-under egl-20;hse-5 vs. 66%-over, 14%-under egl-20;sdn-

1), suggesting egl-20 interacts with the side chains of sdn-1 during both processes.  

Two heparan sulfotransferases hst-2 and hst-6 are needed to modify 

syndecan side chains after hse-5. During neuronal development hst-6 is expressed in 

neuronal tissues and hst-2 is expressed in the hypodermis [47]. When mutated 

alone both show a lower penetrance of under-extension defects that of sdn-1 
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mutants (23% hst-2 and 13% hst-6) (Figure 3.8). Loss of either hst-2 or hst-6 with 

lin-44 does not recapitulate the under-extension phenotypes seen in lin-44;sdn-1 

(11% and 0% respectively vs. 34% lin-44;sdn-1) suggesting other modifying 

enzymes and/or other molecules play a role during axon outgrowth (Figure 3.8). 

Interestingly, the penetrance of under-extension seen in egl-20;hst-2 was not 

significantly different from egl-20;sdn-1 (16.5% egl-20;hst-2 vs. 14% egl-20;sdn-1).  

Over-extension defects seen in hst-2 or hst-6 are not significantly different 

than sdn-1 (46% hst-2 and 55% hst-6) suggesting they are important for axon 

termination. Loss of lin-44 with hst-2 is significantly different than lin-44;sdn-1 

(78.5% vs 58%). This increase suggests that hst-2 could be functioning in a parallel 

pathway. In fact, when we tested the LOF in both hst-2 and egl-20 we discovered 

that the loss of both is not significantly different that the loss of both egl-20 and sdn-

1 (57% vs. 66%). Loss of hst-6 also showed similar results with egl-20 (72% 

vs.66%). However, loss of hst-6 and lin-44 did not recapitulate the phenotype seen 

in lin-44;sdn-1 (97.5% vs 58%) but was more similar to the loss of lin-44 alone 

(97.5% double vs. 97% lin-44).  

Taken together these data suggest that different modifications of the SDN-1 

side chains function in a combinatorial fashion with either LIN-44, EGL-20 and some 

yet unidentified molecule during axon outgrowth and termination. 
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Section 3.4 Discussion 

During nervous system formation multiple molecular cues provide 

instructive signals that guide axons to their destinations. Here we demonstrated 

that the single C. elegans syndecan protein functions as both a positive and negative 

regulator of axon outgrowth along the anterior-posterior axis. Syndecans have been 

implicated in growth factor signaling and demonstrated to function co-operatively 

with Frizzled receptors, however their role in Wnt-mediated axon guidance has not 

been specifically demonstrated. Here we find that loss of function in sdn-1 is similar 

to the simultaneous loss of two Wnt ligands, lin-44 and egl-20, suggesting sdn-1 is a 

positive regulator of Wnt signaling. Consistent with that we find that bar-1/β-

catenin is necessary for sdn-1 mutants to display over-extension in the DNC, 

suggesting that SDN-1 is functioning via β-catenin.  

SDN-1 functions in anterior-posterior axon outgrowth and termination. 

In C. elegans the D-type neurons use self-avoidance to tile their axons along 

the anterior-posterior axis, but the most posterior cells (DD6, VD13) have no D-type 

neurons located to their posterior. Further, the dorsal nerve cord in C. elegans does 

not specifically terminate where the D-type neurons do, rather it is contiguous along 

the dorsal side of the animal, and thus these axons lack obvious landmarks to 

instruct them where to stop growing. Similarly, the PLM axons do not appear to 

have an obvious physical landmark (cell, axon, etc., that instructs the axon where to 

terminate Loss of sdn-1 function in C. elegans results in D-type motorneuron and 
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PLM axons that stop short of their normal termination point, as well as axons that 

extend past their normal termination point. We conclude that molecular cues, such 

as SDN-1 provide contextual information to stop axon growth at the appropriate 

position. 

SDN-1 function has been investigated in D-type neurons previously [15]. 

Most germane to our data was a study when D-axons were severed by laser 

axonotomy. In that context, loss of sdn-1 appeared to inhibit regeneration 

suggesting that SDN-1 can stabilize the growth cone of the regenerating axons. This 

would be consistent with our observation that axons in sdn-1 mutants terminate 

prematurely. In the study of regenerating axons, sdn-1(-) axons had more periods of 

unproductive growth, where they did not extend toward the dorsal nerve cord [36]. 

Thus, if the same events occurred in the DNC during development we would expect 

axons to fail to reach the normal termination point. Since we found that the 

percentage of animals with premature termination points as the same in L2 animals 

as seen later in development, we would conclude that the deficit in extension likely 

occurred during the earliest stages of axon outgrowth. 

SDN-1 functions both autonomously and non-autonomously in D-type 

motorneurons. 

One question is how can SDN-1 both promote and inhibit axon outgrowth? 

Our results suggest that these functions are likely mediated by different cells 

expressing SDN-1. SDN-1 is expressed in multiple different tissues including the 

hypodermis and nervous system [15]. Previous work has suggested that axon 
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guidance by SDN-1 was largely non-autonomous, most likely from the hypodermal 

cells that form one of the growth substrates for the axons [36]. When we replaced 

SDN-1 function broadly in the animals we found that we could only rescue the 

under-extension of axons, but could partially rescue the under-extension when we 

decreased the levels of SDN-1 by making the integrated transgene heterozygous. 

We were able to partially rescue the over-growth phenotype by specifically 

expressing SDN-1 in the D-type neurons. This suggests that SDN-1 can function cell-

autonomously, and in the D-type neurons it functions to restrict outgrowth. Unlike 

constructs where SDN-1 was expressed using its endogenous promoter, we found 

that increasing the concentration of DNA in the transgenes resulted in defects in the 

axonal migration of the D-type neurons, with no appreciable increase in rescue of 

the termination phenotype in the DNC.  

It is unclear why the integrated SDN-1 transgenes, being under the control of 

the endogenous promoter elements, could not fully rescue the axon outgrowth 

defects. However, it is worth noting that previous studies using SDN-1 integrants at 

this chromosomal location were unable to fully rescue an sdn-1 loss-of-function 

phenotype [36]. It is possible that the integrations we are using are missing long-

distance regulatory elements. Our heterozygous integrant rescue data suggest this is 

not the complete explanation. It is also possible that the integration position in the 

chromosome alters the levels of expression from the endogenous promoter. We do 

not see a pronounced dominant effect of the transgene on D-type neuron growth in 

wild-type animals, suggesting the overall levels of SDN-1 expression in vivo are 

tightly regulated.  
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The SDN-1::GFP protein is present in the animals very early in development, 

with broad tissue distribution. We also observed an aggregation of SDN-1::GFP near 

the termination point of the D-type neurons in the DNC, although the axons do not 

appear to specifically terminate at this position, rather they extend a short distance 

past the point where SDN-1 was concentrated. Based on its colocalization with a 

marker specific for the D-type axons, we infer that the SDN-1::GFP is present in 

those cells, although the focused concentration we observe may not be limited to the 

D-neuron process. Similarly we find LIN-17 to be concentrated near the normal 

termination point of the D-axon, consistent with previous results [40]. We found 

that the foci of LIN-17 and SDN-1 are coincident near the termination point of the D-

axons. 

Syndecans are known to regulate the local concentration of Wnt ligands, and 

in C. elegans, loss of sdn-1 results in the diffusion of EGL-20 away from source cells 

[31]. Thus, one possibility is that SDN-1 is acting to promote Wnt signaling, likely via 

LIN-17, at the termination point of the D-type neurons, to inhibit outgrowth. These 

results are consistent with our genetic data in that the loss of sdn-1 and lin-17 are 

both associated with outgrowth errors. 

Heparan sulfate modification of SDN-1 is partially required for function 

 SDN-1 is decorated with heparan sulfate and chondroitin sulfate side chains 

that are modified by such enzymes has HSE-5, HST-2 and HST-6. Our results suggest 

that specific sugar modifications on the side chains of SDN-1 regulate different 

ligand interactions during axon outgrowth and termination separately. This type of 
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side chain modification specificity has been demonstrated before using the C. 

elegans HSN neuron [146]. In that context SDN-1 in the migrating neurons is 

modified by hst-3.1 and hst-6. Conversely, hst-2 and hse-5 were found to modify 

other HSPGs involved in HSN migration. 

 Interestingly, our data indicated that lin-44 and egl-20 might interact with 

sdn-1 via a specific combination of side chain modifications during axon outgrowth 

and then switch to other modified sites for axon termination. Our double mutant 

analysis suggests that during axon outgrowth lin-44 is interacting with sdn-1 

through the sites that are modified by hse-5. While egl-20 interacts with sdn-1 at 

sites modified by hse-5 and hst-2. Both modifying enzymes, hst-2 and hst-6 seem to 

be interacting with another yet unknown HSPG for this process since the loss of 

either with a Wnt ligand does not fully recapitulate the penetrance seen in sdn-

1/Wnt double mutants. For axon termination hse-5 seems to be important for the 

interaction between sdn-1 and lin-44, while egl-20 interacts with sdn-1 via all three 

types of modifications. Again it is possible that these enzymes modify other proteins 

involved in both these processes and that other HSPGs and/ or ligands are modified. 

Further investigation could tease out the interactions and help us to further 

understand the mechanism behind axon outgrowth and termination. 

Axon extension relies on proteins that are also involved in synaptogenesis 

The incomplete effect on axon outgrowth in all of our mutant combinations, 

with the exception of bar-1, argues that multiple pathways function in a partially 

redundant fashion to regulate axon termination. For example, recent work has 
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indicated that the E3 ubiquitin ligase, RPM-1, and the synaptic scaffold protein, SYD-

2, are also involved in axon termination [37, 147]. Similar to our results with lin-44 

and egl-20, the singular loss of rpm-1 or syd-2 did not result in under-extended 

axons, but double mutant animals did have shortened DNCs.  

There have been a number of recent papers linking axon extension to 

synaptic development [142]. Multiple molecules function iteratively in these 

processes, e.g. rpm-1, lin-44, etc., and, in C. elegans, disruption of the synapse of PLM 

neurons can stimulate axon outgrowth. Interestingly, at the Drosophila 

neuromuscular junction, syndecan adhesion can gate the developmental switch 

between synaptic stability and synaptic growth that occurs with organismal 

development. Going forward it will be important to determine if the axon outgrowth 

defects we observe are due to syndecan interacting with different ligands, or if they 

are entirely mediated through regulation of Wnt-dependent signaling. 

  

  



 84 

Section 3.5 Materials and Methods 

Strains and Genetics 

N2 (var. Bristol) was used as the wild-type reference strain in all 

experiments. Strains were maintained at 18-22 ºC, using standard maintenance 

techniques as described [121]. Alleles used in this report include: LGI, lin-44(n1792), 

lin-44(gk360814), lin-17(n671); LGII, mig-5(rh94);  LGIV, egl-20(lq42) (Erik 

Lundquist), egl-20(gk453010), LGV, mom-2(or77); LGX bar-1(ga80), sdn-1(ok449), 

sdn-1(zh20), hse-5(tm472), hse-5(lq49), hst-2(ok595), hst-6(ok273). The following 

transgenic lines were used:  lhIs47 [Punc-25::mCherry], juIs76 [Punc-25::gfp], muIs32 

[Pmec-7::gfp], juSi119 [Psdn-1::SDN-1cDNA::GFP::sdn-1 3'UTR] [30], wpSi12 [36], 

lqIs80 [Pscm::gfp] (Erik Lundquist). 

To generate hemizygous Mos-SCI we crossed N2 males to sdn-1(zh20); 

juSi119 to generate sdn-1/0; juSi119/+ males and crossed them with sdn-

1(zh20);juIs76. The juSi119 insertion rescues the male mating behavior absent from 

zh20/0 males. We scored the resulting sdn-1(zh20); juSi119/juIs76 animals. 

The mom-2 RNAi experiments were conducted using a clone obtained from 

the Ahringer library (V-6A13;Overlapping CDS:  F38E1.7) [63]. 

Plasmid Construction 

sdn-1 cDNA was odtained by amplifying from a cDNA library, initially 

transcribed by random hexamers and Superscript III (Life Technologies). The 

primers used to amplify the cDNA were as follows: sdn-1cDNAF1 5’ – 

caggtgattacaccaacaagac – 3’ and sdn-1cDNA R1 5’- cagataagtgccatcagaaacc – 3’. The 

resulting PCR product was cloned into the pCR8/GW/Topo entry vector (Life 
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Technologies) and recombined into the Punc-25 destination vector using LR 

recombinase (Life Technologies) using the manufacterer’s protocol to generate 

pEVL449. The sdn-1 cDNA was sequenced prior to recombination to ensure no 

errors were created by PCR. 

Fluorescence microscopy 

 Axon termination in DD/VD motorneurons was visualized using the reporter 

strains, juIs76 or lhIs47 using an Olympus FV1000 confocal microscope. L4 larva and 

if necessary, as in the case with strains carrying egl-20(lq42)lqIs80, adult animals 

were assayed for proper axon termination. Animals where the DNC axons did not 

grow to the posterior edge of the cell bodies located on the VNC were considered 

under-extended. Animals in which the DNC axons grew past the cell bodies located 

on the VNC, were considered to be over-extended.  

Statistics 

 A Fisher exact test was used to evaluate the statistical significance between 

various mutations and wild type. Significance values were calculated with GraphPad 

QuickCalcs (http://www.graphpad.com/quickcalcs/) 

  

http://www.graphpad.com/quickcalcs/
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Section 3.6 Figures 
 
Figure 3.1 
  

juIs76 

A. B. 
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Figure 3.1 D-type motorneurons grow at stereotyped positions along the 

anterior-posterior axis (A) The most posterior D-type cells and their axons are 

visualized with juIs76 (Punc-25::GFP) in wild-type animals. The axons of DD6 and 

VD13 form a thick bundle that terminates just anterior to the position of the cell 

bodies in the VNC. The thin bundle consist of the VD13 axon that terminates at the 

posterior edge of the cell bodies in the VNC. (B) Schematic representation of D-type 

motor neurons.  The VD12, DD6 and VD13 cell bodies (green ovals) in the ventral 

nerve cord. The arrow head marks the thick bundle termination and the arrow marks 

the thin bundle termination point. 
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Figure 3.2 
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Figure 3.2 sdn-1 is needed for D-type axon outgrowth and termination (A) 

Visualization of the under-extension phenotype seen in sdn-1 LOF mutants. (B) 

Visualization of the over-extension phenotype seen in sdn-1 LOF mutants. The arrow 

indicates the stereotypic termination point and the asterisk indicates the mutant 

termination point.  The presence of both phenotypes indicates sdn-1 functions in 

both axon outgrowth and axon termination. (C) Quantification of the phenotypes 

seen in sdn-1 LOF mutants. Error bars represent the Standard Error of the Mean 

(SEM).  



 90 

Figure 3.3 
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Figure 3.3 SDN-1 is a determinant of anterior-posterior axon guidance and 

termination in C. elegans (A, C) DIC and (B, D) fluorescent images of an L2 sdn-

1(zh20) animal with muIs32 (integrated GFP reporter expressed in the 

mechanosensory neurons ALM and PLM). (B) The PLM axons frequently terminated 

prematurely (not shown), but also failed to terminate growth. (D) The PLM axon 

would “hook” toward the ventral nerve cord. Arrow head indicates normal 

termination point and arrow indicates mutant termination point. 
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Figure 3.4 
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Figure 3.4 SDN-1 functions both cell autonomously and non-autonomously 

during axon outgrowth and termination (A) Quantification of the under-extension 

observed in SDN-1 Mos-SCI lines and Punc-25::sdn-1cDNA in sdn-1(zh20) mutants. (B) 

Quantification of the over-extension observed in SDN-1 Mos-SCI lines and Punc-

25::sdn-1cDNA in sdn-1(zh20) mutants. N for sdn-1(zh20);juIs76= 200 animals, SDN-

1::GFP Mos-SCI= 100 animals, wpSi12 Mos-SCI= 100 animals, Punc-25::sdn-1cDNA= 

60 animals and Punc-25::sdn-1cDNA= 100 animals. ***P=.0001. Statistical significance 

was calculated by using the Fisher’s Exact Test. Error bars represent the Standard 

Error of the Mean (SEM). (C) Visualization of SDN-1::GFP in a L1 animal. The majority 

of expression is observed in the nervous system and hypodermal tissues. (D) 

Visualization of the D-type motorneurons using lhIs47 (Punc-25::mCherry). (E) 

Merge of the SDN-1::GFP and lhIs47. (D) Enlargement of the E panel. SDN-1:GFP can 

be seen co-expressed with lhIs47 in the VNC, DNC and cell bodies.  
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Figure 3.5 
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Figure 3.5 sdn-1 functions with Wnt ligands for axon outgrowth and 

termination (A) Quantification of the under-extension phenotype seen in sdn-1 as 

compared to Wnt single and double mutant animals. The under-extension seen in sdn-

1 is not significantly different than lin-44(n1792);sdn-1(zh20) and lin-44(n1792);egl-

20(lq42)lqIs80;lhIs47. (B) Quantification of the over-extension phenotype seen in sdn-

1 as compared to Wnt single and double mutant animals. The over-extension seen in 

sdn-1 is not significantly different than lin-44(n1792);sdn-1(zh20) and lin-

44(n1792);egl-20(lq42)lqIs80;lhIs47.  ***P= .0001, **P= .002. N= 200 animals. 

Statistical significance was calculated by using the Fisher’s Exact Test. Error bars 

represent the Standard Error of the Mean (SEM). L4 animals were analyzed except 

when lqIs80 was present then adult animals were scored.   
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Figure 3.6 
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Figure 3.6 sdn-1 functions with canonical Wnt signaling effectors (A) 

Quantification of the under-extension phenotype seen in sdn-1 as compared to Wnt 

effector single and double mutant animals. The under-extension seen in sdn-1 is not 

significantly different than lin-17(n671);sdn-1(zh20), mig-5(rh94) and mig-

5(rh94);sdn-1(zh20). ***P<.0009 N>100 (B) Quantification of the over-extension 

phenotype seen in sdn-1 as compared to Wnt effector single and double mutant 

animals.  The over-extension seen in sdn-1 is not significantly different than lin-

17(n671), lin-17(n671);sdn-1(zh20), and mig-5(rh94). ***P=.0001 **P= .004 N>100. 

Statistical significance was calculated by using the Fisher’s Exact Test. Error bars 

represent the Standard Error of the Mean (SEM).   
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Figure 3.7 
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Figure 3.7 mom-2 does not act redundantly with lin-44 or egl-20 during D-type 

motorneuron axon outgrowth and termination (A) Quantification of the under-

extension phenotype seen in Wnt ligand single and double genetic mutant animals 

and lin-44;egl-20 animals grown on bacteria expressing mom-2 dsRNA. We found no 

evidence of under-extension in mom-2(or77). Double mutants of mom-2(or77) with 

lin-44(n1792) (0%) and egl-20(gk453010) (3%) did not result in under-extension 

defects. The under-extension observed in the lin-44;egl-20;mom-2(RNAi) (40%) was 

not significantly different than lin-44;egl-20 mutants (45%). (B) Quantification of the 

over-extension phenotype seen in Wnt ligand single and double genetic mutant 

animals and lin-44;egl-20 animals grown on bacteria expressing mom-2 dsRNA. LOF 

of mom-2 via RNAi caused a significant decrease in over-extension defects seen in lin-

44(n1792) or egl-20(gk453010). However, the loss of mom-2 in a lin-44;egl-20 

background (50%) was not significantly different from lin-44;egl-20 (46.5%). 

***P=.0002, **P=.004, *P=.02 N>60. Statistical significance was calculated by using 

the Fisher’s Exact Test. Error bars represent the Standard Error of the Mean (SEM). 

 

 

 

 

 

 

 



 100 

Figure 3.8 
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Figure 3.8 sdn-1 heparan sulfate side chain modifications are important for 

Wnt interactions (A) Quantification of under- and over-extension defects observed 

in hse-5(tm472), hst-2(ok595) and hst-6(ok273) compared to sdn-1(zh20).  Loss of 

either hst-2 (23%) or hst-6 (13%) does not fully recapitulate the under-extension 

defects seen in sdn-1 (39.5%). While hse-5 (43.5%), under-extension is not 

significantly different than sdn-1 (39.5%), the over-extension is significantly 

decreased (29% vs. 51%).  (B-C) Quantification of under- and over-extension 

defects observed in lin-44(n1792), hse-5(tm472), hst-2(ok595) and hst-6(ok273) 

double mutants compared to lin-44(n1792);sdn-1(zh20).  (D-E) Quantification of 

under- and over-extension defects observed in egl-20(lq42), hse-5(tm472), hst-

2(ok595) and hst-6(ok273) double mutants compared to egl-20(lq42);sdn-1(zh20).  

N>100. ***P= .0001, **P<.03. Statistical significance was calculated by using the 

Fisher’s Exact Test. Error bars represent the Standard Error of the Mean (SEM). 

Experiments and analysis were conducted by Samantha Hartin and Riley Roberts. 
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Figure 3.9 
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Figure 3.9 Genetic model for D-type axon outgrowth and termination (Stage 1: 

Outgrowth) SDN-1 is most likely inhibiting Wnt signaling and the downstream 

effectors to allow for proper axon outgrowth. (Stage 2: Termination) Since we were 

able to partially rescue the over-growth phenotype by specifically expressing SDN-1 

in the D-type neurons. This suggests that SDN-1 can in the D-type motorneurons to 

activate the Wnt signaling pathway and allow for proper axon termination. This is 

consistent with our genetic data that the loss of sdn-1 and lin-17 are both associated 

with outgrowth errors. 
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Chapter IV 
Concluding remarks and future directions   
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Section 4.1 Concluding remarks 

The findings in Chapter II reveal roles for PTP-3 and SDN-1 during C. elegans 

embryogenesis and larval development. Here using double mutant and 4D time lapse 

analysis we found that PTP-3 and SDN-1 work in parallel pathways to ensure proper 

epidermal development. Using the SynLet phenotype seen in the ptp-3;sdn-1 double 

mutants, we conducted an RNAi screen for other ECM molecules that could interact 

with either gene during development. Our sensitized backgrounds allowed for 

identification of molecules that may have been missed in traditional screens due to 

low phenotypic penetrance. It is important to note that we may have missed certain 

genes during our screen due to the nature of RNAi (Off target effects, reduced 

induction or inherent resistance). Regardless, identification of genes previously 

shown to be involved with either ptp-3 or sdn-1 suggests that our method is a valid 

way to identify genetic interactions using genes of interest. 

One such gene lin-44, a Wnt ligand, was identified as been SynLet with sdn-1 

but not ptp-3 suggesting that it may function in a linear pathway with ptp-3 that 

functions in parallel to sdn-1. Again using double mutants and 4D time lapse analysis 

we found that complete LOF mutations in lin-44 and sdn-1 cause the majority of 

animals to arrest at the embryo stage. This arrest is due to the improper migration of 

endodermal precursor cells Ea and Ep at the 24-cell stage of development. Normally 

LIN-44 signals through the Frizzled receptor LIN-17. However, we believe that during 

this process LIN-44 does not function through its canonical Frizzled receptor, LIN-17, 

due to the level of embryonic lethality observed in lin-17;sdn-1 double mutants. 

Double mutant analysis of ptp-3 and lin-44 revealed no significant increase in 
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embryonic lethality, although the level of larval lethality increased slightly when 

compared to each single mutant. This suggests that lin-44 and ptp-3 may be 

functioning in the same genetic pathway during embryonic development.  

Our results are consistent with the idea that ptp-3 contributes to lin-44-

dependent embryogenesis. Furthermore, it is likely that at least one of the potential 

reasons that ptp-3; sdn-1 double mutants exhibit SynLet is because of a disruption in 

a lin-44 / ptp-3 signaling pathway during gastrulation. 

Chapter III identifies later functions for SDN-1, LIN-44 and EGL-20 during 

motorneuron axon outgrowth and termination. Additionally, our results show that 

another yet unidentified signaling molecule functions during both these processes.  

Our studies complement previous genetic data suggesting that LIN-44 and EGL-20 

work together for proper axon termination of the most posterior DD/VD 

motorneurons in the C. elegans tail. However, our complete LOF double mutant 

analysis also suggests that both genes function in DD/VD axon outgrowth, but the 

importance of each molecule differs during the two processes. Here, we found that 

SDN-1 functions in both processes. During the first process, SDN-1 is required non-

autonomously to regulate Wnt signaling either by controlling the 

diffusion/distribution of the Wnt ligands or by disrupting the Wnt-Frizzled 

interaction (Figure 4.1). For proper axon termination, SDN-1 acts cell autonomously 

to inhibit Wnt signaling, perhaps by binding to MIG-5 to disrupt its ability to inhibit 

the β-catenin destruction complex (Figure 4.1). Further genetic analysis of the 

downstream Wnt effectors indicate that SDN-1 functions at the level of the Frizzled 

receptor LIN-17 and possibly with Dishevelled/MIG-5 during both processes. 
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Interestingly, loss of bar-1 causes the axons to under-extend in 95% of animals 

suggesting that BAR-1 activity is negatively regulated for axon extension through 

SDN-1 inhibition of proper Wnt signaling.  

The HS side chains of SDN-1 are important for ligand interactions. By 

analyzing the enzymes that modify the side chains (HSE-5, HST-2 and HST-6) we 

found that they have functions in both processes. However, none of them were able 

to recapitulate the phenotypic penetrance seen in sdn-1 single or sdn-1;Wnt double 

mutants. These data suggest that there are other modifying enzymes that function 

during these processes, and possibly other proteoglycans as well. 

Overall, our genetic analyses indicate that SDN-1 is needed for both DD/VD 

motorneuron axon extension and termination because LOF sdn-1 mutants display 

both under and over-extension defects. We propose a two stage model where EGL-20 

and LIN-44 signal through LIN-17, SDN-1, MIG-5 and BAR-1 to regulate axon 

extension. Here SDN-1 acts as a negative regulator of β-catenin dependent Wnt 

signaling. Additionally, our findings regarding the extent of over-extension 

phenotypes lead us to hypothesize that EGL-20 plays a larger role with SDN-1 than 

LIN-44 during this initial stage. When the axon reaches the proper termination point 

LIN-44 and EGL-20 again use LIN-17, SDN-1 and MIG-5 to signal for axon termination. 

During this second stage we believe that LIN-44 is acting as the primary molecule 

used for termination in a parallel pathway to EGL-20 and SDN-1, and these two 

pathways converge on the same molecule at some point. Since none of the complete 

LOF mutations recapitulate the phenotypes seen in the triple mutant we believe there 
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is another molecule involved in axon extension and termination. Further studies will 

be needed to confirm this hypothesis. 

In conclusion, the results presented in this dissertation describe how known 

cell adhesion molecules function initially in parallel pathways during gastrulation and 

later function in the same pathway during neural development. Both the 

identification of the role of LIN-44 during gastrulation alongside PTP-3 and SDN-1 

and the later characterization of the SDN-1/Wnt interaction add to the current 

knowledge of how these molecules are reused during development. We also 

identified an effective way to search for genes of interest using a sensitized reverse 

genetics approach. 
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Section 4.2 Future Directions 

The findings presented in this dissertation provide new insights into the reuse 

of cell adhesion molecules during development. However, some questions remain 

unanswered. Going forward, addressing the following questions will further our 

knowledge of how SDN-1 and the Wnt pathways intersect during embryogenesis and 

axon guidance. 

 

Question 1: Where is SDN-1 functioning during axon outgrowth and 

termination? 

In chapter III we demonstrated that LOF mutations in sdn-1 cause both under 

and over-extension of the DD6 and/or VD13 axons in the dorsal nerve cord, 

suggesting SDN-1 is involved in both axon extension and termination. Our genetic 

analysis of SDN-1 and the Wnt pathway suggest that SDN-1 works in combination 

with both LIN-44 and EGL-20 during both processes. However, we do not know where 

SDN-1 is functioning in these processes. Previous studies of Wnt receptors showed 

that they can work both cell autonomously and non-autonomously to modulate Wnt 

signaling. We hypothesize that SDN-1 has both a cell autonomous and non-

autonomous role and switches between these roles during axon outgrowth and axon 

termination in response to the different Wnt signals. 

SDN-1 is expressed in multiple tissues throughout C. elegans development 

including the nervous system, hypodermis and pharynx [15, 99]. Expression of full 

length SDN-1 in either the nervous system or hypodermis can rescue different 

phenotypes seen in LOF sdn-1 mutants [15] 
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We found that under-extension of the DD/VD axons can be rescued by 

reintroducing a single copy of the full length SDN-1 gene back into sdn-1 mutants. 

However, the over-extension phenotype is not fully rescued. This partial phenotypic 

rescue has also been reported by others [30, 36]. This partial result suggests that 

there are long distance regulatory elements and/or genomic positional requirements 

that have yet to be identified, which are necessary for full rescue of the sdn-1 

phenotypes. 

Since we did not obtain full rescue with two separate SDN-1 Mos-SCI lines, we 

made a SDN-1 cDNA construct that is expressed in the VD/DD motorneurons by the 

unc-25 promoter. We analyzed two separate injection concentrations and found that 

neither fully rescued either phenotype but we were able to significantly decrease 

penetrance of the over-extension defects seen in sdn-1 LOF mutants. Next, we made 

SDN-1 cDNA constructs driven by the myo-3 promoter, which drives expression in the 

muscles. With this construct we were able to significantly decrease the penetrance of 

over-extended axons however the penetrance of under-extended axons increased 

significantly.   

We will need to determine whether the defects can be rescued by the SDN-1 

cDNA alone and if it can rescue our phenotypes under its endogenous promoter. We 

will also need to express our SDN-1 cDNA from the hypodermis to determine if SDN-

1 functions there during either process. However, similar constructs have not been 

able to fully rescue all sdn-1 phenotypes including axon guidance [15, 36]. Mosaic 

analysis may also be employed to determine where SDN-1 is functioning during axon 

outgrowth and termination. 
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Question 2: Does SDN-1 physically interact with components of the Wnt 

pathway? 

 According to the genetic data presented in this dissertation, SDN-1 acts at the 

level of LIN-17/Frizzled and/or MIG-5/Dishevelled during each stage. However, it is 

unknown whether these molecules are physically interacting during signaling. 

Interactions between HSPGs and Frizzled receptors are reported to be important in 

the positive and negative regulation of Wnt signaling [30-33, 35]. We have imaged 

and analyzed animals with SDN-1::GFP and LIN-17::RFP and found that both are 

broadly localized in the animal. SDN-1::GFP is prominent in the dorsal nerve cord and 

LIN-17::RFP is also present in the DNC. Closer analysis show SDN-1::GFP and LIN-

17::RFP signals at the axon termination point (Figure 4.2). Our initial FRET 

(Fluorescence resonance energy transfer) analysis of SDN-1 and LIN-17 suggest that 

they are closely situated in the both the dorsal and ventral nerve cords but, their 

association is more prevalent in the dorsal nerve cord. These data suggest that they 

may physically interact in those axons. To determine whether SDN-1 and LIN-17 are 

physically interacting we could conduct CO-IP assays in wild-type and mutant strains. 

 SDN-1 may also be physically interacting with MIG-5/Dishevelled via its PDZ 

domain. To determine if this is important for proper Wnt signaling we could repeat 

the above assays substituting LIN-17 reagents for MIG-5 reagents.  
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Section 4.3 Figures  
 
Figure 4.1  
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Figure 4.1 Potential molecular model for the two step growth of the D-type 

motorneurons Our results suggest that these functions are likely mediated by 

different cells expressing SDN-1. (A) When we replaced SDN-1 function broadly 

using Mos-SCI constructs we found that we could only rescue the under-extension of 

axons, but could partially rescue the under-extension when we decreased the levels 

of SDN-1 by making the integrated transgene heterozygous. These results indicate 

that SDN-1 is acting outside the D-type motorneurons to inhibit Wnt signaling. 

Possibly by restricting the distribution of the ligands. (B) We were able to partially 

rescue the over-growth phenotype by specifically expressing SDN-1 in the D-type 

neurons. This suggests that SDN-1 can function cell-autonomously in the D-type 

neurons to restrict outgrowth. It is possible that SDN-1 is acting to promote Wnt 

signaling, via LIN-17, at the termination point of the D-type neurons, to inhibit 

further growth.  
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Figure 4.2  
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Figure 4.2 SDN-1 and LIN-17 are present at the approximate termination point 

of the D-type motorneurons in the dorsal nerve cord (A) SDN-1::GFP is broadly 

localized in the animal, but is prominent in the dorsal nerve cord (DNC) and there is 

a concentration of SDN-1::GFP (arrow) just dorsal to the intestinal-rectal junction, the 

position where the GABAergic axons terminate in wild type animals. (B) LIN-17::RFP 

is also present throughout the animal, including in the DNC. (C) DIC image of animal. 

(D, E) An enlarged region of the DNC at the termination point. (F) A merge of the SDN-

1::GFP and LIN-17::RFP signals demonstrating they are coincident at the termination 

point. (G) A line scan along the DNC region depicted demonstrates that the SDN-

1::GFP intensity is higher near the termination point. LIN-17::RFP, while not enriched 

is present in punctate form along the DNC, but is not enriched after the termination 

point. Scale bar in A is equivalent to 10 μm, scale bar in D is equivalent to 1 μm. 

Experiment and image analysis done by Dr. Brian Ackley.  
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