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Generalized FLIC: Learning with misclassification for Binary Classifiers 

Abstract 

By 

Arunabha Choudhury 

 

Abstract 

This work formally introduces a generalized fuzzy logic and interval clustering (FLIC) technique 

which, when integrated with existing supervised learning algorithms, improves their 

performance. FLIC is a method that was first integrated with neural network in order to improve 

neural network’s performance in drug discovery using high throughput screening (HTS). This 

research strictly focuses on binary classification problems and generalizes the FLIC in order to 

incorporate it with other machine learning algorithms. In most binary classification problems, the 

class boundary is not linear. This pose a major problem when the number of outliers are 

significantly high, degrading the performance of the supervised learning function. FLIC 

identifies these misclassifications before the training set is introduced to the learning algorithm. 

This allows the supervised learning algorithm to learn more efficiently since it is now aware of 

those misclassifications. Although the proposed method performs well with most binary 

classification problems, it does significantly well for data set with high class asymmetry. The 

proposed method has been tested on four well known data sets of which three are from UCI 

Machine Learning repository and one from BigML. Tests have been conducted with three well 

known supervised learning techniques: Decision Tree, Logistic Regression and Naive Bayes. 

The results from the experiments show significant improvement in performance. The paper 

begins with a formal introduction to the core idea this research is based upon. It then discusses a 

list of other methods that have either inspired this research or have been referred to, in order to 

formalize the techniques. Subsequent sections discuss the methodology and the algorithm which 

is followed by results and conclusion. 

 

Keyword: supervised learning, binary classification, fuzzy logic, clustering 
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1-Introduction 

 The term "Fuzzy Logic" was first proposed by Lotfi A. Zadeh in 1965 [1]. Since then, 

fuzzy logic has been applied to numerous fields in machine learning and data mining with 

success. The use of fuzzy logic is not limited to set theory and artificial intelligence but also 

encompasses fields like control theory. Even though Zadeh formalized fuzzy logics in 1965, it 

had however been studied since the 1920s.  Work of Lukasiewicz and Tarski [2] are worth a 

mention as they studied these logics as infinite-valued logics. Fuzzy logic is based upon the 

fuzzy set theory and we continue our discussion by formalizing fuzzy sets. 

 According to Zadeh in [1], a fuzzy set is a class of objects with a continuum of grades of 

membership. Such a set is characterized by a membership (characteristic) function which assigns 

to each object a grade of membership ranging between zero and one. Below is a formal 

definition of fuzzy set: 

Let X be a space of points (objects), with a generic element of X denoted by x. A fuzzy set (class) 

A in X is characterized by a membership function μ�(�) which associates with each point in X a 

real number in the interval [0, 1], with the value of μ�(�) at x representing the “grade of 

membership” of x in A. Thus, nearer the value of μ�(�) to unity, higher the grade of membership 

of x in A. In case of ordinary or crisp set, the membership function μ�(�) takes only two values 0 

and 1. 

 There are numerous ways of finding the membership function and in most cases it is 

problem dependent. In this research, the Euclidean Distance method has been considered for 

finding the membership function for each data points. Below is a formal definition for Euclidean 

distance between 2 arbitrary vectors in Cartesian coordinate system: 

Let us consider 2 vectors, 
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� = (��, �
, … , ��)	���	� = (��, �
, … , ��) 
which represent 2 points in Euclidean n-space. Then, the Euclidean distance (d) between point p 

and q is given by: 

�(�, �) = �(�, �) = �(�� − ��)
 + (�
 − �
)
 +⋯+ (�� − ��)
 = �∑ (�� − ��)
����       (1) 

At this point, we have all the necessary tools to build the membership function. We now slightly 

change the above definition for p and q. Let p be a fuzzy set in X and q be a point whose 

membership function μ�(�) is to be determined with respect to p. Using Euclidean distance form 

given in (1)we first find �(�, �) and finally,  

μ�(�) = ���(�,�)�                                                          (2) 

1.1-Notations 

 The vector definition for fuzzy membership function is important in the context of data 

sets. Let us consider � ∈ ℝ� be a data set in d dimensional feature space. Let us also consider 

that � has n cases:	�� ,	" = 1,2, … , �. Then, each row of	�, that is ��, is a d-dimensional vector. 

Each element of 	�� is a scalar and is denoted by ��% where & = 1,2, … , �. 

 This work strictly focuses on binary classification problems. Hence, there is a binary 

decision value associated with every case in the data set. Let a vector, 

' = ('�, '
, … , '�) 
be a decision vector for n cases and '� ∈ {0,1} a decision value for vector 	�� where " =
1,2, … , �. 

 The mean of �	, " = 1,2, … , � is denoted by +, which is also a vector. Each component 

of +, is denoted by +,%  where & = 1,2, … , � and is calculated as: 

+,% = ∑ -./0.12�        (3)
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1, 2-model, function and labels, decisions have been used interchangeably 

 

In case of binary classification, the mean of class label 1 and class label 0 are calculated 

separately and are denoted by a superscript, +,�  and +,3 . 

1.2-Supervised Learning 

 Stuart Russel and Peter norvig in [19] broadly categorizes the field of machine learning 

into three categories: 

1. Supervised learning. 

2. Unsupervised learning. 

3. Reinforcement learning. 

Supervised Learning can further be classified into 2 subcategories: 

1. Inductive learning such as Decision Tree. 

2. Statistical learning such as Logistic Regression and Naïve Bayes. 

Supervised learning is a kind of machine learning technique that models a function from data set 

that has been labeled or has known decision values [3]. Supervised Learning generally consists 

of training and testing sets.  The training set is used to train the model which is essentially the 

function that one wants to build. For this purpose, the training data set consists of cases with 

known decision values that we call labels. Each of these cases is a vector and every vector has a 

decision value associated with it as a case-decision pair. The training set is given as input to a 

typical supervised learning algorithm which analyzes the training data and builds a model. This 

model or function
1
 can now be used to map new set of cases for which the decisions or labels

2
 

are not known. The goal of the entire process is to minimize the error in identifying unlabeled 

test cases. 
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 Given a supervised learning problem, one can do the following: 

Step 1:  

 The first step for the user is to decide what type of training samples the user wants to use 

to train a model. An example of this can be the analysis of handwriting. For example, in case of 

handwriting analysis, the user may include a single handwritten character, an entire handwritten 

word, or an entire line of handwriting. 

Step 2: 

 After the decision has been made on what kind of training sample user wants to work 

with, it is time to collect the training samples. Effort should be made in order to make this 

training sample as close a representation of the actual population. For example, if the user wants 

to build a model to predict the letter based on handwriting, then he must make sure the training 

data is from a diverse collection of handwriting. A bad example is a training set with a lot of 

handwriting from only a handful of people. 

Step 3: 

 In this step the user usually works on effective feature selection. This step is one of the 

most important steps as not all feature of the data set will contribute equally in building the 

model. Collecting a bad set of features can seriously degrade the performance and accuracy of 

the learning algorithm. Some of the very popular feature selection techniques are Information 

Gain, Expectation Maximization etc. 

Step 4: 

 Once the user has collected a good set of features, it is time to decide on the supervised 

learning algorithm. Some of the popular choices are Decision Tree, Naïve Bayes, Logistic 

Regression, Support Vector Machine and Neural Network. 
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Step 5: 

 Once step one to four are completed, the training set is introduced to the learning 

algorithm and is allowed to train. Most supervised learning algorithm consists of control 

parameters that control the performance of learning algorithm. These parameters can be tweaked 

with, until a satisfactory training error is achieved. In order to avoid over fitting the model, the 

user may have an extra step called validation that validates the model’s performance and give the 

user an idea of generalization error. 

Step 6: 

 This is the last step of the entire cycle of supervised learning. Here the trained model is 

ready to be tested. The user now brings in a set of samples the learning function has never seen 

before. The learning function is then run on the testing set and different types of error values are 

measured. Multiple run on a number of test set can be done and an average error from multiple 

test run can also be reported for a more accurate measure of error. 

 A number of supervised learning algorithms are available, each with distinctive 

characteristics and each perform better than other algorithms in specific scenarios. This research 

explores the performance of Decision Tree, Naïve Bayes and Logistic Regression. A more 

formal definition of supervised learning technique is given below: 

 Let us say we have a data set		X		consisting of n training cases denoted 

by	(x�, y�), … , (x7, y7). x8 is the feature vector of the i:; case and y8 is the label (i.e. class) for 

case x8. A supervised learning algorithm runs on this training sample and the target is to find a 

function	g, such that, 

	g: X → Y 
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 where the input space X is mapped onto the output space Y. If we consider the hypothesis space 

to be G then,	g ∈ G. In a slightly different context, g can also be represented as a scoring 

function, 

f: X × β → ℝ 

where g is the returned value from the function D	that gives the highest score, such that, 

E(�) = �FEmaxI D(�, β) 
If we consider F to be the spacec of scoring functions then,	f ∈ F. An example of such scoring 

function is the squared loss. 

1.2.1-Inductive Learning 

 Inductive learning is basically learning from examples. According to [19] a more formal 

definition of inductive learning would be, let us consider that an example is a pair	(�, D(�)), 
where x is the input and D(�) is the output of the function applied to �. According to [19] the 

task of pure inductive inference is this: 

Given a collection of examples of D, return a function ℎ that approximates D. 

The function ℎ in this case is called a hypothesis. Learning is particularly difficult because it is 

not easy to tell if ℎ	is a good approximation of	D. A sign of a good hypothesis is one that 

generalizes well which in other word means; the hypothesis is able to predict unseen cases. Two 

of the most common and widespread use of inductive learning technique is Rule Induction and 

Decision Tree learning. In this section we briefly introduce rule induction. 

 In rule induction, one generally has an input data set with attributes and decision values 

specified. According to [20], regularities that are hidden in the data set can be expression in 

terms of rules. From [20] rules can be defined as: 
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"D(�LLF"MNL� − 1, O�PN� − 1)	���	(�LLF"MNL� − 2, O�PN� − 2)	��� …���	(�LLF"MNL�
− �, O�PN� − �)	Lℎ��	(��Q"R"S�, O�PN�) 

Some popular rule induction techniques are LEM1, LEM2 and AQ [20]. Decision Tree which is 

another popular choice of Inductive Learning is discussed in subsequent section. 

1.2.2-Statistical Learning 

 According to [19] statistical learning is a type of learning where learning is viewed as a 

form of uncertain reasoning from observation. The key concept in statistical learning is data and 

hypothesis [19]. Here, data is evidence which can be considered as instantiations of some or all 

of the random variables describing the domain. On the other hand, hypotheses are probabilistic 

theories of how the domain works, including logical theories as special case. 

 There are many aspects of statistical learning like Bayesian learning, regression analysis 

including linear and logistic regression, kernel methods and neural network. All these learning 

can be summarized under the characteristics of data and hypothesis described above. As an 

example of statistical learning we can consider Bayesian learning which simply calculates the 

probability of each hypothesis, given the data, and makes prediction on that basis [19]. On the 

other hand regression task like Logistic Regression takes a log-likelihood function as hypothesis. 

Statistical learning problem can be primarily formulated in two different ways: 

1. Bayesian Learning. 

2. Loss function based learning. 

 Bayesian learning framework is fundamentally based on Bayes theorem. The structure of 

Bayesian learning is primarily written as: 
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�SRL�F"SF ∝ P"U�P"ℎSS� × �F"SF 

Here, ∝ is the sign of proportionality and prior is a prior belief on the characteristics of the data. 

This belief is often regarded as a subjective belief. Likelihood function is the likelihood of each 

parameter given the data and finally posterior is the posterior probability of the parameter. A 

very common approximation- one that is usually adopted in science- is to make prediction based 

on a single most probable hypothesis- that is, a hypothesis that maximizes the posterior 

probability. This is often called maximum a posteriori (MAP) hypothesis. 

 On the other hand a non-Bayesian formulation is learning based on a loss function. A 

distribution function is used to build the hypothesis and then a loss function is formed. The most 

common use of the loss function is the square loss due to its convex nature. The problem then 

becomes an optimization problem where the loss function is minimized using various 

constrained or unconstrained linear and non-linear optimization techniques.  

1.3-Binary Classification 

 Binary classification is a form of supervised learning where the label y8 (notation 

introduced in section 1.1) can only take two possible values 0 and 1. From [23] a binary 

classification task can be defined as; 

Given: 

1. An input space � 

2. An unknown distribution V over � × {0,1} 
Compute: A function D minimizing W(-,X)~Z[D(�) ≠ '] 
Here, the two classes are {0, 1} in the data set	�. W(-,X)~Z is an error function that calculates the 

error between original class label ' and predicted labels using function D(�). The goal is to 
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choose a function D(�) such that the error W(-,X)~Z is minimized. Binary classification 

algorithms such as Decision Tree, logistic Regression and Naïve Bayes have been there for a 

while and been used in many fields. Despite their widespread use and numerous publications, 

following sections very briefly introduces these three algorithms. 

 

1.3.1-Decision Tree 

 Learning with Decision Tree involves a tree like predictive model with branches that 

eventually conclude or infer a decision on the target value. Predictive analytics using Decision 

Tree has been a popular choice for learning and has been widely used as a data mining tool. The 

input to the model is a set of variables that are the feature vectors from the data set. The output is 

a Decision Tree model. The goal is to predict the target variable based on the input information. 

 Every Decision Tree consists of nodes that represent input variables. In regard to a data 

set, one can consider these input variables as the features. The structure of the tree basically 

starts with root node and branches out as more variables are added for classification purpose. 

Generally there are 2 types of Decision Trees: 

1. Classification Tree 

2. Regression Tree 

The use of one of these trees is purely dependent on the type of problem one is looking at. If the 

decision value y is categorical, we use classification tree to make decisions. In case of real 

valued y, a regression tree is more appropriate.  
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Let us consider the following data set: 

Outlook Humidity Wind Decision 

sunny high strong no 

sunny high weak no 

sunny  normal strong yes 

sunny  normal weak yes 

overcast high weak no 

overcast high strong yes 

rain high weak yes 

 

This is a data set where the decision is to whether to play tennis or not based on the weather 

condition. Figure 1.3.1 represents a Decision Tree model based on the sample data set: 

 

Fig 1.3.1: classification tree 

Similarly, a regression tree may look like this: 
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A tree can be trained in many different ways. Some of the well established Decision Tree 

implementations are ID3, C4.5 etc.

 

1.3.2-Logistic Regression 

 Logistic Regression is a statistical classification model that is used for 

classification. A logistic function plays the key role to describe the possible outcomes. 

prediction is generally in terms 

categorical decision value. A multinomial 

multiple decisions and not restricted to binary classifications only.

Logistic Regression is given below:

Let us consider the binary classification model were the decision for i

take two values; 0 or 1. From section 1.1 let 

vector. Let ^ be the set of parameters and

decision variables. Then, we can describe the probability of success or failure (1 or 0) as a 

logistic function of the following form:

 

Fig 1.3.2: Regression Tree 

A tree can be trained in many different ways. Some of the well established Decision Tree 

implementations are ID3, C4.5 etc. 

Logistic Regression is a statistical classification model that is used for 

A logistic function plays the key role to describe the possible outcomes. 

prediction is generally in terms of probability and this probability is then converted to a 

A multinomial Logistic Regression model also allows you to classify 

multiple decisions and not restricted to binary classifications only. A more formal definition 

is given below: 

Let us consider the binary classification model were the decision for i
th

 feature vector 

take two values; 0 or 1. From section 1.1 let � be a � × � matrix where �� 
be the set of parameters and also a � × 1 vector, and ' � ['�, '
, …

Then, we can describe the probability of success or failure (1 or 0) as a 

logistic function of the following form: 

 

A tree can be trained in many different ways. Some of the well established Decision Tree 

Logistic Regression is a statistical classification model that is used for categorical 

A logistic function plays the key role to describe the possible outcomes. The 

ility is then converted to a 

model also allows you to classify 

A more formal definition for 

feature vector '� can only 

 denotes a � B 1 

… , '�]
_  the set of 

Then, we can describe the probability of success or failure (1 or 0) as a 
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�('� = 1|��, ^) = �ab-.1 + �ab-. 
And 

�('� = 0|�� , ^) = 1 − �('� = 1|��, ^) = 11 + �ab-. 
From here, we can find the log-likelihood function and following which, we formulate an 

optimization problem where our goal is to minimize the log-likelihood function. Let us consider 

� a � × 1 column vector, where 

� = cd
de
���
...��gh
hi =

cd
dd
dd
dd
e �ab-21 + �ab-2�ab-�1 + �ab-�...�ab-01 + �ab-0gh

hh
hh
hh
i
 

And, j a � × � diagonal matrix, where 

j =
cd
dd
de��(1 − ��) 0 . . 0

0 �
(1 − �
) ......0
..… .��(1 − ��)gh

hh
hi
 

These are results from solving the optimization problem that involves a second order partial 

derivative we talked about above. The value for ^ is found and updated in an iterative process 

using the following form: 

^�kl = �FEmina (n − �^)oj(n − �^) 
where, 
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n = �^pq� +j��(' − �) 
The j associated with the regression function is sort of a weight and for this reason, each step of 

updating ^ in Logistic regression is often referred to as iterative weighted linear regression. We 

can use these ^ values on a testing set to find the probability associated with each �� in the 

testing set. We can then assign decision value 0 or 1 depending on the probability of success. 

 

1.3.3-Naïve Bayes 

 The Naïve Bayes classification is a classification model that is based on the Bayesian 

probability model and assumes complete independence of the features. From [18] let us consider 

an event can only occur only if one of the set of exhaustive and incompatible events 

r�, r
, … , r� occurs. The probabilities of these events 

s(r�), s(r
),… , �(r�) 
corresponding to the total absence of any knowledge as to the occurrence or nonoccurrence of t, 

are known. We also know the conditional probabilities: 

s(t|r�); " � 1,2, … , � 

for t to occur, assuming the occurrence of r�. The question now we shall try and answer is, how 

does the probability of r� change with additional information that t has actually happened. The 

answer to this question really amounts to finding the conditional probability of s(r�|t). In order 

to do this, we first set up few preliminaries. We know that the probability of compound event 

s(tr�) can be presented in two forms: 

s(tr�) � s(r�)s(t, r�) 
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s(tr�) = s(t)s(r�, t) 
Equating the right-hand members, we derive the following expression for the unknown 

probability	s(r�, t): 
s(r�, t) = s(r�)s(t, r�)s(t)  

Since the event t can materialize in the mutually exclusive forms, 

s(tr�), s(tr
),… , s(tr�) 
By applying theorem of total probability, we get 

s(t) = s(r�)s(t|r�) + s(r
)s(t|r
) + ⋯+ s(r�)s(t|r�) 

This probability is also called the marginal probability. 

Hence the final expression for s(r�, t) is, 

s(r�, t) = s(r�)s(t|r�)
s(r�)s(t|r�) + s(r
)s(t|r
) + ⋯+ s(r�)s(t|r�)

 

This formula is known as the Bayes Theorem. 

 The Naïve Bayes classifier is based upon this theorem where we call  s(r�, t) the 

posterior probability. s(r�) is the prior probability of r� and s(t|r�) is the likelihood of t 

given r�. Considering the marginal probability s(t) as a normalizing term only, we get: 

�SRL�F"SF ∝ P"U�P"ℎSS� B �F"SF 

where again, ∝ is the sign of proportionality. 
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Below we look at a simple example of Naïve Bayes classifier (a modified version of a popular 

example from wikipedia): 

Table 1.5.1 is a small data set that has height, weight and foot size information for different male 

and female. Our goal is, given information about a new person, the Naïve Bayes model should be 

able to identify whether the person is male (m) or female (f). 

Table 1.5.1: Example Data set for Naïve Bayes 

Sex Height (feet) Weight (lbs) Foot size (inches) 

m 6 185 11 

m 5.9 195 12 

m 5.5 175 12 

m 5.8 160 10 

f 5.1 105 5 

f 5.4 155 7 

f 5.3 135 6 

f 5.7 150 8 

 

We also assume that the classifier is created from the training set using a Gaussian distribution. 

To find the Gaussian distribution, we need to calculate the samples mean and variance. 

Sex 
Mean 

(height) 

Variance 

(height) 

Mean 

(weight) 

Variance 

(weight) 

Mean 

(foot size) 

Variance 

(foot size) 

m 5.8 0.047 178.75 222.92 11.25 0.917 

f 5.37 0.062 136.25 506.25 6.5 1.7 

 

The prior probability is generally based on our knowledge of the data. In this case let us consider 

the probability of the 2 classes male and female is equal and so	�F"SF(+) = �F"SF(D) = 0.5. 

The prior probability can be based on factors like the frequency of male of female in the data set 

or it can also be our prior knowledge of a much larger population. Up until this stage, we have 

the training model ready for Naïve Bayes classifier. 
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Now we shall perform testing. Let us consider the testing case below: 

Sex Height (feet) Weight (lbs) Foot size (inches) 

unknown 6 135 7 

 

The final goal is to find the posterior probability for both male and female classes given the prior 

and the likelihood. The posterior for both male and female can be written as below: 

�SRL�F"SF(+) = �F"SF(+) × P"U�P"ℎSS�(+)+�FE"��P	�FSM�M"P"L'  

And, 

�SRL�F"SF(D) = �F"SF(D) × P"U�P"ℎSS�(D)+�FE"��P	�FSM�M"P"L'  

Now the prior is already known to us. The marginal probability is a normalizing constant and can 

be disregarded. The last piece is the likelihood function. Now, 

P"U�P"ℎSS�(+) = �(ℎ�"EℎL|+) × �(w�"EℎL|+) × �(DSSLR"n�|+) 
And, 

P"U�P"ℎSS�(D) = �(ℎ�"EℎL|D) × �(w�"EℎL|D) × �(DSSLR"n�|D) 
We find these values using the Gaussian distribution function as follows, 

�(ℎ�"EℎL|+) = 1√2yz
 ��(({�|)
�
}� ) ≈ 9.92� − 04 

�(w�"EℎL|+) ≈ 0.0018 

�(DSSLR"n�|+) ≈ 9.42� − 06 

�(ℎ�"EℎL|D) ≈ 2.44� − 022 

�(w�"EℎL|D) ≈ 7.88� − 004 

�(DSSLR"n�|D) ≈ 0.2247 

This finally results in, 
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P"U�P"ℎSS�(+) = 1.6820� − 011 

And, 

P"U�P"ℎSS�(D) = 4.3204� − 026 

And hence,  

�SRL�F"SF(+) ∝ 8.4100� − 012 

And, 

�SRL�F"SF(D) ∝ 2.1602� − 026 

Since, the posterior for male is greater, the given test case is predicted as a male. 

1.4-Standard Error Measures for Binary Classification 

 All classification algorithms have error associated with their performance. There are 

many different ways to look at the error measure depending on what kind of answers we are 

looking for. In binary classification, apart from mean absolute classification error, we also care 

about class asymmetry or in-class error. This paper talks about 4 different types of error: 

1. Mean absolute error (MAE) 

2. Precision 

3. Recall 

4. F-measure 

In case of binary class prediction, if we consider the class label to be either 0 or 1, mean absolute 

error is calculated as follows: 

�t� = ∑ |'�� − '�|���� �  

where, '��  is the predicted outcome and '� is the original class label. Both '��	���	'� ∈ {0,1}. 
Mean absolute error in terms of nominal class labels can be written as: 
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�t� = 1 − ∑ ('�� == '�)���� �  

where, the logical operator “==” checks for equality of the 2 predicted vs. the original nominal 

class labels. If they are equal, 1 is returned otherwise 0. 

Mean absolute error is not sufficient as an error measure for all binary classification problems. 

Binary classification problems often has class asymmetry which in other word means, number of 

cases for both classes are not equal. In this kind of problem, we also want to be able to measure 

the in-class error or how accurate the prediction is for each class. In order to deal with class 

asymmetry, we also talk about precision, recall and f-measure. 

 Before defining precision, recall and f-measure we would like to introduce the following 

terms associated with binary classification problems. Let us consider that the 2 class labels are 

positive (p) and negative (n). Then, 

1. True Positive (TP): These are cases that are actually positive and have been identified as 

positive. 

2. False Negative (FN): These are cases that are actually negative but have been identified 

as positive. 

3. True Negative (TN): These are cases that are actually negative and have been identified 

as negative. 

4. False Positive (FP): These are cases that are actually negative but have been identified as 

positive. 
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For positive cases, using the above definitions we can now define, 

�F�Q"R"S�� = os(os + �s) 
F�Q�PP� = os(os + ��) 

D���p�k = 2 �F�Q"R"S�� × F�Q�PP�(�F�Q"R"S�� + F�Q�PP�) 
Similarly for negative cases, 

�F�Q"R"S�� = o�(o� + ��) 
F�Q�PP� = o�(o� + �s) 

D���p�k = 2 �F�Q"R"S�� × F�Q�PP�(�F�Q"R"S�� + F�Q�PP�) 
 Precision implies the accuracy of a predicted class label over all the predicted cases. So, 

if the model has identified for example 100 cases as positive and 70 out of those are truly 

positive (we know this because the training labels are known to us), then the precision is 70%. 

Precision gives us an idea of how accurate the model is in identifying a particular class label. In 

other word, out of all the cases that have been identified as let say positive, we are looking for 

the number of cases that are truly positive. 

 Recall on the other hand implies the relevance of the predicted class label over the 

population of the class label. This means. If for example, the model has identified 80 out of 100 

total truly positives, then the recall is 80%. Recall gives us an idea of how relevant the precision 

is. In other word, whether the model has been able to identify a significant portion from the total 

population. 
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 Both precision and recall are important and the goal is to get both a high precision as well 

as a high recall. This in practice is not always achievable and often times, a more realistic 

approach is to balance the precision and recall. F-measure or F-score which is a harmonic mean 

of the two quantities is sort of a balance between the two. F-measure gives equal weight to both 

precision and recall. Getting a good F-measure would mean that we are trying to build a model 

that balances the precision and recall rather than giving precision or recall different weights. 

 

2-Literature Review 

 The related work to this research started back in December 2012 while working on a 

problem called Drug Discovery using High Throughput Screening (HTS). The authors of [8] 

started working on HTS in as early as in 2006, using a well known Machine Learning algorithm, 

Support Vector Machine. The goal was to identify compounds that can bind well with certain 

types of protein (called active compounds) and the same compounds then eventually go on to 

become potential anti-cancer drug. The data sets consisted of both active and non-active 

compounds and a sample from the data set was used to train the learning algorithm (SVM in this 

case). Once it was trained, the goal was to identify as many active compounds as it could, from a 

test set. In 2009, Dr. Swapan Chakrabarti et al. in their work [4] used Neural Network which 

performed superior to the work done in 2006. Despite an improvement, the performance of the 

predictor was still a major issue. In 2012, while researching on the same problem, the issue of 

high misclassification rate responsible for degrading the performance was addressed. While 

misclassification is an issue with all binary classifiers, in case of class asymmetry, the effect of 

this problem amplifies. This degrades the performance of the classifier and it is important to be 

able to inform the classifier about the misclassifications. 
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 Several works on learning with misclassification have been done in various areas of 

Machine Learning and Data Mining. In [9] Michael Pazzani and et al. in their work explored 

algorithms for learning classification procedures that attempt to minimize the cost of 

misclassification examples. Their method called Reduced Cost Ordering algorithm creates a 

decision list (i.e., an ordered set of rules) that describe and compare a variety of inductive 

learning approaches. Their work was restricted to Decision Tree and no other binary classifiers 

were discussed. In [10] Shai Ben-David and et al. used surrogate loss functions to minimize the 

misclassification error rate for binary classification. They did not test their method on any data 

set and it was more of a theoretical set up for the surrogate loss function. 

 One of the major works in regards to improving classifier performance has been done 

using AdaBoost [11]. Boosting is a general method for improving the accuracy of any given 

learning algorithm. Boosting takes into account the idea that multiple weak learner’s 

performance can be combined to get a strong learner. So the output of multiple weak learning 

algorithms is combined into a weighted sum. This weighted sum represents the final output of 

the classifier that has been boosted. AdaBoost is also adaptive. In its subsequent run, the weak 

learners in AdaBoost can be tweaked in favor of samples that were previously misclassified by 

the classifiers. One of the major drawbacks of AdaBoost is that it is very sensitive to outliers and 

data sets with inherent noise. If the numbers of outliers are large, the performance of AdaBoost 

can degrade significantly. The work in this paper particularly addresses these shortcomings of 

AdaBoost and subsequently shows that they can be overcome using the method discussed in this 

paper. 

 The idea behind integrating fuzzy logic with Neural Network to solve the problem of 

Drug Discovery using High Throughput Screening first surfaced in December 2012. At that time 
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the classifier already being used to solve the given problem was Neural Network. Some work on 

fuzzy clustering technique can be found in [5] and [6]. These works however do not address 

classification problems. In [7], the author work on fuzzy labeling and apply his model to 

Decision Tree, fuzzy Bayesian estimation and linguistic FOIL algorithms. The drawback of this 

paper is that the method does not generalize well as the author converts the numeric quantities to 

linguistic expression. Although this aims towards better transparency, it does not scale well since 

not all Machine Learning algorithms can work with linguistic labeling. 

 In [12] James and et al. discuss the performance of K-Nearest Neighbor using fuzzy 

labeling. According to them, one of the difficulties that arise when utilizing K-Nearest Neighbor 

is that each of the labeled cases is given equal importance in deciding the class membership of 

the pattern to be classified, regardless of their "typicalness". They have shown that with fuzzy 

membership to the neighbors, the algorithm perform superior to the crisp counterpart. Their 

implementation however is limited to K-Nearest Neighbor and they use the inverse distance as 

the membership function. Their method does in a way identify the misclassifications but the 

misclassifications do not take part in learning. 

 In [13] Mansoor and et al. discuss a problem of pattern classification where 

misclassification costs from one class to the other class are not the same. In order to address this 

problem, they propose a method of designing a classification system based on fuzzy rule. In their 

work, in order to tune the rule-base, they use the rule-weight mechanism. In the proposed method 

they assume that the misclassification costs from one class to the other class are known and 

instead of minimizing the error rate they attempt to minimize the total cost of the classifier on the 

training data. 
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 In [14] Massih-Reza and et al. discuss a special learning case where only a small set of 

labeled data is available together with a large set of unlabeled  data. In their approach they make 

use of both unlabeled data and of a probabilistic misclassification model for those data. This is 

another approach of learning with misclassification but deals with a very specific case of semi-

supervised learning where only a small set of labeled data is available. In their approach they 

have used a variant form of the classification Expectation Maximization algorithm. 

 A number of fuzzy rule based classification is also available in literature. In [16] 

Sushmita and Sankar discuss a self-organizing artificial neural network based on Kohenen's 

model of self-organization, which is capable of handling fuzzy input and providing fuzzy 

classification. In [15] Hans Roubos and et al. discuss an automatic design of rule-based 

classification systems based on labeled data. In [17] Margarita in her PhD thesis proposed a 

fuzzy semantic labeling method that uses confidence measures based on the orthogonal distance 

of an image block's feature vector to the hyper-plane constructed by a Support Vector Machine. 

In contrast to the proposed work, none of these papers talk about learning with fuzzy labels. 

 Multiclass problem is a domain that is also relevant to this work. In [21] the authors 

introduce techniques to solve multi-class problems where they reduce the problem into multiple 

binary classification problems. The authors then solve the problems using a "margin based 

binary learning algorithm". Out of various techniques to solve multi-class problems, one popular 

choice is to decompose multi-class problems into multiple binary problems. The two most 

common approach under this method is one-versus-all (OVA) and all-versus-all (AVA). 

According to [22], OVA and AVA are so simple that many people invented them independently. 

No one person can thus be attributed to the invention of the technique. Although a lot of work in 

OVA and AVA has been done thus far, no works have been done on taking a binary 
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classification problem and solve it as a multi-class problem. In this research, one can consider 

multiple clusters as multiple classes. These classes are generated based on the misclassification 

and the learner is then trained with these misclassifications. One of the most important outcome 

of the discussion on decomposition of multi-class problem to multiple binary classification 

problems is that, now, one can solve each of these binary classification problems using the 

proposed FLIC method. This in turn allows one to scale to multiclass classification without 

worrying about any change in the proposed algorithm making it scalable to most existing 

methods. 

 

3-Methodology 

 This section provides a more formal definition of the method called fuzzy logic and 

Interval Clustering (FLIC). The discussion in this section is divided into 2 sub-sections; the first 

section introduces the conversion of binary labels to fuzzy labels. The second section formalizes 

the idea and introduces Interval Clustering using the notations in section 1.1. 

3.1-Introduction to Fuzzy Labeling 

 All binary classification models have outliers or misclassification that degrades the 

models’ performance. FLIC helps learning algorithms to identify misclassification while 

learning, by adding fuzziness to the training labels. A supervised learning algorithm is always 

limited by the training samples it has. Hence, binary classification models strictly learn from the 

training samples and do not generalize very well. In order to improve the generalization error 

FLIC incorporates fuzzy labeling to the training set. In situations where one has a significant 

amount of outliers, one can refer to the data set as highly overlapping in feature space. 
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 In order to make the learner more robust to the high overlapping data samples, this paper 

introduces fuzzy labeling for the training data set. In case of binary classification problems, 

dimension of the training data label is two. This work increases the label dimension by 

calculating fuzzy membership value for each case in the training set. 

 In order to formalize the proposed method, this section introduces the idea of fuzzy 

labeling as a replacement to binary labels for training data. For the purpose of clarity, this paper 

only considers the 1 and 0 binary labels. In practice they can be any nominal value such as 

“True” or “False”, “yes” or “no” and so on. One can convert these values to 0 and 1 to find the 

fuzzy membership values for each training case. The notation for binary label has already been 

introduced in section 1.1.  

 Fuzzy label on the other hand is a membership function for each case in the data set. As 

discussed earlier, for a fuzzy set p in X and a point q, membership function of q with respect to p 

is given by	μ�(�). This section converts all the binary labels to fuzzy labels using the following 

algorithm: 

Algorithm 1: Convert binary labels to fuzz labels 

Input: Training data � ∈ ℝ� and class label ' 

Output: Fuzzy labels and Euclidean distance for both class 1 and 0 respectively 

1. Divide training set as �� and �3for label 1 and label 0 respectively 

2. Find mean of both �� as +,�  and mean of �3 as +,3  

3. Find distances �(+,� , ���), �(+,3 , ���), �(+,� , ��3)	and �(+,3 , ��3) 
4. Calculate membership values as: 

 μ�� (���) ← ������2 ,-.2�, μ�� (��3) ← ������� ,-.2�, μ�3 (���) ← ������2 ,-.�� and  

μ�3 (��3) ← ������� ,-.�� 
5. Return μ�� (���), μ�� (��3), �(+,� , ���), �(+,3 , ���), μ�3 (��3), μ�3 (���), �(+,� , ��3) and �(+,3 , ��3) 
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where, 

�(+,� , ���) and �(+,3 , ���) is the distance of class 1 samples to class 1 and class 0 respectively 

�(+,� , ��3)	and �(+,3 , ��3) is the distance of class 0 samples to class 1 and class 0 respectively 

μ�� (���) and μ�� (��3) is the membership function of class 1 samples to class 1 and class 0 

respectively 

μ�3 (���)	and μ�3 (��3) is the membership function of class 0 samples to class 1 and class 0 

respectively 

3.2-Fuzzy Labeling with Hard Interval Clustering 

 Binary classification has two classes, 0 and 1 which means; each case either belongs to 

class 0 or class 1. For the purpose of discussion, this can be considered as two separate clusters. 

In terms of fuzzy boundary, one can also consider this to be fuzzification to level 0 or crisp 

boundary or no fuzzification. The cases belong to either of the class. This turns out to be a 

problem for data set where there are outliers. In case of outliers, a model cannot learn efficiently 

and we have the problem of misclassification. 

 The proposed method tries to identify the outliers before the model is trained. Following 

from section 3.1, the output from the fuzzy labeling algorithm is a fuzzy label for every training 

case in the data set. Hence for every �� we have μ�X (���) ∈ [0,1] and μ�X (��3) ∈ [0,1] where, 

' ∈ {0,1}. In other word, every case now belongs to both class 0 and class 1 but with a 

membership function. If membership function with class 0 is more than class 1, then the case 

belongs to class 0, otherwise class 1. 

 At this point we have n-clusters. The reason is; there are n training cases and each 

training case is unique due to unique membership function to both class 0 and class 1. Let us 

consider this to be fuzzification to level n. At this point, one can train the system with these 

membership functions. The problem is that, this scenario turns out to be over constrained for the 
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system and the system cannot generalize for such diverse variation. Thus, this work proposes a 

novel approach called fuzzy membership based hard interval clusters which combine 

fuzzification with hard clustering to optimize the number of clusters. This in turn improves the 

performance of the algorithm. 

 In an ideal scenario, the membership function of class 1 cases with class 1 must be more 

than the membership function of class 1 cases with class 0. In other word, for a case in class 1: 

μ�� (���) > μ�� (��3) 
On the other hand, for cases in class 0: 

μ�3 (��3) > μ�3 (���) 
However in practice, for some cases from both the classes, this relationship is reversed. In this 

paper, such classes are called the weak class 0 and the weak class 1. These are considered to be 

the outliers in Euclidean d-space (since � ∈ ℝ�). 

 The first task is to identify these outliers by taking the difference of their membership 

functions. We do: 

V� = μ�� (���) − μ�� (��3)      (4) 

V3 = μ�3 (��3) − μ�3 (���)      (5) 

where V� and V3 are the differences in membership function for class 1 and class 0 respectively. 

In case of outliers, V� and V3 have negative values. If we consider the outliers to be in a separate 

class of their own, we have four different clusters instead of two, 

1. V�>0 (strong class 1) 

2. V�<0 (weak class 1) 

3. V3>0 (strong class 0) 

4. V3<0 (weak class 0) 
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 In order for the model to 

function value for the weak classes

take these outliers and place them far from their opposite class as well as from their strong class 

counterpart. This should allow them to have a cluster of their own.

rule of pseudo distance. For the purpose 

for a binary classification model 

Fig 3.2.1: Weak class 0 and weak class 1

The weak classes in Fig 1 are being shown by the arrow. This is a model for Euclidean 2

The 2 features are �� and �
. Using 

own clusters. At this point pseudo distance model

pseudo distance a constant	Q. We add this constant 

Algorithm 1. This new constant distance allows the outliers to have their own cluster and set 

them apart from the rest.  

 Before taking the discussion

class 1 (we only consider class 1, the same situation applies to class 0 as well):

for the model to recognize weak class 1 and weak class 0, only

classes are changed by introducing a pseudo distance.

take these outliers and place them far from their opposite class as well as from their strong class 

allow them to have a cluster of their own. In this work it 

For the purpose of discussion, let us consider a simple linear boundary 

 as following: 

Weak class 0 and weak class 1 in Binary Classification.

are being shown by the arrow. This is a model for Euclidean 2

Using the pseudo distance model, the outliers are 

pseudo distance model can be formally defined. 

We add this constant Q to the current distance of the outliers

This new constant distance allows the outliers to have their own cluster and set 

taking the discussion any further, let us look at different scenarios

(we only consider class 1, the same situation applies to class 0 as well): 

 

only the membership 

a pseudo distance. The goal is to 

take these outliers and place them far from their opposite class as well as from their strong class 

work it is called: the 

consider a simple linear boundary 

 

in Binary Classification. 

are being shown by the arrow. This is a model for Euclidean 2-space. 

, the outliers are assigned their 

. Let us call this 

distance of the outliers from 

This new constant distance allows the outliers to have their own cluster and set 

any further, let us look at different scenarios for the weak 
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Scenario 1: 

μ�� (���) < μ�� (��3)���	μ�� (���) < 0.25 

In this scenario the weak class 1 cases have very weak membership value with class 1 and 

relatively stronger membership to class 0. This is a situation where the outliers are very weak 

and the membership value of a weak class 1 to class 1 is very low. 

Scenario 2: 

μ�� (���) < μ�� (��3)���	0.25 < μ�� (���) < 0.5 

In this scenario the weak class 1 cases have weak membership value with class 1 and relatively 

stronger membership to class 0. This is a slightly better scenario than scenario one but still, very 

weak outliers with membership value upper bounded by 0.5. 

Scenario 3: 

μ�� (���) < μ�� (��3)���	0.5 < μ�� (���) < 0.75 

In this scenario the weak class 1 cases have moderately strong membership value with class 1 but 

even stronger membership to class 0. These are weak outliers doing better than scenario one and 

2 as they have membership value more than 0.5. 

Scenario 4: 

μ�� (���) < μ�� (��3)���	μ�� (���) > 0.75 

In this scenario the weak class 1 cases have very strong membership value with class 1 but even 

stronger membership to class 0. These are not so weak outliers and have very high membership 

value with its own class. 

Note: The same scenario applies to class 0 with membership values reversed. 
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 These scenarios are important because based on these scenarios, one can decide on the 

number of clusters they want. For the simplest of case, where we do not care about the scenarios 

but only care about the following situation, 

μ�� (���) > μ�� (��3) 
And, 

μ�3 (��3) > μ�3 (���) 
We call it the 4-cluster situation. Below we formally define the 4-cluster situation and a method 

that finds the membership values in this situation: 

3.2.1-Cluster 4 
 

 This is the simplest case where a constant distance Q is added to all the weak cases from 

both class 0 and class 1. 

D(���) = ��(+,� , ���) + Q, "DV� < 0�(+,3 , ���)			, SLℎ�Fw"R��     (6) 

And, 

D(��3) = ��(+,3 , ��3) + Q, "DV3 < 0�(+,� , ��3)			, SLℎ�Fw"R��     (7) 

where, D(���) and D(��3) are the new distances for the weak class 1 and weak class 0 

respectively. This gives rise to 4 different clusters as we have discussed in section 3.2. As we can 

see, this only increases the distance of the weak classes with respect to its own class. The 

distance between the weak class and its opposite class remain unchanged. For example, if we 

have a case that is actually in class 1 but has higher membership with class 0, pseudo distance 

only add a constant term to �(+,� , ���) where as �(+,3 , ���) remain unchanged. In case of 

nominal fuzzy labeling, let us consider the 4 clusters to be strong class 1, weak class 1, strong 

class 0 and weak class 0. 
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3.2.2-Cluster 6 

 In cluster 4, the fact that some of the weak cases despite having a high membership value 

(> 0.5) to its own class may be an outlier, is missed. They are different from the weak cases that 

have low membership value to its own class in the sense that, the latter can be considered as very 

weak. This allows one to go to a higher dimension of fuzzification. This is captured in cluster 6 

where we do the following: 

D(���) = ��(+,� , ���) + Q�, "DV� < 0���	μ�� (���) ≥ 0.5�(+,� , ���) + Q
, "DV� < 0���	μ�� (���) < 0.5�(+,3 , ���)						,																																					SLℎ�Fw"R�
�   (8) 

And, 

D(��3) = ��(+,3 , ��3) + Q�, "DV� < 0���	μ�3 (��3) ≥ 0.5�(+,3 , ��3) + Q
, "DV� < 0���	μ�3 (��3) < 0.5�(+,� , ��3)						,																																					SLℎ�Fw"R�
�   (9) 

where Q� and Q
 are 2 constant terms for 2 different cases. In the first case, if the membership 

value of the weak class with its own class exceeds more than 0.5, we add Q� else, we add Q
. The 

nominal fuzzy labeling for cluster 6 can be considered as: strong, weak and very weak for both 

class 1 and class 0.  

3.2.3-Cluster 10 

 In section 3.2 we discussed the 4 scenarios where we see how 	μ�� (���) and 	μ�3 (��3) can 

fall under one of the four intervals.  In cluster 10 we take under consideration all the scenarios. 

Each of these intervals has its own cluster. These clusters allow one to distinguish between 

strong and weak outliers thus allowing one to move to an even higher dimension. Hence, cluster 

10 takes the following form: 



 

 

38 | P a g e  

D(���) =
���
������2 ,-.2���2,													��Z2 3	¡��	¢£2 �-.2�¤3.¥¦	����2 ,-.2����,			��	Z2 3	¡��	3.¦ ¢£2 �-.2� 3.¥¦����2 ,-.2���§,			��	Z2 3	¡��	3.
¦ ¢£2 �-.2� 3.¦����2 ,-.2���¨,															��Z2 3¡��	¢£2 �-.2� 3.
¦�(+,3 , ���),																														SLℎ�Fw"R�

�   (10) 

And, 

D(��3) =
���
������� ,-.����2,													��Z� 3	¡��	¢£� �-.��¤3.¥¦	����� ,-.�����,			��	Z� 3	¡��	3.¦ 	¢£� �-.�� 3.¥¦����� ,-.����§,			��	Z� 3	¡��	3.
¦ 	¢£� �-.�� 3.¦����� ,-.����¨,															��Z� 3¡��	¢£� �-.�� 3.
¦�(+,� , ��3),																														SLℎ�Fw"R�

�   (11) 

where Q�, Q
, Q© and Qª are 4 constant terms for 4 different cases. The nominal fuzzy labeling for 

cluster 6 can be considered as: strong, not strong, moderately weak, weak and very weak for both 

class 1 and class 0. 

The algorithm for forming the Interval clusters is given below: 

 

Algorithm 2: Clustering fuzzy labels to recognize outliers 

Input: Training data � ∈ ℝ� and class label ' and cluster size R 

Output: Fuzzy clustered labels D(���) and D(��3) 
1. Call Algorithm 1 with � and ' to get, μ�� (���), μ�� (��3), �(+,� , ���), �(+,3 , ���), μ�3 (��3), μ�3 (���), �(+,� , ��3) and �(+,3 , ��3) 
2. If R = 4 find D(���) and D(��3) using equation 6 and 7 

Else if R = 6 find D(���) and D(��3) using equation 8 and 9 

Else if R = 10 find D(���) and D(��3) using equation 10 and 11 

3. Return D(���) and D(��3) 
 

In Fig. 3.2.1 we have identified the weak classes. The following figure illustrates the effect of 

pseudo distance on the weak classes or the outliers (for ease of understanding we apply linear 

separator but the same applies for non-linear separator). 
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Fig 3.2.2: Outliers after applying FLIC

4-Results 

 Experiments were conducted on four

Advertisement, Adult and Mushroom are from UCI Machine Learning repository. The last data 

Telecom Churn is from BigML. All the results are average

4.2.1, 4.3.1 and 4.4.1 in this chapter

The error measures used in this work are

measure (discussed independently in section 1.4)

under the discussion section. The green line represents the 

without FLIC whereas the red line is 

acronyms used are described below:

DT = Decision Tree 

LR = Logistic Regression 

NB = Naïve Bayes 

FDT/FLR/FNB = Fuzzy (DT/LR/NB)

Fig 3.2.2: Outliers after applying FLIC 

s were conducted on four data sets. Three of the four data sets

Advertisement, Adult and Mushroom are from UCI Machine Learning repository. The last data 

BigML. All the results are averages of 20 experiments. The 

1 in this chapter show both training and testing error for the four data sets

measures used in this work are the mean absolute error (MAE), precision, recall

(discussed independently in section 1.4). A detail analysis on the performance is given 

The green line represents the general machine learning

the red line is machine learning algorithm using FLIC. 

described below: 

= Fuzzy (DT/LR/NB) 

 

 

data sets- Internet 

Advertisement, Adult and Mushroom are from UCI Machine Learning repository. The last data 

The graphs 4.1.1, 

for the four data sets. 

, precision, recall and F-

A detail analysis on the performance is given 

learning algorithms 

FLIC. Some of the 
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 Along with the MAE graphs, this work also provides graphs (4.1.i to 4.4.i and i = 2 to 4) 

and tables (Appendix A) for precision, recall and F-measure for outputs from all the three 

methods- Decision Tree, Logistic Regression and Naïve Bayes. The error measures like 

precision, recall and F-measure are provided only from testing (no training precision, recall and 

F-measure have been provided). In order to read the statistics from the tables and the graphs, 

below are few definitions, 

Sample size: The results are for varying number of training cases in the order of low to high. So 

sample size 1 means lowest number of training cases and corresponds to the left side of the graph 

and 10 means highest number of training cases and corresponds to the right side of the graph. In 

the tables in Appendix A, the sample size represents the same as described above. Each 

experiment involved different sample size and again for the table also, they are in order low to 

high.  

Binary labels: For the binary labels letters ‘A’ and ‘B’ have been used. Other popular decision 

labels like 0 and 1 or true and false have not been used in order to make it more generic and 

avoid any bias from readers’ point of view. 

Fuzzy/Normal: This term identifies whether the results are from using FLIC. So, “N” stands for, 

no FLIC was used where as “F” stands for, FLIC was used. 

Table 4.1 gives a summary of the data sets that have been used for training and testing. 

Table 4.1: Data Sets 

Properties 

 

Data Set 

No. of 

cases 

No. of 

classes 

No. of 

training 

cases 

No. of 

testing 

cases 

No. of 

class ‘A’ 

cases 

No. of 

class ‘B’ 

cases 

No. of 

attributes/

features 

Internet 

Advertisement 
1300 2 1000 300 865 435 1558 

Adult 4000 2 2000 2000 3000 1000 122 

Mushroom 7916 2 4000 3916 4000 3916 112 

Telecom Churn 5000 2 2500 2500 4293 707 13 
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 Table 4.2 is a table for testing parameters. The 3 parameters that were tweaked in order to get 

the best performance are nominal, normalized and cluster. Nominal stands for whether we used 

nominal class labels. Normalized stands for whether the training set and testing set were 

normalized before running the algorithm. Cluster stands for the number of interval cluster that 

were used to achieve the least error. 

Table 4.2: Training and Testing Parameters 

Parameters 

 

Data Set 

Nominal  

(order DT, NB and LR) 

Normalized 

(order DT, NB and LR) 

Cluster 

(order DT, NB and LR) 

Internet 

Advertisement 
False, True and True False, False and False 10, 4 and 4 

Adult True, True and False False, False and False 6, 4 and 10 

Mushroom False, True and False False, False and False 4,10 and 4 

Telecom Churn True, True and False True, False and False 6, 4 and 10 

 

where, DT = Decision Tree, LR = Logistic Regression, NB = Naïve Bayes 

4.1-Internet Advertisement 

 This data set has 1300 cases with 1558 features. 1000 cases have been used for training 

and 300 cases have been used for testing. According to UCI Machine Learning repository 

information, this data set represents a set of possible advertisements on Internet pages. The 

features encode the geometry of the image (if available) as well as phrases occurring in the URL, 

the image's URL and alt text, the anchor text, and words occurring near the anchor text. The task 

is to predict whether an image is an advertisement (“ad”) or not (“nonad”). We call label 

(“nonad”) class ‘A’ and label (“ad”) class ‘B’. Both normal and fuzzy training was done for this 

data set. The testing was then done using the normal model and the fuzzy model with the testing 

set. Figure 4.1.1 gives the mean absolute error (MAE) variation for the 3 methods, Decision 

Tree, Logistic Regression and Naïve Bayes. 
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Fig 4.1.1: MAE vs. Number of Cases graph for DT, LR and NB (normal vs. fuzzy) 

Figures 4.1.2, 4.1.3 and 4.1.4 give the precision, recall and f-measure for each of the methods 

and the 2 classes that is, class ‘A’ and ‘B’. 

 

Fig 4.1.2: Precision, Recall and F-measure for Decision Tree 
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Fig 4.1.3: Precision, Recall and F-measure for Logistic Regression 

 

Fig 4.1.4: Precision, Recall and F-measure for Naïve Bayes 
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In Appendix-A Table 4.1.1, 4.1.2 and 4.1.3 lists the precision, recall and f-measure for the 

figures 4.1.2, 4.1.3 and 4.1.4. Due to the small size of the data set we have 9 iterations for this set 

instead of 10. A description of each table header is given in section 4. 

4.2-Adult 

 This data set has 4000 cases and 122 features. 2000 cases were used for training and the 

remaining 2000 cases were used for testing. According to UCI Machine Learning repository data 

set information, the Extraction was done by Barry Becker from the 1994 Census database. A set 

of reasonably clean records was extracted using the following conditions: ((AAGE>16) && 

(AGI>100) && (AFNLWGT>1) && (HRSWK>0)). Prediction task is to determine whether a 

person makes over 50K a year. If one consider 0 as not making 50K a year and 1 as making 50K 

a year, class ‘A’ represents 0 and class “B” represents 1. Both normal and fuzzy training was 

done for this data set. The testing was then done using the normal model and the fuzzy model 

with the testing set. Figure 4.2.1 gives the mean absolute error (MAE) variation for the 3 

methods, Decision Tree, Logistic Regression and Naïve Bayes: 
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Fig 4.2.1: MAE vs. Number of Cases graph for DT, LR and NB (normal vs. fuzzy) 

Figures 4.2.2, 4.2.3 and 4.2.4 give the precision, recall and f-measure for each of the methods 

and the 2 classes that is, class ‘A’ and ‘B’. 

 

Fig 4.2.2: Precision, Recall and F-measure for Decision Tree 
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Fig 4.2.3: Precision, Recall and F-measure for Logistic Regression 

 

Fig 4.2.4: Precision, Recall and F-measure for Naïve Bayes 

In Appendix-A Table 4.2.1, 4.2.2 and 4.2.3 lists the precision, recall and f-measure for the 

figures 4.2.2, 4.2.3 and 4.2.4. A description of each table header is given in section 4. 
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4.3-Mushroom 

 This data set has 7916 cases and 112 features. 4000 cases were used for training and the 

remaining 3916 cases were used for testing. According to UCI Machine Learning repository data 

set information, this data set includes descriptions of hypothetical samples corresponding to 23 

species of gilled mushrooms in the Agaricus and Lepiota Family (pp. 500-525). Each species is 

identified as definitely edible, definitely poisonous, or of unknown edibility and not 

recommended. This latter class was combined with the poisonous one. The Guide clearly states 

that there is no simple rule for determining the edibility of a mushroom; no rule like ``leaflets 

three, let it be'' for Poisonous Oak and Ivy. This dataset was then taken by LIBSVM and they 

performed a preprocessing on the data. According to LIBSVM preprocessing information, Each 

nominal attribute was expanded into several binary attributes. The original attribute #12 had 

missing values and was not used. This research has used the LIBSVM version of the data set 

where the binary labels are 1 and 2. The other consideration was that, class ‘A’ represents 2 and 

class “B” represents 1. Both normal and fuzzy training was done for this data set. The testing 

was then done using the normal model and the fuzzy model with the testing set. Figure 4.3.1 

gives the mean absolute error (MAE) variation for the 3 methods, Decision Tree, Logistic 

Regression and Naïve Bayes: 
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Fig 4.3.1: MAE vs. Number of Cases graph for DT, LR and NB (normal vs. fuzzy) 

Figures 4.3.2, 4.3.3 and 4.3.4 give the precision, recall and f-measure for each of the methods 

and the 2 classes that is, class ‘A’ and ‘B’. 

 

Fig 4.3.2: Precision, Recall and F-measure for Decision Tree 
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Fig 4.3.3: Precision, Recall and F-measure for Logistic Regression 

 

Fig 4.3.4: Precision, Recall and F-measure for Naïve Bayes 
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In Appendix-A Table 4.3.1, 4.3.2 and 4.3.3 lists the precision, recall and f-measure for the 

figures 4.3.2, 4.3.3 and 4.3.4. A description of each table header is given in section 4. 

4.4-Telecom Churn 

 This data set has 5000 cases and 13 features. 2500 cases were used for training and the 

remaining 2500 cases were used for testing. This data set represents customers and their calling 

information such as number of night calls, day call and evening calls. Also information like 

international calls and average number of minutes used for all of the above for a period of one 

month. Some of these customers at some point discontinued the telecom service. Given new 

customer information, the goal is to predict how likely they are to discontinue the service at 

some point are. If one consider “False” as people who are still continuing the service and “True” 

as people who have discontinued the service, in this discussion we refer to “False” as class ‘A’ 

and “True” as class ‘B’. Both normal and fuzzy training was done for this data set. The testing 

was then done using the normal model and the fuzzy model with the testing set. Figure 4.1.1 

gives the mean absolute error (MAE) variation for the 3 methods, Decision Tree, Logistic 

Regression and Naïve Bayes: 
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Fig 4.4.1: MAE vs. Number of Cases graph for DT, LR and NB (normal vs. fuzzy) 

Figures 4.4.2, 4.4.3 and 4.4.4 give the precision, recall and f-measure for each of the methods 

and the 2 classes that is, class ‘A’ and ‘B’. 

 

Fig 4.4.2: Precision, Recall and F-measure for Decision Tree 
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Fig 4.4.3: Precision, Recall and F-measure for Logistic Regression 

 

Fig 4.4.4: Precision, Recall and F-measure for Naïve Bayes 
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In Appendix-A Table 4.4.1, 4.4.2 and 4.4.3 lists the precision, recall and f-measure for the 

figures 4.4.2, 4.4.3 and 4.4.4. A description of each table header is given in section 4. 

4.5-Result Summary 

 Table 4.5 shows the summary of accuracy for all the three classifiers. 

Table 4.5: Summary of Accuracy (%) 

Classifiers 

 

Data Set 

DT FDT LR FLR NB FNB 

Internet 

Advertisement 
92.4 93.3 65.6 79.1 40.2 40.8 

Adult 77.2 77.1 52.7 79.6 76.7 79.64 

Mushroom 84.9 85.7 91.9 88.1 83.9 82.4 

Telecom 

Churn 
79.2 81.5 34.7 85.6 87.9 90.1 

 

5-Discussion 

 Figure 4.1.1 represents the mean absolute error for the Internet advertisement data set. 

The green line shows the performance of the algorithms without using fuzzy labeling for the 

training set whereas the red line is the performance of the same algorithm after using fuzzy 

labeling. As one can see, testing error for all the 3 methods i.e. Decision Tree, Logistic 

Regression and Naive Bayes have gone down using the fuzzy logic technique. In figure 4.1.1, 

from the graphs, it is also clear that number of cases do not have an aggressive influence on the 

training error. Nevertheless, on average, the error rate decreases as the number of cases increases 

but exceptions can be observed with occasional spikes in the graph. Also, in figure 4.1.1, for 

Logistic Regression, the training error increases with increase in number of cases. This suggests 

that the model is finding it hard to predict the right set of parameters for the training set. This 

projects into the testing set and we can see a high error rate for testing compared to the training 
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error. The testing error for Naïve Bayes is very high for both with or without FLIC. Although, 

use of FLIC lowers the error to some extent, overall, the error rate is about 50% on average. 

With the Internet Advertisement data set, Decision Tree performs the best with an error rate of 

only about 5% on average.  

 Tables 4.1.1, 4.1.2 and 4.1.3 in Appendix-A list precision, recall and f-measure for 

Internet Advertisement data set. The graphs for the two classes along with precision, recall and f-

measure are also given in figure 4.1.2, 4.1.3 and 4.1.4. For Decision Tree in figure 4.1.2; all the 

three measure on average shows improvement after the use of FLIC (the red line). As far as 

Logistic Regression is concerned, for Internet Advertisement, precision and f-measure on 

average improves after using FLIC. Recall for class 'B' in Logistic Regression seems to fall 

slightly on average. This is an indication that, for the data set Internet Advertisement, even 

though FLIC with Logistic Regression classifies class 'B' more accurately, the number of class 

'B' cases being classified falls. In other word, the significance of accuracy of class 'B' falls with 

increase in number of cases. This fall in recall however is not too significant as the f-measure on 

average improves; which suggests that the fall in recall is more than compensated by the 

improvement in precision for class precision 'B'. In case of Naïve Bayes even though fuzzy 

labeling does better than normal labeling for most of the cases the precision, recall and f-measure 

for this data set is significantly low. 

 Figure 4.2.1 represents the graph of MAE vs. Number of cases for the Adult data set. One 

can see that using fuzzy labeling for Logistic Regression and Naïve Bayes improves the error 

rate significantly whereas Decision Trees with fuzzy labeling even though improves the 

performance, the difference is not as significant as Logistic Regression. An interesting 

observation is; the training error for Decision Tree goes down as it sees more cases where as for 
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Logistic Regression and Naïve Bayes, the training error goes up with increase in number of 

cases. The testing error however steadily goes down with increase in number of training cases. 

This is an indication that the models have generalized well. The most interesting observation 

here perhaps is the Logistic Regression training and testing error curve. For this data set, Logistic 

Regression training and testing error goes up as the number of cases increases which is an 

indication that in general, Logistic Regression is not a good choice for this data set. But using 

FLIC, the error rate drops down significantly and makes FLR the best choice as a classifier 

among the 3 classifiers. This is a very positive indication for FLIC as this is a strong suggestion 

that FLIC is helping the classifier to learn with misclassification and generalize better.  

 In figure 4.2.2, one can observe that Decision Tree precision, recall and f-measure 

remains almost constant before and after using FLIC. For the Adult data set, FLIC does not have 

much effect on the performance of Decision Tree. In figure 4.2.3 i.e. for Logistic Regression, an 

interesting observation is, precision for class 'A' goes down whereas precision for class 'B' goes 

up. On the other hand, recall for class 'A' increases whereas recall for class 'B' falls. In other 

word, a lot more class 'A' cases are being identified from the entire population but the 

classification is not as accurate and on the other hand, although fewer class 'B' cases are being 

identified, the accuracy of those being identified are much higher. The f-measure is an interesting 

measure as it tells, this imbalance in precision and recall is being over-compensated and the 

overall performance after using FLIC is better than normal Logistic Regression. Also, for this 

data set, if one goes to table 4.1, one can see that this data set has a class asymmetry with only 

one fourth of all cases in class ‘B’. Class asymmetry is another problem that cannot always be 

improved using the normal method. This is also an indication that FLIC particularly does better 

in case of problems with class asymmetry. Looking at graph 4.2.4, one can say that precision, 
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recall and f-measure for Naïve Bayes with FLIC does better than normal Naïve Bayes, but the 

improvement is not as significant as Logistic Regression. Looking at the graph, one can say that, 

using Naive Bayes, Class 'A' seems to be doing better than class 'B', particularly, for this Adult 

data set. 

 Figure 4.3.1 represents the graph of MAE vs. number of cases for the Mushroom data set. 

This data set has almost equal number of class ‘A’ and class ‘B’ cases. As one can see, the 

performance of Decision Tree using FLIC has improved but has some unusual spikes. This 

indicates the performance may not be stable. The performance of Logistic Regression and Naïve 

Bayes has gone down using FLIC. This data set is an example where FLIC has not generalized 

well. An interesting observation here is that, the training and testing error for all the methods are 

already significantly low. At this low error rate, FLIC may not have a lot to contribute. In other 

word, FLIC works well where the misclassification rate is significantly high. This data set is a 

good example where the models without FLIC have already learned to generalize. This is also 

indicated by the zero training error both for Decision Tree and Logistic Regression in figure 

4.3.1. Figure 4.3.2, 4.3.3 and 4.3.4 shows the precision, recall and error rate for the 3 methods on 

Mushroom data set. As one can clearly see, the algorithms on average perform better without 

FLIC. 

 Figure 4.4.1 represents the MAE vs. number of cases for the Telecom Churn data set. 

Again as one can see the methods with FLIC has lower testing error than methods without FLIC. 

Logistic Regression has the most significant improvement in error rate which is from about 60% 

average error rate using normal method to only 12%-13% error using FLIC. Decision Tree and 

Naïve Bayes does equally well with Naïve Bayes giving one of the lowest error rate for the 

Telecom Churn data set.  
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 The precision, recall and f-measure for the 3 methods on this data set are given in graph 

4.4.2, 4.4.3 and 4.4.4. For Decision Tree the precision, recall and f-measure on average does 

slightly better when FLIC is used. For Logistic Regression, the precision for class ‘B’ increases 

but the precision for class ‘A’ decreases slightly. As far as recall is concerned, for Logistic 

Regression, one very interesting observation is, the recall for class ‘A’ increases significantly 

after using FLIC but the recall for class ‘B’ on the other hand decreases significantly. This 

means, even though the model with FLIC is able to identify class ‘B’ with higher precision, only 

a handful of class ‘B’ cases are being identified from the set of all class ‘B’ cases. This drop in 

recall for class 'B' is not compensated by precision and so the f-measure for class 'B' falls using 

FLIC. On the other hand, class 'A' does significantly better overall. In case of Naïve Bayes, the 

precision, recall and f-measure do better using FLIC for all cases. For the Telecom Churn data 

set, Naïve Bayes has the best overall performance. 

6-Conclusion 

 In this research, it has been shown that Fuzzy Logic and Interval Clustering (FLIC) 

technique can be generalized and can be integrated with existing machine learning algorithms as 

a preprocessor to improve prediction accuracy. Results from the experiments show positive 

evidence of FLIC’s capability to improve the prediction accuracy for Decision Tree, Logistic 

Regression and Naive Bayes. This work also shows that FLIC performs particularly well for 

problems with class asymmetry which is a common issue in most binary classification problems. 

This method is independent of case size and also independent of number of features, which 

makes this method very flexible to implement. For data sets where the feature space is highly 

overlapping, FLIC works particularly well by learning with misclassification. This method 

requires no change in the existing machine learning algorithms and hence can be integrated with 
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most existing machine learning system with ease. Overall, this research indicated that, FLIC can 

become a very useful and transparent tool for most existing popular machine learning techniques. 
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Appendix A: Tables for section 4 

Internet Advertise 

Table 4.1.1: Decision Tree 

Sample size Precision Recall F-measure Binary labels Fuzzy/Normal 

(F/N) 

1 

0.98 0.92 0.95 A 
N 

0.70 0.90 0.79 B 

0.98 0.93 0.96 A 
F 

0.73 0.92 0.82 B 

2 

0.98 0.93 0.95 A 
N 

0.71 0.89 0.79 B 

0.98 0.93 0.96 A 
F 

0.72 0.91 0.80 B 

3 

0.98 0.93 0.95 A 
N 

0.71 0.89 0.79 B 

0.98 0.94 0.96 A 
F 

0.75 0.92 0.82 B 

4 

0.98 0.93 0.95 A 
N 

0.71 0.89 0.79 B 

0.98 0.94 0.96 A 
F 

0.75 0.92 0.83 B 

5 

0.98 0.93 0.95 A 
N 

0.71 0.89 0.79 B 

0.99 0.94 0.96 A 
F 

0.74 0.93 0.82 B 

6 

0.98 0.93 0.95 A 
N 

0.71 0.89 0.79 B 

0.98 0.93 0.95 A 
F 

0.71 0.91 0.79 B 

7 

0.98 0.93 0.96 A 
N 

0.73 0.89 0.80 B 

0.98 0.94 0.96 A 
F 

0.76 0.91 0.83 B 

8 

0.98 0.93 0.95 A 
N 

0.71 0.90 0.80 B 

0.98 0.94 0.96 A 
F 

0.74 0.92 0.82 B 

9 

0.98 0.94 0.96 A 
N 

0.73 0.90 0.81 B 

0.98 0.94 0.96 A 
F 

0.75 0.91 0.82 B 
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Table 4.1.2: Logistic Regression 

Sample size Precision Recall F-measure Binary labels Fuzzy/Normal 

(F/N) 

1 

0.95 0.65 0.77 A 
N 

0.31 0.81 0.45 B 

0.96 0.77 0.85 A 
F 

0.41 0.82 0.55 B 

2 

0.95 0.63 0.76 A 
N 

0.31 0.84 0.45 B 

0.96 0.77 0.85 A 
F 

0.42 0.84 0.56 B 

3 

0.95 0.64 0.76 A 
N 

0.31 0.83 0.45 B 

0.96 0.76 0.84 A 
F 

0.40 0.83 0.54 B 

4 

0.95 0.65 0.77 A 
N 

0.31 0.83 0.45 B 

0.96 0.78 0.86 A 
F 

0.42 0.83 0.56 B 

5 

0.95 0.58 0.72 A 
N 

0.28 0.85 0.43 B 

0.97 0.79 0.87 A 
F 

0.44 0.86 0.58 B 

6 

0.96 0.62 0.75 A 
N 

0.31 0.86 0.45 B 

0.96 0.79 0.87 A 
F 

0.44 0.84 0.58 B 

7 

0.96 0.60 0.74 A 
N 

0.30 0.87 0.44 B 

0.97 0.78 0.86 A 
F 

0.44 0.86 0.58 B 

8 

0.97 0.61 0.75 A 
N 

0.31 0.89 0.46 B 

0.97 0.79 0.87 A 
F 

0.45 0.88 0.60 B 

9 

0.96 0.60 0.74 A 
N 

0.30 0.89 0.45 B 

0.97 0.80 0.87 A 
F 

0.45 0.87 0.60 B 
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Table 4.1.3: Naïve Bayes 

Sample size Precision Recall F-measure Binary labels Fuzzy/Normal 

(F/N) 

1 

0.79 0.33 0.47 A 
N 

0.14 0.55 0.22 B 

0.79 0.33 0.47 A 
F 

0.14 0.55 0.22 B 

2 

0.80 0.35 0.48 A 
N 

0.14 0.55 0.23 B 

0.80 0.35 0.49 A 
F 

0.14 0.56 0.23 B 

3 

0.82 0.36 0.50 A 
N 

0.16 0.60 0.25 B 

0.83 0.37 0.51 A 
F 

0.16 0.62 0.25 B 

4 

0.81 0.35 0.49 A 
N 

0.15 0.58 0.23 B 

0.82 0.35 0.49 A 
F 

0.15 0.60 0.24 B 

5 

0.83 0.38 0.52 A 
N 

0.16 0.60 0.25 B 

0.84 0.38 0.52 A 
F 

0.16 0.63 0.26 B 

6 

0.82 0.37 0.51 A 
N 

0.16 0.59 0.25 B 

0.84 0.37 0.52 A 
F 

0.16 0.63 0.26 B 

7 

0.83 0.39 0.53 A 
N 

0.16 0.61 0.26 B 

0.84 0.39 0.53 A 
F 

0.17 0.63 0.27 B 

8 

0.83 0.38 0.52 A 
N 

0.16 0.61 0.25 B 

0.84 0.38 0.52 A 
F 

0.17 0.64 0.26 B 

9 

0.84 0.39 0.53 A 
N 

0.17 0.63 0.27 B 

0.86 0.39 0.54 A 
F 

0.18 0.67 0.28 B 

 

 

 



 

 

63 | P a g e  

Adult 

Table 4.2.1: Decision Tree 

Sample size Precision Recall F-measure Binary labels Fuzzy/Normal 

(F/N) 

1 

0.84 0.85 0.85 A 
N 

0.54 0.52 0.53 B 

0.84 0.86 0.85 A 
F 

0.54 0.51 0.52 B 

2 

0.85 0.85 0.85 A 
N 

0.55 0.54 0.54 B 

0.85 0.85 0.85 A 
F 

0.54 0.54 0.54 B 

3 

0.85 0.84 0.85 A 
N 

0.54 0.55 0.54 B 

0.85 0.85 0.85 A 
F 

0.54 0.53 0.54 B 

4 

0.85 0.85 0.85 A 
N 

0.54 0.53 0.54 B 

0.85 0.85 0.85 A 
F 

0.55 0.53 0.54 B 

5 

0.85 0.85 0.85 A 
N 

0.55 0.54 0.54 B 

0.84 0.85 0.85 A 
F 

0.54 0.53 0.54 B 

6 

0.85 0.85 0.85 A 
N 

0.54 0.54 0.54 B 

0.85 0.84 0.84 A 
F 

0.53 0.55 0.54 B 

7 

0.85 0.85 0.85 A 
N 

0.55 0.55 0.55 B 

0.85 0.85 0.85 A 
F 

0.55 0.56 0.55 B 

8 

0.85 0.85 0.85 A 
N 

0.55 0.55 0.55 B 

0.85 0.85 0.85 A 
F 

0.54 0.54 0.54 B 

9 

0.85 0.85 0.85 A 
N 

0.55 0.55 0.55 B 

0.85 0.85 0.85 A 
F 

0.54 0.55 0.55 B 

10 

0.85 0.85 0.85 A 
N 

0.54 0.55 0.55 B 

0.85 0.85 0.85 A 
F 

0.54 0.54 0.54 B 

 

 



 

 

64 | P a g e  

Table 4.2.2: Logistic Regression 

Sample size Precision Recall F-measure Binary labels Fuzzy/Normal 

(F/N) 

1 

0.90 0.56 0.69 A 
N 

0.38 0.82 0.52 B 

0.84 0.86 0.85 A 
F 

0.55 0.51 0.53 B 

2 

0.93 0.47 0.62 A 
N 

0.36 0.90 0.51 B 

0.84 0.88 0.86 A 
F 

0.59 0.50 0.54 B 

3 

0.94 0.37 0.53 A 
N 

0.33 0.93 0.49 B 

0.84 0.89 0.87 A 
F 

0.61 0.49 0.54 B 

4 

0.95 0.40 0.56 A 
N 

0.34 0.94 0.50 B 

0.85 0.89 0.87 A 
F 

0.62 0.51 0.56 B 

5 

0.95 0.38 0.55 A 
N 

0.34 0.94 0.50 B 

0.84 0.90 0.87 A 
F 

0.62 0.50 0.55 B 

6 

0.95 0.34 0.50 A 
N 

0.32 0.95 0.48 B 

0.85 0.90 0.87 A 
F 

0.62 0.51 0.56 B 

7 

0.96 0.36 0.52 A 
N 

0.33 0.95 0.49 B 

0.84 0.90 0.87 A 
F 

0.62 0.50 0.55 B 

8 

0.96 0.35 0.51 A 
N 

0.33 0.96 0.49 B 

0.84 0.90 0.87 A 
F 

0.63 0.50 0.56 B 

9 

0.96 0.35 0.51 A 
N 

0.33 0.96 0.49 B 

0.85 0.90 0.87 A 
F 

0.63 0.51 0.56 B 

10 

0.96 0.35 0.51 A 
N 

0.33 0.96 0.49 B 

0.85 0.90 0.87 A 
F 

0.62 0.51 0.56 B 

 

 

 



 

 

65 | P a g e  

Table 4.2.3: Naïve Bayes 

Sample size Precision Recall F-measure Binary labels Fuzzy/Normal 

(F/N) 

1 

0.89 0.75 0.82 A 
N 

0.49 0.73 0.59 B 

0.84 0.85 0.85 A 
F 

0.54 0.53 0.54 B 

2 

0.90 0.76 0.82 A 
N 

0.51 0.74 0.60 B 

0.85 0.87 0.86 A 
F 

0.58 0.53 0.55 B 

3 

0.90 0.77 0.83 A 
N 

0.52 0.75 0.62 B 

0.85 0.88 0.87 A 
F 

0.61 0.54 0.57 B 

4 

0.91 0.77 0.83 A 
N 

0.52 0.77 0.62 B 

0.86 0.88 0.87 A 
F 

0.60 0.56 0.58 B 

5 

0.91 0.77 0.83 A 
N 

0.53 0.76 0.62 B 

0.85 0.88 0.87 A 
F 

0.61 0.54 0.57 B 

6 

0.91 0.77 0.83 A 
N 

0.53 0.77 0.63 B 

0.85 0.88 0.87 A 
F 

0.61 0.55 0.58 B 

7 

0.91 0.77 0.84 A 
N 

0.53 0.77 0.63 B 

0.86 0.88 0.87 A 
F 

0.61 0.55 0.58 B 

8 

0.91 0.77 0.84 A 
N 

0.53 0.77 0.63 B 

0.86 0.89 0.87 A 
F 

0.62 0.55 0.58 B 

9 

0.91 0.78 0.84 A 
N 

0.54 0.77 0.63 B 

0.86 0.89 0.87 A 
F 

0.63 0.56 0.59 B 

10 

0.91 0.77 0.84 A 
N 

0.53 0.78 0.63 B 

0.86 0.89 0.87 A 
F 

0.63 0.56 0.59 B 

 



 

 

66 | P a g e  

Mushroom 

Table 4.3.1: Decision Tree 

Sample size Precision Recall F-measure Binary labels Fuzzy/Normal 

(F/N) 

1 

0.94 0.77 0.85 A 
N 

0.80 0.95 0.87 B 

0.91 0.77 0.83 A 
F 

0.79 0.92 0.85 B 

2 

0.96 0.76 0.85 A 
N 

0.79 0.96 0.87 B 

0.94 0.76 0.84 A 
F 

0.79 0.95 0.86 B 

3 

0.94 0.76 0.84 A 
N 

0.79 0.95 0.86 B 

0.93 0.76 0.84 A 
F 

0.79 0.94 0.86 B 

4 

0.94 0.76 0.84 A 
N 

0.79 0.95 0.86 B 

0.97 0.78 0.86 A 
F 

0.81 0.97 0.88 B 

5 

0.94 0.76 0.84 A 
N 

0.79 0.95 0.86 B 

0.94 0.77 0.85 A 
F 

0.80 0.95 0.87 B 

6 

0.92 0.76 0.83 A 
N 

0.79 0.93 0.85 B 

0.93 0.77 0.84 A 
F 

0.80 0.94 0.86 B 

7 

0.91 0.76 0.83 A 
N 

0.78 0.92 0.85 B 

0.94 0.77 0.85 A 
F 

0.80 0.95 0.87 B 

8 

0.94 0.75 0.84 A 
N 

0.79 0.95 0.86 B 

0.94 0.76 0.84 A 
F 

0.79 0.95 0.86 B 

9 

0.94 0.76 0.84 A 
N 

0.79 0.95 0.86 B 

0.96 0.77 0.85 A 
F 

0.80 0.96 0.87 B 

10 

0.92 0.75 0.83 A 
N 

0.78 0.94 0.85 B 

0.95 0.77 0.85 A 
F 

0.80 0.95 0.87 B 

 



 

 

67 | P a g e  

Table 4.3.2: Logistic Regression 

Sample size Precision Recall F-measure Binary labels Fuzzy/Normal 

(F/N) 

1 

1.00 0.83 0.91 A 
N 

0.85 1.00 0.92 B 

0.87 0.79 0.83 A 
F 

0.80 0.88 0.84 B 

2 

1.00 0.84 0.91 A 
N 

0.86 1.00 0.92 B 

0.87 0.84 0.86 A 
F 

0.84 0.87 0.86 B 

3 

1.00 0.85 0.92 A 
N 

0.86 1.00 0.93 B 

0.90 0.84 0.87 A 
F 

0.85 0.90 0.87 B 

4 

1.00 0.85 0.92 A 
N 

0.86 1.00 0.92 B 

0.92 0.84 0.88 A 
F 

0.85 0.93 0.89 B 

5 

1.00 0.84 0.91 A 
N 

0.86 1.00 0.92 B 

0.93 0.84 0.88 A 
F 

0.85 0.94 0.89 B 

6 

1.00 0.84 0.91 A 
N 

0.86 1.00 0.92 B 

0.94 0.84 0.89 A 
F 

0.85 0.94 0.89 B 

7 

1.00 0.85 0.92 A 
N 

0.86 1.00 0.93 B 

0.96 0.85 0.90 A 
F 

0.86 0.96 0.90 B 

8 

1.00 0.85 0.92 A 
N 

0.86 1.00 0.93 B 

0.95 0.84 0.89 A 
F 

0.85 0.95 0.90 B 

9 

1.00 0.85 0.92 A 
N 

0.86 1.00 0.93 B 

0.93 0.84 0.89 A 
F 

0.85 0.94 0.89 B 

10 

1.00 0.85 0.92 A 
N 

0.86 1.00 0.93 B 

0.94 0.84 0.89 A 
F 

0.85 0.95 0.90 B 

 

 



 

 

68 | P a g e  

Table 4.3.3: Naïve Bayes 

Sample size Precision Recall F-measure Binary labels Fuzzy/Normal 

(F/N) 

1 

0.82 0.76 0.79 A 
N 

0.77 0.82 0.79 B 

0.81 0.74 0.77 A 
F 

0.75 0.82 0.78 B 

2 

0.93 0.75 0.83 A 
N 

0.78 0.94 0.85 B 

0.94 0.73 0.82 A 
F 

0.77 0.95 0.85 B 

3 

0.93 0.74 0.83 A 
N 

0.78 0.94 0.85 B 

0.93 0.73 0.82 A 
F 

0.77 0.94 0.85 B 

4 

0.94 0.73 0.82 A 
N 

0.77 0.95 0.85 B 

0.93 0.71 0.80 A 
F 

0.76 0.94 0.84 B 

5 

0.96 0.73 0.83 A 
N 

0.78 0.97 0.86 B 

0.94 0.71 0.81 A 
F 

0.76 0.95 0.84 B 

6 

0.96 0.73 0.83 A 
N 

0.77 0.97 0.86 B 

0.94 0.71 0.81 A 
F 

0.76 0.95 0.84 B 

7 

0.96 0.73 0.83 A 
N 

0.77 0.97 0.86 B 

0.95 0.70 0.81 A 
F 

0.76 0.96 0.85 B 

8 

0.96 0.73 0.83 A 
N 

0.77 0.97 0.86 B 

0.95 0.70 0.81 A 
F 

0.76 0.96 0.85 B 

9 

1.00 0.85 0.92 A 
N 

0.86 1.00 0.93 B 

0.93 0.84 0.89 A 
F 

0.85 0.94 0.89 B 

10 

0.96 0.72 0.83 A 
N 

0.77 0.97 0.86 B 

0.94 0.71 0.81 A 
F 

0.76 0.95 0.84 B 

 



 

 

69 | P a g e  

Telecom Churn 

Table 4.4.1: Decision Tree 

Sample size Precision Recall F-measure Binary labels Fuzzy/Normal 

(F/N) 

1 

0.88 0.90 0.89 A 
N 

0.32 0.28 0.30 B 

0.89 0.91 0.90 A 
F 

0.36 0.31 0.33 B 

2 

0.90 0.87 0.88 A 
N 

0.34 0.39 0.37 B 

0.89 0.89 0.89 A 
F 

0.36 0.36 0.36 B 

3 

0.89 0.82 0.85 A 
N 

0.26 0.37 0.30 B 

0.89 0.87 0.88 A 
F 

0.34 0.38 0.36 B 

4 

0.90 0.88 0.89 A 
N 

0.35 0.40 0.38 B 

0.90 0.89 0.90 A 
F 

0.39 0.39 0.39 B 

5 

0.90 0.86 0.88 A 
N 

0.34 0.44 0.38 B 

0.90 0.86 0.88 A 
F 

0.34 0.44 0.38 B 

6 

0.89 0.87 0.88 A 
N 

0.33 0.38 0.35 B 

0.90 0.90 0.90 A 
F 

0.41 0.39 0.40 B 

7 

0.90 0.87 0.88 A 
N 

0.34 0.41 0.37 B 

0.90 0.91 0.90 A 
F 

0.41 0.38 0.39 B 

8 

0.89 0.83 0.86 A 
N 

0.28 0.40 0.33 B 

0.90 0.85 0.87 A 
F 

0.31 0.41 0.36 B 

9 

0.89 0.84 0.87 A 
N 

0.31 0.41 0.35 B 

0.90 0.89 0.90 A 
F 

0.39 0.42 0.40 B 

10 

0.89 0.85 0.87 A 
N 

0.31 0.40 0.35 B 

0.90 0.88 0.89 A 
F 

0.38 0.41 0.40 B 

 



 

 

70 | P a g e  

Table 4.3.2: Logistic Regression 

Sample size Precision Recall F-measure Binary labels Fuzzy/Normal 

(F/N) 

1 

0.94 0.34 0.50 A 
N 

0.18 0.87 0.30 B 

0.88 0.96 0.92 A 
F 

0.48 0.20 0.28 B 

2 

0.91 0.39 0.55 A 
N 

0.18 0.77 0.29 B 

0.88 0.97 0.92 A 
F 

0.47 0.18 0.26 B 

3 

0.94 0.28 0.43 A 
N 

0.17 0.89 0.29 B 

0.88 0.97 0.92 A 
F 

0.48 0.19 0.27 B 

4 

0.97 0.17 0.29 A 
N 

0.16 0.97 0.28 B 

0.88 0.97 0.92 A 
F 

0.49 0.19 0.28 B 

5 

0.93 0.32 0.47 A 
N 

0.18 0.86 0.29 B 

0.88 0.97 0.92 A 
F 

0.52 0.18 0.27 B 

6 

0.91 0.31 0.46 A 
N 

0.17 0.83 0.28 B 

0.88 0.96 0.92 A 
F 

0.47 0.19 0.27 B 

7 

0.98 0.18 0.30 A 
N 

0.17 0.97 0.28 B 

0.88 0.97 0.92 A 
F 

0.52 0.19 0.28 B 

8 

0.98 0.17 0.28 A 
N 

0.16 0.98 0.28 B 

0.87 0.97 0.92 A 
F 

0.51 0.17 0.26 B 

9 

0.98 0.18 0.30 A 
N 

0.17 0.97 0.28 B 

0.88 0.97 0.92 A 
F 

0.52 0.19 0.28 B 

10 

0.95 0.21 0.34 A 
N 

0.17 0.93 0.28 B 

0.88 0.97 0.92 A 
F 

0.49 0.19 0.28 B 

 

 



 

 

71 | P a g e  

Table 4.3.3: Naïve Bayes 

Sample size Precision Recall F-measure Binary labels Fuzzy/Normal 

(F/N) 

1 

0.89 0.97 0.93 A 
N 

0.66 0.32 0.43 B 

0.91 0.97 0.94 A 
F 

0.71 0.43 0.54 B 

2 

0.89 0.98 0.93 A 
N 

0.67 0.29 0.40 B 

0.91 0.98 0.94 A 
F 

0.75 0.43 0.55 B 

3 

0.89 0.98 0.93 A 
N 

0.68 0.28 0.40 B 

0.91 0.98 0.94 A 
F 

0.76 0.40 0.53 B 

4 

0.89 0.98 0.93 A 
N 

0.68 0.29 0.40 B 

0.91 0.98 0.94 A 
F 

0.78 0.42 0.55 B 

5 

0.89 0.98 0.93 A 
N 

0.69 0.28 0.40 B 

0.91 0.98 0.94 A 
F 

0.80 0.41 0.54 B 

6 

0.89 0.98 0.93 A 
N 

0.71 0.28 0.40 B 

0.91 0.98 0.95 A 
F 

0.81 0.43 0.57 B 

7 

0.89 0.98 0.93 A 
N 

0.70 0.28 0.40 B 

0.91 0.98 0.95 A 
F 

0.80 0.44 0.57 B 

8 

0.89 0.98 0.93 A 
N 

0.69 0.28 0.39 B 

0.91 0.99 0.95 A 
F 

0.83 0.42 0.56 B 

9 

0.89 0.98 0.93 A 
N 

0.70 0.28 0.40 B 

0.91 0.98 0.95 A 
F 

0.82 0.44 0.58 B 

10 

0.89 0.98 0.93 A 
N 

0.70 0.29 0.41 B 

0.91 0.98 0.95 A 
F 

0.81 0.43 0.56 B 

 


