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Abstract. The goal of this article is to give an overview of numerical problems encountered when
determining the electronic structure of materials and the rich variety of techniques used to
solve these problems. The paper is intended for a diverse scientific computing audience.
For this reason, we assume the reader does not have an extensive background in the related
physics. Our overview focuses on the nature of the numerical problems to be solved, their
origin, and the methods used to solve the resulting linear algebra or nonlinear optimization
problems. It is common knowledge that the behavior of matter at the nanoscale is, in
principle, entirely determined by the Schrodinger equation. In practice, this equation in
its original form is not tractable. Successful but approximate versions of this equation,
which allow one to study nontrivial systems, took about five or six decades to develop. In
particular, the last two decades saw a flurry of activity in developing effective software.
One of the main practical variants of the Schrédinger equation is based on what is referred
to as density functional theory (DFT). The combination of DFT with pseudopotentials
allows one to obtain in an efficient way the ground state configuration for many materials.
This article will emphasize pseudopotential-density functional theory, but other techniques
will be discussed as well.
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I. Introduction. Some of the most time-consuming jobs of any high-performance
computing facility are likely to be those involving calculations related to high-energy
physics or quantum mechanics. These calculations are very demanding both in terms
of memory and in terms of computational power. They entail computational methods
that are characterized by a rich variety of techniques that blend ideas from physics and
chemistry with applied mathematics, numerical linear algebra, numerical optimiza-
tion, and parallel computing. In recent years, the scientific community has dramat-
ically increased its interest in these problems as government laboratories, industrial
research labs, and academic institutions have been placing an enormous emphasis on
materials and everything related to nanoscience. This trend can be attributed to two
converging factors. The first is that the stakes are very high, and the second is that a
major practical breakthrough has never been closer because the synergistic forces at
play today are making it possible to do calculations with accuracies never anticipated.
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Nanoscience may gradually take the forefront of scientific computing in the same
way that computational fluid dynamics (CFD) was at the forefront of scientific com-
puting for several decades. The past few decades of scientific computing have been
dominated by fluid flow computations, in part because of the needs of the aeronautics
and automobile industries (e.g., aerodynamics and turbines). Model test problems
for numerical analysts developing new algorithms are often from CFD (such as the
model “convection-diffusion equation” or the model “Laplacian”). Similarly, a big
part of applied mathematics focuses on error analysis and discretization schemes (fi-
nite elements) for fluid flow problems. Today, the need to develop novel or improved
methods for CFD is diminishing, though this does not mean in any way that CFD
methods are no longer in need of improvements. Yet, a look at recent publications
in scientific computing reveals that there is a certain dichotomy between the current
trend in nanotechnology and the interests of the scientific community.

The “mega” trend in nanotechnology is only timidly reflected by published articles
in scientific computing. Few papers on “algorithms” utilize data sets or examples
from standard electronic structure problems, or address problems that are specific
to this class of applications. For example, one would expect to see more articles
on the problem of computing a very large number of eigenvectors or that of global
optimization of very complex functionals.

Part of the difficulty can be attributed to the fact that the problems encoun-
tered in quantum mechanics are considerably more complex than those addressed
in other areas, e.g., classical mechanics. The approximations and methods used re-
sult from several generations of innovations by a community that is much larger
and broader than that of mechanical and aerospace engineers. Chemists, chemical
engineers, materials scientists, solid state physicists, electrical engineers, and even
geophysicists and, more recently, bioengineers all explore materials at the atomic or
molecular level, using quantum mechanical models. Therein lies a second difficulty,
which is that these different groups have their own notation, constraints, and preferred
methods. Chemists have a certain preference for wave-function-based methods (e.g.,
Hartree—Fock) which are more accurate for their needs but which physicists find too
costly, if not intractable. This preference reflects the historical interests of chemists
in molecules and the interests of physicists in solids.

Our paper presents an overview of some of the most successful methods used
today to study the electronic structures of materials. A large variety of techniques
is available and we will emphasize those methods related to pseudopotentials and
density functional theory.

One of the greatest scientific achievements of humankind is the discovery, in
the early part of the twentieth century, of quantum mechanical laws describing the
behavior of matter. These laws make it possible, at least in principle, to predict the
electronic properties of matter from the nanoscale to the macroscale. The progress
that led to these discoveries is vividly narrated in the book Thirty Years that Shook
Physics by George Gamov [64]. A series of discoveries, starting with the notion of
quantas originated by Max Planck at the end of 1900 and ending roughly in the mid-
1920s with the emergence of the Schrodinger wave equation, set the stage for the new
physics. Solutions of the Schrodinger wave equation resulted in essentially a complete
understanding of the dynamics of matter at the atomic scale. Thus, in 1929, Dirac
had this to say:

The underlying physical laws necessary for the mathematical theory of a
large part of physics and the whole chemistry are thus completely known,
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and the difficulty is only that the exact application of these laws leads to
equations much too complicated to be soluble. It therefore becomes desir-
able that approximate practical methods of applying quantum mechanics
should be developed, which can lead to the explanation of the main features
of complex atomic systems without too much computations.

One could understand atomic and molecular phenomena, formally at least, from
these equations. However, even today, solving the equations in their original form is
nearly impossible, save for systems with a very small number of electrons. In the 76
years that have passed since this statement by Dirac, we continue to strive for a better
explanation of the main features of complex atomic systems “without too much com-
putations.” However, Dirac would certainly have been amazed at how much progress
has been achieved in sheer computing power. Interestingly, these gains have been
brought about by a major discovery (the transistor), which can be attributed in large
part to the new physics and a better understanding of condensed matter, especially
semiconductors. The gains made in hardware, on the one hand, and methodology, on
the other, enhance each other to yield huge speed-ups and improvements in compu-
tational capabilities.

When it comes to methodology and algorithms, the biggest steps forward were
made in the 1960s with the advent of two key new ideas. One of them was density
functional theory (DFT), which enabled the transformation of the initial problem into
one involving functions of only one space variable instead of N space variables, for N-
particle systems in the original Schrodinger equation. Instead of dealing with functions
in R®Y | we only need to handle functions in R?. The second substantial improvement
came with pseudopotentials. In short, pseudopotentials allowed one to reduce the
number of electrons to be considered by constructing special potentials, which would
implicitly reproduce the effect of chemically inert core electrons and explicitly repro-
duce the properties of chemically active valence electrons. With pseudopotentials,
only valence electrons—those on the outer shells of the atom—mneed be considered;
e.g., a Pb atom is no more complex than a C atom as both have s?p? valence configu-
rations. In addition, the pseudopotential is smooth near the core, whereas the actual
potential is singular. This leads to both substantial gains in memory and a reduction
of computational complexity.

In what follows we often use terminology that is employed by physicists and
chemists. For example, we will speak of “diagonalization” when we in fact mean
“computation of eigenvalues and eigenvectors,” i.e., partial diagonalization. We will
use script letters for operators and bold letters for vectors.

2. Quantum Descriptions of Matter. Consider N nucleons of charge Z,, at po-
sitions {R,,} forn =1,..., N and M electrons at positions {r;} fori =1,..., M. An
illustration is shown in Figure 2.1. The nonrelativistic, time-independent Schrédinger
equation for the electronic structure of the system can be written as

(1) HU=FWU,

where the many-body wave function W is of the form

(2) \I/E\I/(Rl,RQ,R3,...;1‘1,1‘2,1‘3,...)
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Fig. 2.1 Atomic and electronic coordinates: filled circles represent electrons, open circles represent
nuclei.

and F is the total electronic energy. The Hamiltonian H in its simplest form can be
written as

N N
h2V2 1 ZnZn’62
3 Ri,Ro,Rs,. .. )= - z = o b
( ) H( 1, vz, vy, 3T, 12,13, ) nzz:l 2M,, 2 ’ Z;l |Rn _Rn’|
n#tn!
M N M
h2V2
B Z om ZZ|Rn—I‘z| Z |rl—rj|
i=1 n=1i=1 ,7/;71

Here, M, is the mass of the nucleus; % is Planck’s constant, h, divided by 27m; m is
the mass of the electron; and e is the charge of the electron.

The Hamiltonian above includes the kinetic energies for the nucleus (first sum
in H) and each electron (third sum), the internuclei repulsion energies (second sum),
the nuclei-electronic (Coulomb) attraction energies (fourth sum), and the electron-
electron repulsion energies (fifth sum). Each Laplacian V2 involves differentiation
with respect to the coordinates of the nth nucleus. Similarly, the term V? involves
differentiation with respect to the coordinates of the ith electron.

In principle, the electronic structure of any system is completely determined by
(1), or, to be exact, by minimizing the energy (¥|H|¥) under the constraint of nor-
malized wave functions W. Recall that ¥ has a probabilistic interpretation: for the
minimizing wave function W,

[U(Ry,...,Ry;r1,...,ra)2d®Ry - - - d*Ryd3ry - - - dPry

represents the probability of finding electron 1 in volume |R; + d3Ry|, electron 2 in
volume |Rs + d®Ra|, etc.

From a computational point of view, however, the problem is not tractable for
systems which include more than just a few atoms and a dozen or so electrons. The
main computational difficulty stems from the nature of the wave function, which
depends on all coordinates of all particles (nuclei and electrons) simultaneously. For
example, if we had just 10 particles and discretized each coordinate using just 100
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points for each of the x,y, z directions, we would have 10° points for each coordinate
for a total of (10°) "% — 10% variables altogether.

Soon after the discovery of the Schrodinger equation, it was recognized that this
equation provided the means of solving for the electronic and nuclear degrees of free-
dom. Using the variational principle, which states that an approximate (normalized)
wave function will always have a less favorable energy than the true ground state wave
function, one had an equation and a method to test the solution. One can estimate
the energy from

f U*HU d3R1 d3R2 d3R3 d31‘1 d3r2 d31‘3 s

4 U|H|WP
(4) = (Y|H[Y) = [ U*¥ &Ry d®Ro 3R+ d3rq dPry ddrs - -

Recall that the wave function ¥ is normalized, since its modulus represents a prob-
ability distribution. The state wave function W is an Lo-integrable function in C3? x
C3 x --- x C3. The bra (for {|) and ket (for |)) notation is common in chemistry and
physics. These resemble the notions of outer and inner products in linear algebra and
are related to duality. (Duality is defined from a bilinear form a(z,y): The vectors x
and y are dual to each other with respect to the bilinear form.)

When applying the Hamiltonian to a state function ¥, the result is |H|¥), which
is another state function ®. The inner product of this function with another function
1 is (n|®), which is a scalar, a complex one in the general setting.

A number of highly successful approximations have been made to compute both
the ground state, i.e., the state corresponding to minimum energy F, and excited
state energies, or energies corresponding to higher eigenvalues E in (1). The main
goal of these approximations is to reduce the number of degrees of freedom in the
system as much as possible.

A fundamental and basic approximation is the Born—Oppenheimer or adiabatic
approximation, which separates the nuclear and electronic degrees of freedom. Since
the nuclei are considerably more massive than the electrons, it can be assumed that
the electrons will respond “instantaneously” to the nuclear coordinates. This allows
one to separate the nuclear coordinates from the electronic coordinates. Moreover,
one can treat the nuclear coordinates as classical parameters. For most condensed
matter systems, this Born-Oppenheimer approximation is highly accurate [210, 79].
Under this approximation, the first term in (3) vanishes and the second becomes a
constant. We can then work with a new Hamiltonian:

h2V2 N M 1 M e2
5 )= 5 :
(6) H(ry,ro,rs,...) ; ;; |R —I‘z| 2 ; |r; — ;]

i#]

This simplification essentially removes degrees of freedom associated with the nuclei,
but it will not be sufficient to reduce the complexity of the Schrédinger equation to
an acceptable level.

2.1. The Hartree Approximation. If we were able to write the Hamiltonian H
as a sum of individual (noninteracting) Hamiltonians, one for each electron, then it is
easy to see that the problem would become separable. In this case, the wave function
U can be written as a product of individual orbitals, ¢ (ry), each of which is an
eigenfunction of the noninteracting Hamiltonian. This is an important concept and
it is often characterized as the “one-electron” picture of a many-electron system.

The eigenfunctions of such a Hamiltonian determine orbitals (eigenfunctions) and
energy levels (eigenvalues). For many systems, there is an infinite number of states,
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enumerated by quantum numbers. Each eigenvalue represents an “energy” level cor-
responding to the orbital of interest. For example, in an atom such as hydrogen, an
infinite number of bound states exists, each labeled by a set of three discrete integers.
In general, the number of integers equals the spatial dimensionality of the system plus
spin. In hydrogen, each state can be labeled by three indices (n,, and m) and s for
spin. In the case of a solid, there is essentially an infinite number of atoms and the
energy levels can be labeled by quantum numbers, which are no longer discrete but
quasi-continuous. In this case, the energy levels form an energy band.

The energy states are filled by minimizing the total energy of the system com-
mensurate with the Pauli principle, i.e., each electron has a unique set of quantum
numbers, which label an orbital. The N lowest orbitals account for 2N electrons, if
one ignores spin (or better occupies an orbital with a spin up and a spin down elec-
tron). Orbitals that are not occupied are called “virtual states.” The lowest energy
orbital configuration is called the “ground state.” The ground state can be used to
determine a number of properties, e.g., stable structures, mechanical deformations,
phase transitions, and vibrational modes. The states above the ground state are
known as excited states. They are often used to calculate response functions of the
solid, e.g., the dielectric and the optical properties of materials.

In mathematical terms, H = @H?, the circled sum being a direct sum meaning
that H’ acts only on particle number i, leaving the others unchanged. This not being
true in general, Hartree suggested using it as an approximation technique whereby
the basis resulting from the calculation is substituted in (U|H|¥) / (T|P) to yield an
upper bound for the energy.

In order to make the Hamiltonian (5) noninteractive, we must remove the last
term in (5), i.e., we assume that the electrons do not interact with each other. Then
the electronic part of the Hamiltonian becomes

_pev? N M
(6) Hel:Hel(rlaI.Q)rg?"'):; ;;|R _rz|

which can be cast in the form

.

h2v?
om + VN I‘l :| @Hl

(8) - Z |R —I‘1|

This simplified Hamiltonian is separable and admits eigenfunctions of the form

9) Y(r1,r2,13,...) = ¢1(r1)¢2(r2)9s(rs) - -,
where the ¢;(r) orbitals can be determined from the “one-electron” Hamiltonian,
(10) H'gi(r) = Eidi(r) .

The total energy of the system is the sum of the occupied eigenvalues, F;.
This model is extremely simple, but clearly not realistic. Physically, using the
statistical interpretation mentioned above, writing ¥ as the product of ¢;’s only means
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that the electrons have independent probabilities of being located in a certain position
in space. This lack of correlation between the particles causes the resulting energy
to be overstated. In particular, the Pauli principle states that no two electrons can
be at the same point in space and have the same quantum number. The solution ¥
computed in (9) is known as the Hartree wave function.

The Hartree approximation consists of using the Hartree wave function as an
approximation to solve the Hamiltonian including the electron-electron interactions.
This process starts with the use of the original adiabatic Hamiltonian (5) and forces a
wave function to be a product of single-electron orbitals, as in (9). The next step is to
minimize the energy (¥|H|¥) under the constraint (¥|¥) = 1 for ¥ in the form (9).
This condition is identical to imposing the conditions that the integrals of each [¢y|?
be equal to one. If we imposed the equations given by the standard approach of the
Lagrange multipliers combined with first order necessary conditions for optimality,
we would get

d (Y| H|¢k)
dipr
Evaluating d (¢|H|) /di over functions ¢ of norm 1 is straightforward. The first and

second terms are trivial to differentiate. For the simple case when k =1 and M = 3,
consider the third term, which we denote by (¥|V,|¥):

— Ay, = 0.

e? ¢2¢ ¢
(11) (W[Vel¥) = 5 Z/ 615 |3|d3r Brodirs .
i#j
Because ¢; is normalized, this is easily evaluated to be a constant independent of ¢
when both ¢ and j are different from k& = 1. We are left with the differential of the
sum over i = 1,7 # 1. Consider only the term i = 1,5 = 2 (the coefficient €? is
omitted):

|¢%¢%¢3|d3 dSI, d3r3 /d I‘3|¢3 I'3 /|¢ |2 |:/ |r |¢2 d3 :|d

lr1 — rof

By introducing a variation d¢; in the above relation, it is easy to see (at least in
the case of real variables) that the differential of the above term with respect to ¢
is the functional associated with the integral of |¢2(r2)|?/|ro — r1]. A similar result
holds for the term ¢ = 1, j = 3. In the end the individual orbitals, ¢;(r), are solutions
of the eigenvalue problem

Ny PAve: e2
(12) 4 +Z [ ) 6166) = Bt
_7?51

The subscripts 7, j of the coordinates have been removed as there is no ambiguity. The
Hamiltonian related to each particle can be written in the form H = ’va
where Vyy was defined earlier and

2 d3 /
(13) Wit = Z/ ol |r _r| |
7#7
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This “Hartree potential,” or “Coulomb potential,” can be interpreted as the potential
seen from each electron by averaging the distribution of the other electrons’ |¢;(r)|>.
It can be obtained by solving the Poisson equation with the charge density e|¢;(r)|?
for each electron j. Note that both Vy and Wy depend on the electron i. Another
important observation is that solving the eigenvalue problem (12) requires knowledge
of the other orbitals ¢;, i.e., those for j # i. Also, the electron density of the orbital
in question should not be included in the construction of the Hartree potential.

The solution of the problem requires a self-consistent field (SCF) iteration. One
begins with some set of orbitals and iteratively computes new sets by solving (12),
using the most current set of ¢;’s for j # i. This iteration is continued until the set
of ¢;’s is self-consistent.

Once the orbitals, ¢(r), which satisfy (12) are computed, the Hartree many-
body wave function can be constructed and the total energy determined from (4).
The Hartree approximation is useful as an illustrative tool, but it is not an accurate
approximation.

As indicated earlier, a key weakness of the Hartree approximation is that it uses
wave functions that do not obey one of the major postulates of quantum mechanics,
namely, electrons or Fermions must satisfy the Pauli exclusion principle [120]. More-
over, the Hartree equation is difficult to solve. The Hamiltonian is orbitally dependent
because the summation in (12) does not include the ith orbital. This means that if
there are M electrons, then M Hamiltonians must be considered and (12) solved for
each orbital.

2.2. The Hartree-Fock Approximation. Thus far, we have not included spin
in the state functions W. Spin can be viewed as yet another quantum coordinate
associated with each electron. This coordinate can assume two values: spin up or
spin down. The exclusion principle states that there can be only two electrons in the
same orbit and they must be of opposite spin. Since the coordinates must now include
spin, we define x; = ( ) where s; is the spin of the ith electron. A canonical way to
enforce the exclusion prmClple is to require that a wave function ¥ is an antisymmetric
function of the coordinates x; of the electrons in that by interchanging any two of these
coordinates, the function must change its sign. In the Hartree-Fock approximation,
many-body wave functions with antisymmetric properties are constructed, typically
cast as Slater determinants, and used to approximately solve the eigenvalue problem
associated with the Hamiltonian (5).

Starting with one-electron orbitals, ¢;(x) = ¢(r)o(s), the following functions meet
the antisymmetry requirements:

$1(x1)  oi(x2) - - Pr(xm)
(14) Wl xa,xs,..) = (M) 12 |20 200
drm(x1) o e e Ou(xm)

The term (M!)~'/2 is a normalizing factor. If two electrons occupy the same orbit, two
rows of the determinant will be identical and ¥ will be zero. The determinant will also
vanish if two electrons occupy the same point in generalized space (i.e., x; = x;), as
two columns of the determinant will be identical. Exchanging positions of two particles
will lead to a sign change in the determinant. The Slater determinant is a convenient
representation, but one should stress that it is an ansatz. It is probably the simplest
many-body wave function that incorporates the required symmetry properties for
Fermions, or particles with noninteger spins.
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If one uses a Slater determinant to evaluate the total electronic energy and main-
tains wave function normalization, the orbitals can be obtained from the following
Hartree—Fock equations:

__H2\72
(15) Honlr) = [ =5+ Vate +Z/ SLIE o) e

Z/ |I' )(bl( ) (ssi,sj (b](r) = Elqbl(r) .

It is customary to simplify this expression by defining a probability density, often
called electronic-charge density, p,

M
(16) p(r) = > lei(x)P,
j=1
and an orbital-dependent “exchange-charge density,” pf ¥ for the ith orbital:

Mg ) g ) G ) dy(r )
HEF (. 7Y — j
P e = 3 510 6:(x)

(17) Osi.s; -

j=1

This “density” involves a spin-dependent factor which couples only states (i, j) with
the same spin coordinates (s;, s;).
With these charge densities defined, it is possible to define corresponding poten-
tials. The Coulomb or Hartree potential, Vy, is defined by
2
(18) Vi) = [ ole) =y

r'|

and an exchange potential can be defined by

2
i HF € 3
(19) Vi) = = [l e
This combination results in the following Hartree—Fock equation:
—h2Vv? ;
(20) < T + Vn(r) + Vu(r) + Vi(r) ) oi(r) = FE;¢i(r) .

Once the Hartree—Fock orbitals have been obtained, the total Hartree—Fock electronic
energy of the system, Eyp, can be obtained from

(21) EHF_ZE /)VH r——Z/gb Vi(r) d®r .

Eyr is not a sum of the Hartree—Fock orbital energies, E;. The factor of one-half
in the electron-electron terms arises because the electron-electron interactions have
been double counted in the Coulomb and exchange potentials. The Hartree—Fock
Schrodinger equation is only slightly more complex than the Hartree equation. Again,
the equations are difficult to solve because the exchange potential is orbitally depen-
dent.
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There is one notable difference in the Hartree-Fock summations compared to
the Hartree summation. The Hartree-Fock sums include the i = j terms in (15).
This difference arises because the exchange term corresponding to i = j cancels an
equivalent term in the Coulomb summation. The ¢ = j term in both the Coulomb
and exchange terms is interpreted as a “self-screening” of the electron. Without a
cancellation between Coulomb and exchange terms a “self-energy” contribution to the
total energy would occur. Approximate forms of the exchange potential often do not
have this property. The total energy then contains a self-energy contribution which
one needs to remove to obtain a correct Hartree—Fock energy.

The Hartree—Fock equation is an approximate solution to the true ground-state,
many-body wave function. Terms not included in the Hartree-Fock energy are referred
to as correlation contributions. One definition of the correlation energy, E.opr, is to
write it as the difference between the exact total energy of the system, F,,4¢t, and the
Hartree—Fock energies: E.orr = Fegact — Egp. Correlation energies may be included
by considering Slater determinants composed of orbitals which represent excited state
contributions. This method of including unoccupied orbitals in the many-body wave
function is referred to as configuration interactions or “CI” [80].

Applying Hartree-Fock wave functions to systems with many atoms is not routine.
The resulting Hartree—Fock equations are often too complex to be solved for periodic
systems, except in special cases. The number of electronic degrees of freedom grows
rapidly with the number of atoms, often prohibiting an accurate solution or even
the ability to store the resulting wave function. The Hartree-Fock method scales
nominally as N* (IV being the number of basis functions), though its practical scaling
is closer to N3. As such, it has been argued that a “wave function” approach to
systems with many atoms does not offer a satisfactory approach to the electronic
structure problem. An alternate approach is based on DFT, which scales nominally
as N3, or close to N2 in practice.

3. Density Functional Theory. In a few classic papers, Hohenberg, Kohn, and
Sham established a theoretical basis for justifying the replacement of the many-body
wave function by one-electron orbitals [119, 83, 100]. Their results put the charge den-
sity at center stage. The charge density is a distribution of probability, i.e., p(r1)d®ry
represents, in a probabilistic sense, the number of electrons (all electrons) in the
infinitesimal volume d°r;.

Specifically, the Hohenberg—Kohn results were as follows. The first Hohenberg
and Kohn theorem states that for any system of electrons in an external potential
Veut, the Hamiltonian (specifically Vegt up to a constant) is determined uniquely by
the ground-state density alone. Solving the Schrodinger equation would result in a
certain ground-state wave function ¥, to which is associated a certain charge density,

(22) p(r1) = Z M /|\I'(X17X2a---7XM)|dX2"'dXM-
s1=T,1

From each possible state function ¥ one can obtain a (unique) probability distribution
p. This mapping from the solution of the full Schrédinger equation to p is trivial. What
is less obvious is that the reverse is true: Given a charge density, p, it is possible in
theory to obtain a unique Hamiltonian and associated ground-state wave function, W.
Hohenberg and Kohn’s first theorem states that this mapping is one-to-one; i.e., we
could get the Hamiltonian (and the wave function) solely from p. Remarkably, this
statement is easy to prove.
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The second Hohenberg-Kohn theorem provides the means for obtaining this re-
verse mapping: The ground-state density of a system in a particular external potential
can be found by minimizing an associated energy functional. In principle, there is a
certain energy functional that is minimized by the unknown ground-state charge den-
sity, p. This statement remains at a formal level in the sense that no practical means
was given for computing ¥ or a potential, V. From the magnitude of the simplifica-
tion, one can imagine that the energy functional will not be easy to construct. Indeed,
this transformation changes the original problem with a total of 3N coordinates plus
spin to one with only 3 coordinates, albeit with /N orbitals to be determined.

Later, Kohn and Sham provided a workable computational method based on the
following result: For each interacting electron system, with external potential Vo, there
is a local potential Vis, which results in a density p equal to that of the interacting
system. Thus, the Kohn—Sham energy functional is formally written in the form

h2
23 = —V>+ Ve,
(23) His =5 V"4 Veg
where the effective potential is defined as for a one-electron potential, i.e., as in (7):

(24) Ve = Vn(p) + Vi (p) + Vae(p).

Note that, in contrast with (7), V;. is now without an index, as it only holds for one
electron. Also note the dependence of each potential term on the charge density p,
which is implicitly defined from the set of occupied eigenstates v;, i = 1,..., N, of
(23) by (16).

The energy term associated with the nuclei-electron interactions is (Vy|p), while
that associated with the electron-electron interactions is (Vg|p), where Vg is the

Hartree potential,
/
VHZ/ p(r) dI‘/.
v —r'|

3.1. Local Density Approximation. The Kohn—-Sham energy functional is of the
following form:

2 N
E(p) = —;—mz / ¢ (r)V2¢;(r)dr + / p(r)Vion (r)dr
=1

1 pr)p(t’) , o .
(25) vy [ [ v+ Bucloto),

The effective energy, or Kohn—Sham energy, may not represent the true or “experi-
mental” energy, because the Hamiltonian has been approximated.

A key contribution of the work of Kohn and Sham is the local density approzima-
tion (LDA) [100]. Within LDA, the exchange energy is expressed as

(26) Elp(r)) = [ p0)8. [p(r)] &'

where £,[p] is the exchange energy per particle of a uniform gas at a density of p.
Within this framework, the exchange potential in (20) is replaced by a potential
determined from the functional derivative of E,[p)|:

5 Eq[p]

(27) Valp] = “op
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One serious issue is the determination of the exchange energy per particle, &,, or
the corresponding exchange potential, V,. The exact expression for either of these
quantities is unknown, save for special cases. From Hartree—Fock theory one can show
that the exchange energy is given by

G h2k2 2/€f 1— k/kf) k-i-kf
(28) Ejrp —2%; Z( 2(k/ky) = k—ka’

which is the Hartree—Fock expression for the exchange energy of a free electron gas.
In this expression, k is the wave vector for a free electron; it can be related to the
momentum by p = hk. The highest occupied wave vector is given by k¢, where the
Fermi energy is given by Ey = h?k? / 2m. One can write

62
(29) Bl =~ (3 [1pe)° .

and taking the functional derivative, one obtains

e2
(30) Vilp] = = —@37%p(x))'/* .

In contemporary theories, correlation energies are explicitly included in the en-
ergy functionals [119]. These energies have been determined by numerical studies
performed on uniform electron gases resulting in local density expressions of the form
Vielp(r)] = Vi [p(r)] + Ve[p(r)], where V. represents contributions to the total energy
beyond the Hartree-Fock limit [27]. It is also possible to describe the role of spin
explicitly by considering the charge density for up and down spins: p = p; 4+ p;. This
approximation is called the local spin density approzimation (LSDA) [119].

3.2. The Kohn-Sham Equation. The Kohn—Sham equation [100] for the elec-
tronic structure of matter is given by

272
(31) (T V) 4 Vi) + Veclo)]) () = Evle)
This equation is nonlinear and it can be solved either as an optimization problem
(minimize ground energy with respect to wave functions) or a nonlinear eigenvalue
problem. In the optimization approach an initial wave function basis is selected
and a gradient-type approach is used to iteratively refine the basis until a minimum
energy is reached. In the second approach the Kohn—Sham equation is solved “self-
consistently.” An approximate charge is assumed to estimate the exchange-correlation
potential, and this charge is used to determine the Hartree potential from (18). The
output potential is then carefully mixed with the previous input potential(s) and
the result is inserted into the Kohn—Sham equation and the total charge density
determined as in (16). The “output” charge density is used to construct new exchange-
correlation and Hartree potentials. The process is repeated until the input and output
charge densities or potentials are identical to within some prescribed tolerance.

Once a solution of the Kohn-Sham equation is obtained, the total energy can be
computed from

M
(32 Brs =3 Ei=1/2 [ pe)Vue) drt [ o) (Bucpl)] = Veclpe)) .
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where E,. is a generalization of (26), i.e., the correlation energy density is included.
The electronic energy, as determined from FEgg, must be added to the ion-ion in-
teractions to obtain the structural energies. This is a straightforward calculation for
confined systems. For periodic systems such as crystals, the calculations can be done
using Madelung summation techniques [211].

Owing to its ease of implementation and overall accuracy, the LDA is a popular
choice for describing the electronic structure of matter. Recent developments have
included so-called gradient corrections to the LDA. In this approach, the exchange-
correlation energy depends on the local density and the gradient of the density. This
approach is called the generalized gradient approximation (GGA) [147].

When first proposed, DFT was not widely accepted within the chemistry com-
munity. The theory is not “rigorous” in the sense that it is not clear how to improve
the estimates for the ground-state energies. For wave-function-based methods, one
can include more Slater determinants, as in a configuration interaction approach. As
the accuracy of the wave functions improves, the energy is lowered via the variational
theorem. The Kohn—Sham equation is also variational, but owing to the approximate
Hamiltonian, the converged energy need not approach the true ground-state energy.
This might not be a serious problem provided that one is interested in relative en-
ergies, where there is the possibility of some error cancellation. For example, if the
Kohn-Sham energy of an atom is 10% too high compared to the true value and the
corresponding energy of the atom in a crystal is also 10% too high, the cohesive ener-
gies, which involve the difference of the two energies, can be better than the nominal
10% error of absolute energies without any error cancellation. An outstanding fun-
damental issue of using DFT is obtaining an a priori estimate of the cancellation
errors.

In some sense, DFT is an a posteriori theory. Given the transference of the
exchange-correlation energies from an electron gas, it is not surprising that errors
arise in its application to highly nonuniform electron gas systems, as found in real-
istic systems. However, the degree of error cancellations is rarely known. Thus, the
reliability of DF'T has been established by numerous calculations for a wide variety of
condensed matter systems. For example, the cohesive energies, compressibility, struc-
tural parameters, and vibrational spectra of elemental solids have been calculated
within the DFT [34]. The accuracy of the method is best for systems in which the
cancellation of errors is expected to be complete. Since cohesive energies involve the
difference in energies between atoms in solids and atoms in free space, error cancel-
lations are expected to be significant. This is reflected in the fact that, historically,
cohesive energies have presented greater challenges for DFT': the errors between theory
and experiment are typically ~10-20%, depending on the nature of the density func-
tional and the material of interest. In contrast, vibrational frequencies which involve
small structural changes within a given crystalline environment are often reproduced
to within 1-2%.

3.3. Pseudopotentials. A major difficulty in solving the eigenvalue problem aris-
ing from the Kohn—Sham equation is the length and energy scales involved. The inner
(core) electrons are highly localized and tightly bound compared to the outer (valence)
electrons. A simple basis function approach is frequently ineffectual. For example, a
plane wave basis (see next section) might require 10° waves to represent converged
wave functions for a core electron, whereas only 102 waves are required for a valence
electron [32]. In addition, the potential is singular near the core, and this causes
difficulties in discretizing the Hamiltonian and in representing the wave functions.
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Fig. 3.1 Standard pseudopotential model of a solid. The ion cores composed of the nuclei and tightly
bound core electrons are treated as chemically inert. The pseudopotential model describes
only the outer, chemically active, valence electrons.

The use of pseudopotentials overcomes these problems by removing the core states
from the problem and replacing the all-electron potential by one that replicates only
the chemically active, valence electron states [32]. It is well known that the physical
properties of solids depend essentially on the valence electrons rather than on the core
electrons, e.g., the periodic table is based on this premise. By construction, the pseu-
dopotential reproduces exactly the valence state properties such as the eigenvalue
spectrum and the charge density outside the ion core. The pseudopotential model
treats matter as a sea of valence electrons moving in a background of ion cores (see
Figure 3.1).

The cores are composed of nuclei and inert inner electrons. Within this model
many of the complexities of an all-electron calculation are avoided. A group IV solid
such as C with 6 electrons is treated in a similar fashion to Pb with 82 electrons since
both elements have 4 valence electrons.

The pseudopotential approximation takes advantage of this observation by remov-
ing the core electrons and introducing a potential that is weaker at the core, which
will make the (pseudo-)wave functions behave like the all-electron wave function near
the locations of the valence electrons, i.e., beyond a certain radius r. from the core
region. The valence wave functions often oscillate rapidly in the core region because
of the orthogonality requirement of the valence states to the core states. This oscilla-
tory or nodal structure of the wave functions corresponds to the high kinetic energy in
this region. It is costly to represent these oscillatory functions accurately, no matter
what discretization or expansion is used. Pseudopotential calculations center on the
accuracy of the valence electron wave function in the spatial region away from the
core, i.e., within the “chemically active” bonding region. The smoothly varying pseu-
dowave function should be identical to the appropriate all-electron wave function in
the bonding regions. A similar construction was introduced by Fermi in 1934 [54] to
account for the shift in the wave functions of high-lying states of alkali atoms subject
to perturbations from foreign atoms. In this remarkable paper, Fermi introduced the
conceptual basis for both the pseudopotential and the scattering length. In Fermi’s
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analysis, he noted that it was not necessary to know the details of the scattering po-
tential. Any number of potentials which reproduced the phase shifts of interest would
yield similar scattering events.

A variety of methods exists to construct pseudopotentials [122]. Almost all of
these methods are based on “inverting” the Kohn—Sham equation. As a simple ex-
ample, suppose we consider an atom where we know the valence wave function, ,,
and the valence energy, E,. Let us replace the true valence wave function by an
approximate pseudowave function, ¢?. Then the ion core pseudopotential is given by

h2 P
(33) Vp ¢U - VH - Vrc + Ev .

mnon = 2
The charge density in this case is p = |¢P|2, from which Vg and V,. can be calculated.
The key aspect of this inversion is choosing ¢ to meet several criteria, e.g., ¢h=1),
outside the core radius, r.. Unlike the all-electron potential, pseudopotentials are not
simple functions of position. For example, the pseudopotential is state dependent or
angular momentum dependent, i.e., in principle one has a different potential for s, p,
d, ... states. Details can be found in the literature [122, 32].

For the applied mathematician, the interesting problem here is one approximat-
ing a function, given a set of constraints of desirable properties and a few other
constraints reflecting mandatory requirements. Viewed from this angle there may be
new, interesting mathematical problems to investigate that could lead to improved
pseudopotentials. The subareas most likely to have an impact are those related to ap-
proximation theory. Recent interest has turned to “ultrasoft” pseudopotentials [199],
whereby norm conservation is sacrificed to obtain much softer pseudopotentials, al-
lowing a low kinetic energy cut-off.

Recent research on pseudopotentials has moved away from the norm-conserving
requirements of classical pseudopotentials. Ultrasoft pseudopotentials [199] and aug-
mented plane wave methods [17] are two of the more advanced methods in this cat-
egory. The article [105] compares these approaches and shows that in fact they are
strongly related. These techniques typically lead to smaller plane wave bases, but
result in a generalized eigenvalue problem which is harder to solve.

4. Discretization. The Kohn—Sham equation must be “discretized” before it can
be numerically solved. The term “discretization” is used here in the most inclusive
manner and, in agreement with the common terminology of numerical computing,
means any method which reduces a continuous problem to one with a finite number
of unknowns.

There have been three predominant ways of discretizing the Schrédinger equa-
tion. The first uses plane wave bases, the second uses specialized functions such as
exponential or Gaussian orbitals, and the third does not use an explicit basis but
discretizes the equations in real space.

4.1. Plane Waves. Owing to the use of pseudopotentials, simple basis sets such
as a plane wave basis can be quite effective, especially for crystalline matter. For
example, in the case of crystalline silicon only 50-100 plane waves need to be used
for a well-converged solution. The resulting matrix representation of the Schrédinger
operator is dense in Fourier (plane-wave) space, but it is not formed explicitly. In-
stead, matrix-vector product operations are performed with the help of fast Fourier
transforms (FFTs). A plane wave approach is akin to spectral techniques used in
solving certain types of partial differential equations [60]. The plane wave basis used
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Fig. 4.1 A simple cubic lattice.

is of the following form:

(34) dir) = 3 alk, G exp (i(k + G) - 1),
G

where k is the wave vector, G is a reciprocal lattice vector, and a(k, G) represent
the coefficients of the basis. Thus, plane waves are labeled by the wave vector k, a
vector in the “Brillion” zone. The vector parameter G translates the periodicity of
the wave function with respect to a lattice, which along with an atomic basis defines
a crystalline structure.

It is interesting to consider the origin of the use of plane waves. As might be
guessed, plane wave bases are closely tied to periodic systems. The well-known Bloch
theorem [98] characterizes the spectrum of the Schrodinger operator V2 + ) when the
potential V is periodic. It states that eigenfunctions must be of the form ¥ (r)e~ T,
where k is a vector in the “Brillion” zone. For a given lattice, periodicity takes
place in three spatial directions; see Figure 4.1. The Hamiltonian is invariant under
translation in each of these directions.

Bloch’s theorem states that for a periodic potential V, the spectrum of the
Schrodinger operator V2 + V consists of a countable set of intervals (called energy
bands). The eigenvalues are labeled as {¢; x}, where k belongs to an interval and
j=1,2,....

When expressed (i.e., projected) in a plane wave basis, the Hamiltonian is actually
a dense matrix. Specifically, the Laplacian term of the Hamiltonian is represented by
a diagonal matrix, but the potential term V!, gives rise to a dense matrix.

For periodic systems, where k is a good quantum number, the plane wave basis
coupled to pseudopotentials is quite effective. However, for nonperiodic systems, such
as clusters, liquids, or glasses, the plane wave basis is often combined with a supercell
method [32]. The supercell repeats the localized configuration to impose periodicity
to the system. This preserves the “artificial” validity of k and Bloch’s theorem, which
(34) obeys.

There is a parallel to be made with spectral methods, which are quite effective for
simple periodic geometries but lose their superiority when more generality is required.
In addition to these difficulties, the two FFTs performed at each iteration can be
costly, requiring nlogn operations, where n is the number of plane waves, versus
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O(N) for real space methods, where N is the number of grid points. Usually, the
matrix size N x N is larger than n x n, but only within a constant factor.

4.2. Localized Orbitals. A popular approach to studying the electronic struc-
ture of materials uses a basis set of orbitals localized on atomic sites. This is the
approach taken, for example, in the SIESTA code [188] where with each atom a is
associated a basis set of functions, which combine radial functions around a with
spherical harmonics:

¢?mn (I‘) = (b?n (ra)mm (f‘a)v

wherer, =r — R,.

The radial functions can be exponentials, Gaussians, or any localized function.
Gaussian bases have the special advantage of yielding analytical matrix elements,
provided the potentials are also expanded in Gaussians [21, 87, 33, 88]. However, the
implementation of a Gaussian basis is not as straightforward as with plane waves. For
example, numerous indices must be used to label the state, the atomic site, and the
Gaussian orbitals employed. This increases “bookkeeping” operations tremendously.
Also, the convergence is not controlled by a single parameter as it is with plane
waves; e.g., if atoms in a solid are moved, the basis should be reoptimized for each
new geometry. Moreover, it is not always obvious what basis functions are needed,
and much testing has to be done to ensure that the basis is complete. On the positive
side, a Gaussian basis yields much smaller matrices and requires less memory than
plane wave methods. For this reason, Gaussians are especially useful for describing
transition metal systems, where large numbers of plane waves are needed.

4.3. Finite Differences in Real Space. An appealing alternative is to avoid ex-
plicit bases altogether and work instead in real space, using finite difference discretiza-
tions. This approach has become popular in recent years, and has seen a number of
implementations [205, 36, 37, 35, 20, 74, 212, 140, 96, 111, 11, 60, 52].

The real-space approach overcomes many of the complications involved with non-
periodic systems, and although the resulting matrices can be larger than with plane
waves, they are quite sparse, and the methods are easy to implement on sequential
and parallel computers. Even on sequential machines, real-space methods can be an
order of magnitude faster than methods based on traditional approaches.

The simplest real-space method utilizes finite difference discretization on a cubic
grid. There have also been implementations of the method with finite elements [197,
144] and even meshless methods [91]. Finite element discretization methods may be
successful in reducing the total number of variables involved, but they are far more
difficult to implement. A key aspect to the success of the finite difference method
is the availability of higher order finite difference expansions for the kinetic energy
operator, i.e., expansions of the Laplacian [61]. Higher order finite difference methods
significantly improve convergence of the eigenvalue problem when compared with
standard, low order finite difference methods. If one imposes a simple, uniform grid
on our system, where the points are described in a finite domain by (z;,y;, 2k), we

approximate 2277’2” at (z;,yj,2k) by
0% M 2M 42

n=—M

where h is the grid spacing and M is a positive integer. This approximation is accurate
to O(h?M+2) upon the assumption that v can be approximated accurately by a power
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Table 4.1 Finite difference coefficients (Fornberg—Sloan formulas) for 8%/0x? for orders 2 to 8.

ord 2 1 -2 1
1 4 5 4 1
ord 4 “i3 3 ~3 3 ~1i3
1 E 19 3 3 1
ord 6 %0 T3 2 “18 3  ~3 90
1 8 1 8 205 8 1 8 1
ord8 | —555 355 —§5 3 72 5 5 315560

series in h. Algorithms are available to compute the coefficients C;, for arbitrary order
in h [61]. These are shown for the first few orders in Table 4.1.

With the kinetic energy operator expanded as in (35), one can set up a one-
electron Schrodinger equation over a grid. One may assume a uniform grid, but this
is not a necessary requirement. (x;,y;,2x) is computed on the grid by solving the
eigenvalue problem

h2
Z Cnldjn(xl + nih, y]vzk Z anwn Ty Y5 + nah, zk)
nl——M 7L2——
M
+ Y Cognl(@i, gy, 2k +n3h) | + [ Vion (@i, y5, 2) + Vi (i, v, 2)
nngjvf

(36) + VwC(xia Yj, Zk) ] d}n(xia Yj, Zk) - ETL wn(xiv Y, Zk)

If we have L grid points, the size of the full matrix resulting from the above problem
is L x L.

A grid based on points uniformly spaced in a three-dimensional cube as shown in
Figure 4.2 is typically used. Many points in the cube are far from any atoms in the
system, and the wave function on these points may be replaced by zero. Special data
structures may be used to discard these points and keep only those having a nonzero
value for the wave function. The size of the Hamiltonian matrix is usually reduced
by a factor of two to three with this strategy, which is quite important considering
the large number of eigenvectors that must be saved. Further, since the Laplacian
can be represented by a simple stencil, and since all local potentials sum up to a
simple diagonal matrix, the Hamiltonian need not be stored explicitly as a sparse
matrix. Handling the ion core pseudopotential is complex, as it consists of a local
and a nonlocal term. In the discrete form, the nonlocal term becomes a sum over all
atoms, a, and quantum numbers, (I, m), of rank-one updates:

(37) Vion Zvloca+ Z Ca,l,m almUalm’

a,l,m

where U, 1, are sparse vectors which are only nonzero in a localized region around
each atom, and ¢, i, are normalization coefficients.

Among research issues for the applied mathematician or the numerical analyst,
there is no doubt that much can be gained by investigating alternative bases that could
lead to more effective computations. In the simplest case, the finite element approach
could be one avenue. High order finite element methods (FEM) may be of interest,
but the difficulty of implementation has no doubt been a big impediment. Another
approach recently advocated in [200] exploits localized Lagrange polynomials defined
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Fig. 4.2 A uniform grid illustrating a typical configuration for examining the electronic structure
of a localized system. The dark gray sphere represents the actual computational domain,
i.e., the area where wave functions are allowed to be nonzero. The light spheres within the
domain are atoms.

on a sort of (locally) optimized real-space grid. Wavelet bases hold great promise
because of their localized nature in both real space and reciprocal space; see, for
example, [69, 182, 65, 84, 38]. Quite recently, a new code named BigDFT, which is
based entirely on wavelet basis sets, has been released [15].

5. Diagonalization. There are a number of difficulties which emerge when solv-
ing the (discretized) eigenproblems, besides the sheer size of the matrices. The first,
and biggest, challenge is that the number of required eigenvectors is proportional to
the atoms in the system and can grow to thousands, if not more. In addition to stor-
age, maintaining the orthogonality of these vectors can be very demanding. Usually,
the most computationally expensive part of diagonalization codes is orthogonaliza-
tion. Second, the relative separation of the eigenvalues decreases as the matrix size
increases, and this has an adverse effect on the rate of convergence of the eigenvalue
solvers. Preconditioning techniques attempt to alleviate this problem. Real-space
codes benefit from savings brought about by not needing to store the Hamiltonian
matrix, although this may be balanced by the need to store large vector bases.

5.1. Historical Perspective. Large computations on the electronic structure of
materials started in the 1970s after the seminal work of Kohn, Hohenberg, and Sham
in developing DFT and because of the invention of ab initio pseudopotentials [32]. Tt
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is interesting to note that “large” in the 1970s implied matrices ranging in size from
a few hundred to a few thousand. One had to wait until the mid- to late-1980s to
see references to calculations with matrices of size around 7,000. For example, the
abstract of the paper by Martins and Cohen [121] states, “Results of calculations for
molecular hydrogen with matrix sizes as large as 7,200 are presented as an example.”
Similarly, the well-known Car and Parrinello paper [25], which uses an approach
based on simulated annealing, features an example with 16 x 437 = 6,992 unknowns.
This gives a rough idea of the typical problem sizes common about 20 years ago.
The paper by Car and Parrinello [25] is often viewed as a defining moment in the
development of computational codes. It illustrated how to effectively combine several
ingredients: plane waves, pseudopotentials, the use of FFTs, and especially how to
apply pseudopotential methods to molecular dynamics.

From the inception of realistic computations for the electronic structure of ma-
terials, the basis of choice has been plane waves. In the early days this contributed
to the limitation of the capability because the matrices were treated as dense. The
paper [121] (see also [122]) showed how to avoid storing a whole dense matrix by a
judicious use of the FFT in plane wave codes and by working essentially in Fourier
space. A code called Ritzit, initially published in Algol, was available [165], and this
constituted an ideally-suited technique for diagonalization. The method was “precon-
ditioned” by a Jacobi iteration or by direct inversion in the iterative subspace (DIIS)
iteration [158].

5.2. Lanczos, Davidson, and Related Approaches. The Lanczos algorithm [107]
is one of the best-known techniques [166] for diagonalizing a large sparse matrix .A.
In theory, the Lanczos algorithm generates an orthonormal basis, vi, Vo, ..., V., via
an inexpensive three-term recurrence of the form

Bir1vjy1 = Av; —a;v; — Bivi1 .

In the above sequence, a; = Vf.Avj and B4 = |[Av; — a;v; — B5vi—i]l2. So the
jth step of the algorithm starts by computing «;, then proceeds to form the vector
\Afj+1 = .AVj — OV — ﬂjVj_l, and then Vj41 = \Afj+1/6j+1. Note that for ] = 1, the
formula for vy changes to vo = Ave — agvs.

Suppose that m steps of the recurrence are carried out, and consider the tridiag-
onal matrix

ay B
B2 a2 [
T = . .
Bm
Further, denote by V,, the n x m matrix V,, = [v1,...,V,;;] and by e,, the mth

column of the m x m identity matrix. After m steps of the algorithm, the following
relation holds:

AVm = Vme + ﬁm+1vm+1eg .

In the ideal situation, where f,,4+1 = 0 for a certain m, AV,, = V.7, and so
the subspace spanned by the v;’s is invariant under A and the eigenvalues of 7,
become exact eigenvalues of A. This is the situation when m = n, and it may also
happen for m < n, though this situation, called lucky (or happy) breakdown [141],
is highly unlikely in practice. In the generic situation, some of the eigenvalues of the
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tridiagonal matrix H,, will start approximating corresponding eigenvalues of A when
m becomes large enough. An eigenvalue A of H,, is called a Ritz value, and if y is an
associated eigenvector, then the vector V,,y is, by definition, the Ritz vector, i.e., the
approximate eigenvector of A4 associated with A Ifmis large enough, the process may
yield good approximations to the desired eigenvalues A1,..., As of H, corresponding
to the occupied states, i.e., all occupied eigenstates.

There are several practical implementations of this basic scheme. All that was
said above is what happens in theory. In practice, orthogonality of the Lanczos
vectors, which is guaranteed in theory, is lost as soon as one of the eigenvectors starts
to converge [141]. As such, a number of schemes have been developed to enforce
the orthogonality of the Lanczos vectors; see [185, 109, 186, 108, 206]. The most
common method consists of building a scalar recurrence, which parallels the three-
term recurrence of the Lanczos vectors and models the loss of orthogonality. As soon
as loss of orthogonality is detected, a reorthogonalization step is taken. This is the
approach taken in the computational codes PROPACK [108] and PLAN [206]. In
these codes, semiorthogonality is enforced, i.e., the inner product of two basis vectors
is only guaranteed not to exceed a certain threshold of the order of 1/, where ¢ is the
machine epsilon [72].

Since the eigenvectors are not needed individually, one might think of not com-
puting them but rather just using a Lanczos basis V,,, = [v1,..., V] directly. This
does not provide a good basis in general. However, a full Lanczos algorithm without
partial reorthogonalization can work quite well when combined with a good stopping
criterion.

A simple scheme used in [12] is to monitor the eigenvalues of the tridiagonal ma-
trices 7;, i = 1,...,m. The cost for computing only the eigenvalues of 7; is O(i?). If
we were to apply the test at every single step of the procedure, the total cost for all
m Lanczos steps would be O(m?), which can be quite high. This cost can be reduced
drastically, to the point of becoming negligible relative to the overall cost, by employ-
ing a number of simple strategies. For example, one can monitor the eigenvalues of
the tridiagonal matrix 7; at fixed intervals, i.e., when M OD(i,s) = 0, where s is a
certain fixed stride. Of course, large values of s will induce infrequent convergence
tests, thus reducing the cost from O(m?) to O(Tg—:) On the other hand, a large stride
may inflict unnecessary O(s) additional Lanczos steps before convergence is detected.

Though not implemented in [12], a better strategy is to use the bisection algorithm
(see [72], sec. 8.5) to track the latest eigenvalue that has converged, exploiting the
important property that the Lanczos procedure is a variational technique in the sense
that when an eigenvalue converges, later steps can only improve it. In addition,
convergence tends to occur from left to right in the spectrum, meaning that typically
the smallest eigenvalue converges first, followed by the second smallest, etc. This
suggests many simple procedures based on the bisection algorithm. When convergence
has been detected (say, at step | < m), then the charge densities are approximated as
the squares of the norms of the associated eigenvectors. See [12] for details.

Another popular algorithm for extracting the eigenpairs is the Davidson [132]
method, which can be viewed as a preconditioned version of the Lanczos algorithm, in
which the preconditioner is the diagonal of A. We refer to the generalized Davidson
algorithm as a Davidson approach in which the preconditioner is not restricted to
being a diagonal matrix. (A detailed description can be found in [168].)

The Davidson algorithm differs from the Lanczos method in the way in which it
defines new vectors to add to the projection subspace. Instead of adding just Av;, it
preconditions a given residual vector r; = (A — p;Z)u; and adds it to the subspace
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(after orthogonalizing it against current basis vectors). The algorithm consists of an
“eigenvalue” loop, which computes the desired eigenvalues one by one (or a few at a
time), and a “basis” loop, which gradually computes the subspace on which to perform
the projection. Consider the eigenvalue loop, which computes the ith eigenvalue and
eigenvector of A. If M is the current preconditioner, and V = [vq,...,vg] is the
current basis, the main steps of the main loop are as follows:

1. Compute the ith eigenpair (pg,yx) of Cx = VgAVk.

2. Compute the residual vector ry = (A — puxZ) Vi yk.

3. Precondition ry, i.e., compute t; = M~ lry.

4. Orthonormalize t; against vy,...,vy and call viy1 the resulting vector, so

Vit1 = [Vk, Vi)

5. Compute the last column-row of Cr 11 = Vg+1AVk+1.

At this point, one needs to decide on the choice of a preconditioner. The original
Davidson approach used the diagonal of the matrix as a preconditioner, but this
works only for limited cases. For a plane wave basis, it is possible to construct fairly
effective preconditioners by exploiting the lower order bases. By this, we mean that
if Hj, is the matrix representation obtained by using k plane waves, we can construct
a good approximation to Hy from H,,, with m < k, by completing it with a diagonal
matrix representing the larger (undesirable) modes. Note that these matrices are not
explicitly computed as they are dense. This possibility of building lower-dimensional
approximations to the Hamiltonian, which can be used to precondition the original
matrix, constitutes an advantage of plane-wave-based methods.

Preconditioning techniques in this approach are typically based on filtering ideas
and the fact that the Laplacian is an elliptic operator [195]. The eigenvectors corre-
sponding to the few lowest eigenvalues of V2 are smooth functions, and so are the
corresponding wave functions. When an approximate eigenvector is known at the
points of the grid, a smoother eigenvector can be obtained by averaging the value at
every point with the values of its neighboring points. Assuming a Cartesian (z,y, z)
coordinate system, the low frequency filter acting on the value of the wave function
at the point (i, j, k), which represents one element of the eigenvector, is described by

Yic1gk Vi1, FVigk—1 + Vi1 4k + Vijr1,k + Vigkt1 }
12

(38) + % — (Vi jk)Fittered -

Other preconditioners that have been tried result in mixed success. The use of
shift-and-invert [141] involves solving linear systems with A — 0Z, where A is the
original matrix and the shift o is close to the desired eigenvalue(s). These methods
would be prohibitively expensive in most situations, given the size of the matrix and
the number of times that A — ocZ must be factored. Alternatives based on an approxi-
mate factorization such as ILUT [167] are ineffective beyond the first few eigenvalues.
Methods based on approximate inverse techniques have been somewhat more suc-
cessful, performing better than filtering at additional preprocessing and storage costs.
Preconditioning “interior” eigenvalues, i.e., eigenvalues located well inside the interval
containing the spectrum, is still a very hard problem. Current solutions only attempt
to dampen the effect of eigenvalues which are far away from those being computed.
This is in effect what is achieved by filtering and sparse approximate inverse precondi-
tioners. These techniques do not reduce the number of steps required for convergence
in the same way that shift-and-invert techniques do. However, filtering techniques are
inexpensive to apply and result in nonnegligible savings in iterations.
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In real space it is trivial to operate with the potential term, which is represented
by a diagonal matrix, and in Fourier space it is trivial to operate with the Laplacian
term, which is also represented by a diagonal matrix. The use of plane wave bases
also leads to natural preconditioning techniques which are obtained by simply em-
ploying a matrix obtained from a smaller plane wave basis, neglecting the effect of
high frequency terms on the potential.

Real-space algorithms avoid the use of FFTs by performing all calculations in
real physical space instead of Fourier space. FFT's require global communication; as
such, they tend to be harder to implement on message-passing distributed memory
multiprocessor systems. The only global operation remaining in real-space approaches
is that of the inner products. These inner products are required when forming the
orthogonal basis used in the generalized Davidson procedure. Inner products will
scale well as long as the vector sizes in each processor remain relatively large.

5.3. Diagonalization Methods in Current Computational Codes. Table 5.1
shows a number of computational codes currently available or in development. This
list is by no means exhaustive. What is rather remarkable is the time-frame in which
these codes have been developed and the speed with which they have been adapted
to new computing environments. Most of them have been coded in Fortran90/95
and most offer parallel versions with either MPT or OpenMP. (An interesting account
of the impact of new software engineering methods in electronic structure codes can
be found in [180].) The middle column of the table shows the type of discretization
(basis) used, where PW stands for plane waves, RS for real space, LCAO for linear
combination of atomic orbitals, APW for augmented plane waves, Gauss for Gaussian
orbitals, and OTH for other. As can be noted, most codes use plane wave bases.

A few of the codes have not been updated in a few years; we only list those for
which a website is still maintained. A star next to the code name indicates that the
code has restricted distribution (e.g., DoD PW), or that it is still in a development
phase. We separated the codes which use the GPL license from the codes which can
be downloaded directly. The former are the first 6 listed in the table, and they are
separated by a horizontal line from the others. All others require either a fee (e.g.,
VASP, Wien2K, phi98PP, and CASTEP) or a licensing agreement (no fee).

Not all these codes resort to some form of diagonalization. For example, the
CPMD code [1] uses the Car—Parrinello approach, which relies entirely on a statistical
approach and molecular dynamics to minimize the energy (see section 6.4). Similarly,
the CONQUEST code is a linear-scaling method which uses a density matrix approach
(see the next section). In addition, the codes using an LCAO basis obtain dense
matrices and resort to standard dense matrix diagonalization.

The earliest electronic structures codes used variants of the subspace iteration
algorithm [122]. There should therefore be no surprise that many existing codes
propose improved versions of this scheme. For example, ABINIT [73] uses a form of
subspace iteration in which an initial subspace is selected and then an iterative scheme
is invoked to “improve” the basis vectors individually by some form of preconditioned
conjugate gradient (CG) algorithm. In this approach, orthogonality is enforced as a
Rayleigh—Ritz procedure and is used once each eigenvector is modified. ABINIT offers
a block version of the same algorithm (with parallelism across the different vectors in
the block) and an alternative which minimizes residual norms.

The Vienna Ab-initio Simulation Package (VASP) [104, 103] uses three main
diagonalization schemes. The first, similar to ABINIT, is a form of subspace iteration
in which the wave functions are individually refined by either the CG algorithm or by
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Code Discr./Basis| URL

PWscf PW http://www.pwscf.org/

PEtot PW http://crd.lbl.gov/ linwang/PEtot/PEtot.html
ABINIT PW http://www.abinit.org/

Socorro PW-+RS http://dft.sandia.gov/Socorro/mainpage.html
PARSEC RS http://parsec.ices.utexas.edu/

GPAW RS https://wiki.fysik.dtu.dk/gpaw/index.html

fhi98PP PW http://www.fhi-berlin.mpg.de/th/thi98md /fhi98PP/
VASP PW http://cms.mpi.univie.ac.at/vasp/vasp/vasp.html

PARATEC |PW
SeqQuest* |LCAO
Wien2K APW

http://www.nersc.gov/projects/paratec/
http://dft.sandia.gov/Quest/
http://www.wien2k.at/

SIESTA LCAO http://www.icmab.es/siesta/
AIMPRO Gauss http://aimpro.ncl.ac.uk/
FLEUR APW http://www.flapw.de/
CPMD PW http://www.cpmd.org/

CONQUEST|RS/OTH  |http://www.conquest.ucl.ac.uk/

CASTEP PW http://www.tcm.phy.cam.ac.uk/castep/

DoD PW * |PW http://cst-www.nrl.navy.mil /people/singh/planewave
CRYSTAL |Gauss http://www.cse.clrc.ac.uk/cmg/CRYSTAL/

Octopus RS http://www.tddft.org/programs/octopus/

ASW Other http://www.physik.uni-augsburg.de/Neyert /aswhome.shtml
Exciting APW http://exciting.sourceforge.net/

ADF LCAO http://www.scm.com

NWChem PW+Gauss |http://www.emsl.pnl.gov/docs/nwchem /capabilities/nwchem_capab.html

a method called the direct inversion in the iterative subspace (DIIS) iteration. The
CG method is adapted from a method suggested by Teter, Payne, and Allen [191]. Tt
consists of a preconditioned CG algorithm for minimizing the Rayleigh quotient. The
preconditioner is an astutely adjusted diagonal matrix in plane wave space where the
kinetic part of the Hamiltonian is diagonal. A few steps of this scheme are applied
to each vector of the basis, and once this is done the new basis is orthogonalized
in preparation for a Rayleigh—Ritz projection. The process is repeated until self-
consistence is achieved. Note that ABINIT uses a variant of this scheme as well.
A major drawback of this scheme is the requirement to always orthogonalize the
current (preconditioner) residual vectors in CG against all other eigenvectors. This is
necessary because the method essentially consists of minimizing the Rayleigh quotient
in the space orthogonal to all other eigenvectors. Without it, the method would only
compute one eigenvalue, namely, the smallest one.

The second method in VASP avoids this problem by minimizing ||(A— p(u)Z)ul|2
instead of the Rayleigh quotient. This represents the norm of the residual vector,
hence the name residual minimization method (RMM). The minimization itself is
done with the DIIS method, which is a form of Krylov subspace method dveloped by
Pulay [158] in the early 1980s.! In the second scheme employed by VASP, an initial
subspace is selected and then an iterative scheme is invoked to “improve” the basis
vectors individually by minimizing the residual norms. In this approach, there is no
need to orthogonalize each vector against all others after each update to the basis

Tt is remarkable to note here that this work parallels the work of many others in scientific
computing, working on solving (nonsymmetric) linear systems of equations, who were not aware of
this development.
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vectors. Finally, the third alternative method proposed in VASP is the Davidson
approach with a form of block preconditioning. This is recommended as a more
robust alternative in the documentation, though it is also mentioned as being more
costly in some cases. This approach will be revisited in the next section.

The PWscf code (part of Espresso) [6] uses similar general methods to VASP. The
default diagonalization algorithm is the Davidson method. There are also subspace-
type methods offered with CG-like band-by-band diagonalization, or DIIS-like diago-
nalization.

The Octopus code focuses on time-dependent DFT and can handle excited states.
Recall that DFT is only applicable to the ground state. Octopus can also obtain static
properties generally computable from DFT codes, such as static polarizabilities and
ground-state geometries, but the authors warn that the code is not optimized for this
purpose.

GPAW stands for the grid-based projector-augmented wave method and is a rel-
atively recent addition to the list of codes available [133]. It is written in Python and
is part of the CAMD Open Software Project (CAMPOS) [24], which is a collection of
programs for atomistic-scale simulations. GPAW replaces MIKA (multigrid instead of
the K-spAce [196, 81]). GPAW works in the real space and uses a multigrid approach
for diagonalization. The methods in GPAW are once more inspired by subspace iter-
ation, the main difference being that CG or DIIS is replaced by a multigrid approach.
As the levels are crossed, there is no orthogonalization at each level.

Quite a few papers in the early to mid-1990s were devoted to using the standard
CG algorithm in a more elaborate scheme which does not impose the constraint of
orthogonality; see, e.g., [2, 189, 188, 191, 49, 148, 124, 62, 125] for a few references.
Since these methods are more akin to optimization, we discuss them in the next
section. A number of codes, e.g., SIESTA, adopted variants of these schemes.

It was observed by many that the Davidson approach is in fact more robust than
methods based on local optimization. For example, the authors of [94] comment that
“for relatively small submatrix sizes the Davidson method still gives correct results
whereas the latter two frequently fail to do it.” The other two methods to which
the paper refers are a form of subspace iteration (modification of RITZIT code) with
DIIS preconditioning and a form of CG minimization. The observation that Davidson
is a more robust approach is not a unanimous viewpoint. For example, developers
of PWscf and VASP seem to recommend direct minimization, in spite of its less
favorable speed. Clearly, implementation is a key factor. We believe that with proper
implementation, a Davidson- or Krylov-based approach should be vastly superior to
direct minimization.

6. The Optimization Path: Avoiding the Eigenvalue Problem. From one view-
point, there is no need to refer to eigenvalues in order to minimize the total energy,
and this provided a number of alternative methods used in electronic structures. In-
deed, the stationary states of (5) are eigenfunctions of the Hamiltonian, but one can
also just consider (4) as an optimization problem in itself.

6.1. Optimization Approaches without Orthogonality. In reading about com-
putational schemes that have been proposed in the literature on DFT, one cannot fail
to observe that the most commonly mentioned challenge or burden is that associated
with the need to orthogonalize a given basis which approximates the desired eigen-
basis. It is therefore only natural that major efforts have been devoted to designing
algorithms which do not require orthogonalization or that attempt to reduce its cost.
A number of these algorithms have been exploited in the context of order-N (O(N))
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methods as well as in standard methods. The end of the previous section alluded
to this approach, which seeks to compute a subspace as represented by a basis. If
the basis, call it V = [vy,..., V], is orthogonal, then the problem of minimizing the
energy is equivalent to that of minimizing the trace of V*AVY. Thus, it is possible to
formulate the problem as that of computing a set of vectors such that tr(V*AV) is
minimized subject to the constraint V*V = 7. Note that an algorithm for explicitly
minimizing the trace was developed by Sameh [169] as far back as in 1982, motivated
in part by parallelism, but this does not seem to have been noticed by researchers on
the applied side.

Many authors have considered a related approach in which the orthogonality
constraint is not enforced. In this situation, the problem is equivalent to minimizing
S 1Aor S 12 A8 1/2 where S is the “overlap” matrix, i.e., the matrix S = V*V, the
“overlap” matrix, is only approximately inverted. For example, the simple Neumann
series expansion

can be used [189, 2, 124, 125, 62].

The paper [49] examines in detail algorithms that minimize energy on Grassmann
and Stiefel manifolds, i.e., manifolds of matrices that satisfy orthogonality constraints.
In these algorithms, the iterates evolve by following geodesic paths on the manifolds
(ideal case). The cost of the ideal case algorithm requires the singular value decom-
position (SVD) [72] of matrices of size n x p (the same size as that of the basis of
the desired subspace), and so the authors of [49] show that quadratic convergence can
be achieved if the directions used by the algorithms are only approximate. Related
practical approaches in DFT, based on minimization with constraints, are discussed
in [86] and [204]. Other approaches taken consist of making use of the McWeeny [127]
projection, which will be discussed shortly.

6.2. Density Matrix Approaches. As was previously discussed, one can bypass
the eigenvalue problem and focus instead on the whole subspace spanned by the
occupied eigenvalues as an alternative to computing individual eigenfunctions. We
also mentioned this viewpoint in the standard context of eigenvector-based methods
when we discussed adapting the Lanczos algorithm for DFT. However, the methods
that rely on the density matrix approach go much further by not even referring to
eigenspaces. Instead, they attempt to compute directly the eigenprojector associated
with these eigenvalues.

Charge-density methods have played a major role since the early days of quan-
tum theory. Such methods were used in particular by Thomas [194] and Fermi [53]
as far back as in 1927, who made some of the first realistic attempts at yielding the
atomic structure of atoms. They gave qualitatively correct information on the elec-
tronic structure of atoms, but were fundamentally flawed as they did not describe the
observed shell structure of the atom.

Modern density methods are based on the “density matrix.” The density matrix
can be viewed as a function of a pair of coordinates, p(r,r’). It is defined by

N

(39) p(r,x') =D i) i) .

=1
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Note that, after discretization, the function i becomes a vector of length N
whose ith component is the approximation of ¢ at the mesh-point r;. If we call V the
matrix whose column vectors are the (normalized) eigenvectors ¥;, i = 1,...,s, for
the s occupied states, then

(40) P =V

is a projector and the charge density at a given point r; in space is the ith diagonal
element of P. A number of techniques have been developed based on using this
observation [7, 113, 181]. Here, we will sketch only the main ideas.

Density matrix methods are prevalent mainly in the O(NN) methods. These meth-
ods are based on constructing an approximation to the projector P in (40) without
knowledge of eigenvectors. Denote by p;; the coefficients of the matrix P. A number
of properties are exploited for this purpose. First are the following two relations:

tr[P] =Y pi = particle number,
i
tr[PH] = pijHji = system energy.
2%

The first relation is a consequence of the fact that each p;; represents the charge
density at point r;, as was mentioned above. The second is a consequence of the
fact that PH = PHP is the restriction of H to the invariant subspace associated
with eigenvalues corresponding to the occupied states. The trace of PH is the sum
of these eigenvalues, which is the total energy of the system assuming a “Hartree”
approximation, i.e., assuming the total energy is the sum of the occupied eigenvalues.

Another important property that is exploited is the physical fact that entries of P
decay away from the main diagonal. Hence, the idea is to try to find a P whose trace
is fixed and which minimizes the trace of PH. The trace constraint can be avoided
by shifting H,

tr[P(H — uZ)] = tr[PH] — uNe.

The optimization problem is not yet well posed, since without constraints on P,
the minimum can be arbitrarily negative or small. The missing constraint is to force
P to be a projector. This can be achieved by forcing its eigenvalues to be between
zero and one [113]. The minimization will yield a matrix P that has eigenvalues equal
to either one or zero and satisfies the desired idempotent constraint automatically.

One strategy that was used in [113] for this purpose is to seek P in the form

P =382 —283.

If the eigenvalues of S are in the range [—0.5, 1.5], this transformation will map them
into [0,1]. The procedure then is to seek a banded S that minimizes

tr[(38? — 28°)(H — uI))

using descent-type algorithms. The gradient of the above function is computable.
This is referred to as McWeeny purification [127].

Many other linearly scaling methods have been developed. As two examples, we
mention the work of Kim, Mauri, and Galli [95], who minimize total energy by using
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nonorthogonal localized orbitals, and the work by Challacombe [28, 29] that exploits
general sparse matrix tools in the form of sparse approximate inverses developed by
Benzi, Meyer, and Tuma [13, 14].

The drawback of this approach is its lack of accuracy. It is also not clear whether
a minimum exists, because of the various constraints added, and whether there is a
(unique) minimum. In addition, the band required for & may not be so small for
certain systems. Nevertheless, it is interesting to note that explicit eigenvalue calcu-
lations are avoided. Some global approximation of the invariant subspace associated
with these eigenvalues is extracted, meaning that a global approximation to the set
of eigenfunctions is computed via the approximation to the projector P.

In the previous discussion an orthogonal basis set was assumed, though density
matrix methods can be also be defined with nonorthogonal basis sets. For example,
one of the early implementations of the Hartree-Fock method, known as the Roothan
method, involves a self-consistent (fixed point) iteration in which the unknown is the

density matrix P and each wave function is expressed in a basis {xx}, k=1,..., K,
K

(41) Pk = Z CikXj -
j=1

Formally, the Hartree—Fock energy (15) must be minimized with the constraint that
the orbital be of the above form. The x;’s are convenient and well-selected spatial
basis orbitals associated with the atoms (atomic orbitals). For the purpose of simpli-
fying notation we define H to be the Fock operator in expression (15) for a particular
i, say, i = 1. Then a Galerkin-type approach would be to write Hop = e in the

space spanned by the x;’s:
K
<X1 '>=5k<Xi chka> for i=1,...,.K
j=1
K

K
(42) —>Z (Xi|H|x;j)cie = Ekz (Xilxj)cje for k=1,... K.
Jj=1 j=1

If we denote by F' the Fock matrix whose entries are F;; = (x;|H|x;) and by S the
“overlap” matrix with entries S;; = (xi|X;), then it is clear that (42) is a generalized
eigenvalue problem of size K. An eigenvector is a column of the K x K matrix C
with entries c;i on the £th column and jth row. In matrix form the problem can be
written as

FC = CSD,

where D = diag(ey) is the diagonal matrix with entries £5. This problem can be solved
with standard techniques for dense eigenproblems. The matrix C of eigenvectors is
such that CTSC = I. It is also of interest to look at the charge density in this context.
The procedure can be written in terms of the density matrix, which is now defined as
P=CCT.

Equation (41) can be rewritten in the form

$1(r) x1(r)
¢2FP) _or X2.(r)
o (r) xn (@)
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Since the charge density at a location r is the 2-norm of the above vector, then clearly

p(r) = [x1(r)*, x2(x)*, ..., xn(x)*]CCT
xn(r)

Note that the matrix S depends only on the basis {1} selected, while F' depends
on the solution itself. So the problem is again a nonlinear one which needs to be
solved by a self-consistent iteration of the following form:

1. Given {X&}r=1,. K construct S. Get an initial set {¢;};=1,.. x-

2. Compute the new matrix F'.

3. Solve the eigenvalue problem FSC = SCD. Compute P = CCT.

4. If P has not converged, then return to 2.

On the implementation side, it is useful to mention that the matrix F' consists of
two parts, which arise by writing H as the sum of two operators,

H=H + F,

where H "¢ corresponds to the first two terms in (20) and does not involve the ¢;’s,
and F contains the last two terms which depend on the ¢;’s. If we write the general
matrix term f;; = (x;|H|x;), then we obtain

fig = OGlH " xg) + OalFlxg) -

Thus, the matrix F' is the sum of two matrices. The first of these, call it Fc°"¢,
is independent of the eigenfunctions ¢;’s and needs to be evaluated only once. The
second, call it Fy, is a function of the ¢;’s. As can be seen from the expression of Fy,
specifically (17)—(20), this will involve double-electron integrals of the form

/ / deay XX (D)X ()

v —r'|

The cost of the procedure is dominated by the fact that there are many such integrals
to evaluate.

6.3. The “Car-Parrinello” Viewpoint. Car and Parrinello [25] took an approach
which combined molecular dynamics with pseudopotentials and DFT by proposing
a scheme that exploits heuristic optimization procedures to achieve the minimum
energy. Specifically, they used simulated annealing [97] as a conceptual approach
(and a simulated annealing strategy based on molecular dynamics in practice) to
minimize an energy functional, which they write in the form

AR o)) = 2 [ oy =08 2m) P ) + Viple). (R o]

where {a,} are the external constraints imposed on the system such as the volume
2 or the strain €,,. V contains the internuclear Coulomb repulsion and the effective
electronic potential energy, which includes the external nuclear, Hartree, and exchange
and correlation terms.

They then use a Lagrangian formula to generate trajectories for ionic and elec-
tronic degrees of freedom via a coupled set of equations of motion. The idea is to
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propagate the electronic wave functions, i.e., the Kohn—Sham orbitals, along the mo-
tions of the atoms. To this end, they consider the parameters {¢;}, {Rr}, {ow} in
the energy functional to be time dependent and introduce the Lagrangian, £, which
is the difference in the kinetic and potential energies of the system:

1 - 1. . 1
L= Xi:y/ﬂd%i il +§I:§MIR§+ZU:§M@% — E[{wi}, R}, {aw}],

where M are the physical ionic masses, p and u, are arbitrary parameters having
the appropriate units, and the 1; are subject to an orthonormality constraint.

The Lagrangian generates dynamics for the parameters through the following
equations of motion:

(43) pabi(ri t) = —6E /007 (rs, t) + Z N (rs, t),
%

(44) MIRI - _VRI“:’

(45) ,Uvé"v = —(85/80@),

where the Lagrange multipliers, A;;, have been introduced to satisfy the orthonor-
mality constraint. Only the ion dynamics have real physical meaning; the rest are
fictitious and are employed by the simulated annealing algorithm.

The Lagrangian formula defines both potential and kinetic energies for the sys-
tem. The equilibrium value of the kinetic energy can be calculated as the temporal
average over the trajectories generated by the equations of motion. By varying the
velocities, the temperature of the system can be reduced; as T' — 0, the equilibrium
state of the DFT energy functional is reached. At equilibrium, ; = 0, and (43)
corresponds to the Kohn—Sham equation through a unitary transformation. At this
temperature, the eigenvalues of A agree with the occupied Kohn—Sham eigenvalues,
and the Lagrangian describes a real physical system whose representative point lies
on the Born-Oppenheimer surface.

The main advantage of this approach is that diagonalization, self-consistency,
ionic relaxation, and volume and strain relaxation are achieved simultaneously rather
than separately. However, there are also several disadvantages of this method due to
the coupling between the real and fictitious energies. First, the computational time
step must be rather small since the equations of motion involve both fast (electronic)
and slow (nuclear) degrees of freedom [16]. Second, the method does not scale well. In
particular, a single iteration scales as "M N2, where M is the size of the electronic basis
and N is the number of particles; this is required to impose the holonomic orbital
orthogonality constraint [16]. Third, the method can only handle systems in the
ground state, which means the electronic degrees of freedom must always reside near
the Born—Oppenheimer surface [16]. Fourth, energy can slosh between the electronic
and nuclear variables [99].

Pastore, Smargiassi, and Buda investigated the theoretical basis of the Car—
Parrinello method in [145]. There they showed how the classical dynamics generated
by the Car—Parrinello Lagrangian approximated efficiently the quantum adiabatic
evolution of a system, and they discussed the role played by the spectrum of the
eigenvalues of the Kohn—Sham Hamiltonian matrix.

The Car—Parrinello method is one of several ab initio molecular dynamics (AIMD)
methods. A discussion of AIMD methods is beyond the scope of this paper. However,
the interested reader is referred to [146, 63, 198, 142] for descriptions of AIMD methods
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and their diverse applications, which include the melting of silicon and the study of
molecular crystals and liquids.

The Car—Parrinello method has been used extensively in materials science, physics,
chemistry, and biology since its invention. The Car—Parrinello Molecular Dynamics
Consortium website [192] lists numerous papers that have been published on this
method since 1994; however, this list is not exhaustive. To give an idea of the wide
range of applications studied by this method, we list several papers in materials sci-
ence [41, 90, 123, 208, 126], physics [55, 161, 26, 19, 172], chemistry [207, 67, 102,
154, 31], and biology [130, 66, 149, 164, 92] that employ this method. For information
on recent advances in chemistry and materials science with Car—Parrinello molecu-
lar dynamics methods, see [1]. For a nice review of the first 15 years of the use of
the Car—Parrinello methods in physics, chemistry, and biology, the reader is referred
to [163].

6.4. Use of Orthogonal Polynomials. Approximation theory, and especially the
theory of orthogonal polynomials, has been extensively used in DFT. A typical ap-
proach is to write the projector (40) as

P =h(H),

where h()\) is the shifted Heaviside step function which has value one for A < Ep
and zero elsewhere. The Heaviside function can now be approximately expanded into
orthogonal polynomials,

h(N) =~ Zoﬁpi(/\) .

The most common orthogonal polynomials that are used in this context are the Cheby-
shev polynomials of the first class. If a localized basis is used, such as Gaussian
orbitals, then it is known that the density matrix has a finite decay range; i.e., it
will be represented by a banded matrix when its smaller entries are neglected.? It is
therefore possible to construct a good approximation to P efficiently in this case; see,
e.g., [115, 89].

Another approach which has been used focuses not on P directly, but rather on
the basis V; see, e.g., [85]. Here a number of trial vectors &1, ..., &, are selected and
then a basis for the desired space span(V) is built by computing approximations to
the vectors

w; = h(H)&;

with the help of the polynomial expansion. Note that each of these vectors is a
member of the desired subspace and collectively the set of w;’s will constitute a basis
of the space under generic conditions. This set is then orthonormalized to get V.
The above approaches attempt to extract the charge density p(r,r), which is
represented by the diagonal of the operator P. One can easily imagine that while the
techniques should scale well for large systems, the prefactor in the cost function can
be very high. This was observed in [89]. There are, however, situations where the
use of orthogonal polynomials can be very cost-effective. In [162] the density of states

2In a plane wave basis the density matrix has a sparse (but not banded) structure when its small
entries are dropped. This fact does not seem to have been exploited in the literature so far.
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(DOS) is computed using this strategy. One starts with a density of eigenvalues in
™ which is in the form of a sum of Dirac functions:

N
=2 0=

This is the distribution (in a mathematical sense) that is sought. The classical moment
problem is to find this distribution from a knowledge of its classical moments py =

[ AEn(A)dA

A numerically viable alternative is to use the modified or generalized moments,

(46) i = / Be(A)n(N)dA,

where {t;} is a sequence of orthogonal polynomials on the interval containing the
eigenvalues of H. Typically, the problem is shifted and scaled so that the action takes
place in the interval [—1,1]. In addition, the polynomials ¢ are just the Chebyshev
polynomials, though other polynomials can be used as well. Assuming that the mo-
ments have been computed for the Chebyshev polynomials, then the expression of the
distribution in the interval (—1,1) is given by

o0

2 [k
47 A) = tr(A) .
(47) n(A) % 2 T+ b k(A)

Here §xo is the Kronecker symbol. Of course, the sum is truncated at M terms,
resulting in a certain function 7p7(A). Another notable approximation lies in the
computation of the moments p. The sequence py, is not readily available and can be
only approximated [203, 162]. The various methods proposed in the literature consist
of using probabilistic arguments for this purpose. Specifically, u; can be written as

(48) e = /_ 1 A = Ztk ) = trfte (H)],

so one needs only compute the traces of the sequence of operators ¢ (7). These traces
are typically computed with a Monte-Carlo-type technique. A sequence of n, random
vectors rj is generated and py is approximated by

N

e N — > (rslte(H)[rs)

T le

The three-term recurrence of the Chebyshev polynomials is exploited to reduce the
memory and computational cost of the calculations.

This type of calculation for the DOS can only be of interest in cases where the
geometry is fixed and the Hamiltonian can be well approximated without a self-
consistent iteration. A related, but more complex, technique allows us to obtain
optical absorption spectra (OAS) [32, 203]. The calculation can be viewed as an
extension of the problem discussed above to two variables. What is sought is the
2-variable distribution

(49) n(A1, A2) Z|0”| S = X)d(ha — Ni)  with oy = (¢]ihV ;)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/17/15 to 129.237.46.99. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

36 YOUSEF SAAD, JAMES R. CHELIKOWSKY, AND SUZANNE M. SHONTZ

from which the OAS can be obtained by computing a double integral [203]. Physically,
|o;.j|? represents the transition probability between states i and j. To compute the
function (49) requires the generalization of the 1-variable moments defined by (48) to
two 2-variable moments:

1 1
per =3 O OO0 = / o / D OO

i3

A probabilistic technique that is similar to the one for the DOS is used to recover
an approximation to the function (49). In this case, approximating puy; consists of
averaging terms of the form (r|ihVtyx(H).ihVtx (H)|r), where r is a random vector as
before [203].

7. Geometry Optimization. The composition and structure of a material (in-
cluding its geometry) determine many of its physical and chemical properties. For
example, the reactivity, polarity, phase, color, and magnetism of a material are de-
termined, in large part, by the material’s geometry [128]. Thus, it is important to
determine the geometry of the material in a stable state.

7.1. The Geometry Optimization Problem. The geometry optimization prob-
lem (referred to as the structural relazation problem by materials scientists and com-
putational physicists) is to find a low-energy configuration of the material. This is
done by repositioning the atoms of the material and subsequently evaluating its en-
ergy at various places on the potential energy surface. The potential energy surface
is a hypersurface and is a plot of the potential energy, £, vs. the atomic coordinates,
r. Here r is a vector of length 3K containing the atomic coordinates for the K
atoms, i.e., r = (x1,y1,%1,.-- ,xK,yK,zK)T. There have been many reviews (see,
e.g., [159, 173, 174, 176, 175]) written on this topic in recent years.

There are some applications which require the lowest-energy conformation of the
system of interest, i.e., a global minimum of the potential energy surface [176]. Finding
a global minimum is a very difficult optimization problem; often it is impossible or
impractical to find a global minimum. However, there are many applications where it
is enough to find a local minimum. For example, local minima can be used as starting
points for global minimization algorithms [8, 9, 30, 101, 112, 114, 150, 151, 171, 170,
201].

Even though finding a local minimum is an easier problem than finding a global
minimum, it can be quite difficult. One problem that may occur is that the opti-
mization algorithm may become trapped at a saddle point, for example. Because the
gradient is zero at all critical points, the Hessian must be used to determine whether
or not the critical point is a local minimum. At a local minimum, the Hessian matrix
is positive definite. A second problem is that the optimization algorithm may not
converge from all starting points, especially not from those points corresponding to
very high potential energies. The methods we review in this paper focus on finding a
local minimum (as opposed to a global minimum).

The geometry optimization problem is a nonlinear, unconstrained optimization
problem. In optimization terms, the objective function and gradient are given by the
potential energy and forces, respectively. There are four important qualities which
serve to characterize the optimization problem. First, the objective function is highly
nonlinear. For example, a simple model that is often given for the problem is the
Lennard—Jones potential, which describes the potential energy of two inert gas atoms
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in locations ry and ra:

p 12 o 6
E(r1,1s) = de (7> - <7)
lr1 — rof lr1 — ra

Here, € is the well-depth and ¢ is a hard sphere radius.

Second, it is very expensive to evaluate the energy and forces of the material for a
particular geometry. For the PARSEC package [106, 143] on which the authors work,
the self-consistent field iteration, corresponding to the solution of the Kohn—Sham
equations, must be executed each time the energy and forces are evaluated. This
corresponds to solving the nonlinear eigenvalue problem in (31). For this reason, it
is impractical to compute the Hessian via finite differencing, and it is not possible to
compute the Hessian via automatic differentiation due to the structure of the nonlinear
eigenvalue problem. Third, the energy and force fields often contain inaccuracies, as
it is difficult to know the potential energy surface exactly. Finally, there can be many
local minima, any of which can be considered acceptable solutions to the geometry
optimization problem.

7.2. Minimization Algorithms. Many different minimization algorithms are em-
ployed by electronic structures packages to solve the geometry optimization problem.
Table 7.1 gives the type of minimization algorithm used by each DFT electronic struc-
ture package listed in Table 5.1. These minimization algorithms fall into six main
categories: the steepest descent method, quasi-Newton methods, truncated Newton
methods, CG methods, iterative subspace methods, and molecular dynamics methods.
In this section, we describe the first five classes of methods and review algorithms from
each category. We give just a brief description of one method in the sixth category,

Table 7.1 Minimization algorithms for a few electronic structures codes.
Code Minimization algorithm
PWscf damped dynamics
PEtot BFGS
ABINIT molecular dynamics (Numerov, Verlet)
Socorro steepest descent, CG, quenched minimization
PARSEC L-BFGS
GPAW molecular dynamics (Verlet), CG, quasi-Newton (in CAMPOS Group)
fhi98PP ionic relaxation with damped Verlet
VASP CG, RMM-DIIS
PARATEC direct minimization of total energy
SeqQuest modified Broyden, damped dynamics, steepest descent, accelerated steepest descent
Wien2K geometry optimization details not given
SIESTA CG@G, molecular dynamics algorithms (including standard Verlet)
AIMPRO CG
FLEUR geometry optimization details not given
CPMD GDIIS, L-BFGS, P-RFO, RFO, BFGS, steepest descent
CONQUEST | geometry optimization details not given
CASTEP BFGS, damped molecular dynamics, delocalized internal coordinates
DoD PW damped dynamics
CRYSTAL Berny (modified CG) algorithm
Octopus steepest descent
ASW geometry optimization details not given
Exciting geometry optimization details not given
ADF quasi-Newton method
NWChem CG and BFGS algorithm
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molecular dynamics methods, since such methods are beyond the scope of this review
paper.

7.2.1. The Steepest Descent Method. Steepest descent methods exploit the
direction, d, that yields the fastest decrease in £ from r. Mathematically, this direction
results from the solution of the optimization problem

(50) min VE(r)'d  subject to [|d] =1 .

deR3K
The solution to the above minimization problem is given by d = —VE&(r)/[|VE(r)||2
in the lo-norm. This is the steepest descent direction.

Iteration k of Cauchy’s classical steepest descent algorithm [47] is as follows:

1. Find the lowest point of £ in the direction —VE(ry) from ry, i.e., find Ay that
solves miny, >0 E(ry — A VE(r)).
2. Update rp41 =1 — M VE(rk).

Clearly, this is only a theoretical algorithm in that the first step requires the
solution of a one-dimensional minimization problem. In order to implement the algo-
rithm, an inexact minimization must be performed. Goldstein [71] showed that under
mild conditions, the steepest descent algorithm converges to a local minimum or a
saddle point of £. However, the convergence is only linear.

Several electronic structure codes (e.g., Socorro, SeqQuest, CPMD, and Octo-
pus) employ the steepest descent algorithm for the geometry optimization problem
because it is easy to implement. The ease of implementation comes at the cost of
slow convergence. More sophisticated minimization algorithms usually yield a better
convergence rate and are more cost effective.

7.2.2. Newton’s Method. An example of an optimization algorithm with a higher
rate of convergence is Newton’s method. It enjoys quadratic convergence in the best
case. The goal of Newton’s method is to find a point ri4q such that VE(rr41) = 0.
For such a point, rp41 satisfies a necessary condition for being a minimizer of £. In
order to do this, a quadratic model, my, of the function is created. This model is given
by m(ri+d) = E(re)+ VE(re)"d+4 d” V?E(ry) d. Then the point i = rp+df
is determined so that Vmy(rg+1) = 0, making ri11 a critical point of my. The vector
dév is called the Newton step.

Formally, iteration k of Newton’s method is written as the following two-step
procedure:

1. Solve V2&(ry) dY = —VE(ry).
2. Update rp41 =1 + dfﬂv.

There are many difficulties associated with this simple version of Newton’s method.
First, the Newton direction might be a direction of negative curvature, i.e., it might
not be a descent direction. Second, if the Hessian matrix is ill-conditioned, the rate
of convergence might be decreased. Third, Newton’s method is not globally con-
vergent, in general. However, if the Hessian matrices are positive definite with a
uniformly bounded condition number and if the step lengths satisfy the Wolfe con-
ditions, then Newton’s method is globally convergent because the assumptions of
Zoutendijk’s theorem (which gives sufficient conditions for linesearch algorithms to
be globally convergent) are then satisfied for A\, =1 [139].

Another major difficulty associated with using Newton’s method for electronic
structure calculations is that, in most cases, an analytic Hessian is not available.
Newton’s method (as written) is not a viable option for electronic structure codes.
Therefore, we turn to quasi-Newton methods, which employ approximate Hessians.
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7.2.3. Quasi-Newton Methods. Quasi-Newton methods are among the most
successful approaches for the geometry optimization problem [173, 174, 176, 202].
The PEtot, SeqQuest, CPMD, CASTEP, and GPAW electronic structure packages
(among others) all employ quasi-Newton methods, which are modified Newton meth-
ods in which the actual Hessian is replaced by an approximation to it. Typically, the
approximation is obtained by updating an initial Hessian which may be a positive
multiple of the identity, or it may come from experimental results or from optimizing
the geometry at a lower level of theory. For example, if one is interested in performing
a geometry optimization for the DFT level of theory, it may be possible to initialize
the Hessian using the Hessian from a geometry optimization with a semiempirical
force field. Another way of initializing the Hessian may be to use the Hessian from
the geometry optimization of a related model problem. For example, in [209], Zhao,
Wang, and Meza proposed a motif-based technique for estimating the initial Hessian
matrix for the BFGS method to be described below. Their idea is to develop motifs
based on just a few atoms representative of local bonding types and to calculate Hes-
sian matrix elements for each motif which are then assembled together to approximate
the Hessian matrix for the nanostructure.

The generic quasi-Newton method is the same as Newton’s method except that
V2&(r) is replaced by By ~ V2&(r;) in the computation of the Newton step. One
way in which the many quasi-Newton methods differ is in their techniques for updating
the Hessian. One major class of Hessian update formulas is that of the secant updates
which enforce the quasi-Newton condition Bgy1Sx = yr, where sy = rg41 — rp and
Yk = 8k+1 — 8k, where g = VE(rg). This condition is used to create low-rank
updates for use in approximating the Hessian.

One of the most successful updates from this class has been the BFGS [23, 56,
70, 183] update, which was discovered independently by Broyden, Fletcher, Goldfarb,
and Shanno in 1970. It is given by

T T
Y& Yi  Bi sk sy Br
Bit1 = By + -
y{slC szk Sk

This is a rank-two, symmetric secant update. In addition, By, is positive definite
if yZ'sk > 0 and By, is positive definite. (The former condition is the only one to be
concerned with, as V2& is usually a positive multiple of the identity. The update
is normally skipped whenever yfslC < 0.) This is a desirable feature of a Hessian
update since the Hessian matrix is positive definite at a minimum. Thus, we seek
positive definite Hessian update methods for minimizations of a quadratic model.
One difficulty with the BFGS update is that, within the linesearch framework (to be
discussed below), it only converges to the true Hessian if accurate linesearches are
used [47]. Owing to inaccuracies in the potential energies and forces, this is often not
the case in geometry optimization problems.

A competitive update which converges to the true Hessian on a quadratic surface
without an exact linesearch is the symmetric rank-one (SR1) update by Murtagh and
Sargent [134]. This update is given by
(y& — Bisi) (yx — Besi)”
(yr — Bisi) s

Bit1 = B +

Unfortunately, this is not a positive-definite update, and sometimes the denominator
becomes vanishingly small. However, the diagonal of the approximate Hessian may
be perturbed to make the approximate Hessian positive definite at a given step.
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A third update which has been useful for geometry optimization problems is to
take a specific convex combination of the SR1 update shown above and the BFGS
update. Specifically, this update is given by
(Y& — B s1.) (v — Bi si)”
(Y& — Br si)Tsk

B s, sLB T
Bri1=Br+ ¢ _ZE 2k Pk k+kak>7

T T
s;. By sk Y Sk

~a-a)(

where ¢ is given by \/t1 /tats, where t1 = ((yx — By, si)"'si)? ta = (yx — Br si) " (yr —
By sk), and t3 = sgsk. This update is due to Farkas and Schlegel [50] and is based
on an idea of Bofill’s [18] for locating transition-state structures. This update strives
to take advantage of the positive definiteness of the BFGS update and the greater
accuracy of the SR1 update. Other Hessian updates are also possible; see [47] for a
description of several others.

The second way in which quasi-Newton methods differ is in their techniques for
controlling the Newton step. Linesearch methods [139, 47, 93, 68, 57] attempt to
choose a step length, Ag, such that the quasi-Newton step given by rg11 = ri + Apdg
satisfies sufficient decrease and curvature conditions. Omne of the most successful
linesearch codes is the limited memory BFGS code, L-BFGS, which was implemented
by Liu and Nocedal [117, 138]. It is intended for large-scale optimization problems. In
the L-BFGS code, quasi-Newton update vectors, rather than the full Hessian matrix,
are stored. When the available storage has been depleted, the oldest correction vector
is removed to make room for a new one. The step length in this code is determined
by the sophisticated Moré-Thuente linesearch [131].

In contrast with linesearch methods, trust-region methods choose the direction
and step length by minimizing the quadratic model subject to an elliptical constraint.
The constrained minimization problem they solve is given by minmyg(ry + dix) =
E(rk) + VE(ry) di + & df By dy subject to ||dg||2 < 6k, where dj, is the trust-region
radius. The resulting step is of the form dy = — (B + \.Z) " 'VE(ry). The trust-
region radius is adjusted based on how well the quadratic model approximates the
function. See [139, 47, 93, 68, 57, 39] for more details on trust-region methods.

The rational function optimization (RFO) method [187, 5] is related to trust-
region methods in that it seeks to compute a step in a direction that will improve the
convergence of the method. In this method, the quadratic model found in Newton’s
method is replaced with a rational function approximation. In particular,

1 T 0 g{ 1
2 (1 dk) ( B d
AE = E(ry, + dy) — E(rp) ~ Sk_Zk i

(o 5 )(a )

where Sy is a symmetric matrix that is normally taken to be the identity. Observe
that the numerator in the above formula is the quadratic model used in the quasi-
Newton method. The displacement vector, dj, is computed so as to minimize AE.
For further details on solving this optimization problem, see [155].

Recent years have seen the development of hybrid methods for optimization based
upon quasi-Newton methods. One such example is the hybrid method by Morales
and Nocedal [129] that interlaces iterations of L-BFGS with a Hessian-free Newton
method. The performance of this method is compared with the L-BFGS method and
a truncated Newton method at the end of the next section.

7.2.4. Truncated Newton Methods. If the exact Hessian is available, then it
is possible to use a truncated Newton method. Truncated Newton methods are a
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subclass of Newton methods which are used in the context of large-scale optimiza-
tion. Here an iterative method is used to compute the search direction, dj, using a
linesearch or trust-region method. They are based on the idea that when far away
from the solution, it does not make sense to compute an exact solution to the Newton
equation, as this may be very computationally intensive and a descent direction may
suffice. However, near a minimum, a more exact solution is desired. At each outer
iteration, it is required that the residual, ry, satisfy vy = [|[V2E) di + gkl < 7k |kl
where 7y, is the forcing sequence. The methods are called truncated Newton methods,
as they are stopped (or truncated) when the above convergence criterion is met. For
appropriately chosen 7, asymptotic quadratic convergence of the method is achieved
as ||[VEk|| — 0 [46]. One appropriate choice of ny given in [176] is

e = min{c./k, ||[VEL]}, 0<e¢ <1.

See [136] for an excellent survey of truncated Newton methods.

Schlick and Overton developed the idea for a truncated Newton method which
was used for potential energy minimization in [179]. The resulting Fortran package,
TNPACK [177, 178], written by Schlick and Fogelson, was later incorporated into the
CHARMM [22] molecular mechanics package [48]. The user of TNPACK is required
to implement a sparse preconditioner which alters the clustering of the eigenvalues and
enhances convergence. Automatic preconditioning is included in an implementation
by Nash [135] that makes it readily portable.

Das, Meirovitch, and Navon [44] tested the performance of the Morales-Nocedal
hybrid method (which was discussed in the quasi-Newton section), the Liu—Nocedal
L-BFGS method, and the truncated Newton method with the preconditioner of Nash
on the protein bovine pancreatic trypsin inhibitor (BPTT) and a loop of protein
ribonuclease A. Their results showed that the hybrid approach is usually two times
more efficient in terms of CPU time and function/gradient evaluations than the other
two methods [44].

7.2.5. Conjugate Gradient Methods. Nonlinear conjugate gradient (NLCG) al-
gorithms [77, 184] form another important class of methods used in electronic structure
packages (e.g., Socorro, VASP, SIESTA, AIMPRO, and CRYSTAL) for solving the
geometry optimization problem. For an excellent survey paper on NLCG methods,
see [77].

In the 1960s, Fletcher and Reeves generalized the CG algorithm to nonlinear
problems [59] by building upon earlier work by Davidon [45] and Fletcher and Pow-
ell [58]. The NLCG algorithms were developed by combining the linear CG algorithm
with a linesearch. The NLCG and linear CG algorithms are related in the following
way: if the objective function is convex and quadratic and an exact linesearch is used,
then the nonlinear algorithm reduces to the linear one. This reduction is important
since the linear CG algorithm requires at most 3K steps in exact arithmetic. This is
because the search vectors span the entire 3 K-dimensional space after 3K steps.

NLCG algorithms are of the form

Tyl = Ty + ogpdyg,
dp = —gk + Br—1di—1, do = —8o,

where «, is obtained via a linesearch and [;_1 is a scalar that determines how much
the previous direction is used in the computation of the current one. NLCG methods
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differ in their choice of [j; many different formulas have been proposed. Seven of
these methods are the Hestenes and Stiefel method (HS) [82], the Fletcher—Reeves
method (FR) [59], Daniel’s method (D) [43], the method by Polak, Ribiere, and
Polyak (PRP) [152, 153], the conjugate descent method by Fletcher (CD) [57], the
Liu and Storey method (LS) [118], and the method by Dai and Yuan (DY) [42]; their
formulas for computing G are as follows:

HS _ ngyzH
k—1 d{_l)’kfl’
FR _ gk |®
" gkl

gl V2E(rp_1) di—1

ﬁkD—l = T 2 9
dk—l \% 5(1‘1@,1) dk,1
PRP __ ngkal
k-1 — 29
llgr—1l
on _ llgil?
k—1 —gf,ldk—1 )
LS _ ngyzH
k—1 —gf_ldk—1 ’
and
]?Y _ gl
-1 d£_1y1c717
where yp_1 = gr — gr—1 and || - || is the l3-norm.

The most popular formulas from the above list are FR, PRP, and HS. The FR
method converges if the starting point is sufficiently near the desired minimum. On
the other hand, PRP cycles infinitely in rare cases; this undesirable behavior can be
remedied by restarting the method whenever ﬂ,f RP < 0. It is often the case that
PRP converges more quickly than the FR method and is the method most often
implemented in codes.

Recently Hager and Zhang [75, 76] developed a new NLCG method, CG_.DESCENT,
with guaranteed descent and an inexact linesearch. Their formula for computing S
is given by

lyr—1l® gk
B4 = | yr1 — 2dj—1 -
ot df_l}%q df_l}%q

Numerical comparisons in [75] showed that CG.DESCENT outperformed L-BFGS
and several other NLCG methods on a set of 113 problems from the CUTEr (Con-
strained and Unconstrained Testing Environment, revisited) test set [193] with dimen-
sions ranging from 50 to 10,000. Thus, CG_.DESCENT should be seriously considered
for the geometry optimization problem.

Some of the best-performing NLCG methods today are hybrid methods [77].
These methods dynamically adjust the formula for 3j as the iterations evolve. In [76],
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several numerical experiments were performed which compared hybrid NLCG meth-
ods with CG_LDESCENT and L-BFGS. The top performers relative to CPU time were
CG_DESCENT, a code based upon a hybrid DY/HS scheme, and Liu and Nocedal’s
L-BFGS code. Thus, the hybrid DY /HS scheme also has excellent potential for use
on the geometry optimization problem.

Baysal, Meirovitch, and Navon [10] studied the performance of several particular
minimization algorithms as applied to models of peptides and proteins. In particular,
they compared the performance of Liu and Nocedal’s L-BFGS code with the perfor-
mances of the truncated Newton method with the automatic preconditioner of Nash
and the NLCG algorithm (SP) of Shanno and Phua. Their results [10] show that
for one potential energy formulation, the truncated Newton method outperformed
L-BFGS and SP by a factor of 1.2 to 2. With another potential energy formulation,
L-BFGS outperformed TN by a factor of 1.5 to 2.5 and SP by a larger factor.

7.2.6. Iterative Subspace Methods. The final class of optimization methods we
review are those that employ iterative subspace optimization. Electronic structure
packages which employ iterative subspace methods include VASP and CPMD. One
algorithm in this class is the DIIS method [157, 158], which is also referred to as
residual minimization method-DIIS (RMM-DIIS). DIIS is the same as a Krylov sub-
space method in the case of solving a linear system without preconditioning. The
relationship between the methods in the nonlinear case is more complicated and is
described in [78].

DIIS was first used to accelerate self-consistent field calculations before it was
extended to the geometry optimization problem and to charge mixing. The name of
the method that has been specifically tailored for the geometry optimization problem
is geometry optimization by direction inversion in the iterative subspace (GDIIS) [40].

GDIIS is different from quasi-Newton methods in that it assumes a linear connec-
tion between the coordinate and gradient changes; this is similar to using a quadratic
approximation to the potential energy surface. However, in the quasi-Newton case,
the linear connection is between the Hessian matrix and the gradient.

We now give the derivation for the GDIIS method from [51]. The development of
the GDIIS method is based on a linear interpolation (and extrapolation) of previous
molecular geometries, r;, that minimizes the length of an error vector. The formula
for the interpolation/extrapolation is given by

rf = E ¢ r;, where E c; = 1.

An error vector, e;, is created for each molecular geometry using a quadratic model
of the potential energy surface. First, a simple relaxation step, r;, is computed using
a Newton step, i.e.,

. -1
rf=r; — V¢ g

Then, the corresponding error vector, e;, is taken to be the displacement from the
atomic structure:

-1
e =r;, —r;, = -V g

The error (or residual) vector for r* is the linear combination of the individual error
vectors and is given by

zZ = E c; e; = e*.
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Next, the coefficients are obtaining by solving the least-squares problem which corre-
sponds to minimizing ||z||? subject to the constraint that > ¢ = 1. Finally, the next
atomic geometry in the optimization procedure is given by

rp1 =r"+z= E ciry.

According to [51], this version of the GDIIS method is quite efficient in the
quadratic vicinity of a minimum. However, further away from the minimum, the
method is not as reliable and can fail in three major ways: convergence to a nearby
critical point of higher order, oscillation around an inflection point on the potential
energy surface, and numerical instability problems in determining the GDIIS coeffi-
cients. In [51], Farkas and Schlegel give an improved GDIIS method which overcomes
these issues and performs as well as a quasi-Newton RFO method on a test set of
small molecules. On a system with a large number of atoms, their improved GDIIS
algorithm outperformed the quasi-Newton RFO method.

7.2.7. Molecular Dynamics Algorithms. Molecular dynamics algorithms are
also used for geometry optimization despite the fact that they rely on statistical
approaches and dynamics to minimize the energy. In section 6.3, we described the
Car—Parrinello molecular dynamics algorithm.

Here, we will describe a second order damped molecular dynamics algorithm pre-
sented by Tassone, Mauri, and Car in [190]. Their method was designed for energy
minimization within the context of Car—Parrinello simulations. Thus, their approach
is also based on a fictitious dynamics of the electronic degrees of freedom and the
introduction of Lagrangian multipliers to ensure the orthonormalization of the elec-
tronic orbitals during dynamic evolution. The resulting equation for the second order
dynamics is as follows:

61) il £) = = 50680 ees ) + 3 e 1),
k

where the wave functions v; have been assumed to be real and the indices are over
the occupied states only. The Lagrangian multipliers given in the symmetric matrix
A are used to enforce the orthonormality condition, i.e., ¥, = d;. In [190], the
authors then introduced a damping term to reduce the number of iterations required
by the second order molecular dynamics algorithm. Then (51) becomes

(52) pbi(ri, t) = — %55/5¢i(ria t) = 2ypdhi(ri,t) + Y Apgbr(rs, 1),
K

where v is set to obtain the maximal rate of convergence.

It was shown in [190] that this second order damped dynamics method has better
efficiency than that of the steepest descent method. In particular, it has efficiency
comparable to CG methods when used for electronic minimization. The difficulty
of this method lies in how to determine an appropriate damping rate and timestep.
In [156], Probert presented a new damped dynamics approach which yields a much
faster rate of convergence than other molecular dynamics algorithms. He also demon-
strated how to use the algorithm to dynamically select the optimal timestep or to
precondition the ionic masses for the modified dynamics which yields additional effi-
ciency gains near convergence [156].
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7.3. Practical Recommendations. We conclude this section on geometry opti-
mization with some practical recommendations. First, it is important to consider
different starting points. A given optimization algorithm might not be globally con-
vergent, although Zoutendijk’s theorem can be used to modify linesearch algorithms
to make them globally convergent (if they are not already so). Another problem is
that the geometry optimization might converge to another type of critical point such
as a local maximum or a saddle point. The user can distinguish the type of criti-
cal point by calculating the eigenvalues at the solution. One example of a system
in the literature where global convergence was not achieved with an optimization
algorithm is the biphenyl molecule. When started from anything other than a flat
geometry, the geometry optimization produced an acceptable result. However, when
starting with the flat geometry, it produced a flat ring geometry which corresponds
to a maximum [116].

Second, the user can try different algorithmic parameters, approximate initial Hes-
sian matrices (in the case of quasi-Newton methods), and termination criterion, for
example, as these can dramatically affect the algorithms’ convergence, as well. It can
also be helpful to try using various optimization algorithms on one’s geometry opti-
mization problem. Different optimization algorithms perform better on some problems
and not as well on other problems, as was demonstrated in this paper. The algorithm
that will produce the best results for a given problem depends on several characteris-
tics of the problem such as deviation of the objective function from quadratic, condi-
tion number of the Hessian (or approximate Hessian) matrices, convexity, and eigen-
value structure. See [137] for a numerical study which compares the performances of
the L-BFGS method, a truncated Newton method, and the Polak—Ribiere CG method
on a set of test problems and analyzes the results in terms of these quantities.

Finally, it may be worth considering using a different coordinate system. In [3],
Baker studied the use of Cartesian and natural internal coordinates (based upon the
bonds and angles in the material) for geometry optimization; he concluded that for
good starting geometries and initial Hessian approximations, geometry optimizations
performed in Cartesian coordinates are as efficient as those using natural internal
coordinates. Thus, the standard Cartesian coordinates are recommended for finding
local minima. However, for the case of no initial Hessian information, natural internal
coordinates were more effective. Thus, natural internal coordinates are recommended
for finding a global minimum. See [160, 4] for alternative coordinate systems.

8. Open Issues and Concluding Remarks. Though significant progress has been
made in recent years in developing effective practical methods for studying electronic
structure of materials, there are from an algorithmic point of view many challenges
remaining. Developing effective techniques for solving large eigenvalue problems in
the case of a very large number of eigenvectors still remains an important issue.
Interestingly, the large and dense eigenvalue problem will gain importance as systems
become larger. This is because most methods solve a dense eigenvalue problem which
arises from projecting the Hamiltonian into some subspace. As the number of states
increases, this dense problem can reach a size in the tens of thousands. Because of the
cubic scaling of standard eigenvalue methods for dense matrices, these calculations
may become a bottleneck.

In the same vein, as systems become larger, eigenfunction-free methods may start
playing a major role. Although there has been much work done in this area, linear
scaling methods in existence today have limited applicability and it becomes impor-
tant to explore their generalizations.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/17/15 to 129.237.46.99. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

46 YOUSEF SAAD, JAMES R. CHELIKOWSKY, AND SUZANNE M. SHONTZ

There are also challenging issues related to the optimization of the geometry. The
difficulty here is that existing optimization methods or software packages do not yet
address the specificity of this problem. Though the problem has a moderate number of
variables (coordinates of atoms), the corresponding function is extremely expensive to
evaluate as it requires one converged SCF iteration, and it can also be inaccurate. A
desirable goal is to reduce the number of iterations by taking advantage of information
gathered during the iterative process, but the inaccuracy of the function evaluation
can make this an impossible task.

Many questions also remain to be explored on a more theoretical front; see, e.g.,
[110] for an overview. Work needs to be done, for example, in gaining a better under-
standing of the relation between the choice of the exchange-correlation functional and
the nature of the resulting nonlinear eigenvalue problem. Thus, the self-consistent
iteration is slow to converge in many cases (e.g., metallic compounds). It is known
that such problems are intrinsically harder due to several factors, including the small
gap between the eigenvalues of the occupied states and the others. In situations like
these, it is intuitive that the solution will be more sensitive to small changes in the
equations than in other cases. In particular, the solutions may depend more critically
on the functional used for the exchange-correlation energy.
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