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Abstract 

Polycystic kidney disease (PKD) is one of the most common potentially fatal 

genetic disorders. The most common form, autosomal dominant polycystic kidney 

disease (ADPKD), affects approximately 12.5 million individuals worldwide, and 

approximately 600,000 individuals in the US, over half of whom will develop end-stage 

renal disease (ESRD). Mutations in either the PKD1 or PKD2 genes are the primary 

cause of this disease, although, there is increasing evidence that non-genetic factors, 

including kidney injury and inflammatory responses, play a role in PKD progression. 

Infiltrating macrophages play an important part in kidney injury and repair as well 

as in chronic renal inflammatory diseases. Whether macrophages play a role in ADPKD 

cyst progression however, has remained largely unknown. Recent data from our lab and 

others have shown that macrophages accelerate disease progression by promoting 

ADPKD cell proliferation, a driving force behind cyst expansion and subsequent renal 

failure. In this study, we addressed the hypothesis that macrophages are recruited to 

the kidneys in response to chronic injury that is induced by progressively expanding 

cysts. Once in this environment, the injured renal cells stimulate the macrophages to 

undergo a phenotypic switch that, in turn, allows the macrophages to express pro-

proliferative factors that are ultimately detrimental to the kidneys. 

Results presented in this study implicate MCP-1 as the predominant contributor 

to macrophage recruitment to the kidneys; while our MCP-1 knockout mouse model 

demonstrated a significant increase in survival of mice affected with PKD. In addition, 

we uncovered signaling through CXCR2 as a potential pathway in the programmed-

macrophage-induced pro-proliferative response in ADPKD cyst cells. Experiments on 
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the effect of WNT5A, the expression of which is upregulated in the presence of 

macrophages, on ADPKD cyst cell progression pointed towards its importance in the 

promotion of growth of ADPKD cyst cells. This study highlights the significance of 

macrophage-induced cell proliferation in the progression of PKD and uncovers several 

components that can be targeted for the design of drug therapies. 
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Chapter One 

Introduction 

 

Polycystic Kidney Disease (PKD) 

 Polycystic Kidney Diseases are a group of life-threatening kidney disorders 

characterized by multiple fluid-filled cysts found primarily in kidneys as well as in other 

organs1. Reduced renal function, mainly due to structural damage of the kidney tissue 

and microvasculature, is brought on by the progressive enlargement of these cysts2 and 

eventually leads to end-stage renal disease (ESRD) for most patients. The rate of 

disease progression, age of onset, and severity of symptoms vary widely among this 

group of diseases. 

PKD can be acquired by either spontaneous developmental abnormalities or as a 

result of natural or environmental factors that include aging, drugs, hormones and 

dialysis treatment3, 4. However, PKD is most commonly the result of inherited germ-line 

mutations in single genes. Inherited PKDs include autosomal dominant and autosomal 

recessive polycystic kidney disease (ADPKD and ARPKD, respectively), 

nephronophthisis and medullary cystic disease complex5, 6. Of these, Autosomal 

Dominant Polycystic Kidney Disease (ADPKD) accounts for the vast majority of 

genetically inherited cases of PKD and is the most studied7. It is the primary focus of the 

studies described herein. 

Autosomal Dominant Polycystic Kidney Disease 

ADPKD is a common genetic disease, occurring in up to 1 in every 500 

individuals, 50% of whom will require renal replacement therapy by age 60 as a result of 
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end-stage renal disease (ESRD)1, 8-11. There are no specific treatments for ADPKD, but 

those ADPKD patients with ESRD account for approximately 10% of all patients 

requiring renal replacement therapies12, costing more than $2 billion per year in the U.S. 

alone. The slow-expanding cysts, characteristic of ADPKD, can also distort the kidney 

and result in numerous complications prior to onset of ESRD, for example, 

hypertension, hematuria, polyuria, and flank pain. ADPKD patients are usually prone to 

recurrent urinary tract infections and renal stones as well8. Furthermore, patients can 

exhibit extrarenal abnormalities in other organs (i.e., liver, intestines and pancreas) as a 

result of their disease. Connective tissue abnormalities can lead to complications such 

as intracranial aneurysms, cardiac valve abnormalities, aortic dissection and abdominal 

wall hernias13.  

Since ESRD develops later in life for ADPKD patients, treatments that slow cyst 

growth could potentially delay the onset of ESRD long enough to avoid the need for 

renal replacement therapy and improve the quality of life for many adult patients. To 

develop rationally targeted treatments for ADPKD, a thorough understanding of the 

basic biology of the genes involved and disease pathogenesis is needed. 

The primary mutation responsible for 85-90% of ADPKD cases is in PKD1, a 

large gene on Ch 16 that encodes a 4302-amino acid, transmembrane protein 

polycystin-1 (PC1)14. Mutations in another protein, polycystin-2 (PC2), a gene product of 

PKD2 (Ch 4), are responsible for most, if not all, of the remaining cases of ADPKD. 

Polycystin-2 is also an integral membrane protein and shares 25% homology to PC11, 

15. As implied by its name, ADPKD results from the loss of a single allele of either of 

these genes. Mutations in either gene are generally loss of function mutations; 
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penetrance is essentially 100%, though there is variability in disease presentation and 

severity among PKD patients including between family members16. 

 The one common manifestation is the presence of multiple cysts within the renal 

parenchyma. These cysts arise from tubular segments, especially in the collecting 

ducts, and can be considered benign neoplasms characterized by epithelial cell 

hyperproliferation and abnormal fluid secretion, both of which contribute to the formation 

and expansion of cysts17-19. Renal cysts form via abnormal proliferation of tubule 

epithelial cells, which, rather than promoting elongation of the renal tubule segment, 

causes the formation of sac-like protrusions that begin to expand out radially20. The 

majority (75%) of these protrusions that arise from tubule segments eventually detach 

from their parent tubule after reaching approximately 2 mm in diameter to form isolated 

spherical cysts, which continue to expand throughout the patients’ life span21. While 

ADPKD cyst formation begins early in fetal life, cysts are generally only detectable by 

ultrasound in patients around 20 years of age, and many afflicted individuals remain 

asymptomatic past their child-bearing years. This is due to the slowly progressive 

nature of the disease. 

  As cysts expand over the course of years, they begin to exert pressure on 

surrounding lymphatics, capillaries and neighboring non-cystic tubules. This leads to 

chronic damage of the surrounding parenchyma. Ultimately, the injury caused by 

expanding cysts, compounded by obstruction of surrounding tubules, culminates to 

disrupt renal integrity and function, promote fibrosis and eventually results in ESRD20. 

Recapitulating the response observed in non-cystic kidneys following injury, injured 

ADPKD kidneys produce chemokines and cytokines, which attract fibroblasts, 
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macrophages, and other immune cells. These interstitial infiltrates are important for 

effecting repair of injured non-cystic kidneys. In this dissertation, we explore the 

hypothesis that, in ADPKD kidneys, infiltration of these cells, especially macrophages, 

exacerbates the disease in a failed attempt at repair. 

 

The Polycystins 

Expression and Localization 

Polycystin-1 and polycystin-2 are collectively referred to as the polycystins 

(Figure 1.1). PC1 is a large integral membrane protein with receptor-like structural 

characteristics22 that is widely expressed in organs such as kidney, liver, brain, 

pancreas, small intestine, lungs and heart23. It is expressed on the plasma membrane at 

focal adhesions, tight junctions and adherens junctions, desmosomes, in the shaft and 

basal body of primary cilia, and possibly the endoplasmic reticulum and nuclei1, 16, 24, 25. 

PC1 is also detected in urinary exosomes, which are small (50-100nm) vesicles 

secreted by the renal epithelial cells into the urine26.  



 

 
Figure 1.1: Structure of polycystins.
extracellular domain, and a short cytoplasmic C
of PC1 interacts with the C-terminal tail of Polycystin
Redrawn from reference (25). 
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ciliopathies33, 34. Primary cilia are microtubule-based sensory structures that extend from 

the basal bodies or centrosomes of epithelial cells. They have been highly conserved 

throughout evolution and are capable of detecting a wide variety of physical and 

chemical stimuli35. In renal tubular epithelial cells, fluid flow leads to physical bending of 

the primary cilium. It is thought that the large extracellular domains of PC1 present on 

the cilium are capable of sensing the fluid flow and subsequently activate the associated 

PC2 calcium channels. This induces an influx of extracellular calcium into the cells, 

causing release of intracellular Ca2+ stores with consequential effects on the cells32, 

which will be described later in this chapter. 

The identification of PKD as a ciliopathy came from mouse studies using the orpk 

mouse model of PKD. Mutations in Tg737, which leads to the renal cystic disease in 

these mice, also caused stunted primary cilia in their renal epithelial cells36. Ift88, the 

Chlamydomonas reinhardtii orthologue of Tg737, is known to be required for 

intraflagellar transport and assembly of motile cilia37. It was subsequently discovered 

that the polycystins and fibrocystins, mutations in which lead to ADPKD and ARPKD 

respectively, also localize to the primary cilia along with other renal cystic disease-

associating genes31.  

Structure and Function 

PC1 is an integral membrane protein with a large extracellular N-terminal domain 

(~3K amino acids), eleven transmembrane domains (~1K amino acids) and a small C-

terminal cytosolic domain of about 200-225 amino acids, which undergoes cleavage at 

both of its N- and C-terminal domains38-40. Partial cleavage of the N-terminal tail of PC1 

occurs at the extracellular G protein-coupled receptor proteolytic site (GPS) domain, 



7 

 

resulting in an N-terminal, extracellular fragment that is non-covalently linked to the C-

terminal fragment on the membrane38, 41. Missense mutations at the GPS domain that 

prevent PC1 cleavage have been reported in ADPKD patients. This same mutation in 

the GPS cleavage domain of PC1 was unable to rescue PC1-null cells in vitro38, 42, 43. 

This suggests that in order to be fully functional, PC1 N-terminal cleavage at the GPS 

domain must be able to occur. Not all PC1 proteins present in the cells undergo the 

cleavage at the GPS however, and the full length un-cleaved protein co-exists with the 

cleaved version in cells in equal ratios38. The C terminal tail of PC1 (PC1 CTT), on the 

other hand, contains phosphorylation sites for different tyrosine and serine/threonine 

kinases44 as well as a G protein interaction domain45. The C-terminal region is also 

where PC1 interacts with PC2 through a coiled-coiled domain25 (Figure 1.1). 

C-terminal cleavage of PC1 releases a soluble ~ 35kD fragment that was first 

described by Chauvet et al39. This study showed that nuclear translocation of the PC1 

CTT can lead to the activation of the activating protein-1 (AP-1) pathway. Co-

transfection experiments using full length PC2 and PC1 CTT led to the retention of PC1 

CTT outside the nucleus and a reduction in AP-1 activity, suggesting that PC2 prevents 

PC1 CTT from entering the nucleus39.  

PC1 CTT cleavage and nuclear translocation is also associated with the 

mechanosensory effects of cilia, since both unilateral ureteral ligation, which reduces 

fluid flow, and inactivation of the kinesin family member 3A (Kif3a) gene, a subunit of 

kinesin-II that is essential for cilia formation, led to an increase in the nuclear 

translocation of PC1 CTT in mouse models. These results demonstrate that reduced 

fluid flow or loss of sensitivity to fluid flow in renal epithelial cells can cause an 
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accumulation of PC1 CTT in the nucleus and subsequent transcription of its target 

genes39. A second, more distal cleavage of the PC1 CTT releases a 15-kD fragment 

that was found to interact with the coactivator p100, as well as the transcriptional 

activator STAT6 (signal transducer and activator of transcription 6). This cleavage and 

subsequent translocation of both the PC1 tail and STAT6 to the nucleus was increased 

after stopping fluid flow40. 

Consistent with its function as a permeable, non-selective cation channel, PC2 

directly responds to local increases in Ca2+ concentration by releasing intracellular 

stores of calcium46, 47. PC2 also interacts with two other calcium channels, the 

ryanodine receptor and the inositol 1,4,5-trisphosphate receptor (IP3R), to modulate 

cytoplasmic calcium levels indirectly48, 49. Calcium levels in primary ADPKD renal cyst 

epithelial cells were found to be significantly lower than non-cystic renal cells when 

steady-state levels of calcium were measured50. Interestingly, disruption of either of the 

polycytin genes results in perturbations in calcium regulation. Hanaoka et al. 

demonstrated that polycystin-1 and -2 interact to produce new calcium-permeable non-

selective cation currents. However, neither polycystin-1 nor -2 was capable of producing 

these currents individually28. It is not clear whether this is due to the functional 

properties of the PC1-PC2 complex, or simply due to PC2’s intrinsic channel properties. 

As will be described in a later section, calcium regulation by the polycystins is an 

important modulator of ADPKD cyst cell growth. 

Polycystins and Mammalian Kidney Development 

 Polycystins play an important role in the epithelial cells that give rise to the 

nephrons during mammalian kidney development. These cells are derived from two 
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distinct sources. The first originate from the Wolffian duct, where they branch and 

invade the metanephric mesenchyme (MM) to form the collecting duct system. The 

second are generated by a mesenchymal-to-epithelial transition (MET) of a group of 

cells from the MM that form around the ureteric bud (UB), known as mesenchymal 

aggregates, creating the renal vesicles (RVs) that give rise to the majority of the 

nephron from the glomerulus to the distal tubule through the process of nephrogenesis. 

During different stages of nephrogenesis, the renal vesicle develops into the comma-

shaped body and the S-shaped body, with the latter fusing with the UB to form a single, 

continuous epithelial tubule51, 52 . 

To produce a functional kidney, proper coordination of collecting duct and 

nephron tubule development, morphogenesis and polarity is essential and relies on 

reciprocal interactions between several intracellular signaling molecules. Polycystin-1 is 

highly expressed in the cells that give rise to nephrons, as well as in other tissues that 

correlate with phenotypic abnormalities found in PKD patients, such as in the brain, 

liver, pancreas, heart, and intestine 23, 53, 54.  Polycystin-1 is predominantly expressed in 

basal-membrane focal adhesions of migrating epithelia derived from the ureteric bud in 

kidneys from human fetuses starting at 8 weeks of gestation. Expression of polycystin-1 

begins decreasing in 16-week-old fetuses and throughout adult kidney development. It 

also becomes spatially restricted to just the lateral cell–cell adherens junctions in the 

medullary collecting tubules8.  

The importance of polycystins in coordination of kidney developmental processes 

was demonstrated by loss-of-function experiments performed during renal development. 

In Pkd1-/- knockout mice, cyst formation was not observed in tubules until later 
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embryonic stages of development, a time period correlating with tubular elongation and 

architectural maintenance, and after completion of nephrogenic condensation and 

epithelialization. These results were consistent with peaks in polycystin expression in 

renal epithelia appearing during the same time period, suggesting the importance of 

polycystin in maintaining renal tubular architecture55. Similar results were obtained in 

Pkd2-/- knockout mice, further supporting the role of polycystins in the proper 

maintenance and elongation of nephron segments56. In humans, multiple renal cysts 

have also been found to occur in utero in PKD patients, indicating the importance of the 

polycystins during early kidney developmental events57.  

 

Signaling in PKD 

Major Signaling Pathways Contributing to PKD Progression 

The two major processes responsible for cyst expansion involve abnormal cell 

proliferation and fluid secretion58. An important factor leading to both of these responses 

in ADPKD is the second messenger, adenosine 3’, 5’ cyclic monophosphate (cAMP). 

Yamaguchi et al. made the observation that primary human ADPKD cyst cells showed a 

proliferative response to cAMP in culture, whereas non-cystic human kidney (NHK) cells 

displayed an anti-mitogenic response to the same cAMP stimulation59. The stimulatory 

effect of cAMP on proliferation of ADPKD cells in this study was associated with 

activation of the extracellular signal-regulated kinase (ERK) pathway, as inhibitors of 

upstream components, including protein kinase A (PKA) and mitogen-activated protein 

(MEK), blocked the proliferative response of ADPKD cells to cAMP59. Investigation of 

pathway components located between PKA and ERK later revealed that ERK activation 
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was caused by cAMP dependent activation of B-Raf (v-raf murine sarcoma viral 

oncogene homolog B1) specifically in ADPKD cyst cells, but not in NHK cells60. Since 

disruption of the polycystins affects regulation of intracellular calcium levels, Yamaguchi 

et al. hypothesized that this abnormal polycystin function in ADPKD cyst cells may 

affect calcium signaling, therefore causing the cAMP growth-stimulated phenotype61. 

This hypothesis was elegantly tested and confirmed by this group when treatment of 

non-cystic cells with either calcium channel blockers or with agents that lowered 

extracellular calcium, to mimic the calcium-deficient PKD cell state, caused them to 

switch to a PKD-like phenotype. This conversion from a normal cAMP growth-inhibited 

phenotype to an abnormal cAMP growth-stimulated phenotype was associated with 

activation of B-Raf and ERK upon stimulation with cAMP. These studies determined 

that disruption of calcium in non-cystic, cAMP-inhibited cells de-represses the B-

Raf/ERK pathway, therefore converting these cells to a cAMP growth-stimulated 

phenotype that resembles that of PKD cells60, 61 (Figure 1.2). 

A. 

 

B. 

 
 
Figure 1.2: Signal transduction pathways in (A) NHK cells and (B) PKD cells. Blue lines, active 
pathways; red lines, diminished pathways. AC, adenylate cyclase; ERK, extracellular signal-regulated 
kinase; MEK, MAP kinase kinase; PC, polycystin; PI3K, Phosphatidylinositol-3′-kinase; PKA, protein 
kinase A. Data from references (60, 61); adapted from reference (62). 
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Later studies further revealed that the anti-diuretic hormone, arginine 

vasopressin (AVP), acting through cAMP, is a major growth-stimulating factor 

responsible for proliferation of the cyst lining cells63. These studies demonstrated the 

importance of AVP in the actual process of cyst initiation using the Battleboro rat, which 

lacks AVP. When these rats were crossed with an ARPKD orthologous rat model (PCK; 

Pkhd1–/– rats), not only were the kidneys smaller in the double-knockout mice, but the 

number of cysts developing overall were significantly lower than in Pkhd1 null rats with 

completely functional AVP. Importantly, administration of vasopressin analog 

(desmopressin) to these double-null mice at 12 weeks of age resulted in numerous and 

enlarged cysts that were comparable to regular PCK mice by 20 weeks of age, whereas 

their un-treated counterparts remained unaffected64. These studies underline the 

importance of cAMP and its agonists as inducers of cyst initiation and as positive 

regulators of cell proliferation. 

Not only is cAMP an important promoter of ADPKD cyst cell proliferation, but it 

also contributes to the cyst-growth process due to its role in chloride secretion and fluid 

accumulation in the cysts. cAMP-dependent fluid secretion is believed to occur through 

the activation of cystic fibrosis transmembrane conductance regulator (CFTR), which is 

expressed in the apical membrane of cyst-lining epithelial cells65-67. When Pkd1 mutant 

kidneys with wild-type Cftr alleles were stimulated with cAMP in organ culture, they 

developed numerous large cysts, whereas kidneys from Pkd1:Cftr double-null mice had 

no evidence of cyst formation68. Thus, in this model cyst formation in response to cAMP 

is completely dependent on CFTR. Furthermore, small-molecule inhibitors of CFTR 
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were found to slow cyst growth in in vitro and in vivo models of PKD, and patients who 

have both cystic fibrosis and PKD exhibit a milder form of the disease68. 

Other Signaling Pathways Activated in PKD 

Although alterations in intracellular calcium/cAMP downstream signaling and the 

resulting abnormal proliferative response to these signals in PKD play a central role in 

the pathogenesis of PKD, the polycystins have also been found to modulate a host of 

other various signaling pathways through interactions with a wide variety of proteins25, 

69. A few of these interactions, modulating growth regulation, activation of G proteins or 

Wnt signaling pathways, will be described in this section. 

Growth Regulation 

Mammalian target of rapamycin (mTOR), which regulates protein translation, cell 

proliferation and cell growth70-72, has been shown to be negatively regulated by PC1. 

The mTOR suppressor, tuberin (the gene product of TSC2), is tethered to the 

membrane through interaction with PC1 CTT. Tuberin suppression of mTOR only takes 

place when it is membrane-bound because, in this state, it is available to bind with the 

small GTPAse Rheb and its activating partner, TCS1, which affect the kinase activity of 

mTOR70. In normal kidneys with complete PC1 function, mTOR remains mostly inactive 

and its downstream effectors, effectors- S6K1, S6K2 (ribosomal kinases) and 4EBP1 

and 4E-BP2 (eukaryotic initiation factor 4E-binding proteins) responsible for stimulation 

of protein synthesis and cell proliferation activity, are suppressed. In the absence of 

PC1 however, tuberin is no longer tethered to the membrane and is instead partitioned 

to the cytosol allowing mTOR to become activated70, 72. 
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This data was consistent with results by Shillingford et al. that previously 

demonstrated an increase in activated mTOR in the cyst-lining epithelium of ADPKD 

patients70. Furthermore, the immunosuppressant drug, rapamycin, which is a specific 

inhibitor of the mTOR pathway, has been shown to slow the progression of cystic 

disease in several different rodent models of PKD, suggesting that the activation of the 

mTOR pathway may be common to all renal cystic diseases70-72. Unfortunately, clinical 

trials of single agent mTOR inhibitors have been disappointing thus far73, 74, although 

suboptimal dosing and delayed timing of treatment may have contributed to the lack of 

effects75. 

The polycystins have also been found to negatively regulate cell cycle 

progression through their involvement in the janus kinase-signal transducer and 

activator of transcription (JAK-STAT) pathway. In the presence of an intact PC1 CTT, 

PC2 has been shown to interact with JAK2, leading to activation of STAT1 and STAT3 

via PC1. As a result, cyclin-dependent kinase inhibitor 1 (p21) expression and activity 

are increased, which in turn inhibits the cyclin-dependent kinase, Cdk2, and thus cell 

cycle progression is also decreased76. PC2 has also been shown to directly interfere in 

p21 regulation by de-repressing the p21 repressing helix-loop-helix proteins, Id2 and 

E47, by preventing their nuclear localization and subsequent transcriptional activation of 

p2177.  

Liang et al. was able to uncover another direct PC2-dependent mechanism of 

reducing cell growth via activation of pancreatic ER-resident eIF2a kinase (PERK). 

Once activated, PERK in turn increases phosphorylation of eukaryotic translation 

elongation initiation factor 2a (eIF2a), leading to a decrease in cell proliferation78. 
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G-protein Activation 

 PC1-mediated activation of heterotrimeric G proteins have been shown to 

stimulate signaling pathways that are growth modulatory and, thus, potentially disease-

relevant in PKD. Parnell et al. discovered a highly conserved trimeric G protein 

activation domain in the PC1 CTT 45. They were able to demonstrate that PC1 activated 

G-protein α-subunits, which in turn led to the activation of c-Jun N-terminal kinase (JNK) 

and AP-1 pathways. They found that the activation of JNK/AP-1 pathway is mediated 

specifically by signaling through Gα (including Gi, Gq, and G12 families), as well as Gβγ 

subunits79. The pathway connecting PC1 to G proteins and JNK was corroborated by 

another group. In these studies they demonstrated that PC1 specifically interacts with 

Gα12, negatively regulating its ability to promote JNK-mediated apoptosis in MDCK 

cells80, 81. Notably, their work showed more selectivity in PC1-G protein interaction (Gα12 

but not Gα13). The reason for this discrepancy is not known, but their distinct 

experimental conditions, including cellular context, likely account for the differences. 

The JNK/AP-1 pathway is involved in many cellular processes including 

differentiation, apoptosis, and inflammation82. Several components of this pathway, 

including protein kinase C α (PKCα) and small G proteins (Cdc42 and Rac1), were 

found to mediate this JNK/AP-1 signaling83. Interestingly, activity of AP-1 components 

such as ATF-2, c-jun and c-fos are increased in ADPKD patients and in a hypomorphic 

Pkd1 mouse model. Taken together, these data indicate that PKD1-induced JNK/AP-1 

activation is mediated via trimeric G protein subunits signaling through small GTP-

binding proteins, stimulating a signaling cascade that may influence pathogenesis of 

PKD84. 
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Further evidence for PC1 signaling through G-proteins comes from studies 

demonstrating that PC1 is capable of activating phospholipase C (PLC) via the Gαq 

subunit85. This interaction was shown to lead to the activation of the calcineurin/NFAT 

(nuclear factor of activated T-cells) pathway, which is known to regulate apoptosis as 

well as cellular growth and differentiation86. When exogenous PC1 was expressed, 

nuclear accumulation of NFAT was increased, while co-expression of Gαq further 

enhanced this effect. The pattern of NFAT expression was also found to be coincident 

with the presence of PC1 in renal tubular epithelial cells of developing and adult mice, 

suggesting a possible functional relationship between the two85. If PC1 can regulate 

NFAT target genes, then these data suggest that PC1 deficiency during conditions 

when PC1 is required, such as during renal development or in response to adaptive 

signals in the adult kidney, would be expected to cause the mis-expression of these 

target genes and thereby contribute to cyst growth in ADPKD. 

Canonical and non-canonical Wnt signaling 

PC1 has been found to regulate the Wnt signaling pathway, implying that this 

pathway may play some role in ADPKD pathogenesis. Wnts are secreted signaling 

molecules that play an important role in many developmental processes including 

organogenesis, embryonic induction, generation of cell polarity, cell proliferation and the 

specification of cell fate, while their misregulation has been associated with several 

diseases. Wnts are classically categorized as canonical (β-catenin-dependent), or non-

canonical (β-catenin-independent) ligands, depending on the downstream signaling 

pathway activated. When a canonical Wnt binds its cognate Frizzled receptor with 

lipoprotein receptor-related protein LRP5/6 co-receptor, β-catenin is stabilized in the 
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cytosol and translocates to the nucleus, where it binds a member of the T-cell factor 

(TCF)/lymphoid enhancer-binding factor (LEF) family and leads to transcription of 

proliferative genes87. Non-canonical Wnts, including WNT5A, activate β-catenin-

independent pathways, which include numerous effector molecules including JNK, 

ROCK, PKC, and NFAT signaling cascades, which mediate widely different functions 

such as planar cell polarity, convergent extension movements, or neuronal and 

epithelial cell migration among others88, 89. 

Experiments performed to demonstrate a role for canonical Wnts in ADPKD have 

generated contradictory results. Using a TCF/Lef-dependent reporter as a read-out for 

β-catenin stabilization, Kim et al. were able to conclude that PC1 C-tail overexpression 

activates canonical Wnt signaling90. In addition, overexpression of either an activated 

mutant form of a β-catenin91 or c-myc92, a β-catenin/TCF-regulated oncogene, induces a 

renal cystic phenotype in transgenic mice. C-myc has also been previously found to be 

overexpressed in ADPKD93, 94 and several other renal cystic diseases95, 96.  

On the other hand, Lal et al. demonstrated that the PC1 CTT co-localizes with 

and binds to β-catenin in the nucleus, thus inhibiting its signaling rather than activating 

it97. Miller et al. using PKD-2/WS25 mice, which display a later onset of polycystic 

kidney disease, as well as Pkd1 null mutant mice, found no evidence of TCF/Lef activity 

in cyst-lining cells in either mouse model98. Similar results were obtained when another 

group mated inversin mutant mice, which develop severe cystic kidney disease during 

late embryogenesis and perinatally, to TCF/Lef reporter mice. As with the Miller group, 

no reporter activity was observed in cyst-lining epithelia in these mice99. The 

discrepancy between these data have been attributed to the TCF/Lef-LacZ mice 
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used100, and the verdict is still out on the exact role of β-catenin signaling in PKD 

pathogenesis. 

There has also been evidence to suggest that non-canonical, or β-catenin-

independent, Wnt signaling may play a role in cystogenesis. One of the pathways 

involved in non-canonical Wnt signaling includes the Planar Cell Polarity (PCP) 

pathway. PCP contributes to both convergent extension (CE), a process of the 

intercalation of adjacent cells during development of various tissues, as well as oriented 

cell division (OCD), the alignment of the axis of cell division during mitosis. Based on 

findings that several rodent models of cystic kidney disease show tubule epithelial cells 

with altered planes of division, Fischer and colleagues came to the conclusion that 

these defects in OCD were causative for cystogenesis101. However, more extensive 

analysis by Nishio et al. using several inducible cystic disease murine models, including 

Pkd1-/- and Pkd2-/-, revealed that loss of OCD is only evident after tubules have dilated 

and was not present or responsible for cyst initiation102. These data suggest that, 

although alterations in PCP may not induce cystogenesis, defective OCD due to 

abnormal PCP may promote expansion of nascent cysts and those that have already 

initiated. 

 

Modifiers of PKD 

Genetic Modifiers of Disease 

Mutations in either of the polycystins result in essentially identical ADPKD 

disease manifestations, although patients with PC2 mutations tend to have increased 

renal survival and fewer overall complications, owing to later disease onset and 
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generally milder disease manifestations1. So far, approximately 314 different loss-of-

function mutations in the PKD1 gene have been identified in 400 families, whereas 91 

truncating mutations in PKD2 from 166 families have been described. Missense 

mutations have also been identified and make up an additional 25% of mutations in the 

polycystin genes18.  

A “two-hit” mechanism has been theorized as a method of cyst development in 

ADPKD patients. This is because analysis of cyst epithelial cells103, 104 as well as 

evidence presented by animal models of ADPKD56, have demonstrated that complete 

loss of function of a PKD protein, combined with somatic inactivation of the unaffected 

allele, is required for cysts to develop. However, Rossetti et al. have discovered that 

gene dosage via incompletely penetrant PKD alleles also plays a role in cyst initiation in 

PKD. They identified hypomorphic PKD1 and PKD2 alleles in ADPKD patients and 

found that the presence of these heterozygous hypomorphic alleles resulted in milder 

cystic disease. A more moderate to severe PKD phenotype was established when 

homozygosity of the hypomorphic allele, or compound heterozygosity with another 

hypomorphic allele existed105, 106. Furthermore, either overexpression or lowering of 

Pkd1 protein levels in murine models is sufficient to cause cystic disease, suggesting 

that dysregulation of polycystins is what leads to PKD rather than loss of function per 

se. Dosage levels attributable to PKD genetic and allelic variability, as well as other 

possible gene modifier and environmental effects, likely underlie the large phenotypic 

variability among affected individuals. 
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Other Modifiers of PKD Progression 

Other factors that may influence the rate of cyst growth and/or susceptibility to 

somatic mutations include the genetic background of the affected host. This can occur 

as a result of disruptions to the same pathway or a separate synergistic pathway that is 

important for cystogenesis. For example, haploinsufficiency of both PC1 and the 

previously described downstream signaling target protein, tuberin, enhances the 

severity of disease107. Another example is that of the AVP knockout rat, described 

previously, whose PKD disease progression is significantly reduced despite complete 

Pkhd1 deficiency. Once these double-knockout mice were administered with 

desmopressin, an AVP analog, multiple cysts developed that were equal to or greater 

than those of the Pkhd1 knockout rats alone64. This suggests that another “hit” in 

addition to loss of both alleles is necessary for cystogenesis. Other factors may also 

constitute a “third hit” and affect disease progression, including the development stage 

of the kidneys affected and renal injury, which will be described in detail in the upcoming 

section. 

Developmental Stage and Injury as Modifiers of PKD Progression 

Several lines of evidence indicate that the developmental stage of the kidney 

influences the initiation and progression of cystic disease. In a seminal set of 

experiments, Germino and colleagues showed that inactivation of the Pkd1 gene, using 

an inducible knockout model, induced rapid renal cyst formation and disease 

progression, but only if the gene was deleted in early developing kidneys, i.e., prior to 

PN 13108. In contrast, Pkd1 knockout induced in mice past PN 13 resulted in slow and 

variable disease onset and progression. Similarly, loss of genes required for primary 
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cilia function, including ift88 and Kif3a, leads to a rapid cystic phenotype only in the 

young mouse, whereas appearance of cysts is significantly delayed when these genes 

are inactivated during adulthood109, 110. For example, in the ift88 knockout model, renal 

cysts are only observed after 6 months of gene inactivation in the adult mouse109. The 

mechanisms underlying this striking effect are not completely understood; however, one 

characteristic of this early developmental period is that there is abundant epithelial cell 

proliferation that diminishes over a time frame that temporally correlates with the loss of 

susceptibility to induction of rapid cystic disease. 

Another modifier of disease that may share some common pathogenic 

mechanisms is kidney injury. Takakura and colleagues showed that renal injury 

resulting from ischemia/reperfusion (IR) accelerated PKD progression in an inducible 

Pkd1 knockout adult mouse model111. Other models of renal injury also accelerated 

PKD progression. For example, injury induced by the nephrotoxicant 1,2-dichlorovinyl-

cysteine (DCVC) after Pkd1-gene inactivation was also found to accelerate cyst 

formation significantly in adult mice112. Other experiments showed that Pkd1 or Pkd2 

haplo-insufficiency alone was sufficient for microcyst formation and increases in tubule 

dilation after acute injury113, 114. Further evidence was provided by acute kidney injury 

experiments in adult Kif3a mutant mice110. In addition, unilateral nephrectomy, which 

leads to hypertrophy of the remaining kidney, performed on the ift88 ciliary protein 

conditional knockout model triggered accelerated renal cyst formation in 8-week old 

adult mice115. Taken together, these studies suggest that injury in a cyst-prone 

background is sufficient to accelerate the onset of cystogensis. 
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As with developmental stage, the mechanisms by which injury promotes cystic 

disease progression are not fully understood. However, one common feature is that in 

the kidney post-injury, there is a hyperproliferative state that is a reflection of the repair 

response. This repair response is thought to produce a more favorable condition for 

cystogenesis in a polycystin-deficient background108, 116. This hyperproliferative state is 

similar to that seen in early kidney development.  

These experiments suggest that initiation or acceleration of cystic disease 

progression in PKD may be the result of the loss of polycystins “predisposing” cells to 

cyst formation in response to a mitogenic response62, 117. Thus, it is possible that any 

pre- or post-developmental event in a kidney with abnormal polycystin or ciliary function 

that introduces a mitogenic response may potentially constitute a “third hit” resulting in 

cystogenesis. Moreover, these findings imply that, in the adult kidney, an essential role 

of the polycystins, or other ciliary proteins, is to dampen or halt post-injurious 

hypertrophic and proliferative signals. Reminiscent of this role is their function in the 

developing kidney to inhibit proliferation after renal maturation is complete. The idea of 

re-introducing their anti-proliferative response post-injury is supported by the 

observation that tubule cells continue to form cysts in their absence. Continued cyst 

growth as a result of this impaired inhibition process leads to further injury and 

continuous activation of the innate renal epithelial repair program in an endless cycle of 

cyst-promoting injury response, all culminating to eventual renal destruction118. 
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Macrophages 

Macrophages and Their Phenotypes 

In recent years, macrophages have been shown to play a central role in the 

repair of damaged tissue post-injury. Renal macrophages are mononuclear cells that 

are members of the renal mononuclear phagocytic system (MPS). They are mostly 

derived from bone-marrow hematopoietic stem cells (HSCs) that give rise to monocytes. 

Circulating monocytes are released into the blood system, where they further 

differentiate into macrophages and/or dendritic cells119. Depending on environmental 

conditions, renal bone-marrow derived mononuclear phagocytic cells (MPCs) play a 

host of roles that relate to homeostasis, inflammation and surveillance against injury 

and repair within the kidney120. For example, under steady-state conditions, MPCs are 

believed to differentiate into resident macrophages, which are responsible for 

phagocytosis of apoptotic tissue and replenishment of cells lost to injury via growth 

factor production to maintain tissue homeostasis. These resident macrophages may be 

replenished via circulating monocytes, although they are also capable of self-renewal 

and proliferation121. 

The plasticity of macrophages allows them to switch phenotypes into diverse 

functional states that can be artificially divided into either an M1 or M2 state, depending 

on their response to different in vivo environments or in vitro stimuli122, 123. M1 

macrophages (in the mouse, F4/80+Cd11c−MR−) are “classically activated” by stimuli 

from cytokines, such as IFNγ (IFNG), LPS, TNFα, or GM-CSF and produce nitric oxide 

(NO). M2 macrophages (F4/80+Cd11c−MR+) are “alternatively activated” by IL-4 and IL-

13 stimulation and express high levels of arginase-1, mannose receptor (MR), and IL-
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10124-126. M2 macrophages are further divided into, but not limited to, the following 

subsets (Table 1.1): M2a, M2b, and M2c based on their gene expression profiles126. 

The M2a subtype is generated by IL-4 or IL-13 stimulation; M2b by IL-1R ligands or 

exposure to immune complexes in addition to LPS, and the M2c subtype by IL-10, TGF-

β, and glucocorticoid hormones. These M2 subsets generally demonstrate an IL-2low, IL-

23low, and IL-10high phenotype. They have been found to promote growth due to their 

ability to re-purpose arginine metabolism to ornithine and polyamines127.  

 
 Type M1 M2a M2b M2c 
Stimulation/activ
ation  

IFN-gamma 
TNF-alpha 
LPS 

IL4/IL13 ICs 
LPS 
LTR/IL-1R 

IL-10 
TGF-beta 
GCs 

Expression CD86 
CD80 
MHC II↑ 
IL-1R I 
TLR2 
TLR4 
iNOS (converts 
arginine to L-
citrulline and NO) 

CD163 
MHC II 
SR 
CD206
↑ 
(MR↑) 
TGM2↑ 
Decoy
R 
IL-1R II 

Mouse 
only: 
Ym1 
Fizz1 
Arg-1 

CD86 
MHC II 

CD163 
TLR1 
TLR8 

Cytokines:  
Produced by 
macrophage sub-
sets 

TNF-alpha 
IL-1beta 
IL-6 
IL-12 
IL-23 

IL-10 
TGF-beta 
IL-1ra 

IL-1 
IL-6 
IL-10 
TNF-alpha 

IL-10 
TGF-beta 

Putative 
Function(s) 

Potent microbicidal 
properties  
 
Promotes Th1 
responses 

Exert immune 
regulatory 
functions  
 
Drive Th2 
responses 

Exert immune 
regulatory 
functions  
 
Drive Th2 
responses 

Suppress immune 
responses 
 
Promote tissue 
remodeling 
 

 
Table 1.1: Macrophage Polarization Table: Classically activated (M1) and Alternatively activated (M2) subset phenotypes. 
(Arg-1, arginase-1; FIZZI,  resistin-like molecule-alpha (Relm-alpha); GCs, glucocorticoids; ICs, Immune complexes ; IL1-ra, IL-1 
receptor antagonist; LIF, Leukocyte inhibitory factor; TGM2: Transglutaminase 2; TNF-alpha: transforming growth factor-beta; MR 
(CD206), Mannose Receptor; NO, Nitric oxide; iNOS, Nitric oxide synthase; SR, scavenger receptor; VEGF, vascular endothelial 
growth factor; Ym1 (also known as chitinase-3-like protein-3 (Chi3l3)). 

 

This classification of macrophages into discrete M1 and M2 types is based on 

stimulation of macrophages in an in vitro setting. However, since macrophages in vivo 

normally exist under more complicated environmental influences, they are unlikely to 



25 

 

exhibit identical characteristics with artificially stimulated M1 or M2 macrophages123, 128. 

A full-characterization of macrophages present in vivo and in any particular disease 

state has not been achieved due to difficulties resulting from macrophage plasticity and 

the rate at which they change phenotypes when placed into a new environment. 

Nonetheless, “M1-like” macrophages found in in vivo settings, including the kidneys, 

that share similar markers with the classically defined M1 macrophages have been 

shown to play an important role in the inflammatory response during chronic or acute 

injury, while “M2-like” macrophages have been shown to promote the tissue repair and 

regeneration of cells post-injury128, 129. 

Macrophages and Kidney Injury 

Analyses of postmortem kidney specimens in cases of acute tubular injury reveal 

an accumulation of inflammatory cells in the injured kidney130. This is recapitulated by 

rodent models of renal ischemia/reperfusion (IR), where injury leads to an immediate 

influx of leukocytes, including neutrophils, lymphocytes, and macrophages, into the 

interstitium131. Shortly after injury, leukocyte-attracting chemokines, including monocyte 

chemoattractant protein-1, stromal cell-derived factor-1, IL-6 and IL-8, are expressed by 

surrounding cells, promoting infiltration of leukocytes into the kidney132, 133. As a result, 

natural-killer (NK) T-cells and neutrophils are the first to infiltrate the interstitium - within 

hours after reperfusion - and contribute to renal tubular injury. This is followed by the 

infiltration of monocytes 24 h post reperfusion, where they subsequently differentiate 

into macrophages, initially of the M1-like phenotype. During the following up to 7-day 

renal “recovery” phase, the macrophages continue to increase in number and undergo a 

phenotypic switch to M2-like macrophages to aid in the repair process134.  



26 

 

In rodent models of IR, macrophages are one of the predominant cell groups to 

accumulate around the injured renal tissue post-reperfusion135. Studies have shown that 

kidney damage is reduced and kidney function improved in rodent models when 

monocytes and macrophages are depleted using liposomal clodronate prior to I/R 135, 

136. On the other hand, when macrophages are genetically ablated during the “recovery” 

phase post IR, when M2-type macrophages predominate, effects on kidney outcomes 

were found to be deleterious in several other studies137-139. 

These data suggest that macrophages can play different roles in injury at 

different phases. Lee et al. examined this hypothesis by systemically ablating 

macrophages both before and after IR in their study. They found that liposomal 

clodronate ablation of monocytes and macrophages prior to IR was protective for the 

kidney, whereas ablation during the “repair” phase post IR resulted in more renal injury. 

They took these findings further by re-introducing macrophages, programmed in vitro to 

express either an M1 phenotype or an M2 phenotype, into the kidneys after IR to 

determine whether the phenotype of the recruited macrophages is what determines the 

extent of renal injury. They found that the pro-injurious M1 macrophages did indeed 

exacerbate injury, whereas the M2-primed macrophages did not140. These results 

demonstrate the important role that macrophages play in the repair response post-injury 

and that targeting of specific macrophage phenotypes may be a therapeutic tool in 

cases of renal injury. 

Inflammation in PKD 

Interstitial inflammation is an established characteristic of PKD. Interstitial 

infiltrates have been detected in both early and advanced stages of PKD (Zeier M, 
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1992). Macrophages are present at high densities in tissue sections obtained from 

chronic kidney disease patients141-144 including human ADPKD and ARPKD tissue 

samples, where the majority of macrophages present were found to be of the M2-like 

phenotype144. 

Renal interstitial macrophages have also been found in both orthologous and 

non-orthologous animal models of ADPKD. For example, in both the inducible knockout 

Pkd1fl/fl;Pkhd1-Cre mouse, as well as in the Pkd2WS25/− mouse, higher numbers of 

F4/80+ macrophages have been recorded when compared to their control littermates 

145. We have found an abundance of predominantly M2-like macrophages in the cystic 

kidneys of the non-orthologous cpk mouse, which phenotypically resembles human 

ARPKD144. Over-expression of PC2 in a transgenic mouse model of PKD revealed 

inflammatory macrophage-like cells surrounding cysts and in the renal cortex with H&E 

staining146. Also of note is that the expression levels of immune cell markers, including 

many macrophage markers, in PKD mouse models, such as the cpk mouse, positively 

correlates with disease progression147. For example, when profiling the renal gene 

expression in the cpk mouse, Mrug et al. discovered that the genes with the most over-

expression levels were macrophage-associated genes, such as Arg1 and Ccr2, and that 

severely affected kidneys from cpk mice expressed higher levels of those markers than 

mildly affected mice148. 

These data show that immune cell infiltration correlates with disease progression; 

however, whether immune cell infiltrates play a role in cystogenesis per se is an 

unanswered question and one for which there is conflicting data. Decades ago, it was 

demonstrated that exposure of germ-free PKD model mice to commensal 



28 

 

microorganisms or bacterial products accelerates the onset of renal cystic disease149-

151. Werder and colleagues found that a mouse model of PKD grown in germ-free 

environments outlived their cystic counterparts grown under ambient environments151. 

Gardner et al. performed similar studies in a model of chemically-induced PKD. 

Consistent with the Werder study findings, renal cyst growth in this model was lower in 

rats grown in germ-free conditions compared to those in ambient environments. 

Furthermore, after deconditioning (removal from the germ-free environment), 

cystogenesis developed more rapidly than in rats housed conventionally from birth149.  

The studies suggest that the presence of commensal microbes is sufficient to stimulate 

the onset of cystogenesis. Gardner et al. took the studies further by co-treating the 

germ-free rats with injected E. coli endotoxin, which was found to be sufficient to 

stimulate cystogenesis. The effects on peripheral leukocyte counts and renal 

morphology following injection were assessed in this study and a correlation between 

renal damage severity and higher counts of leukocytes and lymphocytes in the 

peripheral blood were observed. Whether these infiltrating cells play an important role in 

triggering the onset of cystic disease or in disease progression following endotoxin 

injection in these experiments is a formal possibility that has yet to be tested. 

Supporting evidence for the primary role that one immune cell type, 

macrophages, may play in cystogenesis comes from experiments observing the initial 

appearance of macrophages relative to onset of disease. In the Han:SPRD rat model of 

PKD, macrophages have been observed at a stage when there were only very minimal 

cystic dilations in the kidneys152, suggesting a pre-cystic involvement of macrophages in 

PKD. In contrast, however, other studies have hinted that the appearance of 
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macrophages is only secondary to PKD progression. For example, despite the fact that 

cystic changes in the pcy mouse model, which resembles human ARPKD, were 

observed as early as in fetal and newborn mice, Takahashi et al. were able to observe 

macrophages and lymphocytes in the cortex and medulla no earlier than 18 weeks post-

partum153. Similarly, in the LPK rat model of ARPKD, renal cysts develop predominantly 

in the collecting duct at around week 3, whereas interstitial macrophages were not 

detected until later time points154. These studies suggest that interstitial infiltration may 

be a secondary result of expanding cysts in these animal models. In sum, it is not clear 

what role inflammation may play in cyst initiation. Careful time-course experiments 

looking at the initial appearance of these infiltrates in relation to cyst development would 

be required to make a definitive determination about a potential causative role.  

The Role of Macrophages in PKD Progression 

Renal interstitial inflammation and macrophage infiltration temporally correlate 

with PKD cyst growth and disease progression, as described in the previous section. 

Recently, a direct role for these inflammatory cells in disease progression has been 

described. To determine the role, if any, that macrophages played in the progression of 

PKD, we examined the effects of clodronate-induced depletion of macrophages in the 

cpk model of PKD. Liposomal encapsulation of clodronate, a biphosphate that causes 

apoptotic cell death, has been shown to have high selectivity for activated macrophages 

when compared to other phagocytic cell types in vitro155 and is commonly used to 

deplete macrophages in vivo156, 157. Depletion of macrophages using this method 

resulted not only in a decrease in the number of renal macrophages, but, importantly, a 
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decrease in the cystic index, Ki67-positive renal cell proliferation and improved renal 

function when compared to vehicle-treated controls144. 

Next, we studied the in vitro relationship between cystic renal epithelial cells and 

macrophages and the reciprocal effects these cell types have on each other, in the 

context of PKD. We were able to demonstrate that soluble factors produced by each cell 

type can contribute to a change in behavior of the other cell type. Specifically, we 

showed that both NHK and ADPKD primary human epithelial cells are able to influence 

the conversion of macrophages to a phenotype that exhibits M2-like qualities. In turn, 

these macrophages produce soluble factors that are able to induce proliferation of the 

renal epithelial cells as well as epithelial cyst growth in vitro. These results corroborated 

concurrent studies performed in an orthologous mouse model of PKD145. Collectively, 

these studies suggest that macrophage depletion attenuates disease progression and 

does so regardless of the underlying genetic abnormalities responsible for the PKD. 

 

Goals of this Study 

 ADPKD is one of the most common potentially fatal genetic illnesses. PKD is the 

fourth leading cause of renal failure in the US, resulting in tremendous suffering and 

costing at least $2 billion per year. Recently, an important trial of Tolvaptan, a 

vasopressin type 2 receptor antagonist that lowers cAMP production in renal tubules of 

collecting duct origin, showed promising results for ADPKD patients. However, the FDA 

did not approve the drug due to concerns about toxicity. Thus, there are currently no 

specific therapies for PKD. 
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There is a clear need for specific treatments for PKD, including those that target 

cAMP and other pathogenic pathways. As summarized in this chapter, there is ample 

evidence that non-genetic factors, including kidney injury and inflammatory responses, 

can play a potentially important role in PKD progression. In this work, I have sought to 

identify and elucidate interactions between the cystic kidney and infiltrating 

macrophages that are pathologic and thus may be viable targets for therapy. We have 

shown that macrophages are recruited to cystic kidneys and converted to a pathogenic 

phenotype by specific renal epithelial factors. We have also demonstrated that these 

macrophages can accelerate disease progression by promoting cyst expansion and 

ADPKD cell proliferation, which is the driving force behind cyst enlargement and 

subsequent renal failure. In particular, I have sought to identify renal epithelial 

recruitment factors, as well as pro-proliferative macrophage factors and the 

underlying mechanisms by which they promote PKD in order to uncover specific 

targets for therapeutic intervention to hinder proliferation and slow disease 

progression. 

In Chapter two, the potential pathologic role of monocyte chemoattractant-1 

(MCP-1) in PKD is addressed. This factor is the major monocyte recruitment factor 

secreted by cystic renal epithelial cells from ADPKD patients, and inhibition of MCP-1 

signaling can prolong survival in PKD model mice. In Chapter three, I show that 

“programming” macrophages by human cystic epithelial cells promotes secretion of 

several cytokines that are known to promote epithelial cell proliferation. Blockade of 

signaling from at least one of these factors, GRO-α, can inhibit macrophage-stimulated 

proliferation of human PKD cysts cells and thus, may provide a potential new target for 
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therapeutic treatments designed to slow cyst expansion and disease progression. 

Finally, in Chapter four, the potential pathogenic role of WNT5A, a non-canonical Wnt 

family member, whose expression is upregulated in ADPKD cells as compared to non-

cystic human kidney (NHK) cells is discussed. I also show that WNT5A expression in 

ADPKD cells is stimulated by incubation with macrophages in vitro, and depletion of this 

signaling molecule inhibits cyst cell proliferation. 
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Chapter Two 

Genetic Deficiency of Monocyte-Chemoattractant-1 (MCP-1) Attenuates Polycystic 

Kidney Disease Progression 

 

Abstract 

 ADPKD is a progressive renal disease that is characterized by the presence of 

multiple kidney cysts that expand throughout the patient’s life leading to gradual decline 

in renal function and end-stage renal disease in the majority of sufferers. Our lab has 

recently demonstrated the facilitative role that macrophages play in cyst expansion and 

polycystic kidney disease progression. In this study, we find that primary human ADPKD 

cyst epithelial cells produce a robust chemoattractant activity for monocytes, the cells 

from which macrophages derive. We identify MCP-1 (also known as CCL2) as the major 

contributor to this chemoattractant activity in vitro and show that its genetic ablation in 

cpk mice, an in vivo model of PKD, prolongs their life-span. Our data identify MCP-1 as 

a potential target of therapy for slowing PKD progression. 

 

Introduction 

 Polycystic kidney diseases (PKD) are a group of inheritable disorders, 

characterized by the development of multiple fluid-filled renal cysts7. The most common 

form, autosomal dominant polycystic kidney disease (ADPKD), is caused by mutations 

in the ciliary proteins, PC1 and PC2, which are encoded by the polycystin genes, PKD1 

and PKD2, respectively15, 158. Autosomal recessive polycystic kidney disease (ARPKD) 
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is much less common but is also caused by mutations in a cilia-associated gene, 

PKHD1, which encodes the fibrocystin protein159. 

Interstitial renal infiltrates composed of macrophages and other inflammatory 

cells are a hallmark of cystic kidneys in PKD and have been observed in both human141-

144 and animal models144-146. For example, an increased concentration of macrophages 

in human kidneys from both ADPKD and ARPKD patients as well as in cystic kidneys of 

cpk mice, a model of ARPKD, was recently observed by our lab. These macrophages 

were of a distinct, wound-healing phenotype (M2-like), capable of stimulating the 

proliferation and microcyst formation of ADPKD cyst lining epithelial cells in culture144. 

Chemical depletion of these macrophages in the cpk mouse model by our lab144, as well 

as in an orthologous Pkd1 model by another group145, restrained cyst expansion and 

improved renal function. A reduction in cortical cystic index (cortical cyst area/total 

cortical area) and reduced cyst epithelial cell proliferation index in the kidneys of these 

mice suggest that the presence of macrophages promote cyst enlargement by 

stimulating the proliferation of cyst lining epithelial cells in vivo144, 145. Together, these 

data demonstrate the contribution of macrophages to PKD progression, regardless of 

the genetic cause of the disease. Therefore, therapies that block the recruitment of 

these cells are likely to prevent the proliferative effects on cystic kidneys and could be 

effective in slowing PKD progression. 

Monocyte chemoattractant-1 (MCP-1 or CCL2) is a pro-inflammatory chemokine 

that recruits immune cells to sites of inflammation, injury, or infection160, 161. It has been 

detected in cyst fluid of ADPKD patients as well as in their urine, where levels were 

significantly higher compared to non-ADPKD individuals. Notably, increased MCP-1 
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levels in these ADPKD patients were also found to correlate with worse renal function. 

Interestingly, despite these higher levels in urine and cyst fluid, serum MCP-1 levels 

remained normal, indicating that the kidneys may be the main source of MCP-1 

expression. Further, a 10-fold increase in concentration of MCP-1 was measured in cyst 

fluid compared to urine, suggesting a cyst lumen or cyst epithelial cell origin, although 

this has yet to be formally demonstrated162. 

Elevated MCP-1 levels were also found in animal models of PKD. Murine cells 

obtained from Pkd1-/- kidneys displayed higher levels of MCP-1 transcripts compared to 

cells heterozygous for Pkd1 mutation145. In the non-orthologous Han:SPRD rat model of 

PKD, Cy-/- homozygous mutants also displayed the highest level of MCP-1 mRNA 

compared to heterozygous rats, who, in turn, had a still higher level of expression than 

their wild-type counterparts. In these rats, MCP-1 was found to be localized to the cyst 

epithelial cells163, corroborating data demonstrating that cultured human ADPKD cells 

can secrete MCP-1162. Not surprisingly, the levels of MCP-1 expression in these rats 

correlated with an increase in the number of observed macrophages163. 

In this study, we find that ADPKD cyst cells, as well as cells obtained from the 

cystic kidneys of mice with PKD, produce a robust monocyte chemoattractant activity, 

and that MCP-1 accounts for a large majority of this activity. We also demonstrate, for 

the first time, that MCP-1 within the human kidney localizes predominantly to tubule 

epithelial cells in both ADPKD and ARPKD, where it is overexpressed relative to 

epithelial cells of non-cystic kidneys. The effects of MCP-1-deficiency on PKD 

progression are tested here using cpk mice, a rapidly progressing PKD model that 

normally results in early death due to renal insufficiency. The outcomes from these 
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studies indicate that reduction of MCP-1 levels significantly extends the life-span of 

these animals. These results suggest that therapies which block MCP-1 or its receptor, 

which would be expected to block macrophage infiltration, may slow cystic disease 

progression in PKD. 

 

Experimental Procedures 

Cell culture: Primary cultures of ADPKD cyst cells and NHK (non-cystic human kidney 

epithelial) cells were supplied by the PKD Biomaterials Research Core laboratory at the 

University of Kansas Medical Center and cultured in “ADPKD cyst cell media” 

(DMEM/F-12 [Cellgro 15-090-CV, Mediatech Inc.; Manassas, VA] supplemented with 

5% FBS, 15 mM HEPES, 5µg/ml insulin, 5µg/ml transferrin, and 5 ng/ml sodium 

selenite [ITS, BD Biosciences; Bedford, MA] plus penicillin (100 U/ml), streptomycin 

(130 µg/ml) (Pen/Strep). THP-1 monocytes were maintained in RPMI-1640 media 

(R8758, Sigma-Aldrich, St. Louis, MO) containing 10% FBS, 200 µM L-glutamine and 

Pen/Strep. 

Conditioned Media (CM) from primary human ADPKD cyst cells: CM was obtained from 

ADPKD cells (3.7 x 106 cells/6-well plate) incubated in ADPKD cyst cell media for 24 hr 

followed by washing once with 1 X PBS and replacing with “basic media” (DMEM 

[D6429; Sigma] containing 0.1% FBS, 2 mM additional glutamine and Pen/Strep) for 1 

d. CM was then collected from these cells and cellular debris removed by centrifugation 

at 600 x g for 10 min. 

Preparation of primary cells from cystic cpk mouse kidneys for producing CM: Cystic 

kidneys from PN16 cpk mice were collected and placed in ice-cold PBS containing 2X 
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Pen/Strep for transfer. Under sterile conditions, kidneys were placed in a culture dish 

and diced with a razor to generate fragments of ~2 mm2, which were then transferred 

into a 50 ml tube containing 15 ml cold DMEM with Pen/Strep. The diced tissue was 

digested by adding 5 ml collagenase (4 mg/ml; Worthington Collagenase Type 4; 

LS004189), quickly warmed by incubation in a 37°C w ater bath for 5 min and then 

further incubated at 37°C for 35 min with shaking ( 150 rpm). The collagenase was 

neutralized by the addition of 20 ml DMEM containing 10% FBS. The partly digested 

tissue was strained using a 40 µm stainer and then cultured with ADPKD cyst cell media 

for 3 days to allow attachment of kidney cells. The tissue was removed by aspiration, 

and the kidney cells were allowed to grow until confluent (3-4 d). Media was replaced 

with “complete media” (DMEM [D6429; Sigma] containing 10% FBS, 2 mM additional 

glutamine and Pen/Strep), and cells were incubated for 3 d and CM collected. 

Migration and Neutralizing Assays: Cell migration assays were performed using 24-well 

transwells with 8 µm pore-size uncoated polycarbonate membranes (Costar, Cat. No. 

3422). Lower wells contained 600 µl complete media only (to measure chemokinesis), 

purified human MCP-1 diluted in complete media as a positive control or CM made by 

incubating confluent cultures of primary cells from ADPKD cysts or from cystic kidneys 

of cpk mice with complete media for 3 d. CM was diluted 5-fold in complete media for 

migration assays. Upper wells contained 100 µl of THP-1 monocytes (1 x 106 cells/ml) 

in complete media. After overnight incubation (18 hr) media and non-migratory cells 

were removed by aspiration from upper well followed by the addition of EDTA (20 µl of 

20mM EDTA made up in PBS) and incubation for 20 m at 4oC. PBS (100 µl) was then 

added to each upper well before removal of the inserts and collection of migrated cells 
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into microcentrifuge tubes. Cells were pelleted by centrifugation (600 x g, 5 min), and, 

following removal of media, cell pellets were frozen at -80°C and the relative cell 

numbers quantified using the Cyquant Cell Proliferation Assay Kit (Molelcular Probes). 

Values for the total number of cells seeded were obtained by quantifying, in parallel, 

pelleted frozen 100 µl aliquots of the original cell suspension. 

Neutralization of MCP-1 in the CMs was carried out by pre-incubating the species-

appropriate anti-MCP-1 blocking antibodies (R&D Systems; No. MAB479 for mouse; 

No. MAB679 for human) or the isotype-matched Ig controls (mouse IgG2b for human 

CMs and rat IgG2b for mouse CMs; eBioscience No. 14-4732-85 and  No. 14-4031-85, 

respectively)  with CMs for 1 h at 37°C with agitat ion prior to the direct use of these CMs 

in migration assays. Antibodies were used at increasing concentrations to achieve 

maximal blockade with the anti-MCP-1 Ig (2 µg/ml and 3 µg/ml). 

Quantitative RT-PCR: Total RNA was isolated from cells (ADPKD or NHK) using 

RNeasy Miniprep kit (Qiagen, Valencia, CA). 1.5 µg RNA was used as template for 

cDNA synthesis using High Capacity cDNA Reverse Transcription kit (Applied 

Biosystems, Foster City, CA) in a 20 µl reaction. Real-time qRT-PCR was performed on 

Stratagene Mx3005P using Sybr Green Master Mix (#330529; Qiagen). The thermal 

cycler conditions were 95 °C for 10 m X 1, then 40 cycles of 95 °C for 30 s, 55 °C for 1 

min, and 72 °C for 1 min, and completed with 1 cycl e of 95 °C 1 min, 55 °C for 30 s, and 

95 °C for 30 s. Expression of human gene products w as normalized to human HPRT 

using the delta-delta C(T) method164.  

Blood Urea Nitrogen (BUN) Measurement: Blood was collected at the time of sacrifice. 

Serum was isolated from each sample (centrifugation 2500 X g for 8 min at 4°C, 
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followed by another spin of the supernatant for 4 min), and blood urea nitrogen (BUN) 

was measured using QuantiChrom Urea Assay Kit (BioAssay Systems, Hayward, CA). 

Immunohistochemistry: De-paraffinized sections were steamed in 0.01 M citrate buffer 

(pH 6.0) for 20 min (steamer #HS900, Black & Decker, Madison, WI). Sections were 

then incubated in 3% H2O2 followed by serum from the host animal in which the relevant 

secondary antibody was generated. Samples were incubated with an MCP-1 antibody 

(Cat. No. HPA019163, Sigma-Aldrich, St. Louis, MO) overnight at 4°C. Appropriate 

secondary antibodies (ImmPRESS, Vector Laboratories, Burlingame, CA) were then 

applied for 30 min at room temperature prior to visualization by light microscopy. 

 

Results 

Conditioned media from primary human and mouse PKD cells exhibit monocyte 

chemoattractant activity in vitro. 

Tubule epithelial cells are known to produce a number of macrophage 

recruitment factors in tubulointerstitial diseases128
. To assess the chemoattractant 

activity produced by epithelial cells in PKD cells, we collected conditioned media (CM) 

from primary cyst-lining cells obtained from different ADPKD patient kidneys, as well as 

from the primary cells grown from several cpk mouse cystic kidneys. The monocyte 

chemoattractant activity of these CMs was measured in a transwell migration assay of 

THP-1 cells, a human monocyte cell line. To set up the migration assay, THP-1 

monocytes were seeded in the top chamber of a transwell culture dish containing 

inserts with uniform-sized pores, and the PKD cell CMs for each type were seeded in 

the bottom chamber. Parallel controls were also set up to include complete media 



 

(negative control) or complete media containing human recombinant MCP

control). Monocytes were allowed to migrate through the pores toward the control media 

or the various CM preparations for 18 h, and migrated cells were quantified and 

compared to controls. Our results showed enhanced monocyte chemoattractant activity 

in the CMs from all cell preparations compared t

12 fold enhancement in ADPKD cyst cell and 

2.1). This demonstrated the robust production of monocyte chemoattractant factors from 

both primary human and mouse PKD cells.

 

A 

ADPKD CMs 

 
Figure 2.1: Conditioned media from human and mouse PKD exhibits monocyte chemoattractant 
activity in vitro. A: CMs collected from primary human ADPKD cyst cells as well as from, B: renal 
epithelial cells of cpk mice demonstrate chemoattractant activity toward THP
each). 
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MCP-1 is the primary contributor to monocyte chemoattractant activity from PKD cell 

conditioned media. 

To determine whether MCP-1 was contributing to the chemoattractant activity of 

the PKD cell CMs, parallel transwells were set up that included the addition of 

increasing concentrations of blocking antibodies against MCP-1 (or isotype control Ig) to 

CMs prior to placement of these samples in the lower chambers. As shown in Figure 

2.2, anti-MCP-1 neutralizing antisera resulted in a striking inhibition of monocyte 

migration to the ADPKD CM (Figure 2.2A). Antibody titration revealed the maximal 

effective concentrations of neutralizing antibody (2 and 3 ug/ml) reduced the mean 

migration by 74 and 68%, respectively (Figure 2.2A, upper panel). Similar 

concentrations of antibody were found to maximally reduce monocyte migration toward 

a cpk cystic kidney cell CM, in which case a mean migration reduction of 96 and 87% 

were found using 2 and 3 ug/ml, respectively, of the neutralizing antibody (Figure 2.2A, 

lower panel). Analysis of the combined results of these experiments showed that the 

monocyte chemoattractant activity present in ADPKD cyst cell and cpk cell CMs could 

be maximally reduced by 76 ± 2 and 78 ± 9%, respectively, using the anti-MCP-1 

neutralizing antibody (Figure 2.2B). These results indicate that MCP-1 is responsible for 

a large majority of the macrophage recruitment factors made by the cells from these 

cystic kidneys. 

  



 

A 

 

 

 

MCP-1 is overexpressed in human and mouse PKD tissue and is localized to the tubule 

epithelial lining of cysts in human ADPKD and ARPKD sections

While both ADPKD cyst cells and NHK cells have been shown to produce MCP

when cultured in vitro162, the relative RNA expression levels of MCP

not been assessed. qRT-PCR analysis of RNA isolated from primary human ADPKD 
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Figure 2.2: MCP-1 is the primary 
contributor to monocyte chemoattractant 
activity from PKD conditioned media 
vitro. A: Neutralization of MCP
collected from primary human ADPKD cyst 
cells (top) as well as from renal epithelial 
cells of cpk mice (bottom) demonstrate 
primary contribution of MCP
chemoattractant activity toward THP
monocytes at maximal effective 
concentrations. B: Mean percentage of 
macrophage chemoattactant activity 
attributable to MCP-1 in ADPKD CM (left) 
and CM from cpk kidneys (right) n=3 for each 
CM. 
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cyst cells and NHK cells revealed an ~ 3

ADPKD cells (Figure 2.3A). 

Immunohistochemistry of ADPKD, ARPKD and NHK sections were performed to 

assess the relative levels of MCP

ADPKD and ARPKD kidney sections, there was robust staining of MCP

predominantly to tubule epithelial cells of both cysts and normal tubules

top panel). However, only a low level of staining

cells, could be detected in sections of non

These data establish the cyst epithelial cell origin of MCP
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Figure 2.3: MCP-1 is overexpressed in human ADPKD
tubule epithelial lining of cysts in human 
indicated in the figure and qRT-PCR was performed
ARPKD (n=2) or NHK kidneys (n=2). Sections were p
shown. Scale bar= 25 µm; *=cystic space.
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cyst cells and NHK cells revealed an ~ 3-fold upregulation of MCP-1 transcripts in 

Immunohistochemistry of ADPKD, ARPKD and NHK sections were performed to 

assess the relative levels of MCP-1 protein, as well as to establish localization. 

ADPKD and ARPKD kidney sections, there was robust staining of MCP-

predominantly to tubule epithelial cells of both cysts and normal tubules

However, only a low level of staining, which also localized to tubule epithelial 

could be detected in sections of non-cystic kidneys (Figure 2.3B, bottom panel). 

These data establish the cyst epithelial cell origin of MCP-1 in human PKD that had 

been suggested by previous studies162, 163. 

 

B 

1 is overexpressed in human ADPKD and ARPKD tissue, and is localized to the 
lial lining of cysts in human PKD sections. A: mRNA was isolated from cultured cells as 

PCR was performed. B: IHC for MCP-1 was performed on ADPKD (n=7), 
ARPKD (n=2) or NHK kidneys (n=2). Sections were processed in parallel. Representative images are 

*=cystic space. 

1 transcripts in 
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Genetic knockout of MCP-1 prolongs cpk mouse longevity 

 Cpk mice were used to determine the in vivo effects of MCP-1 deficiency on PKD 

progression. These mice, which provide a non-orthologous model of ARPKD, develop 

cystic disease due to a homozygous mutation in Cys1, which encodes the cilia-

associated protein, cystin. Cpk mice are born with renal cysts that rapidly expand 

leading to renal failure and death, typically by 3 weeks31, 165-167. C57/Blk6 cpk mice were 

crossed with C57/Blk6 MCP-1-null mice (Jackson Labs) in a breeding strategy to 

generate progeny that were either null (Mcp-1-/-, n=10), heterozygous (Mcp-1+/-, n=18), 

or wild-type (Mcp-1+/+, n=20) at the MCP-1 locus. Mice were monitored regularly for 

end-stage symptoms, and survival was recorded for each genotype. Remarkably, there 

were significant differences in survival among all groups. As previously reported31, 165-

167, cpk mice with wild-type expression of MCP-1 showed rapid progression of disease, 

and all died within 3 weeks (Figure 2.4, black). Cystic mice with MCP-1 knockout 

showed a significant increase in survival (average=45 days), up to ~18 weeks in one 

case, a lifespan that is over 600% longer than that of the average cpk-/- mouse that is 

wild type at the MCP-1 locus (average=21 days) (Figure 2.4, red). Notably, 

heterozygous loss of MCP-1 also showed a significant improvement in survival 

(average=25 days) compared to wild type MCP-1, up to 5 weeks in one case (Figure 

2.4, blue).  

The differences in survival imply that loss of MCP-1 slows cystic progression and 

likely preserves renal function. While this has not yet been fully assessed, preliminary 

measurements of renal function have been collected for mice at PN13. Average renal 

function at postnatal day 13 (PN 13), as measured by BUN, showed no differences 
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between double-knockout mice compared to cpk mice wild-type at the MCP-1 locus 

(data not shown). Ongoing studies are being carried out to re-assess BUN, macrophage 

numbers, as well as changes in the cortical cystic index, in kidneys from these mice at 

earlier time points (PN 10). A decrease in the number of macrophages observed in 

addition to reduced BUN and cortical cystic index numbers, correlating with increasing 

levels of MCP-1 deficiency, is considered likely. If so, these results would support the 

notion that MCP-1 contributes to PKD progression by recruiting macrophages to cystic 

kidneys, further enhancing their cystogenesis. 

 

 

 

 
Figure 2.4: Genetic knockout of MCP-1 prolongs cpk mouse longevity and improves average renal 
function in vivo. MCP-1 deficiency in C57/Blk6 cpk mice increased survival rates in a dose dependant 
manner. Cpk-/-;mcp-1+/+ (n=20) versus Cpk-/-;mcp-1+/- (n=18) or Cpk-/-;mcp-1-/- (n=10), P<0.0001. Cpk-/-

;mcp-1+/- versus Cpk-/-;mcp-1-/-, P=0.01.    

  

P<0.0001 

P<0.0001 
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Discussion 

Studies in several animal models of renal damage as well as in various types of 

human renal disease provide increasing evidence for a major role of MCP-1 in the 

progression of renal failure168. High expression levels of renal MCP-1 have been 

detected in several chronic kidney diseases such as lupus nephritis169, glomerular 

disorders170, obstructive nephropathy171 as well as in ADPKD162. In a mouse model of 

diabetic nephropathy, loss of MCP-1 resulted in a significant reduction in the number of 

atrophied tubules, correlating with a decrease in creatinine levels172. Administration of 

antibodies to MCP‐1 in a mouse model of glomerulonephritis was found to decrease the 

extent of tissue damage and improve renal dysfunction, correlating with a decrease in 

infiltrating macrophages173. Since increases in levels of MCP-1 expression, associated 

with higher numbers of interstitial macrophages163, have been found in renal epithelial 

cells of animal models of PKD, we sought to elucidate the role of MCP-1 in PKD 

progression in this study. 

Our data is the first to demonstrate the negative contribution of MCP-1 to survival 

in PKD model mice. The upregulation of MCP-1 likely leads to the influx of 

macrophages to the kidneys, promoting disease progression. This could explain why 

MCP-1 deficiency would ameliorate disease progression in a similar manner to direct 

macrophage depletion144, 145, hence prolonging longevity (Figure 2.4). Notably, the data 

demonstrate variability in days survived between double mutant mice (as early as 26 

days to as long as 127 days). This could be explained by differences in genetic 

polymorphisms that may exist even between individual mice of seemingly identical 

backgrounds. A more plausible reason, however, could be explained by differences in 
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individual extrinsic factors affecting each mouse (e.g., infections, injuries, etc.). The 

inability of MCP-1 deficient cells to communicate this signal of distress and attract 

immune cells to the site of injury prevents a necessary immune response that may also 

be inadvertently affecting the immediate well-being of these mice. While no overt 

deleterious effects were detected in these mice as a result of MCP-1 deficiency, the 

presence of sub-clinical infection/inflammation is possible. Depending on the severity of 

the environmental effects, loss of MCP-1 may be more detrimental to the overall health 

of these mice in a manner that outweighs the slower concurring benefits of resolution 

from PKD. This theory is also supported by our data demonstrating that cpk mice wild-

type at the MCP-1 locus exhibit very tight survival figures (between 19 and 21 days). All 

of the mice used in this study were housed in a conventional environment that was 

clean but not sterile. It may be that more dramatic and consistent results would be 

obtained from an identical study of mice housed in sterile conditions. These varying 

environmental effects combined with an MCP-1 deficient background may also explain 

the lack of improvement in BUN values at PN 13 obtained between cpk mice wild-type 

for MCP-1 compared to the double-knockout mice (data not shown), since infection 

and/or inflammation in other areas of the body may mask kidney specific improvements 

in renal function.  

The time-point at which the sera from these mice were obtained (PN 13), may 

also explain the lack of improvement in BUN levels. In cpk mice, there are three 

postnatal stages of cyst development. The first stage (P1-P6, or week 1) involves 

proximal and collecting tubule segmental dilations, whereas the second stage (P7-P13, 

or week 2) consists of continued rapid growth of cortical and medullary collecting duct 
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cysts. After postnatal day 13 (week 3 and beyond), almost all of the kidney parenchyma 

is replaced by collecting duct cysts174-176. These changes are accompanied by a 

decrease in kidney function as measured by BUN175. Therefore, analyses of BUN at 

earlier time points (i.e. stage II) may reveal changes in kidney function before 

substantial damage has occurred. This may also have the additional benefit of limiting 

overall environmental exposure for these mice. Thus, earlier time-point experiments, as 

well as housing mice in a more environmentally controlled setting, will likely decrease 

the variability within the MCP-1 deficient groups. Nonetheless, it is important to note that 

regardless of these variances, overall, the double-knockout mice survived significantly 

longer than their wild-type (P<0.0001) and even heterozygous (P=0.01) counterparts. 

One double-mutant mouse survived as long as 127 days, a phenomenon that has never 

been previously described for untreated and otherwise genetically unaltered C57/Blk6 

cpk mice, to the best of our knowledge. 

Although previous studies of ADPKD kidneys have suggested the cyst epithelial 

cell origin of MCP-1162, 163, our experiments are the first to demonstrate MCP-1 

localization to the epithelial cells lining cysts of human ADPKD kidneys (Figure 2.3B). 

This is consistent with the theory that MCP-1 is produced by these renal epithelial cells 

in response to renal injury or stress occurring in tubules undergoing cystogenesis. 

Interestingly, we have found that MCP-1 was also upregulated in surrounding non-cystic 

tubules, suggesting that either this phenomenon is intrinsic to polycystin deficiency in 

these cells, or that the tubules are responding to, and further propagating, stress 

signals, whether autocrine or paracrine, perhaps as a result of the physical compression 

imposed by surrounding cysts. Based on our results comparing MCP-1 mRNA 
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expression levels between primary human cultured NHK and ADPKD cells, it may be 

that Pkd1/2 defects can have a direct effect on MCP-1 production (Figure 2.2A). This is 

in contrast to results by Zheng et al., where no differences in secreted MCP-1 

concentrations between these cell types were observed162. However, as suggested in 

these studies, this may be due to mechanical or structural changes that occur as the 

cells are transferred into a tissue culture environment, which then elicit a cellular injury 

response162. Nonetheless, our results do not rule out the possibility that upregulation of 

MCP-1 mRNA expression in ADPKD cyst cells was triggered by environmental 

influences surrounding these cells prior to their removal from the kidney. Thus, the 

MCP-1 response, which was maintained after culture, may not be directly related to 

Pkd1 deficiency, but rather a sustained result of extrinsic factors present in its pre-

culture state. 

Studies monitoring direct changes in MCP-1 expression as mediated by loss of 

PC1 or PC2 may shed further light into the causative role the polycystins may play in 

regulating MCP-1 expression. MCP-1 mRNA expression has been shown to be induced 

by activation of the extracellular regulated kinase (ERK) in response to shear stress in 

vascular endothelial cells as well as in renal epithelial cells177, 178. This shear-stress 

mediated ERK activation and subsequent MCP-1 mRNA expression is triggered by the 

polycystins, expressed on the primary cilium of renal epithelial cells, in response to fluid 

flow177, 178. Flores et al. showed that cells deficient for PC2, however, were unable to 

induce MCP-1 mRNA expression in response to shear stress by preventing the 

transport of pERK into the nucleus179. This suggests that polycystin 2 deficiency hinders 

the upregulation of MCP-1 mRNA levels, rather than increasing them as we have 
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detected in our PKD cells. This implies that the increase in levels of MCP-1 mRNA in 

our study is unlikely due to polycystin, or at least PC2, deficiency. Nonetheless, it is still 

unclear what effects overexpression of the polycystins, which also leads to PKD24, may 

have on MCP-1 mRNA expression levels.  

Although genetic mutations in Pkd2 may not upregulate MCP-1 production, they 

are likely to increase the susceptibility to inflammation, but only following a “second hit” 

event. This is evident in mouse models of acute kidney injury (AKI), where the number 

of macrophages post-injury was significantly higher in Pkd2 heterozygous mouse 

kidneys compared to wild-type injured mice, despite lower levels of Pkd2 mRNA 

expression in the heterozygotes. Notably, macrophage numbers were not significantly 

different between heterozygotes and wild-types prior to injury in the kidneys of these 

mice114. This suggests that Pkd2 heterozygosity alone is insufficient to promote 

inflammation, but likely predisposes the kidney to a greater inflammatory response post-

injury. 

If MCP-1 is the major chemoattractant in PKD, as our data suggest, monitoring 

the timing at which macrophages appear during different stages of cystogenesis might 

aid in the determination of whether genetic mutations or environmental factors are 

responsible for inducing the expression of this cytokine in PKD. Studies looking at the 

PCK (Pkhd1-/-) rat model of ARPKD, in which cystogenesis was prevented through loss 

of a “second hit” mitogenic stimulus (i.e., simultaneous genetic knockout of 

vasopressin), showed no evidence of interstitial inflammation in the double-mutant 

kidneys, despite the loss of the PKD causing gene64. These results suggest that 

mutated Pkhd1 genes alone are incapable of inducing an inflammatory response, in the 
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form of MCP-1 overexpression or otherwise. Rather, immune cell infiltration is likely a 

secondary result of tissue damage and injury in this model. Whether or not mutations in 

other genes causing PKD influence inflammatory responses has yet to be studied. 

Regardless of how MCP-1 expression is being mediated in PKD cells, our data 

support a role for MCP-1 in promoting disease progression. This is likely through 

attracting cyst-growth-promoting macrophages to PKD kidneys, as abnormalities in 

monocyte recruitment in MCP-1−/− mice have been observed180. However, there is also 

evidence to support a non-inflammatory signaling role for MCP-1, which our data does 

not rule out, as of yet, as the cause for improved PKD mouse survival. Besides its 

potent chemoattractant property, MCP-1 has been shown to increase cytotoxic 

lymphocyte and natural killer cell activity181, affect Th cell phenotypes182, alter the 

phenotype of vascular smooth muscle cells183, activate monocyte cytokine secretion184, 

as well as affect cellular responses of vascular endothelial cells (ECs) via direct 

activation of MAP kinases185. In human tubular epithelial cells, MCP-1 has also been 

found to activate transcription factors involved in growth responses186. Further studies 

ruling out involvement of these other non-inflammatory signaling properties of MCP-1, 

as well as establishment of a direct link between MCP-1 deficiency and macrophage 

inhibition in PKD animals will be necessary to delineate the exact role that MCP-1 plays 

in prolonging cpk mouse longevity.  

Since MCP-1 mediates its chemoattractant effects through its interaction with its 

receptor, CCR2, animal studies are currently underway in our lab testing the 

effectiveness of MCP-1 receptor antagonists on murine PKD disease progression. 

Results of these studies may be complicated due to the receptor’s ability to bind other 
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ligands, as well as the ability of MCP-1 to bind other receptors187, 188. CCR2 is a G 

protein-coupled receptor that binds multiple ligands, including MCP-1, MCP-2, MCP-3, 

and MCP-4. However, the relative contribution of each of these ligands to CCR2-

mediated in vivo function remains unclear189, 190. MCP-1 has also been shown to 

stimulate CCR4 activity in a basophilic cell line191 as well as induce its expression and 

regulate its activity in human osteoclasts192. Nonetheless, functional redundancies in 

mice deficient for MCP-1 or CCR2 with regards to the inflammatory response in disease 

models in vivo193 provide strong support for targeting this ligand/receptor pair in chronic 

inflammatory states194, such as in the case of PKD. Therefore, targeting of MCP-1 using 

currently available receptor antagonists, alone or in combination with other PKD 

therapies currently being tested, could aid in ameliorating disease progression for PKD 

patients. 
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Chapter Three 

Identification and Characterization of Macrophage Factors that Promote ADPKD Cyst 

Cell Proliferation. 

 

Abstract 

We have recently shown that renal macrophages can promote PKD progression 

in an animal model of disease. We also showed that the mechanism likely underlying 

this phenomenon is a reciprocal interaction between infiltrating macrophages and cyst 

epithelial cells: cyst cells stimulate macrophage differentiation to an M2-like phenotype 

and macrophages promote cyst cell proliferation. In this chapter, we demonstrate that 

the induction of the M2-like state enhances macrophage production of pro-proliferative 

factors, implying that the “programming” of macrophages by cyst cells is an important 

step in disease pathogenesis. Further, we show that soluble, protease-sensitive 

factor(s) are responsible for the pro-proliferative activity. To identify programmed 

macrophage-secreted factors, we performed proteomic and RNAseq analyses, which 

revealed upregulation of several macrophage cytokines, including GRO-α. Blockade of 

the GRO-α receptor, CXCR2, partially inhibited the pro-proliferative effect. In parallel 

efforts, we examined downstream signaling pathways within ADPKD cells that are 

activated by programmed macrophages. This analysis demonstrated activation of the 

PKA and MEK/ERK signaling pathways in the proliferative effect on ADPKD cyst cells. 

Targeting of these factors or components may be a viable strategy to slow PKD 

progression. 
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Introduction 

Macrophages play an important role in the pathophysiology of kidney disease. 

Macrophages are monocyte-derived cells that exhibit phenotypic plasticity influenced by 

environmental stimuli and have as such been classified into distinct functional 

phenotypes. M1 macrophages are those that develop following incubation in vitro with 

the Th1-type cytokines, IFNγ, LPS, TNFα, or GM-CSF, while M2 macrophages are 

those that develop following exposure to the Th2-type cytokines IL-4 and/or IL-13. Since 

renal macrophages in vivo exist under complex environmental influences and stimuli, 

they are likely to exhibit distinct characteristics when compared with these artificially 

defined M1 or M2 macrophages123, 128. M1-like macrophages in the kidney play an 

important role in the inflammatory response during chronic or acute injury, while M2-like 

macrophages promote the tissue repair and fibrosis processes post-injury128, 129. Animal 

models of acute kidney injury demonstrate that these M2-like macrophages differentiate 

from infiltrating monocytes responding to tissue damage. They are capable of 

stimulating tubular cell proliferation, acting as wound-healing agents to promote repair 

post injury140, 195. Renal M2-like macrophages are also found to predominate relative to 

other macrophage types in several chronic kidney injury diseases143. 

Our lab has demonstrated that in ARPKD and ADPKD, the vast majority of the 

interstitial macrophages present in cystic kidneys were M2-like based on histological 

analysis144. Moreover, we and others have demonstrated a role for these macrophages 

in promoting polycystic kidney disease (PKD) progression144, 145. In these studies, 

systemic depletion of macrophages in a non-orthologous model of ARPKD, as well as in 

an orthologous model of ADPKD, resulted in the restraint of cyst expansion that was 
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associated with a reduction in proliferation of cyst epithelial cells. Furthermore, co-

culture of macrophages with ADPKD cyst epithelial cells in vitro was found to promote 

M2-like differentiation of the macrophages and proliferation of the cyst cells144, 145. 

Stimulation of cyst cell proliferation was found to be mediated by soluble factor(s) 

secreted by the macrophages144. Thus, identification and characterization of the 

macrophage factors responsible for the proliferative response in PKD cells may provide 

new targets of therapy that could be used to treat patients and aid in slowing disease 

progression.  

In this study, we propose to 1) characterize the proliferative factor(s) produced by 

programmed macrophages and determine whether programming affects their 

production; 2) identify potential candidates using expression and proteomic analysis; 3) 

uncover signaling pathways within ADPKD cyst epithelial cells that are stimulated by the 

programmed macrophage factor(s) to induce the proliferative response. 

 

Experimental Procedures 

Cell culture: Primary cultures of ADPKD cyst cells and THP-1 monocytes were 

maintained as previously described (Chapter 2).  

Conditioned Media (CM): ACM  was obtained from ADPKD cells (3.7 x 106 per 15cm 

tissue culture plate) incubated for one day in ADPKD growth media (above) for 24 hours 

following by washing and incubating for 3 d in XVIVO10 (Bio Whittaker, Walkersville, 

MD) supplemented with 15mM HEPES. THP-1 monocytes were differentiated into 

macrophages by treatment for 3 d with 200 nM PMA (phorbol myristate acetate, P1585, 

Sigma-Aldrich) in THP-1 in XVIVO10 and, after washing with 1 X PBS, media was 
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replenished with  XVIVO10 alone for 3 days. Next, media was washed with PBS and 

changed to either fresh XVIVO10 alone (to produce TCM), or with ACM (to produce 

pTCM) for 2 d. At the end of the 2 d, brief washing in PBS was carried out followed by 

the addition of “basic media” (DMEM (D6429, Sigma-Aldrich) supplemented with 200 

µM L-glutamine, Pen/Strep plus 0.1% FBS) for 24 hr to generate TCM and pTCM, 

respectively. Basic media was used alone in all proliferation assays as negative control. 

Modified methods were taken for preparation of pTCM for mass spectrometry analysis. 

All steps were identical to above, except, DMEM used in “basic media” was exchanged 

for phenol-red-free DMEM (D2902, Sigma-Aldrich) for the final step to generate the 

pTCM. 

CM fractionation: pTCM was separated by the VIVASPIN 6 ultrafiltration system’s 

molecular weight cut-off columns (Sartorius AG, Goettingen, Germany) to generate 4 

flow-through samples (6ml each) consisting of <10, <30, <50 and <100 kDa protein 

fractions, per manufacturers’ protocol, and each fraction was then used in subsequent 

proliferation assays.  

Gel filtration: pTCM was also filtered through per manufacturers’ protocol Sephadex G-

50 columns (G5080, Sigma-Aldrich) to determine active fraction. Briefly, after 

equilibrating with PBS, the column was eluted into four fractions of pTCM each and 

assayed for proliferation. BSA at 5mg/ml was similarly fractioned and each fraction was 

assayed for protein concentration using a standard Bradford protein determination 

assay. 

CM heat-inactivation and proteinase K treatment: To heat-inactivate pTCM, samples 

were boiled for 20 min followed by immediate cooling on ice to RT prior to treatment of 
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cells. Proteinase K (PK) (P9290, Sigma-Aldrich) was added to pTCM at a final 

concentration of 0.5 mg/ml (0.05 U) and allowed to incubate with rotation for 2 hr at 4oC. 

The pTCM plus PK mixture was spun down at 2,000 x g for 5 min and supernatant was 

passed through a 0.22um filter. FBS was added at a final concentration of 0.1% to 

generate the PK-treated pTCM sample. For control experiments, Proteinase K Inhibitor 

(539470, Calbiochem) was added at a final concentration of 50uM prior to incubation of 

PK with pTCM. 

Cytokine array: Cytokines in pTCM and TCM were detected using an antibody capture 

array [Human XL Cytokine Array (ARY022, R&D Systems, MN], which allows 

quantitative detection of 102 different secreted proteins. The manufacturer’s protocol 

was modified to allow detection using near-red fluorescence on the Odyssey® Infrared 

Imaging System (LI-COR). Briefly, the steps in protocol ARY005 were followed with 

replacement of Buffer 4 and Buffer 5 in the protocol with Buffer 6 and Buffer 4 from the 

ARY022 kit, respectively. 

Proliferation assays: Primary ADPKD cyst epithelial cells (1 x 104/well) were seeded into 

24-well tissue culture plates and incubated overnight followed by 24 hr incubation in 

ATP-depleting, starvation media (glucose-free DMEM [11966, Life Technologies] 

containing 2% FBS,10 mM deoxyglucose and Pen/Strep3). For each assay described, 

control experiments were performed by incubation of ATP-depleted cells for 3 d with 

DMEM (D6429, Sigma-Aldrich) supplemented with 200 µM L-glutamine, Pen/Strep 

containing 0.1% FBS (low-serum media). Treatment of cells with pTCM alone (positive 

control) or with the addition of reagents being tested was concurrently performed as 

described for each experiment. Following 3 d incubation at 37oC, media was removed 
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and cells were frozen at -80oC prior to lysis in buffer containing CyQUANT® GR dye 

(Life Technologies), according to manufacturer’s directions. Quantitative measurement 

of fluorescence was carried out using a SynergyTM 2 microplate reader (BioTEK 

Instruments, Inc., Winooski, VT). 

Western blots: Western blot analyses were performed per standard protocol on whole 

cell extracts of ADPKD cyst cells as described for each experimental reagent. 

Materials and Antibodies: H89 and SL-327 were obtained from Sigma-Aldrich (St. Louis, 

MO) and SB225002 from Tocris (Ellisville, MO, USA). GRO-α (MAB275) antibody used 

in immunodepletion experiments were obtained from R&D Systems (Abingdon, UK). All 

other antibodies described were purchased from Santa Cruz Biotechnology (Santa 

Cruz, CA) and used at 1:1000 dilutions. 

RNA isolation: Total RNA was isolated from programmed and unprogrammed THP-1 

cells using RNeasy Miniprep kit (Qiagen, Valencia, CA). 1.0 µg RNA was used as 

template for cDNA synthesis using High Capacity cDNA Reverse Transcription kit 

(Applied Biosystems, Foster City, CA) in a 20 µl reaction. 

 

Results 

Part I: Characterization of Programmed Macrophage Proliferative Factor(s) 

Soluble programmed-macrophage factor(s) promote ADPKD cyst cell proliferation 

 We have previously shown that macrophages have the capacity to promote 

proliferation of both ADPKD cyst cells in 2D and 3D co-culture, and, using transwell 

assays, we showed that macrophage-secreted factor(s) are responsible for the 

activity144. To facilitate identification of the factors, we first determined whether the 
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proliferative activity was stable in solution. We collected conditioned media (CM) from 

human THP-1 macrophages and used it in a proliferation assay to assess effects on 

ADPKD cyst cell growth. After incubation with the THP-1 conditioned media (TCM) for 3 

days, the number of ADPKD cyst cells was quantified and compared to untreated cells 

cultured in basal media. Treatment with TCM induced a significant proliferative 

response in the ADPKD cells compared to un-treated cells (Figure 3.1, middle bar). We 

next assessed the influence of macrophage differentiation on secretion of proliferative 

factors. To accomplish this, THP-1 cells were first programmed by incubation with 

ADPKD cyst cell CM for 2 days. Then, the media was changed and programmed THP-1 

conditioned media (pTCM) was collected after an additional 24h (Figure 3.1A). As 

shown in Figure 3.1, the programming step significantly enhanced secretion of 

proliferative activity, with pTCM-stimulated proliferation ranging between ~20-40% 

higher than that in TCM treated cells (Figure 3.1B).  

These results confirm that the pro-proliferative factor(s) produced by the 

macrophages are soluble and show that the activity is stable enough to be transferred 

to ADPKD cells in culture to induce its proliferative effects, a property that will facilitate 

further identification and characterization. Furthermore, the data show that the 

programming interaction between macrophages and ADPKD cells significantly 

enhances macrophage secretion of pro-proliferative factor(s). 
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Figure 3.1: Conditioned media from programmed human THP
proliferation in vitro. A: After differentiation of THP
changed to either fresh XVIVO10 alone (control
brief washing in PBS was carried out followed by the addition of “basic media” for 24 hr to generate TCM 
and pTCM, respectively. B: CM collected from 
of human ADPKD cyst cells (P<0.0001) after a 3 day incubation period, compared to control media alone. 
Pre-programming of macrophages with ADPKD cyst cell CM 
proliferative effect (P<0.0001, compared to un
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Conditioned media from programmed human THP-1 macrophages promotes 
A: After differentiation of THP-1 macrophages, media was washed with PBS and 

alone (control), or with ACM (programmed) for 2 d. At the end of the 2 d, 
brief washing in PBS was carried out followed by the addition of “basic media” for 24 hr to generate TCM 

CM collected from control THP-1 macrophages (TCM) promotes proliferation 
st cells (P<0.0001) after a 3 day incubation period, compared to control media alone. 

programming of macrophages with ADPKD cyst cell CM to generate pTCM further stimulates
proliferative effect (P<0.0001, compared to un-programmed TCM). (n=3 experiments). 
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Soluble programmed-macrophage factor(s) have apparent molecular weight of less than 

50 KDa 

 To further characterize our protein factor, we sought to determine the 

approximate molecular weight. To do so, two methods of size determination were 

undertaken. First, size-exclusion gel filtration chromatography of pTCM was carried out 

using a Sephadex G-50 spin column, which has a molecular weight (MW) cutoff of 

~30KDa and an effective fractionation range of ~1500-30,000 Da. pTCM was loaded 

onto G-50 and 5 fractions (including the void) collected successively. Fractions were 

incubated with ADPKD cells and proliferative activity assessed. As shown in Figure 3.3, 

nearly all of the activity was in the void volume and first fraction (Figure 3.3A, top). This 

elution pattern is similar to that of bovine serum albumin (BSA, MW=66.5 KDa) under 

identical conditions (Figure 3.3A, bottom). These data suggest one or more factors or 

complexes with an apparent molecular weight >~30 KDa are responsible for the 

proliferative activity. 

To further define the MW of our protein factor, the ultrafiltration system, 

VIVASPIN 6 was also used. Columns in this system have polyethersulfone (PES) 

membranes of varying pore sizes, each capable of separating proteins in solution based 

on their molecular weight as they are spun through the column. Using this system, four 

pTCM samples were fractionated separately using columns with 4 molecular weight cut-

offs (10, 30, 50 and 100 kDa). Filtrates from each were subsequently collected and 

incubated with ADPKD cyst cells in a proliferation assay. No significant activity was 

detected in the fractions <10 and <30KDa; however, significant activity was detected in 

the <50 and <100 KDa fractions (Figure 3.3B), which is consistent with the gel filtration 
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results. These data were reproduced in four separate experiments; however, in two out 

of the four experiments, a small amount of activity was also detected in the <30 KDa 

filtrate fraction (data not shown). This could be explained by inconsistent segregation 

between individual membranes, or perhaps the active factor exists in a complex or 

oligomer that influences its apparent molecular weight. Nonetheless, the majority of the 

proliferative activity was found in the 30-50 KDa fractions, suggesting that the MW for 

the macrophage protein factor(s) or complex falls within that range. Of note, even the 

most active fraction (<50KDa) did not reach proliferative activity at the level achieved by 

incubation of ADPKD cyst cells with pTCM alone (Figure 3.3B). This is most likely 

related to technical limitations, as the handling process, including long centrifugation 

times required for separation, can cause partial loss of activity. 
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Figure 3.3: Proliferative pTCM factor is between 
30-50 KDa. A: pTCM was subjected to gel filtration 
chromatography with Sephadex G
were added to PKD cells and proliferation 
measured as described in methods 
for each pTCM fraction parallels BSA concentration 
per fraction under similar experimental conditions 
(bottom). B: pTCM was fractionated into 
approximate molecular weight ranges u
molecular size-exclusion ultrafiltration column
Filtrates were added to PKD cells and proliferation 
assessed. Activity was detected below 50KDa (and 
100KDa) but not below 30KDa  
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identification. This analysis was complicated by solubility issues in the core lab, and a 

substantial part of the sample was lost on both repeats of the experiment. Nevertheless, 

several candidate proteins were identified (see Table 3.1). 

 

Candidate Factor  MW  

 Isoform alpha-enolase of a-enolase  47.1  

 Interstitial collagenase isoform 2  46.2  

 Chitinase-3-like protein 1 +* 42.6  

 Pyruvate kinase  40.2  

 Chitotriosidase-1  40.2  

 Fructose-bisphosphate aldolase A  39.4  

 Isoform 1 of Annexin A2  38.6  

 Cathepsin L1 + 37.5  

 Tartrate-resistant acid phosphatase type 5  36.6  

 CAPG + 36.2  

 Cathepsin Z + 33.8  

 Cyclophilin A * 18  

 MIF * 12.5  

 

Table 3.1: List of factors identified in mass spectrometry analysis. Select candidates were identified for 
testing (bold). +=denotes testing with inhibitor against specific protein; *=denotes testing with recombinant 
protein. 

 

 Several factors identified from the mass spectrometry candidate list were 

excluded from further testing due to recognition as being non-secreted factors. The 

presence of these factors in the CM is likely due to inadvertent cell lysis during 

processing of pTCM for mass spectrometry analysis. The remainder of the candidates 
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(Table 3.1, bold) were subjected to further testing. In some instances purified, 

recombinant forms were assessed in ADPKD cell proliferation assays, and in other 

cases neutralization antibodies and/or inhibitors of known candidate receptors or 

downstream signaling targets/components (denoted in Table 3.1) were used in 

proliferation assays. However, these experiments did not reveal any potential 

candidates likely to contribute to the pTCM-induced proliferation of ADPKD cyst cells 

(data not shown). It is possible that the factor is in low enough abundance and below 

the limit of mass spectrometric detection. Partial loss of the sample, as mentioned 

earlier, may have also contributed to our inability to detect a proliferative factor. 

RNA-sequencing and cytokine array analysis of secretome reveals candidate factor(s) 

 In addition to mass spectrometry, we simultaneously sought to identify mRNAs 

that are differentially upregulated in programmed macrophages using RNAseq. For this 

experiment, three separate samples of THP-1 macrophages were programmed for 3 

days by ADPKD cyst cell-CM (ACM) obtained from three separate kidneys. The same 

ACM was used to program a parallel well of macrophages, which were used to confirm 

the induction of secreted pro-proliferative activity (not shown). Three additional sets of 

un-programmed macrophages were also set-up as controls. RNA was isolated from 

each of these samples and analyzed at the University of Kansas Sequencing Core. 

RNAseq analysis showed upregulation of 53 genes in programmed macrophage 

(p<0.05). Of these, 22 are known to encode proteins that can be secreted. The list of 

candidates with their respective fold changes are summarized in Table 3.2. 
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Gene ID Name  Fold Change  

ACHE acetylcholinesterase  9.17304044 

CAP1 CAP, adenylate cyclase-associated protein 1 5.089486133 

CCL24 chemokine (C-C) ligand 24 (eotaxin-2) 2.886557572 

CCL4 chemokine (C-C) ligand 4 (MIP 1-beta) 3.451898395 

CCR7 chemokine (C-C) receptor 7 4.41168566 

CD84 CD84 (leukocyte antigen) 2.390313755 

CSF2 colony stimulating factor 2 5.331383638 

CTSB cathepsin B 3.677817774 

CXCL1 chemokine (C-X-C) ligand 1 (Gro-alpha; KC) 2.039350853 

CXCL2 chemokine (C-X-C) ligand 2 (MIP 2a; GRO-b)) 3.37000329 

FJX1 four jointed box 1 3.360602716 

GYS1 glycogen synthase 1 2951.024126 

HLA-DQA2 major histocompatibility complex class II DQa2 3.521817132 

IER3 immediate early response 3 1.841847991 

IGFBP3 insulin-like growth factor binding factor 3 2.221940216 

IL1B IL-1 beta 2.172972626 

IL23A IL-23 alpha subunit 2.7504163 

INHBB inhibin, beta B 2.484576564 

INHBE inhibin, beta E 2.722911325 

LYPLA2 lysophospholipase II 556.3812532 

MMP7 matrix metalloproteinase 7 (matrilysin) 2.629120015 

NPR1 natriuretic peptide receptor 1 2.145181921 

SERPINE2 serpin peptidase inhibitor, clade E, member 2 (PAI-1)  1.981530262 

 

Table 3.2: RNA-sequencing data summarizing secreted genes from THP-1 macrophages which were 
upregulated >1.5-fold after ACM-programming. 
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 Unfortunately, q value calculation did not confirm statistical significance for any of 

the differentially expressed transcripts. This is most likely due to variation in samples. 

Since only a limited number of candidates were identified by this approach, we decided 

to use a limited antibody array to validate possibilities. The 22 possible targets include 

cytokines known to be produced by macrophages. Thus, we prepared TCM and pTCM 

and compared them using the Human XL Cytokine Array (ARY022, R&D Systems, MN), 

which quantitatively measures 102 different human cytokines, including 7 candidates 

from the RNAseq data (CCL4, CSF2, CXCL1/GRO-α, CXCL2, IL1β, IL23A, IGFBP-3).  

A list of cytokines whose secretion was upregulated in pTCM (above 1.5 fold) is 

summarized in Table 3.3 and graphed in Figure 3.4. Of these, two candidates were also 

found to be overexpressed by RNAseq, namely, GRO-α and IL-1β. 

Name Fold Change 

GRO-α 9.886800823 

IL-1β 2.05963567 

Angiogenin  1.791012897 

TNF-α 1.780837461 

CD30 1.637781668 

  

Table 3.3: List of cytokines up-regulated in pTCM  
based on 1.5 fold increase or higher,  compared to 
TCM. Cytokines also over-expressed in RNA-
sequencing analysis are in bold text  
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Figure 3.4: Cytokine array identifies factors upregulated in pTCM. TCM and pTCM was collected and 
tested for the presence of a set of cytokines (102 total) using cytokine arrays. Graph depicts all cytokine 
expression levels. Cytokines upregulated at least 1.5 fold in pTCM are indicated next to their respective 
graph bars. Cytokines found to also be overexpressed in RNA-sequencing analysis are highlighted in red. 

 
Analysis of candidates identifies CXCR2 as potential signaling target 

 To determine whether GRO-α (also known as CXCL1) might be responsible, in 

part or in whole, for the pTCM-induced proliferative effect, we looked to block its only 

receptor, CXCR2, using a selective inhibitor (SB225002). ADPKD cyst cells were pre-

treated with this inhibitor for 30 min, followed by co-treatment with pTCM plus the 

inhibitor. After 3 days of incubation, a 35% reduction in proliferation compared to pTCM 

alone was found, while the drug had no effect on proliferation of cells incubated in 

control media alone (Figure 3.5). While the effect is small, it is important to recall that 

the measured difference in this assay is only between programmed and unprogrammed 
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macrophages, which as mentioned previously, corresponds to ~20-40% of enhanced 

proliferation of ADPKD cells. Since inhibition of the GRO-α receptor resulted in ~35% 

inhibition of proliferation, it is possibly responsible for most of the proliferative effects 

induced by programming of macrophages to a more M2-like phenotype. Experiments to 

compare the effects of this drug on proliferation in the presence of pTCM are underway. 

In any event, these results point to the likely contribution of CXCR2 to pTCM-induced 

ADPKD cyst cell proliferation in vitro. 

 We next assessed the specific contribution of GRO-α to the pro-proliferative 

activity in pTCM. Our attempts to block GRO-α activity with a neutralizing antibody did 

not result in a decrease in proliferation of ADPKD cyst cells compared to Ig control 

pTCM (data not shown). Therefore, further testing using a second neutralizing antibody 

will be carried out to rule out the direct contribution of GRO-α to the pTCM-induced 

proliferative effect. Alternatively, it is possible that another ligand is responsible for the 

pro-proliferative activity stimulated by activation of CXCR2 (see Discussion). Other 

chemokines with known pro-proliferative effects in other cells, including IL-8 and ENA-

78, share the CXCR2 receptor with GRO-α196. However, neither ENA-78 nor IL-8 was 

upregulated in the cytokine array (Figure 3.4). 

Experiments determining the contribution of IL-1β, also upregulated in the 

cytokine array as well as in the RNA sequencing analyses, on proliferation of ADPKD 

cyst cells are also ongoing. It is also worth noting, that TNF-α, which is also upregulated 

in the cytokine array, has been found to mediate a pathway promoting ADPKD197.  

Interestingly, TNF-α has also been shown to upregulate expression of GRO- α in 

melanoma cells198. However, pre-incubation of pTCM with a TNF-α neutralizing 
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antibody prior to treatment of ADPKD cyst cells failed to prevent the pro-proliferative 

response in our experiments (data not shown). Therefore, it is unlikely that the TNF-α in 

our pTCM is directly or indirectly responsible for this pro-proliferative response.  

 

 
Figure 3.5: Inhibition of CXCR2 signaling reduces pTCM-induced proliferation of ADPKD cyst 
cells. ADPKD cyst cells were pre-treated with CXCR2 antagonist, SB225002 (200nM), for 1 hour then 
incubated with pTCM in the presence or absence of inhibitor for 3 day proliferation assay. Treatment with 
inhibitor reduces proliferative effect of pTCM by ~35% (P<0.001), whereas there was no significant effect 
on proliferation of cells incubated in control media. (n=3) 
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Part III: Identification of the potential downstream signaling components 

stimulated by programmed macrophage factor(s) 

The PKA Inhibitor, H89, prevents pTCM-induced CREB activation and ADPKD cyst cell 

proliferation in vitro 

 To identify potential downstream signaling targets stimulated by pTCM, we 

began by analyzing activation of some pathways thought to be important in PKD25. 

Treatment of ADPKD cells by pTCM did not reveal significant changes in targets of the 

mTOR (S6-Kinase phosphorylation) or Wnt/ β-catenin signaling (β-catenin stabilization) 

pathways (data not shown). As described in Chapter One, increased cyclic adenosine 

3',5'-monophosphate (cAMP) levels contribute to cystogenesis by stimulating chloride 

and fluid secretion as well as cell proliferation65, 66. To examine potential effects of 

pTCM on cAMP signaling, we assessed phosphorylation of the transcription factor 

cAMP response element-binding protein (CREB), at Ser133, which is a primary target of 

the cAMP-dependent protein kinase (PKA)199. Western blot analysis revealed robust 

activation of CREB in ADPKD cyst cells upon treatment with pTCM within 20 min. 

Furthermore, incubation with the PKA inhibitor, H89 (5 uM), completely blocked this 

pTCM-induced CREB activation (Figure 3.6A). 

 To discern whether H89-mediated inhibition of CREB activation functionally 

correlated with a decrease in ADPKD cyst cell proliferation, treatment of these cells with 

pTCM in the presence and absence of this PKA inhibitor (5 uM) was carried out, and 

effects on proliferation were measured at the end of the 3-day incubation period. Similar 

to that observed for CREB phosphorylation, H89 completely blocked the pTCM-
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Figure 3.6: PKA Inhibitor, H89, prevents pTCM
proliferation in vitro. Cells were pre
with pTCM in the presence or absence of inhibitor
blot analysis, or B: for 3 day proliferation assay. Treatment with inhibitor prevents CREB activation (A), 
and completely reduces proliferative effect (B) (P<0.
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MEK Inhibitor, SL327, prevents pTCM-induced ERK and CREB activation, and ADPKD 

cyst cell proliferation in vitro 

 cAMP induced cell proliferation of ADPKD cyst cells or wild-type tubular epithelial 

cells with low intracellular Ca2+ stores is mediated, at least in part, through mitogen-

activated protein kinase/extracellularly regulated kinase (MAPK/ERK) signaling in a 

PKA, Src- and Ras-dependent manner61. To examine the effects of pTCM-induced 

ADPKD cyst proliferation on ERK activation, we stimulated cells with pTCM for 20 min 

and assessed for phosphorylation of ERK using western blot analyses. pTCM treatment 

of ADPKD cyst cells was indeed able to induce ERK activation in this assay (Figure 

3.7A).  

Next, we used a selective inhibitor of MEK-1 and MEK-2, SL-327 (Sigma-Aldrich, 

St. Louis, MO), to assess effects of MEK/ERK inhibition on pTCM-induced proliferation 

of ADPKD cyst cells as well as on CREB activation, since, in addition to PKA, ERK has 

also been shown to promote the Ser133 phosphorylation of CREB201-204. Western blot 

analysis revealed a decrease in both ERK and CREB activation (Figure 3.7A). 

Interestingly, despite complete loss of ERK activity at the lowest concentration of the 

inhibitor used (10 uM), total inhibition of proliferative activity was achieved only at the 

highest concentrations of the inhibitor (40 uM). However, the dose-dependent decrease 

in pTCM-induced proliferative effects correlated with a decrease in CREB 

phosphorylation (Figure 3.7B). Further assessment of the contribution of ERK 

phosphorylation to pTCM-induced CREB activation as well as cell proliferation is 

ongoing.  



 

A 

 
Figure 3.7: MEK Inhibitor, SL327, prevents pTCM
cyst cell proliferation in vitro. Cells were pre
one hour then incubated with pTCM in the presence or absence of inhibitor at each dose for A: 20 
before collection for western blot analysis, or B: for 3 day proliferation assay.
reduces both ERK (A, top) and CREB (A, bottom) activation, and completely inhibits proliferative effect at 
highest concentration (B) (P<0.001).
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tumor environment is often associated with a bad prognosis

targeting of TAMs is an active area of cancer research.
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MEK Inhibitor, SL327, prevents pTCM-induced ERK and CREB activation, and ADPKD 
Cells were pre-treated with MEK inhibitor, SL-327 (10, 20 and 40 uM), for 

one hour then incubated with pTCM in the presence or absence of inhibitor at each dose for A: 20 
before collection for western blot analysis, or B: for 3 day proliferation assay. Treatment with inhibitor 
reduces both ERK (A, top) and CREB (A, bottom) activation, and completely inhibits proliferative effect at 
highest concentration (B) (P<0.001). 
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PKD can also be considered a neoplastic disease (though non-malignant), 

characterized by abnormal growth of fluid-filled cysts211. Similar to malignant disease, 

interstitial renal infiltrates composed largely of macrophages are a hallmark of cystic 

kidneys in PKD in both human141-144 and animal models144-146. Moreover, we have 

shown that, like TAMs, the vast majority of macrophages in human PKD kidneys 

express M2-like markers, and our in vitro data suggest that interaction with cyst 

epithelial cells induces this M2-like phenotype144. In this chapter we demonstrate that 

induction of this phenotype enhances the secretion of macrophage protein factor(s) that 

stimulate cyst cell proliferation. Since proliferation of the tubule epithelial cells lining the 

cysts in ADPKD kidneys is the primary driving force behind disease progression, these 

macrophage factors could be prime targets for therapy that could be used to halt or 

hinder disease progression. 

Using a variety of approaches, two prime candidate factors have emerged: GRO-

α (CXCL1) and IL-1β. In considering these two molecules, it is important to note that the 

M1/M2 designation is an oversimplification in the process of distinguishing 

macrophages and their secretomes as either “detrimental” (M1)- or “healing” (M2)-

types. There is actually a graded spectrum of environmentally-defined activation 

patterns of macrophages, including those expressing properties of both stereotypical 

M1 and M2 phenotypes. Therefore, it was not a complete surprise when our combined 

RNA sequencing and cytokine array results both identified GRO-α and IL-1β, which in 

some contexts are regarded as M1 cytokines. Indeed, both GRO-α and IL-1β  were 

previously described to demonstrate pro-tumoral properties. For example, GRO-α, has 

been shown to be involved in the processes of angiogenesis, inflammation, wound-
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healing as well as tumorigenesis212. It has also been shown to stimulate proliferation of 

human melanoma cells213 and was originally identified in tumorigenic human and 

hamster cells214. Its receptor, CXCR2, whose inhibition in our studies resulted in a 

reduction of the macrophage pro-proliferative response in ADPKD cysts cells, has also 

been demonstrated to promote tumor survival, angiogenesis and metastasis215, 216. 

These data and the fact that a GRO-α neutralizing antibody did not attenuate 

proliferation stimulated by pTCM mean that either the antibody was not effective or 

another CXCR2 ligand promotes proliferation. Interestingly, IL-1β has been shown to 

upregulate expression of ENA-78, a distinct CXCR2 ligand, in kidney epithelial cells217. 

IL-1β also has been shown to stimulate GRO-α expression in glial cells218. The 

contribution of these two molecules to macrophage-induced ADPKD cell proliferation is 

under current investigation. 

Another part of our study focused on identifying pathways stimulated by the 

pTCM that may be contributing to the proliferation of ADPKD cyst cells in vitro. Several 

pathways have been identified to be aberrantly expressed in cyst cells from human and 

animal PKD cells and have been the focus of investigation for PKD therapies25. Given 

that macrophages act to promote renal epithelial cell proliferation, it is likely that 

macrophages induce their effects through one or more of these proliferative pathways. 

Experiments were unsuccessful in identifying changes in the mTOR or Wnt/B-catenin 

pathways upon pTCM stimulation. We also examined potential effects on p38 and 

p90RSK, but no activation was detected (not shown). Thus, our focus shifted to 

identifying changes to components of the cAMP signaling cascade. We looked at the 

effect of PKA inhibition on ADPKD cyst cell proliferation using ERK and CREB (a target 
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of both PKA and ERK) activation as pathway readouts. We found that both targets were 

activated upon pTCM stimulation, and that inhibition using either PKA or MEK inhibitors 

resulted in a loss of proliferative activity. However, even though the MEK inhibitor 

(SL327) completely abolished ERK activation assessed at 20 min at low drug 

concentrations, this was accompanied by only a slight reduction in the proliferation of 

cells. The dose-dependent decrease in proliferation was instead correlated with a 

reduction in CREB phosphorylation. This may indicate a minor contribution of ERK to 

PKA-induced ADPKD cyst cell proliferation (and CREB activation) or ERK activation not 

captured in this single time point experiment. The CREB inhibition at high SL327 may 

also reflect off target effects of the drug. A summary of a potential pTCM-induced PKA-

dependent pathway is illustrated in Figure 3.8. 

 

  
Figure 3.8: Schematic illustrating possible pathway scenarios contributing to pTCM-induced 
proliferation of ADPKD cyst cells. pTCM stimulates CREB activation and proliferation in ADPKD cyst 
cells in a PKA-dependent manner. pTCM-induced ERK activation may be caused directly or indirectly via 
PKA. ERK activation may subsequently stimulate ADPKD cyst cell proliferation directly or in a CREB-
dependent manner.  
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The data do suggest a role for CREB activation in proliferation. This molecule sits 

at a hub with many different signaling inputs and has been tied to cell proliferation and 

survival, especially in tumors219. Unfortunately, the direct contribution of CREB 

activation to pTCM-induced ADPKD cyst cell proliferation using a CBP/CREB 

interaction inhibitor resulted in cell death even at minor concentrations (data not shown), 

and conclusions could therefore not be drawn from these experiments. Nonetheless, 

these results indicate a correlation between CREB activation and pTCM-induced 

ADPKD cyst cell proliferation. The effects of ERK inhibition using alternate inhibitors will 

be assessed to determine whether PKA stimulation directly contributes to CREB 

activation, or if it does so indirectly through ERK phosphorylation. Further testing to 

confirm pTCM-induced cAMP stimulation and subsequent cell proliferation will also be 

necessary.  

Interestingly, GRO-α, and its receptor, CXCR2, have also been implicated in the 

activation of the Ras-ERK signaling pathway, downstream of the epidermal growth 

factor receptor (EGFR) in ovarian cancer cells220. Activation of tyrosine kinase receptors 

(TKR), including EGFR, by ligands present in cystic fluid have also contributed to 

MAPK/ERK signaling activation and cell proliferation25. It is possible that GRO-α from 

the pTCM signals through a similar pathway in ADPKD cyst cells, particularly since 

treatment of these cells with pTCM also leads to EGFR activation (data not shown). 

Unfortunately, treatment of ADPKD cells with TKR inhibitors in our study have proven 

detrimental to their survival and, therefore, conclusions could not be drawn from these 

results (data not shown). We are currently investigating the effect of exogenous GRO-α 

treatment on ADPKD cyst cell proliferation. If successful, inhibition of CXCR2 and Ras-
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ERK signaling components will be carried out in the presence of recombinant GRO-α as 

well as with pTCM to determine the effects, if any, that GRO-α and CXCR2 contribute to 

the activation of the MAPK/ERK pathway and ADPKD cyst cell proliferation. 

It is also possible that GRO-α mediates its pro-proliferative effects via CXCR2 in 

a Ca2+/Calmodulin-dependent manner. CXCR2 is a G-protein coupled receptor, which 

induces Ca2+ flux in certain cell types221, 222. In ADPKD cells, Ca2+/CaM stimulated 

adenylate cyclase 3 (AC3) appears to be a dominant isoform of AC that responds to 

vasopressin223. Experiments examining the effects of CaM inhibition on pTCM-induced 

proliferation and activation of downstream targets of cAMP signaling in ADPKD cyst 

cells would determine this link. 

 Our study characterizes programmed macrophage factors as soluble, stable, 

protein molecules capable of inducing proliferation of ADPKD cyst cells in vitro. A 

candidate factor, GRO-α, and its receptor, CXCR2, have been identified as potential 

effectors of this proliferative response. Furthermore, we have identified pTCM-induced 

activation of certain downstream components of the cAMP signaling cascade upon 

pTCM stimulation, supporting their targeting as potential therapies against PKD 

progression. 
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Chapter Four 

The Role of WNT5A in Autosomal Dominant Polycystic Kidney Disease Progression 

 

Abstract  

Polycystic kidney diseases (PKD) are inherited disorders characterized by fluid-

filled cysts primarily in the kidneys. Wnts, a group of secreted glycoproteins, including 

WNT5A, are involved in many developmental processes, whereas their deregulation 

has been shown to contribute to a multitude of diseases, including cancers of the 

breast, colon and skin, human birth defect disorders like spina bifida, the most common 

human neural tube closure birth, as well as skeletal defects. We have identified 

elevated levels of WNT5A in cyst epithelial cells in renal tissue sections from ADPKD 

patients and an upregulation of WNT5A transcripts in primary cyst epithelial cells 

compared to non-cystic human kidney (NHK) cells. This increase in ADPKD WNT5A 

transcript levels was further enhanced in the presence of macrophages. Treatment of 

ADPKD cyst cells with exogenous WNT5A resulted in increased proliferation of the cells 

compared to controls. Furthermore, knockdown of endogenous WNT5A transcript in 

ADPKD cyst cells using shRNA attenuated their growth. Taken together, our results 

suggest a role for WNT5A in ADPKD cyst cell growth and identify WNT5A as a potential 

target of therapy to slow down disease progression. 
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Introduction 

ADPKD affects approximately 600,000 individuals in the US, 60% of whom will 

require some form of renal replacement therapy. Genetic mutations in the polycystin-1 

(PKD1) or polycystin-2 (PKD2) genes are primarily responsible for the onset of ADPKD. 

It is a systemic disorder characterized by the development of multiple fluid-filled renal 

cysts in addition to several extrarenal manifestations. At a cellular level, ADPKD kidneys 

show increased cyst cell proliferation, increased fluid secretion, extracellular matrix 

abnormalities, as well as interstitial inflammation and fibrosis7. 

As such, ADPKD is a chronic kidney disease and shares many common features 

with ischemic injury or ureteral obstruction, both forms of acute kidney injury (AKI). For 

example, in these forms of AKI kidney epithelial cells have been found to exhibit partial 

de-differentiation, thickening of the basement membrane, excessive extracellular matrix 

deposition, and increased rates of both apoptosis and proliferation, all of which are 

characteristics present in ADPKD kidneys224-228. Furthermore, severe tubule dilation, 

characteristic of ADPKD, also occurs after ureteral obstruction injury, partially the result 

of increased rates of proliferation229. In addition, infiltrating inflammatory cells 

characteristic of human ADPKD and mouse models of PKD are also a hallmark feature 

after ureteral obstruction and ischemia-reperfusion (IR)-induced injury230, 231. The 

subsequent and gradual development of fibrosis observed in PKD is also observed after 

experimental ureteral obstruction228.  

AKI has also been shown to cause renal cyst development in rodent studies. 

Significant dilation of the tubules as well as cyst formation are observed long term in 

wild-type rodents post-injury232, 233. Interestingly, AKI has also been identified as a 
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“third-hit” responsible for promotion of cystogenesis in adult mouse models of PKD111, 

112. These studies suggests that overactive injury repair processes following significant 

renal damage can inadvertently lead to or accelerate cyst growth, and that identification 

of these processes may uncover pathways that can be targeted for therapy to slow 

down disease progression in PKD. 

Several members of the Wnt signaling pathway have been found to be 

upregulated in the kidneys of animal models in the context of renal injury and repair137, 

234, 235. Wnts are secreted signaling molecules that play an important role in many 

developmental processes including organogenesis, while their misregulation has been 

associated with several diseases including Alzheimer’s, diabetes and kidney disease236-

238. Currently, 19 different Wnt ligands and 10 Wnt receptors (Frizzleds) have been 

discovered in mammals88. Wnts can be categorized as either canonical, β-catenin-

dependent, or non-canonical, β-catenin-independent ligands, depending on the 

downstream signaling pathways activated. The binding of a canonical Wnt to its cognate 

Frizzled receptor and lipoprotein receptor-related protein LRP5/6 co-receptor, results in 

the stabilization of β-catenin in the cytosol, allowing it to subsequently translocate to the 

nucleus. β-catenin then binds a member of the T-cell factor (TCF)/lymphoid enhancer-

binding factor (LEF) family, stimulating the transcription of several proliferative genes87. 

On the other hand, non-canonical Wnts activate β-catenin-independent pathways, which 

include Wnt/calcium pathway239 and the planar cell polarity (PCP) pathway240. 

Studies have revealed that ablation of β-catenin in renal epithelium post-injury 

leads to aggravated AKI241. Lin et al., found that infiltrating macrophages post-injury 

produced functionally active Wnt ligands, including Wnt7b. Canonical Wnt7B has also 
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been shown to play an important role during kidney development by regulating epithelial 

differentiation, proliferation and polarization. Genetic ablation of Wnt7b from 

macrophages prior to kidney injury in mouse models resulted in incomplete repair, 

suggesting the critical role that macrophages and their secreted factors play in tissue 

regeneration post-injury137.  

Among the non-canonical Wnts, WNT5A plays an important role in early 

development. Wnt5a homozygous mutant mice exhibit orofacial abnormalities, 

dwarfism, dysplasia of the lungs and genitals, shortened tails and limbs, and die 

perinatally242. Wnt5a is expressed in the interstitial mesenchyme of the developing 

mouse kidney243 and Wnt5a conditional knockout in nascent mesoderm exhibit renal 

abnormalities including the formation of duplex ureters and kidneys244. In addition, 

Wnt5a has been shown to be upregulated in mouse kidneys after acute kidney injury137, 

suggesting a role in kidney repair. However, the specific functions of Wnt5A during the 

repair process post-injury, is unclear. 

In this study, we analyze the expression and role of WNT5A in the chronic kidney 

injury model of ADPKD. We begin by observing the upregulation of WNT5A RNA and 

protein levels in ADPKD cyst cells. This expression was found to be further upregulated 

in the presence of macrophages, cells which we have shown act to promote tubule cell 

proliferation and cyst expansion. We also demonstrate that WNT5A has an effect on 

ADPKD cell proliferation as well as on microcyst expansion in vitro. Knockdown of 

WNT5A in these ADPKD cells using shRNA lentiviruses targeting WNT5A transcripts 

had attenuates their proliferation. This study provides direct evidence that WNT5A 
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promotes the proliferation of ADPKD cyst cells and could contribute to cystogenesis in 

ADPKD. 

 

Experimental Procedures 

Cell culture: Primary cultures of ADPKD cyst cells were supplied by the PKD 

Biomaterials Research Core laboratory at the University of Kansas Medical Center and 

cultured in “ADPKD cyst cell media” as described in Chapter Two. 

Immunohistochemistry: Immunohistochemistry of de-paraffinized kidney sections were 

performed as described previously (Chapter Two). 

Generating shRNA lentiviruses: For the generation of lentivirus knockdown of WNT5A in 

ADPKD cyst cells, eight plasmids from the GIPZ WNT5A shRNA Transfection Starter 

Kit (Open Biosystems, US), which are programmed to constitutively co-express the 

targeting shRNA as well as GFP, were each co-transfected into HEK293T cells in 

addition to packaging vectors using a second generation plasmid system (psPAX2 and 

pMD2.G; Addgene plasmids 12,259 and 12,260, respectively, Cambridge, MA) by 

Lipofectamine reagent (Invitrogen, US), according to manufacturer instructions. Media 

from transfected cells was replaced after 2 days and then collected, combined and 

centrifuged after 2 and 4 days post-transfection for use in infection experiments. 

Infection with shRNA lentiviruses: ADPKD cells (2 X 105 cells/ well of a 6-well culture 

plate) were seeded and incubated at 37 °C for 1 d. Lentiviruses carrying WNT5A 

targeting shRNA or non-silencing shRNA in media containing 8ug/ml polybrene were 

added to separate wells at a multiplicity of infection (MOI) of 10. Virus containing media 
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was then removed the next day and replaced with media containing 10% FBS. After 24 

hr cells were trypsinized and subjected to cell sorting to select for GFP-expressing cells.  

Proliferation assay: Proliferation of ADPKD cells was measured using the CyQUANT® 

GR dye (Life Technologies) according to the manufacturer’s protocol. Briefly, WNT5A 

knockdown and control ADPKD cells (2 X 103 cells/well of a 96-well culture plate) were 

incubated for 0, 1, 3 and 5 d either in low serum media or high serum media (containing 

10% FBS) at 37 °C. For each time point, media was r emoved from culture plates, which 

were then frozen at -80 °C to facilitate cell lysis  upon the addition of CyQUANT® lysis 

buffer. After addition of dye, quantitative measurement of fluorescence was carried out 

using a SynergyTM 2 microplate reader (BioTEK Instruments, Inc.; Winooski, VT).  

RNA isolation and qRT-PCR: Total RNA was isolated from cells (ADPKD cells knocked-

down for WNT5A, ADPKD cells infected with non-silencing shRNA lentivirus, and 

uninfected ADPKD and NHK cells) after 5 days of culture using the RNeasy Miniprep kit 

(Qiagen, Valencia, CA). One µg RNA was used as template for cDNA synthesis using 

High Capacity cDNA Reverse Transcription kit (Applied Biosystems, Foster City, CA). 

Real-time quantitative RT-PCR was performed on Mx3005P using Sybr Green Master 

Mix (Agilent, Palo Alto, CA). The thermal cycler conditions were 95 °C for 10 m X 1, 

then 40 cycles of 95 °C for 30 s, 55 °C for 1 m, an d 72 °C for 1 min, and completed with 

1 cycle of 95 °C 1 m, 55 °C for 30 s, and 95 °C for  30 s. Expression of human WNT5A 

gene expression was be normalized to human Gapdh. 
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Results 

WNT5A is upregulated in ADPKD cyst cells and its expression is stimulated by 

macrophage co-culture in vitro. 

Microarray gene expression analysis revealed upregulation of the non-canonical 

WNT5A in ADPKD cells relative to NHK (not shown; Darren Wallace, personal comm). 

To verify these data, RNA samples were collected from primary epithelial cyst cells 

obtained from kidneys of ADPKD patients and non-cystic human kideys (NHK) cells. 

WNT5A expression levels were found to be increased approximately 2.5 fold in ADPKD 

cyst cells using qRT-PCR analysis (Figure 4.1A).  

To determine whether the level of WNT5A was also elevated at the protein level, 

sections of kidneys from ADPKD patients were stained for WNT5A using 

immunohistochemistry. This revealed WNT5A levels to be highly upregulated in the 

epithelial walls lining the cysts (Figure 4.1B). 

Since we have previously demonstrated the proliferative effect of macrophages 

on ADPKD cyst cells144, we sought to determine whether WNT5A expression in tubule 

epithelial cells was affected by the presence of macrophages. RAW 264.7 murine 

macrophages were co-cultured with both NHK and ADPKD cysts cells for 24 hours, 

after which RNA was isolated and WNT5A expression levels analyzed from each cell 

type using qRT-PCR. WNT5A expression in both epithelial cell types was found to be 

further upregulated in the presence of macrophages, up to 6.5 fold in co-cultured 

ADPKD cyst cells compared to ADPKD cyst cells alone (Figure 4.1A). 

  



 

A 

 

 
Figure 4.1: WNT5A is upregulated in ADPKD and its expression is stimulated by macrophages 
vitro. A: qRT-PCR of NHK and ADPKD cyst cells. ADPKD cyst cell expression is 2.5 fold higher than in 
NHK cells. WNT5A expression is further upregulated
both cell types. B: Immunohistochemistry using human WNT5A antibody reveals epithelial cyst cell 
specific expression pattern (representative image of n=3)

 

 
WNT5A promotes ADPKD cell proliferation and 

To determine the effects of WNT5A

were incubated with Wnt5a conditioned media (WCM), made from mouse L

transfected with Wnt5a, for three days. WCM was found to stimulate AD

proliferation compared to control conditioned media (CCM) made from control L

(Figure 4.2A). To confirm the specificity of this response, Wnt5a was 

WCM using specific antisera directed

proliferation were compared to WCM containing control IgG. Depletion of Wnt5a in the 

WCM obviated the proliferative response, whereas no effect was seen in the control

depleted samples (Figure 4.2A). 
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WNT5A is upregulated in ADPKD and its expression is stimulated by macrophages 
PCR of NHK and ADPKD cyst cells. ADPKD cyst cell expression is 2.5 fold higher than in 

expression is further upregulated after 24 hour co-culture with RAW macrophages in 
both cell types. B: Immunohistochemistry using human WNT5A antibody reveals epithelial cyst cell 

(representative image of n=3). 

WNT5A promotes ADPKD cell proliferation and microcyst expansion in vitro

To determine the effects of WNT5A on ADPKD cell proliferation, ADPKD cells 

were incubated with Wnt5a conditioned media (WCM), made from mouse L

Wnt5a, for three days. WCM was found to stimulate AD

proliferation compared to control conditioned media (CCM) made from control L

2A). To confirm the specificity of this response, Wnt5a was 

antisera directed against Wnt5a and effects on ADPKD cell 

oliferation were compared to WCM containing control IgG. Depletion of Wnt5a in the 

WCM obviated the proliferative response, whereas no effect was seen in the control

2A).  

Human ADPKD Section 

 

WNT5A is upregulated in ADPKD and its expression is stimulated by macrophages in 
PCR of NHK and ADPKD cyst cells. ADPKD cyst cell expression is 2.5 fold higher than in 

culture with RAW macrophages in 
both cell types. B: Immunohistochemistry using human WNT5A antibody reveals epithelial cyst cell 

in vitro. 

on ADPKD cell proliferation, ADPKD cells 

were incubated with Wnt5a conditioned media (WCM), made from mouse L-cells stably 

Wnt5a, for three days. WCM was found to stimulate ADPKD cell 

proliferation compared to control conditioned media (CCM) made from control L-cells 

2A). To confirm the specificity of this response, Wnt5a was depleted from 

against Wnt5a and effects on ADPKD cell 

oliferation were compared to WCM containing control IgG. Depletion of Wnt5a in the 

WCM obviated the proliferative response, whereas no effect was seen in the control-
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We also assessed effects of WNT5A on microcyst growth in a 3D collagen 

culture system. ADPKD cells were seeded in a collagen matrix incubated in media 

supplemented with either Forskolin (Fsk), Epidermal Growth Factor (EGF) or both to 

initiate microcyst formation, in the presence or absence of purified recombinant WNT5A. 

After incubation for 10 days, cyst area per well was determined and compared with 

each sample. Similar to the pro-proliferative macrophage response observed in Chapter 

2, WNT5A was also found to induce significant expansion of ADPKD microcysts, 

especially in the presence of cysts initiated by Fsk and EGF (Figure 4.2B) with no 

change in total number of cysts per well (data not shown). These results are the first to 

demonstrate a pro-proliferative role for WNT5A in ADPKD cells. Since WNT5A is 

upregulated in the presence of macrophages, this raises the possibility that WNT5A 

may act as one of the potential mediators of the pro-proliferative effect induced by 

macrophages in ADPKD cells. 
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Figure 4.2: WNT5A promotes ADPKD cell proliferation and microcyst expansion 
stimulate ADPKD cell proliferation compared to control
specific antisera directed against Wnt5a and effects on ADPKD cell proliferation were compared to WCM 
containing control IgG. Depletion of Wnt5a in the WCM obviated the proliferative response, whereas no 
effect was seen in the control-depleted samples
media supplemented with either Forskolin (Fsk), Epidermal Growth Factor (EGF) or both to initiate 
microcyst formation, in the presence or absence of purified recombinant WNT5A. After incubation for 10 
days, cyst area per well was determined and compared with each sample. WNT5A induce
expansion of ADPKD microcysts, particularly

 

WNT5A knockdown in ADPKD cyst cells attenuate cyst cell growth 

After observing the proliferative effect of WNT5A on ADPKD cyst cells, we 

hypothesized that knockdown of 

their proliferation. To test this, we used shRNA lentiviruses targeted against 

ADPKD cells to assess the effect on cell growth, compared to non

treatment, over a 7-day time period. 
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WNT5A promotes ADPKD cell proliferation and microcyst expansion 
stimulate ADPKD cell proliferation compared to control CCM. Wnt5a was depleted from WCM using 

directed against Wnt5a and effects on ADPKD cell proliferation were compared to WCM 
containing control IgG. Depletion of Wnt5a in the WCM obviated the proliferative response, whereas no 

depleted samples (n=3). B: ADPKD cells seeded in a collagen matrix 
media supplemented with either Forskolin (Fsk), Epidermal Growth Factor (EGF) or both to initiate 
microcyst formation, in the presence or absence of purified recombinant WNT5A. After incubation for 10 

ell was determined and compared with each sample. WNT5A induce
particularly in the presence of cysts initiated by Fsk and EGF

knockdown in ADPKD cyst cells attenuate cyst cell growth in vitro

rving the proliferative effect of WNT5A on ADPKD cyst cells, we 

hypothesized that knockdown of WNT5A in these cells may have an inhibitory effect on 

their proliferation. To test this, we used shRNA lentiviruses targeted against 

ss the effect on cell growth, compared to non-specific shRNA 

day time period.  

 

WNT5A promotes ADPKD cell proliferation and microcyst expansion in vitro. A: WCM 
. Wnt5a was depleted from WCM using 

directed against Wnt5a and effects on ADPKD cell proliferation were compared to WCM 
containing control IgG. Depletion of Wnt5a in the WCM obviated the proliferative response, whereas no 

seeded in a collagen matrix with
media supplemented with either Forskolin (Fsk), Epidermal Growth Factor (EGF) or both to initiate 
microcyst formation, in the presence or absence of purified recombinant WNT5A. After incubation for 10 

ell was determined and compared with each sample. WNT5A induces significant 
in the presence of cysts initiated by Fsk and EGF. 

in vitro. 
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in these cells may have an inhibitory effect on 

their proliferation. To test this, we used shRNA lentiviruses targeted against WNT5A in 

specific shRNA 
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To first identify the lentiviral constructs that promote the most efficient WNT5A 

knockdown, we co-transfected 8 different WNT5A pGIPZ shRNA plasmids into 

HEK293T cells separately, each along with a WNT5A expression vector. Western blot 

for WNT5A identified three shRNA constructs that yielded greater than 75% knockdown 

efficiency, one of which, shRNA-3256, generated a 94% knockdown relative to control 

(Figure 4.3A). The GFP-expressing lentiviruses carrying the three shRNA constructs, 

pGIPZ-3256, pGIPZ-449 and pGIPZ-479, as well as a non-silencing (NS) shRNA 

(negative control), were then generated to test their knockdown efficiency in human 

ADPKD cyst cells. In these experiments, cell were first infected with each respective 

lentivirus separately, and then sorted for the GFP-expressing cells using flow cytometry. 

Knockdown of WNT5A in the sorted selected cells was assessed using qRT-PCR since 

the WNT5A antibody lacked the sensitivity to detect protein with the small number of 

cells available to test. Each of the three WNT5A targeting shRNAs produced a 

knockdown of 90% or greater compared to the NS control (Figure 4.3B).  
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Figure 4.3: WNT5A-specific shRNA plasmid knockdown of 
shRNA plasmids were co-transfected 
vector for each. Western blot for WNT5A identified three shRNA
knockdown efficiency compared to a non
carrying the three shRNA constructs, pGIPZ
(NS) shRNA (negative control), were 
knockdown of endogenous WNT5A
compared to NS control in human ADPKD cyst cells

 
WNT5A knockdown cells generated using the above mentioned lentiviruses were 

selected and grown in vitro to assess the effects of 

proliferation after 0, 1, 3 and 5 days after seeding

post-infection, respectively). Surprisingly, not only did we observe complete inhibition of 

growth, but also a reduction in the overall number of 

to NS control cells, which began to recover slightly by the 7

4.4). Similar results were obtained using other lentivurses as well (data not shown). This 
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specific shRNA plasmid knockdown of WNT5A in vitro. A: Eight 
transfected into HEK293T cells separately, along with a WNT5A expression 

. Western blot for WNT5A identified three shRNA constructs that yielded greater than 75% 
compared to a non-silencing control plasmid. B: The GFP-expressing lentiviruses 

carrying the three shRNA constructs, pGIPZ-3256, pGIPZ-449 and pGIPZ-479, as well as a non
negative control), were infected into human ADPKD cyst cells. qRT-

WNT5A using WNT5A specific lentiviruses demonstrated over 90% knockout 
compared to NS control in human ADPKD cyst cells for each (n=3). 

WNT5A knockdown cells generated using the above mentioned lentiviruses were 

to assess the effects of WNT5A depletion on ADPKD cell 

n after 0, 1, 3 and 5 days after seeding (corresponding to days 2, 3, 5 and 7 

fection, respectively). Surprisingly, not only did we observe complete inhibition of 

growth, but also a reduction in the overall number of WNT5A-depleted cells compared 

to NS control cells, which began to recover slightly by the 7th day post-infection (Figure 

4). Similar results were obtained using other lentivurses as well (data not shown). This 
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suggests that there may be a basic requirement for WNT5A in promoting 

these cells.  

It may be that a basal level of 

levels of this protein may promote proliferation. Future experiments using lentiviruses 

with varying degrees of WNT5A

cells co-cultured with macrophages to determine the 

WNT5A expression to macrophage

these data collectively suggest a role for WNT5A in ADPKD cyst cell proliferation. 

 

 
Figure 4.4: WNT5A-specific shRNA lentivirus
infected with pGIPZ-3256 or NS-control were sorted for GFP and seeded in for a
Cells were collected and proliferation measured 
days 2, 3, 5 and 7 post-infection, respectively).
pGIPZ-3256 lentivirus as compared to a non
cyst cell growth. 
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suggests that there may be a basic requirement for WNT5A in promoting 

It may be that a basal level of WNT5A is required for survival, while elevated 

levels of this protein may promote proliferation. Future experiments using lentiviruses 

WNT5A knockdown will be tested and used on ADPKD cyst 

cultured with macrophages to determine the specific contribution of elevated 

expression to macrophage-induced ADPKD cyst cell proliferation. Nonetheless, 

these data collectively suggest a role for WNT5A in ADPKD cyst cell proliferation. 

specific shRNA lentivirus knockdown of WNT5A in vitro. ADPKD cyst cells 
control were sorted for GFP and seeded in for a proliferation 

Cells were collected and proliferation measured after 0, 1, 3 and 5 days post-sorting 
infection, respectively). Knockdown of WNT5A in ADPKD cyst cells using the 

3256 lentivirus as compared to a non-silencing control lentivirus resulted in decreased

suggests that there may be a basic requirement for WNT5A in promoting survival of 

required for survival, while elevated 

levels of this protein may promote proliferation. Future experiments using lentiviruses 

knockdown will be tested and used on ADPKD cyst 

specific contribution of elevated 

induced ADPKD cyst cell proliferation. Nonetheless, 

these data collectively suggest a role for WNT5A in ADPKD cyst cell proliferation.  
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 (corresponding to 

in ADPKD cyst cells using the 
resulted in decreased ADPKD 
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Discussion 

In this study, we sought to uncover the role that WNT5A, which primarily 

activates non-canonical Wnt signaling, may contribute to the progression of ADPKD. 

ADPKD is a chronic kidney disease that shares many common features with kidneys 

responding to ischemic or obstructive injury. The elevated levels of WNT5A expression 

in ADPKD cyst cells compared to non-cystic tubule epithelial cells, demonstrated in 

these studies, may arise from the same initiating events that promote the upregulation 

of WNT5A in the kidney following acute ischemic injury137. In those studies, the 

transcript levels for WNT5A, as well as for several other members of the Wnt family 

were found to be elevated in whole kidneys at five days post-ischemic injury137, a time 

during which large numbers of infiltrating macrophages are present195. Whether the 

presence of these macrophages contributed to the elevated expression of WNT5A in 

these injured kidneys was not determined. However, this seems to be a possibility, 

given the upregulation of WNT5A in cyst-derived tubule epithelial with macrophage co-

culture (Figure 4.1). 

Exogenous WNT5A treatment in our studies was found to promote both ADPKD 

cyst cell proliferation and microcyst expansion compared to non-WNT5A treated cells. 

This proliferative effect in 2D culture was demonstrated to be specific for WNT5A since 

the effect was eliminated after depletion of WNT5A with a specific antibody. This pro-

proliferative effect appears to conflict with the traditional classification of WNT5A as a 

tumor-suppressor. WNT5A is best known as an antagonizer of the canonical Wnt 

signaling pathway, promoting the degradation of β-catenin and, as a result, has been 

shown to act as a tumor suppressor245. It was shown to be downregulated in a number 
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of different cancers including colorectal cancer246, 247, neuroblastoma248, ductal breast 

cancer249, 250 and leukaemias251-253. Furthermore, exogenous expression of WNT5A in 

colorectal-cancer or thyroid-cancer cell lines has been shown to decrease their 

invasion, migration, and proliferation246, 254. However, there is accumulating evidence for 

the oncogenic effects of WNT5A in tumors from other tissues such as melanoma255, 

breast cancer256, gastric cancer257, pancreatic cancer258, lung cancer259 and prostate 

cancer260. WNT5A also demonstrates a pro-proliferative ability in the embryo by 

regulating proliferation of certain progenitor cells261. Therefore, given the proliferative 

capacity of WNT5A and its demonstrated upregulation in the presence of macrophages 

in this study, combined with its overexpression post-injury, it is possible that WNT5A 

contributes to regeneration of cells post-injury, although this has yet to be examined. 

We were unable to delineate the specific contribution of WNT5A to macrophage-

induced ADPKD cell proliferation in this study since knockdown of WNT5A using shRNA 

lentiviruses not only halted proliferation of ADPKD cyst cells, but also compromised the 

survival of these cells. This suggests a basic requirement for WNT5A in epithelial cell 

survival. Use of lower levels of WNT5A knockdown to establish partial, non-deleterious 

knockdown in these cells will be necessary to assess WNT5A contribution, if any, on 

macrophage-induced ADPKD cyst cell proliferation.  

Nonetheless, this study supports the role of WNT5A in the proliferation of 

ADPKD cyst cell and microcyst growth in vitro. Experiments are underway to determine 

the effect of WNT5A depletion in an orthologous mouse model of ADPKD. If proven 

effective in ameliorating disease progression, WNT5A itself, or components of relevant 
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downstream signaling pathways that are yet to be identified, are likely to provide new 

targets for therapy.   
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Chapter Five 

Summary, conclusions and future directions 

 

 Polycystic kidney disease (PKD) represents a family of genetic disorders 

characterized by renal cystic growth and progression to kidney failure. No treatment is 

currently available for individuals with PKD. However, since the discovery of the genes 

that cause PKD onset, namely PKD1 and PKD2, research in the field has naturally 

focused on the cell autonomous, intrinsic aberrations found in the cyst cells. Our 

research proposes a unique approach by addressing an extrinsic factor, macrophages, 

to further enhance current research on PKD progression. A role for macrophages in the 

progression of PKD was established by the observations that they were capable of 

promoting ADPKD cyst cell proliferation in vitro and that their chemical depletion in 

animal models of PKD was able to attenuate cyst growth and expansion in vivo144, 145. 

This is not dissimilar to the scenario that occurs during acute kidney injury (AKI), where 

depletion of wound-healing macrophages during the recovery phase post-injury resulted 

in reduced tubular cell proliferation and repair140. In order to leverage this finding for the 

development of specific PKD therapies, a more detailed understanding of the 

mechanisms by which macrophages accomplish this is required. Consequently, with 

this work, I set out to elucidate molecular mechanisms by which macrophages promote 

disease progression.  

We first sought to identify any major macrophage-recruitment factors produced 

by PKD cells, since their inhibition is likely to prevent attraction of macrophages to the 

injured cells, reproducing similar results to that of macrophage depletion. MCP-1 is a 
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major chemokine involved in the attraction of monocytes from the blood stream across 

the vascular endothelium in response to inflammation and injury as well as for routine 

immunological surveillance of tissues160, 161. Both MCP-1 and its receptor CCR2 have 

been demonstrated to be upregulated and involved in various diseases including 

multiple sclerosis262, rheumatoid arthritis263, atherosclerosis264, and diabetes265 and 

have been shown to be a potential target of therapy for these diseases. Although 

monocytes and macrophages are typically the major source of MCP-1266, 267, it is also 

produced by a variety of other cell types including endothelial, fibroblasts, smooth 

muscle and epithelial cells268, 269. Our data is the first to demonstrate the upregulation of 

MCP-1 in the epithelial tubular cells lining cysts, which had been suggested by previous 

studies162, 163. To our surprise, MCP-1 was also upregulated in surrounding non-cystic 

tubules. Whether or not this is a result of the intrinsic loss of PKD causing genes in 

these cells or due to environmental factors, secondary to disease progression, has yet 

to be determined. 

Since MCP-1 had been found to be upregulated in cyst-fluid and urine162 from 

PKD patients, and in this current study in renal epithelial cells of PKD patients, we 

decided to investigate the presence of this chemokine in CM media obtained from 

human ADPKD cyst epithelial cells and mouse PKD cells in this study. We were able to 

determine using neutralizing antibodies that not only is this factor present, but also it is 

responsible for the majority of monocyte chemoattractant activity produced by ADPKD 

cells. Interestingly, CM obtained from NHK cells was also found to attract monocytes, at 

the same level as CM from PKD cells, predominantly via MCP-1 (data not shown). It is 

not clear why this may be the case, particularly since we found that kidney sections 



99 

 

from NHK patients only expressed very low levels of MCP-1, but it is likely NHK cells 

that have been processed for isolation from explanted kidneys have also undergone 

stress-inducing conditions that may be interpreted as “injury” by these cells, causing 

them to secrete injury-response factors, including MCP-1162. 

MCP-1 has been linked to several diseases and its overexpression or deficiency 

in vivo has been shown to increase or decrease disease severity, respectively. For 

example, overexpression of MCP-1 using a transgenic mouse model system has been 

shown to contribute to insulin-resistance in diabetic patients as a result of increased 

macrophage recruitment270. In a rodent model for multiple sclerosis, it was shown that 

MCP-1 or CCR2-deficient mice had reduced severity of disease as a result of 

decreased recruitment of monocytes into the CNS271. Testing the effect of loss of MCP-

1 and, subsequently, monocytes/macrophages on disease progression in PKD in this 

study, we found that MCP-1 deficiency increased survival in our cpk mouse model of 

PKD. Although this did not correlate with a significant improvement in kidney function as 

measured by BUN at PN 13, experiments are currently underway assessing kidney 

function at earlier time-points when a measurable difference is likely to be found. 

Furthermore, the correlation between loss of MCP-1 and decreased macrophage 

populations in the kidney, as well as proliferation will also be analyzed. Nevertheless, 

this study is the first to demonstrate a significant improvement in a mouse model of PKD 

resulting from MCP-1 deficiency, warranting further studies into its potential as an 

intervention point for the treatment of this disease. 

Once monocytes are recruited to the site of inflammation or injury, they are 

stimulated by their environment to differentiate into distinct types of macrophages. This 
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is due to the capacity of macrophages to be “programmed” to express different markers 

as well as secrete distinct factors, depending on the various stimuli present within this 

microenvironment. In the case of injury, the initial environment is conducive of a pro-

inflammatory and pro-injurious type of macrophage that mainly expresses markers of in 

vitro-defined M1 macrophages. After several days, these macrophages are converted to 

a more wound-healing, M2-like phenotype based on signals in their environment. As 

such, these macrophages begin secreting pro-proliferative and regenerative factors that 

promote the replenishment of cells lost during the injurious event128, 129. Tumor 

associated macrophages (TAMs) have been demonstrated to be mainly of this latter 

phenotype, demonstrating little cytotoxicity for tumor cells but rather promoting tumor-

cell proliferation272. Similarly, our previous studies have demonstrated that PKD-

associated macrophages are predominantly of the M2-like phenotype in vivo, with the 

capacity to be programmed to this phenotype in the presence of renal epithelial cells in 

vitro. Consistent with this identity, the programmed macrophages have an enhanced 

proliferative capacity compared to unprogrammed macrophages (see Chapter three). It 

is important to note, however, that a large portion of the macrophage-induced 

proliferative effect can still be produced by “unprogrammed” macrophages. It is not clear 

what the precise phenotypic state of these macrophages is, but it is likely that they may 

share similar properties of M2-like macrophages, even prior to programming with 

ADPKD CM. Consistently in our previous studies, naïve RAW macrophages treated with 

media alone expressed the prototypic M2 macrophage marker, Mrc1, but not the Arg1 

M2-marker, which was only expressed upon programming with ADPKD cyst cells144. 

This suggests that naïve macrophages in vitro are capable of expressing M2-like 
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markers and are, as such, likely still able to promote a pro-proliferative response in 

ADPKD cyst cells. Nonetheless, programming with ADPKD cyst cells ensures the 

generation of M2-like macrophages that more closely mimic those present in the in vivo 

environment that demonstrate an enhanced pro-proliferative capacity exceeding that of 

naïve macrophages. 

In this study, we were able to identify and characterize factors secreted by these 

ADPKD CM programmed M2-like macrophages that contribute to the pro-proliferative 

response in ADPKD cyst cells. We showed that one or more proteins is likely 

responsible for the activity (Figure 3.4). The secretion of one factor, CXCL1 (GRO-α), 

was found to be significantly increased (~10 fold) in macrophages after programming 

with ADPKD cyst cell CM (Figure 3.4), as was its message (Table 3.2). Inhibition of the 

Gro-α signaling response, using an antagonist to its CXCR2 receptor, was effective in 

reducing the macrophage-induced pro-proliferative response in ADPKD cyst cells. 

CXCR2 agonists, including GRO-α, IL-8 and epithelial neutrophil-activating 

peptide (ENA-78), have been shown to induce proliferation of epithelial cells196. 

Interestingly, these factors were detected by ELISA in kidney cyst fluid from ADPKD 

patients; albeit at a much lower level than in fluid obtained from human liver cysts. 

Treatment with cyst fluid from human liver or kidneys was able to induce proliferation of 

epithelial cells, which was reduced in liver cyst fluid experiments (but not kidney cyst 

fluid) with pretreatment with the same CXCR2 antagonist (SB225002) used in our study. 

Furthermore, the proliferative effect was attributed to IL-8 stimulation in that study, 

based on its higher expression levels in liver cyst fluid compared to GRO-α and ENA-78 

and its ability to directly induce proliferation of the cells. However, the effect of 
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exogenous treatment with GRO-α and ENA-78 on epithelial cell proliferation was not 

assessed273. Of the CXCR2 agonists mentioned in that study, only GRO-α, which has 

previously been demonstrated to promote tumor survival, angiogenesis and 

metastasis215, 216, has been found to be upregulated in programmed macrophages 

based on our cytokine array and RNA sequencing data. Neither ENA-78 nor IL-8 was 

upregulated in our cytokine array experiment. Furthermore, neither of these cytokines 

were upregulated in our RNA sequencing data. These variations are likely due to 

differences in the source of CXCR2 agonists produced, since macrophages and cyst 

epithelial cells, from which IL-8 production was attributed to in the mentioned study273, 

are likely to produce distinct cytokine profiles. Nonetheless, it remains that inhibition of 

signaling of the common receptor, CXCR2, using SB225002 promotes the reduction of 

epithelial cell proliferation in both studies. The direct contribution of GRO-α in this 

response is under current investigation in our lab, as well as the effects, if any, of other 

potential factors identified in this study, in the macrophage-induced ADPKD cyst cell 

pro-proliferative response. Of particular interest, is the role of ENA-78 in this effect 

since, as with GRO-α218, this gene can be expressed in response to IL-1β
217, the latter 

of which was found to be upregulated in our array data. 

While identification of signaling ligands secreted by programmed macrophages 

has proven promising, characterization of downstream signaling pathways involved in 

the pro-proliferative effect on ADPKD cyst cells is a complementary approach that may 

also reveal targets for therapy. Pathways known to contribute to ADPKD cell 

proliferation, including the mTOR, Wnt/B-catenin and cAMP/PKA/MAPK/ERK pathways, 

were investigated in this study. Of these, only the downstream components of the cAMP 
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cascade, namely ERK and CREB, were found to be activated upon stimulation with 

conditioned media from programmed macrophages. Furthermore, inhibition with a PKA-

selective inhibitor resulted in the inhibition of activation for these downstream targets, 

which correlated with a reduction in macrophage-induced proliferation of ADPKD cyst 

cells. Whether this is a result of direct stimulation of cAMP has yet to be established. 

Nonetheless, our data support the targeting of cAMP downstream signaling 

components, particularly PKA and/or ERK, in an effort to hinder disease progression, 

while implicating macrophages as an alternate, external source for their activation. 

Future experiments will focus on confirming the direct contribution of cAMP stimulation 

and its downstream signaling components to the pTCM-induced proliferative effect, and 

the connection, if any, between this pathway and CXCR2 signaling in ADPKD cysts 

cells. 

 Consistent with ADPKD as a model of chronic injury, another portion of our study 

has focused on assessing the role that WNT5A, the expression of which is induced in 

models of renal acute injury137, plays in ADPKD cyst cell proliferation. Not only was 

WNT5A upregulated in ADPKD cyst epithelial cells compared to NHK cells, but this 

expression was further enhanced in the presence of macrophages. How macrophages 

contribute to this upregulation was not addressed in this study, but a potential target of 

future investigation would likely include analysis of WNT7B. After acute renal injury in 

mice, Wnt7b is upregulated in whole kidneys and in infiltrating, wound healing renal 

macrophages137. In mice where Wnt7b was genetically knocked out specifically in 

macrophages, regeneration of renal epithelial cells following kidney injury was impaired. 

However, the direct effect of Wnt7b on these epithelial cells was not shown. 
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Interestingly, Wnt5a was also upregulated in whole kidneys following acute injury, 

although its potential effects on tubule epithelial cell regeneration were not assessed137. 

Because Wnt5a expression can be regulated by Wnt7b during early embryonic mouse 

kidney development243, it is plausible to hypothesize that, similarly, Wnt7b expressed in 

M2-like macrophages, can induce expression of Wnt5a in ADPKD cyst cells post-injury. 

It would be important to first assess the effects of WNT7B stimulation on WNT5A 

expression in ADPKD cyst cells. If WNT7B is capable of inducing WNT5A expression in 

these cells, the effects of WNT7B-depleted macrophages on the induction of ADPKD 

WNT5A following co-culture would be assessed. Although WNT7B was not upregulated 

in programmed macrophages based on our RNA sequencing data (unavailable on 

cytokine array), it may be a common factor produced by both programmed and naïve 

macrophages, which as previously mentioned, may still exhibit M2-like characteristics. 

 Another potential stimulator of WNT5A expression in ADPKD cyst cells are 

activators of STAT3. Conserved binding sites for this transcription factor are found 

within the WNT5A gene and certain stimuli that promote STAT3 activation have also 

been shown to induce WNT5A in some cells, including  cardiac myocytes and 

embryonic stem-cells245. Thus, macrophage factors that can promote STAT3 activation 

in ADPKD cells are potential candidates for promoting WNT5A induction and, 

consequently, proliferation. One such promoter of STAT3 activation is IL-10274, a 

cytokine that has been previously found to be expressed in our programmed mouse 

macrophages144 and human macrophages (not shown). However, treatment of ADPKD 

cells with exogenous IL-10 was not found to stimulate ADPKD cyst cell proliferation in 

our experiments (data not shown). Furthermore, co-culture of ADPKD cyst cells with 
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macrophages did not stimulate further activation of STAT3 in the ADPKD cyst cells 

(data not shown). Regardless of the stimulating agent, our studies, utilizing both 

overexpression and knockout experiments, are the first to implicate WNT5A as a growth 

promoting factor for ADPKD cyst cells in vitro. Ongoing studies assessing the in vivo 

role of conditional and global knockout of Wnt5a in a mouse model of PKD will likely 

confirm the significance of this gene in disease progression and identify it as a likely 

candidate of targeted therapy against PKD. Identifying downstream effectors of 

WNT5A-induced proliferation is outside the scope of this study; however, this approach 

could also uncover further therapeutic targets.  

 Our study highlights the pivotal role macrophages play in PKD progression. This 

is consistent with the characterization of PKD as a neoplastic disease that also 

manifests as a chronic injury condition. Based on this study, we are able to conclude 

that, as in the case with acute injury or in certain cancers, injured or damaged cyst 

epithelial cells in PKD kidneys secrete monocyte attractant factors, predominantly MCP-

1, in an attempt to recruit macrophages and repair damaged cells or replace those lost 

to injury. This enhanced regenerative and pro-proliferative capacity is also a result of 

programming signals secreted by renal epithelial cells. Although the primary purpose of 

macrophage infiltration is to provide an opportunity to improve organ function via 

restoration of damaged cells, a simultaneous, albeit inadvertent, side-effect is the 

promotion of cyst epithelial cell growth and hence cyst expansion. This is because 

macrophages are incapable of spatial-targeting their growth-stimulating effects. 

Subsequent to further cyst expansion, compressive injury is also further enhanced, 

likely resulting in recruitment of even more macrophages in a perpetual loop of a failed 
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reparative response. Although the absence of macrophages in this case is not likely to 

prevent cyst initiation or completely hinder cyst growth, it may possibly slow down 

disease progression considerably by eliminating the additional growth

effects induced by macrophages. This is supported by our previous studies, which 

demonstrated reduced cyst expansion after chemical depletion of macrophages in a 

. This current study uncovers several potential cand

are directly involved in the various processes of macrophage contribution to PKD 

progression, beginning with macrophage recruitment, secretion of specific pro

proliferative factors, as well as downstream macrophage-induced signaling components 
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