
 
  
 

i 
 
 

Evaluation of Aerogel Composite Insulations by 

Characterization and Experimental Methods 

 

By 

Chotangada Gautham Somana 

 

B.Eng., R.V College of Engineering, Bangalore, India, 2012  

 

 
A thesis submitted to the graduate degree program in the Department of Civil, 

Environmental, and Architectural Engineering and the Graduate Faculty of the University of 

Kansas in partial fulfillment of the requirements for the degree of Master of Science in 

Architectural Engineering. 

 

 

 

            
 ____________________________________________  

                                                                                         Mario A. Medina, Ph.D., P.E., Chairperson  

 

____________________________________________  
                                                                                         Robert L. Parsons, Ph.D., P.E., Member  

 

                                                ____________________________________________  
                                                                                         C. Bryan Young, Ph.D., P.E., Member  
 

 

Date Defended: ______________________ 

 



 
  
 

ii 
 
 

 

 

 

The thesis committee for Chotangada Gautham Somana 

certifies that this is the approved version of the following thesis: 

 

 

 

Evaluation of Aerogel Composite Insulations by Characterization 

and Experimental Methods 

 

 

 

                                                               ______________________________________ 
                                                               Mario A. Medina, Ph.D., P.E., Chairperson    

   

 

                                                                      Date approved: _______________________ 

 



 
  
 

iii 
 
 

ABSTRACT 

 The purpose of this thesis was to study aerogel blankets as building insulation. 

These blankets may potentially have lower thermal conductivities than conventional 

insulations. As such, two types of aerogel blankets were characterized and evaluated 

experimentally.  

 This thesis documents the steps that were taken to analyze and understand the 

thermal performance of aerogel blankets for building insulation application. The results 

were obtained over one summer season under Midwestern U.S.A. weather conditions.  

 It was found that the aerogel blankets reduced the peak heat fluxes by up to 22% 

and the daily heat flows by up to 35% when compared to a non-insulated wall. The 

aerogel blankets produced an average of 5% reduction in peak heat flux and an average 

daily heat flow reduction of 16% when compared to conventional insulation. The 

aerogel blankets did not perform as well as aerogel monoliths and showed marginal 

differences in heat flux reductions when compared to conventional insulation. 

 It was concluded that the macro structure of the aerogel composites, quantity of 

aerogel, and granular size can influence the thermal conductivity of the blankets. 

Methods by which composite aerogels may be further developed and researched were 

noted. 
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Chapter 1 
Introduction 

  As the consumption of energy increases rapidly, especially in developing 

countries like India and China, energy conservation technologies and efforts continue to 

gain momentum. The building sector consumes more than one-fourth of the total 

energy worldwide. This amount is expected to increase in the coming years, as 

urbanization becomes the norm around the world [1]. The problems associated with an 

increase in energy production are two-fold: 1) the finite nature of conventional energy 

resources and 2) the adverse effects of generating useful energy; including pollution and 

global warming. 

The burning of fossil fuels is a major contributor of carbon dioxide, methane, and 

other pollutants which aggravate greenhouse effects. It is estimated that more than 70% 

of all worldwide electrical energy is produced using fossil fuels [2]. Fossil fuels, namely, 

petroleum, coal, and natural gas are a finite resource. They are a dense form of energy 

and take millions of years to produce. Based on proven-reserves of fossil fuels and at 

the current rate of consumption these may last for about 100 years [3]. Global warming 

is an issue of concern. For example, in the United States, ambient air temperatures 

recorded for the July 2011 through June 2012 period exceeded previously collected 

temperatures [4]. Global warming is seen as an impact of the increase in levels of 

greenhouse gases (e.g., CO2, N2O, CH4, and others).  

There is a growing shift in attitude towards reducing energy consumption as 

opposed to meeting its demand. By using thermal insulation in buildings, primarily in 
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high energy consumption applications like space heating and cooling, the burning of 

fossil fuels can be reduced, which can assist towards reaching the goal of having 

buildings that are low energy consuming. Currently, space heating and cooling, together 

with domestic hot water are estimated to account for roughly half of all global energy 

consumption in buildings [5]. In an effort to cut down on energy gains and losses 

through building enclosures, efficient building thermal insulation has been considered. 

To make traditional building insulation materials reduce the most heat transfer across 

building enclosures, thicker walls would be needed in which more layers of insulating 

material would be used. This would reduce usable work and living spaces and is often 

not as effective as conceived, largely because of the compression created by adding 

extra insulation. 

Aerogel since its conception in the 1930’s has been a potential solution to the 

heat gain and loss problem between systems and their environments. Having a thermal 

resistance a number of times that of its traditional counterparts [6], it can lead to thinner 

insulation layers. In addition, being lighter, aerogel-containing insulation becomes easier 

to install and to handle in buildings. Although in the development of aerogels a majority 

of its cost have been reduced by switching to cheaper production methods and 

materials, for aerogels to be viable as a building insulation it must be commercialized 

and produced on a larger scale. The manufacturing process of silica aerogels is 

explained in section 1.2.2. 

An evaluation of thermal enhancement of building enclosures using aerogels is 

required. This research project addresses the use of aerogels as an effective and more 

flexible thermal insulation.  
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1.1 Thermal insulation 

Heat transfer occurs when energy is transmitted as a result of temperature 

difference. Humans have for time immemorial used materials to protect themselves 

from the environment in the form of clothing and shelter.  The use of material in 

enclosures, as a separate insulating material is not a new concept, often in rural areas 

around the world, straw, mud, cotton and wool are used as thermal insulation. There are 

a number of materials that are in common use in the building industry and some are 

listed in Table 1. 

Table 1 
Properties of commonly used thermal insulations [7]. 
Form   Material Density Thermal 

conductivity     (Kg/m
3
) (W/mK) 

Blankets: Batts or rolls Fiberglass  12-56 0.033-0.04 

 
Rockwool  
 

40–200 0.037 

 
Polyethylene 35–40 0.041 

  
   

Loose-fill blown-in or 
poured in 

Fiberglass  10–48 0.03-0.038 

 
Rockwool  

 
0.004 

 
Cellulose  24–36 0.046-0.054 

 
Perlite  32–176 0.004-0.006 

 
Vermiculite 64–130 0.063-0.068 

  
   

Rigid Board Fiberglass  24–112 0.032-0.035 

 
Expanded Polystyrene  16–35 0.037-0.038 

 
Extruded Polystyrene  26–45 0.03-0.032 

 

Polyurethane and 
Polyisocyanurate 

40–55 
 
64-130 

0.023 
 
0.063-0.068 Vermiculite 
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Sprayed-in- place Cellulose  24–36 0.046-0.054 

Foamed in place 
 

 
40–55 
 

0.023 
 

Polyurethane and 
Polyisocyanurate 

 
Reflective systems Aluminized thin sheets   Reduces only 

radiant heat 
transfer 

    Ceramic coatings    1.25 Radiation control 
      Note: Thermal conductivity varies with material density and thickness as well as temperature and moisture 

content. 
 

The idea of using thermal insulation as a building enclosure layer is to save on 

energy consumption by preventing heat gain or loss and maintaining constant indoor 

air and surface temperatures. This is possible by the use of materials that have low 

conduction values. Thermal transport by conduction is the result of atomic vibrations. In 

general, materials that are denser, having a closer lattice structure, are better thermal 

conductors. Convection is the heat transfer by a combination of conduction and the 

flow of a fluid. A key feature of thermal insulation is its ability to reduce convective flows 

by restricting the motion of air within building enclosures. Within buildings, radiation 

thermal transport is the result of emitted energy in the infrared region of the 

electromagnetic spectrum.  

Most kinds of thermal insulations work in a similar way. They trap air or other 

gases that have low thermal conductivities, minimize convective flow, and hinder 

radiation from being transmitted by scattering or absorbing it. In the building industry, 

thermal insulation is rated by R-value. This is a measure of thermal resistance which in 

turn is a function of material thermal conductivity and has units of m2K/W. For 

illustration purpose, Fig. 1 shows a wall section, and its corresponding components and 

thermal variables. 
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Fig. 1. Wall section showing its components and variables. 

 

In Eq. (1.1), ∆x is the width of the wall components and k is the thermal 

conductivity (W/mK). In Eq. (1.2) ∆T is the difference between the exterior wall surface 

temperatures T2 and T1, RW is the sum of the resistances of the wall layers, and q is the 

heat flux through the wall (W/m2).  

 

                                       𝑅𝑖 =
∆x𝑖

𝑘𝑖
                                                                         (1.1)  

 

                                𝑞 = −
∆T

𝑅𝑊
 = 

𝑇1−𝑇2

𝑅𝑊
                                                                   (1.2) 

 

 

 

Wallboard 

Thermal insulation 

Exterior siding  

  Δx1       Δx2   Δ x3 

q 

T2  T1   k1            k2      k3          
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The total R-value of the wall in Fig. 1 is given by Eq. (1.3).  

 

                                           𝑅𝑊 =
𝛥𝑥1

𝑘1
+

𝛥𝑥2

𝑘2
+

𝛥𝑥3

𝑘3
                                                            (1.3) 

 

The trapped gas is the limiting factor to the R-value of the insulation. That is, most air 

based insulations cannot exceed the R-value of still air. Polymer-based foams, like 

polystyrene and polyurethane, also trap gases in their cells, including air and 

fluorocarbons. Fluorocarbon gases have higher R-values than air [7]. An efficient 

insulation product should not only be judged by its R-value, but also its cost, weight, 

ease of application, and its availability. 

 

1.1.1 Concept of superinsulation 

Superinsulators are materials that can achieve conductivity values of less than 

0.02 W/mK.  Most traditional building materials cannot achieve this value [7]. In 

buildings, the most common way in which the higher thermal conductivity of enclosing 

materials is compensated for is by increasing wall thickness. Still air is considered a good 

insulator. However, it has a minimum conductivity of 0.026 W/mK [8]. This demarcates a 

limit for air as an insulator. Different materials that reach these low thermal 

conductivities often are the result of different thermal mechanisms.  

For example, vacuum insulated panels (VIP) can achieve a thermal conductivity as 

low as 0.003-0.004 W/mK. The vacuum in these panels prevents gaseous conduction 
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and convection across the panel. VIPs, however, come at a very high cost and require 

extra care when handled [9]. 

 Aerogels can achieve low thermal conductivity values such that they could be 

considered superinsulators [10]. Despite the fact that aerogels work by trapping air they 

can approach a lower thermal conductivity than air. Details of the heat transfer 

mechanisms of aerogels are given in section 1.2.3. 

 

1.2. Aerogels 

Aerogels comprise of a large variety of ultra-low density porous solids. The most 

common aerogels are made of carbon and silica. Fig. 2 shows a photograph of silica 

aerogel. The sizes of the pores formed in aerogels are in the nanoscale range and are 

open in structure. Aerogels are also considered to be the lightest solids in existence.  

Most commercially-available aerogels used for thermal insulation are silica aerogels. 

Silica aerogels are often blue in color. This is an effect of Rayleigh scattering. The 

wavelength of blue light is around 475 nm, which is close in size to typical networks of 

pores within the aerogel. These act as scattering centers for the wavelength of blue 

light. Rayleigh scattering is the same effect that causes the sky to appear blue [11]. 
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Fig. 2. Silica aerogel. 

 

For building applications, some desirable characteristics of aerogels include their 

low thermal conductivity, high transparency, and low density. Aerogel insulation is 

available in the form of flexible blankets, boards, and transparent films. Some general 

properties of silica aerogels are given in Table 2. These properties qualify them for use in 

a number of applications. The properties of silica aerogels differ depending on 

materials, additives and synthesis techniques. 

 Table 2 
 Typical properties of silica aerogels [5,12]. 
Property Value 

Apparent density 0.03–0.35 g/cm
3
 

Internal surface area 600–1,000 m
2
/g 

Percent of solids 0.13–15% 

Mean pore diameter ∼20 nm 

Primary particle diameter 2–5 nm 

Refractive index 1.0–1.08 

Coefficient of thermal expansion 2.0–4.0 × 10
−6 

K
-1

 

Dielectric constant ∼1.1 

Sound velocity 100 m/s 

Thermal conductivity <0.02 W/mK 

Schematic representation of 
the  porestructure in aerogels 
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Hydrophilic compounds have the tendency to attract water because of the 

presence of polar groups that have unbalanced electrons. Conversely, hydrophobic 

compounds repel water and have non-polar groups. Fig. 3 shows an image of silica 

aerogel dust as was taken under a scanning electron microscope (SEM) at 80X 

magnification. The aerogel dust particles show cracked and uneven surfaces. These 

cracks are potential entry points for water vapor. Water vapor by itself does not damage 

the nanostructure of the aerogel. However, upon condensation the surface tension of 

water may collapse the nanostructure of hydrophilic aerogel, rendering it ineffective 

[13]. Moreover, these cracks form breaks in the thermal insulating body of the aerogel 

and can prove detrimental to the thermal insulating characteristics of the aerogel. 
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Fig. 3. SEM image of silica aerogel. 

 

For aerogels, their primary drawbacks are their cost, shrinkage, and hydrophilic 

nature.  Hydrophilic aerogels have Si-OH groups which undergo strong bonding with 

water that result in the destruction of their nanostructures [5]. However, it is possible to 

prepare hydrophobic aerogels by the use of additives and surfactants. Jung et al. [14] 

prepared a hydrophobic silica aerogel by doping silica with silicon dioxide nanoparticles 

using ambient pressure drying. 
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1.2.1. History of aerogels 

 Kistler [15] noted in 1931 that aerogels had a remarkably low thermal 

conductivity. This aerogel’s main raw material was sodium silicate. The first recorded 

commercial marketing of aerogels was in the 1940’s by Monsanto Corp. which used 

Kistler’s silica aerogel and marketed it as Santocel®.  It was made for application as a 

thickening agent in toothpastes, cosmetics, thermal insulation in freezers, and as a filter 

in cigarettes. This first attempt at the commercialization of Kistler’s silica aerogel was a 

failure because of high production costs [15]. It can be noted that at the time aerogel 

technology was in its nascent stage and were produced based on Kistler’s original 

production method which was slower and relied on the high temperature supercritical 

drying of aerogel.  

 Kistler’s aerogel was improved by using tetramethylorthosilicate (TMOS) instead 

of sodium silicate. This improved method produced aerogel in a shorter time and gave 

rise to the modern day sol-gel process [16]. Over the years different precursors and 

solvents have been used, which have led to the manufacturing of aerogels in a much 

safer manner [17].  

 

1.2.2. Manufacturing of aerogels 

 Aerogels can be produced through many variations in technique. However, 

essentially there are three steps involved; the sol-gel process, aging and drying. The sol-

gel process involves the synthesis of a solid in a liquid medium at a temperature less 

than 100 °C.  It involves the use of a precursor (normally an oxide or hydroxide), 

solvents, and reactants. Solids are formed by polymerization and can be either organic 



 
  
 

12 
 
 

or inorganic. The microscopically dispersed particles form branches and interlink with 

each other forming a 3-D network while still in the solvent which is what forms the gel. 

The first synthesized silica aerogel used sodium silicate as a precursor, water as a 

solvent, and hydrochloric acid as a catalyst. The use of sodium silicate was subsequently 

replaced by organic monomers which proved to be less laborious, giving rise to the 

modern sol-gel process [18]. The sol-gel process can be replicated using a number of 

materials and reactants, which lends different properties to the aerogel.  

Silica aerogel was manufactured using rice hull ash, instead of organic silicon 

monomers, such as tetramethylorthosilicate (TMOS), tetraethylorthosilicate (TEOS), and 

polyethoxydisiloxane (PEDS), which are generally selected as sources for silica. Rice hull 

ash, which is a byproduct of the rice industry, is rich in silica and allows for more 

economical production of silica aerogel [19].  

When the gel visibly spans the container it is known as gel point. After the gel 

point is reached some time must be given for all the unreacted elements to condense 

and form. This is done by leaving the gels untouched for 48 hours. This process can be 

expedited by soaking the gel in 1:1:1 ratio of water, alcohol, and the original solution at 

a pH between 8 and 9 [20].  

 The next step involves the drying of the wet gel. The key to this process is the 

vaporization of the liquid component without putting strain on the aerogel skeleton. 

This was initially made possible by supercritical drying. A supercritical fluid is a fluid 

whose phases at its critical temperature and pressure are indistinguishable. This 

procedure involves the removal of the supercritical fluid present in a gel by exposing it 
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to pressure and temperature exceeding its critical pressure and temperature. This leaves 

only the solid framework having a high pore volume [21].  

 Alternatively, aerogels can be also be formed at ambient temperatures by the use 

of liquids that evaporate at ambient temperature and pressure [22]. This has allowed 

aerogel to become more commercially viable as ambient drying proves to be cheaper 

than supercritical drying.  
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1.2.3. Heat transfer mechanisms in aerogels 

In a simplified manner, heat transfer in organic monolithic aerogels is the sum of 

the conductivity through the solid backbone (kS), the gaseous conductivity through the 

nanostructure (kG), and the radiative thermal conductivity (kR) [23]. Silica aerogel is 

assumed to be isotropic resulting in a heat transfer that is independent of direction. 

Therefore, the thermal conductivity is given by Eq. (1.4). 

                                                      𝑘𝑒𝑓𝑓 = 𝑘𝑆 + 𝑘𝐺 + 𝑘𝑅                                                 (1.4) 

To present the heat transfer mechanisms in aerogels, silica aerogel was used because 

this is the most widely researched aerogel to date. Fig. 4 represents the nanopore 

structure of aerogel. In Fig. 4 the thermal pathways in aerogel are depicted. 

 

 

 

 

 
                                                 

Fig. 4. Thermal pathway through aerogel nanopores. 

Radiation  

Gaseous Conduction 

Solid Conduction 
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When x-rays are incident on an object they are scattered in different ways according to 

their pore distances, shape and size of the macromolecules. This range of data gives a 

glimpse of the macrostructure of a material. The existence of the solid backbone of silica 

aerogel has been shown to exist by small angle x-ray scattering measurements [24]. In 

the scanning electron microscope image shown in Fig. 5, the branched structures of 

silica aerogel are observed (shown in white), as well as pores (shown in black), sizes 

ranging from in between 10 nm to 200 nm.  This random network creates silica aerogel’s 

unique nanopore structure.   

 
Fig.5. Nanostructure of silica aerogel. 

 



 
  
 

16 
 
 

Conduction through the solid backbone depends on its material and density. 

Silica (SiO2) has a high thermal conductivity when compared to what is expected of an 

insulating material. However, the reduced solid content and its terminating lattice like 

structure are the restricting factors for conduction through the solid. Solid conductivity 

can be calculated by Eq. (1.5) [25]. 

                                            𝑘𝑆 = 𝐶⍴µ                                                                  (1.5)                                      

Where C is a constant that depends on the interconnectivity of the 3-D network, ⍴ is the 

density of the aerogel, and µ is a constant found to be around 1.5. 

The mean free path is the average distance travelled by particles between 

successive collisions. The mean free path of air is 7.46×10-3 mm [26]. This means that 

one air molecule will travel 7.46×10-3 mm before hitting another air molecule and 

transferring energy to it. The Knudsen number (Kn) takes into account the mean free 

path of a gas (lg) and the mean pore diameter of a porous medium (DP). The relationship 

between lg and DP is represented in Eq. (1.6). The mean pore diameter can be 

approximated from the density and the uniformity of the aerogel nanostructure (ϒ) as is 

shown in Eq. (1.7).  

                                             𝐾𝑛 =
𝑙𝑔

𝐷𝑃
                                                                  (1.6) 

                                             𝐷𝑃 α 
1

𝑃ϒ
                                                          (1.7)                
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The Knudsen number along with the porosity of the aerogel (ø), the thermal 

conductivity of air (kGA), and β, which is a parameter that represents the energy transfer 

between the gas and the limiting structure of the aerogel nanostructure, can be used in 

the Knudsen Eq. (1.8) to find the gaseous thermal conductivity of aerogels [27].           

                                              𝑘𝐺 =
𝑘𝐺𝐴 ø

(1+ 𝛽𝐾𝑛)
                                                           (1.8) 

In aerogels, smaller pore diameters (DP) increase the Knudsen number which in turn 

reduces the gaseous thermal conductivity. The reason for this is that air has a free mean 

path similar to the size of the nanopores which drastically reduces gaseous molecular 

collision, which in turn reduces heat transfer [26,28]. The air molecules collide with the 

solid backbone instead. This prevents a proper convection from developing and allows 

aerogel to develop a gaseous conductivity far less than that of air. 

Heat transfer can occur by successive thermal re-radiation through the aerogel or 

by passage through translucent/transparent aerogel by radiation. The nature of heat 

transfer through aerogel is dependent on its optical thickness or measure of 

transparency [29]. The radiation conductivity is represented by Eq. (1.9). Where, n is the 

index of refraction, σ is Stefan-Boltzmann constant, T is the absolute temperature, e(T) is 

the extinction coefficient and Ρ is the density of the aerogel [23]. 

                                        𝑘𝑅 =
16

3

𝑛2𝜎𝑇3

(𝑒(𝑇)𝑃)
                                                             (1.9) 
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 The radiative conduction is sensitive to changes in temperature (T) and the refractive 

index (n). This is why the thermal conductivity of aerogels is not constant and change as 

temperature is increased [6]. The refractive index is given in the equation below. 

                                                         𝑛 =
𝑐

𝑣
                                                                    (1.11) 

In this equation, c is the speed of light in a vacuum and v is the speed of light through 

the material. The refractive index of silica aerogel is 1.0–1.08, which is close to that of air 

[5]. However, imperfection in its structure may increase the refractive index of aerogels. 

Within a medium, radiation can be transmitted, scattered and/or absorbed. The 

extinction coefficient is a measure of how well a material impedes the movements of 

radiation of a given wavelength through its body. Its calculation is comprised of the 

materials absorption and scattering capabilities which are dependent on pressure, 

temperature and wavelength. In aerogels, because of the relatively small pore diameters 

(<100 nm) in comparison to the size of near infrared wavelengths (>800 nm) scattering 

does not take place. Furthermore, pore size is responsible for allowing wavelengths in 

the visible spectrum to be transmitted while preventing the transmission of those in the 

infrared radiation range from being transmitted [30]. These properties make it ideal for 

application to windows as it blocks heat in the form of infrared radiation and allows the 

passage of light in the visible range. It also prevents the conduction of heat through the 

window. 

Often, additional substances known as opacifiers are added to improve the 

absorption properties of the aerogel. Carbon black and titanium dioxide added in 
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limited quantities can increase the extinction coefficient of the aerogel [5,30]. At higher 

temperatures, radiation heat transfer is a significant mode of heat transfer in aerogels 

when compared to conduction and convection [31]. This is because at higher 

temperatures radiation is propagated in smaller wavelengths and also at elevated 

temperatures the extinction coefficient of materials, which is lower, makes disruptions in 

heat transfer fewer and renders aerogels less effective [32]. However, the higher 

temperatures required to cause significant changes in thermal properties are unlikely to 

occur in typical building situations. 

Monolithic aerogels have the unique advantage of having pore sizes hundreds of 

times smaller than conventional insulations. The equations provided in this section are 

applicable to porous insulations that work by trapping air or other gases. In insulating 

materials, gaseous conduction is the significant mode of heat transfer. Gaseous 

conduction is directly related to pore size as shown in Eqs. (1.5) and (1.8). The reduction 

of gaseous conduction in highly porous materials is known as the Knudsen effect, which 

is seen in aerogel monoliths. However, this effect is negligible in materials with pore 

sizes greater than 0.01 mm (conventional insulations). For example, fiberglass which has 

a pore size between 10 to 100 µm, has a thermal conductivity of about 0.040 W/mK. 

Typical silica aerogels have a thermal conductivity of 0.017 W/mK.  This is what 

eventually makes aerogel monoliths better thermal insulators than conventional 

insulations. 

 

 



 
  
 

20 
 
 

1.2.4.  Aerogel application areas 

  As a material, aerogel has a number of useful properties as illustrated previously 

in Table 2. These properties can be modified based on the sol-gel process, drying 

techniques, and use of modifiers. In Table 3, possible applications are listed.  

Table 3 
Scope of aerogel applications [33]. 
Property Features Applications 

Thermal conductivity 
 
 

 
High insulating properties                   
Wide range of temperature          

 
Architectural and appliance insulation, 
portable coolers, transport vehicles, pipes, 
cryogenic, skylights, space vehicles, probes 
and casting molds. 

  
Density or porosity Lightest synthetic solid    

Homogeneous           
High specific surf. Area    
 

Catalysts (e.g. automotive CO oxidation by O2), 
absorbers (e.g. for oil spills), sensors for 
different airborne compounds, fuel storage, 
targets for ICF

 (1)
.       

   

Optical 
Low refractive index solid 
Transparent/translucent 

Cherenkov detectors
(2)

, lightweight optics, and 
special effect optics. 

 
 

 
Acoustic Low sound speed Radars, speakers, and sound insulation. 

   

Mechanical 
 
Elastic 
Lightweight 

Energy absorber and substitutes for plastics. 

   

Electrical 
Low dielectric constant

(3) 

High dielectric strength
(4) Spacers for vacuum electrodes and capacitors. 

Notes:  
(1) Inertial confinement fusion (ICF) is a type of fusion energy that is formed by compressing and 

heating a target. 
(2) When a particle passes through a material at a velocity greater than that of the speed of light 

through the same medium, it emits light as Cherenkov radiation that can be used to identify the 
particle.  

(3) Dielectric constant is a measure of the permeability of a material to electricity. Materials with 
lower dielectric constants allow capacitors to store more charge. 

(4) The amount of electrical energy that a material can withstand without its insulating properties 
breaking down is known as dielectric strength. 
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           The apparent density of silica aerogel, 0.03–0.35 g/cm3 [12], is certainly much 

lower than that of conventional insulations. The low aerogel weight would facilitate the 

transport and installation of prefabricated wall panels. Recently, aerogel technologies 

have been used to manufacture small handheld gadgets used for telecommunications 

because of its strong mechanical and low weight properties. The weight of such gadgets 

has been reduced by about one-half of their weight when polymers were used [34].      

           Of particular interest to the field of building enclosures is the possible 

multipurpose use of hydrophobic aerogels.  For example, a flexible cryogenic insulation 

blanket is an aerogel blanket with an integral barrier that serves as a sound, thermal and 

water vapor barrier and is commercially available for building enclosure use [46]. The 

optical and thermal nature of silica aerogel allows it to be used as an effective glazing 

on glass [35].  Many contaminants are released in the interior of a building envelope, 

from water, paints, and organic solvents. Aerogels made of metal oxides are capable of 

acting as air filters, removing airborne contaminants that may exacerbate problems such 

as asthma and allergies [34]. 
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1.3. Research Objectives 

 The world energy consumption is on the rise. It is forecasted that the energy 

usage from 2010 to 2040 will increase by approximately 56%. A majority of this energy 

will come from coal, natural gas and liquid fuels [1]. This exacerbates the already 

aggravated global warming problem. Furthermore, lack of useful energy in some areas 

around the world could lead to social and economic disasters. Studies show that power 

plants require more than 12 times the investment per generated kilowatt-hour than 

avoiding the use of the same kilowatt-hour by using thermal insulation. This accentuates 

the importance of finding suitable and efficient insulations [36]. 

 Traditional thermal insulation of the same effective thermal resistance is several 

times thicker and heavier than superinsulations like aerogel. This increases in multilevel 

buildings. Moreover, traditional thermal insulations have reached their limit in thermal 

resistance. This calls for testing materials that can be produced sustainably and that will 

bring building enclosures to a higher plane of performance.  

The main research objective is to evaluate whether an aerogel blanket is an 

effective and practical thermal insulator when applied to buildings. The primary 

obstruction to the commercial implementation of aerogels is production costs. As 

recently tested manufacturing methods and material move into large scale production, 

it is a matter of time before aerogels become more viable for use in the building 

industry. 
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Chapter 2 
Literature review 

 Silica aerogels are a thermal insulating material with a high potential, which have 

made their way into the building insulation industry. Despite silica aerogels existing for 

more than 75 years, studies with respect to their use as an insulating material in 

buildings were not made until recently. This is because of a number of advances in their 

production that has allowed them to become a more viable and of practical use in 

buildings [12,14,16,19,22]. 

 Aerogels were first synthesized by Kistler [26,28], who used sodium silicate and 

the process of supercritical drying to produce aerogels. He extensively studied its 

properties. He measured the heat conductivity of aerogels containing three different 

gases at various pressures. Based on kinetic theory he found the relationship between 

the heat conductivity, mean free path of gas molecules, and pore size. In his later work 

he went on to explain how heat conductivity can be used to find the density of silica 

aerogel.  

 Fricke [16,23,27,34,36] published many papers on aerogels but in particular, 

related to their thermal resistive properties. He showed the dependence of aerogel 

conductivity on gas pressure. The lowest pressures showed conductivity reaching into 

superinsulation values of 0.01 W/mK. He demonstrated the use of aerogel as a suitable 

thermal insulation material by examining thermal transport in monolith and granular 

aerogels with regard to gas pressure, temperature, boundary emissivity, and external 

load [37]. 
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 Hrubesh [39] of the Lawrence Livermore National Laboratory, along with his team 

produced the world’s lightest solid which had a density of 0.003 g/cm3. He consequently 

published his paper under the name of “Aerogels: The World′ s Lightest Solids.” His work 

with regard to aerogels extended to optics, thermal properties, and synthesis. As early as 

1998, Hrubesh et al. conducted surveys on the possible applications of aerogels stating 

clearly their possible use in the building industry. 

Ruben et al. [40] studied the nanostructure of silica aerogels which gave greater 

detail on techniques usable to characterize aerogels. This included properties such as 

surface area, pore sizes, and connector sizes. The characterization of aerogels is often 

seen as difficult because of its minute pore sizes. 

 Aerogel insulation per square foot is considered to be on the costlier side of 

available thermal insulations. However, analyses indicating the cost effectiveness of 

aerogels with respect to R-value have been conducted. Carlson et al. [42] showed that 

aerogels made from sodium silicate were cheaper than fiberglass insulation per R-value 

per unit length. Their work on cost analysis included a detailed breakdown of all 

reagents involved in aerogel production and its associated cost. Koebel et al. [5] 

researched aerogels as a thermal insulation in buildings. They reiterated the 

effectiveness of aerogels as a thermal insulation and proceed to analyze their viability. 

The cost per unit volume of aerogels in 2020 may reduce to one-half of its cost in 2009. 

This cost reduction, coupled with savings in floor space, makes aerogels a more 

attractive thermal insulation option, especially for retrofits.  
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 Aegerter et al. [5] produced one of the first handbooks related to aerogels. This 

handbook gave in detail the manufacture, application and properties of most types of 

aerogels. According to the handbook, organic or organic-inorganic aerogels could 

eliminate problems associated with traditional aerogels such as mechanical strength, 

environmental problems, and synthesis.  

 Advances in manufacturing have also helped reduce these costs. Tewari et al. [22] 

successfully used ambient temperature supercritical drying by replacing the alcogel with 

liquid CO2. This eliminated the need for supercritical drying chambers to sustain high 

temperatures and pressures. The drying time was also reduced to about 8 hours. 

Alternate materials for the synthesis of aerogels were also introduced. Table 4 shows the 

cost sensitivity to different precursor materials for aerogels. One board foot is equal to 

30.48 cm × 30.48 cm × 2.54 cm. 

 

Table 4 
Aerogel costs [42]. 

 Material Aerogel cost ($/ board foot)  

TMOS  7.91 

TEOS  4.15 

Sodium silicate  0.63 

Resorcinol--formaldehyde (RF)  1.34 

Phenol-formaldehyde (PF)  0.42 

RF:PF (50:50)  0.89 

Melamine-formaldehyde  1.14 
Phenolic-furfural  0.73 
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Tang et al. [19] making use of rice hull ash, a byproduct of the rice industry, 

synthesized silica aerogel. The aerogel produced by supercritical CO2 drying was shown 

to have a density and pore volume size similar to conventional produced TEOS silica 

aerogel. 

Nguyen et al. [41] made use of recycled waste paper to produce cellulose 

aerogels. Although, it was made to work as an absorbent, this cellulose aerogel showed 

a low thermal conductivity. Thermal conductivities of 0.029–0.032 W/mK, were recorded. 

These alternate production techniques reduced costs and in a larger scope were more 

sustainable. Many of the reagents used in conventional aerogel production (e.g., 

resorcinol, formaldehyde) are toxic. 

 A large amount of research was carried out on aerogels for use as a 

translucent/transparent window glazing. Reim et al. [31] used granular silica aerogel 

trapped in between two glass panes. This construction achieved a low conductance 

value of 0.5 W/m2K for a thickness of only 50 mm.  Aerogel insulation glazing was 

shown to be more effective than a triple pane window. 

Producing large monoliths of aerogel is a difficult proposition; it is easier to 

produce granular aerogel as it fractures easily during manufacture. However, granular 

aerogel does not perform as well as a monolith because of increased gaseous phase 

conductivity in the inter-granular region. Smith et al. [43], having identified the problem, 

produced aerogels with a density of 90–100 kg/m3and a granule size in the 90–250 µm 

range. These aerogel granules, because of their ability to occupy smaller spaces, 

performed similar to that of the aerogel monolith at ambient pressure and in a vacuum.  
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  The co-heating test methodology is an experimental method to determine heat 

loss through a building enclosure and entails plotting heat loss from thermal 

transmission and infiltration through the building enclosure against variations between 

a constant indoor temperature and weather dependent outdoor temperatures. Cuce et 

al. [44] retrofitted one of the rooms in a test house with silica aerogel blankets and 

proceeded with testing it using a co-heating test methodology. The aerogel blanket was 

of a 20 mm thickness and implemented with a 12 mm of gypsum plasterboard. The pre-

retrofit heat loss coefficient was 17.15 W/K and after the installation of the aerogel 

blanket, the heat loss was recorded as 6.29 W/K. This is a reduction of 63%.  

  In silica aerogels, radiation and solid conduction are significant modes of heat 

transfer. Reducing density will decrease solid conductivity because of a reduction in 

contact area between the particles. However, this reduces optical density which 

increases infrared radiation. In silica aerogels, infrared radiation between 3-8 µm has a 

low absorption coefficient.  Silica aerogels doped with carbon can drastically reduce 

heat transfer through radiation because of carbon’s high absorption coefficient. Zeng et 

al. [45] proceeded to find the optimum amount of carbon to minimize heat transfer. This 

was done theoretically by using energy equations for coupled conduction and radiation. 

It was found that 8% of carbon content in silica aerogels reduced heat transfer by about 

1/3 at ambient temperatures. 

  Lu et al. [46] measured thermal conductivity in carbon aerogels using a transient 

hot-wire technique. It was shown that in carbon aerogels, solid thermal conductivity was 

much higher as it is directly proportional to density. They found that the thermal 

conductivity was 0.029 W/mK at ambient air temperatures. The radiation component 
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was found to be negligible because of a high specific extinction coefficient. Comparing 

it to thermal conductivity measurements taken in the evacuated state, gaseous 

conductivity was found to be between 0.005 W/mK and 0.011 W/mK. However, 

compared to silica and organic aerogels, the thermal conductivity is higher because of 

relatively larger pore sizes. 
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Chapter 3 
Characterization of test specimens 

Two test specimens were used in the experiments, they were Cabot’s Thermal 

Wrap (Fig. 6 (a)) and Aspen’s Spaceloft (Fig. 6 (b)). They were both flexible blankets of a 

thickness between 5 to 6 mm. Characterization was carried out on both blankets to 

compare and analyze differences in their structure and composition.   

 
(a)                                                            (b) 

Fig. 6. Aerogel blankets 
(a) Cabot’s Thermal Wrap and (b) Aspen’s Spaceloft blanket. 

 
Cabot’s Thermal Wrap was sealed in plastic sheets and arrived in rolls of size 0.56 m x 

1.21 m. Aspen’s Spaceloft arrived unsealed in a large roll of width 1.45 m. The length can 

be specified while ordering. 
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3.1. Electron microscopy 

Aerogels have a unique nanostructure consisting of a number of interconnected 

silica filaments which border nano sized pores. At filament junctions a number of 

filament connect to form a web like structure. The solid portion of aerogel is less than 

1%. This results in a number of aerogels properties, including its low thermal 

conductivity. The nano-structure of aerogels in the blankets was examined using an FEI 

Versa 3D Dual Beam electron microscope (Fig. 7), which is a scanning electron 

microscope.  

 
Fig. 7. Versa 3D Dual beam electron microscope. 

 

An electron microscope uses a high voltage gun that shoots accelerated electrons onto 

a specimen. These microscopes allow more detail and a larger magnification than a light 

microscope because of the smaller wavelengths of electrons as compared with light, 
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which allows it to interact with the specimen at a smaller scale. After the electrons 

interact with the specimen it ejects secondary electrons that are detected to form the 

image.  For all imagining purposes Everhart-Thornley SE detector (ETD) and In-column 

Detector (ICD) were used. Often because of the non-conductive nature of the specimen, 

imaging becomes more of a challenge. In Fig. 8 the aerogel sample was coated with 

gold nano-particles to allow it to be imaged clearly and to give the pore structure a 

depth dimension. Both aerogel samples showed a similar nanostructure. 

 
Fig. 8. Pore structure. 

 

Pore sizes ranged from 10 nm to 200 nm (shown in black). These smaller pore 

sizes work to reduce thermal conductivity through aerogels as was explained in section 

1.2.3. To get a more accurate estimate of pore sizes and internal surface area, a 
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Brunauer–Emmett–Teller (BET) test can be conducted. BET theory works by measuring 

the physical adsorption of a gas by the surface. Some typical values for surface area are 

between 100-1000 m2/g. Further, energy-dispersive X-ray spectroscopy was used to 

identify the primary elements in aerogel.  
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3.1.1. Cabot’s thermal wrap 

The properties of the thermal wrap are listed in Table 5. The thermal wrap also 

had sound insulation properties. The thermal wrap was a white flexible blanket, with 

polyester and polyethylene fibers placed in layers parallel to the plane of application. 

Inside the blanket was a random embedment of aerogel dust (in blue) that is shown in 

Fig. 9. In Fig. 9, some of the dust was colored using editing software to show contrast in 

the SEM image. The approximate volumetric percentage of aerogel was calculated. First, 

three samples of size 5 cm x 5 cm were prepared. The aerogel dust present inside the 

blanket sample was weighed and compared with the weight of the blanket. To find its 

volume, the weight of the aerogel dust and the blanket were divided by their respective 

densities. By volume, there was about 33% of aerogel in these blankets. 

 

 

 

 

 

 

 
 
 
 

Fig. 9. Internal structure of Cabot’s Thermal Wrap. 
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In the blanket there were two heat resisting systems. The fibers that work to trap 

air at a macro level and the aerogel dust that works at the nano scale range. The 

blankets were not sealed at its edges causing aerogel dust particles to fall out while 

handling. This may affect the performance of the blanket. 

Table 5 
Properties of Cabot’s Thermal Wrap [47]. 

Property 
 

Value 

Thickness 
 

6 mm 

Density 
  

~70 kg/m
3
 

Fiber composition Polyester and polyethylene 

Tensile strength 
 

517 kPa 

Operating temperature -200 to 150 °C continuous (160 °C peaks) 

Light transmission ~20% at 8 mm 

 

The operating temperature range was from -200 to 150 °C. However, according 

to the manufacturer, the aerogel blanket does not perform consistently throughout this 

range because it shows a higher thermal resistance at lower temperatures [48]. The 6 

mm thermal wrap was selected for testing because of its unusually low thickness which 

allows flexibility of application. 

Energy-dispersive X-ray spectroscopy (EDX) was used to determine the 

composition of the aerogel dust (Fig. 10). EDX works on the basis that every element has 

a different atomic structure and on excitation emits unique x-ray patterns that are used 

to characterize the element [13]. This allowed for the material and quantitative analyses 

of the aerogel. The aerogel was found to be dominantly silicon and oxygen which 

implied that it was silica based. 
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Fig. 10. Graph showing the composition of aerogel in Cabot’s Thermal Wrap.  

 

The ordinate axis indicated counts per second per electron volt (cps/eV). This is a 

measure of the intensity of the x-rays emitted. The abscissa represented the energy 

levels of the x-rays in kilo electron volt.  
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3.1.2. Aspen’s Spaceloft blanket  

The properties of Aspen’s Spaceloft blanket are listed in Table 6. This blanket was 

also white and was coated on both the inside and outside with aerogel dust. Fibers were 

made of polyethylene and fibrous glass. The picture shown in Fig. 11 was taken at the 

same magnification (50X) as that of Cabot’s Thermal wrap (Fig. 9).  

 

 
Fig. 11. Internal structure of Aspen’s Spaceloft. 

 

Aspens Spaceloft used a fiber size of a smaller diameter that allowed it to be packed 

more densely. The density of Aspen’s Spaceloft was approximately twice that of Cabot’s 

Thermal wrap. A more detailed picture of the fiber strands is shown in Fig. 12. 
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Table 6 
Properties of Aspen’s Spaceloft [46]. 

 

 
 
 
 
 
 
 

 

The main difference in the aerogel which was used was the size of the crystals. 

Aspen’s Spaceloft had aerogel dust that was smaller and more uniform in size. 

These aerogel particles were more likely to attach themselves to the fibers (Fig. 12). The 

approximate average size of the particles in Aspen’s Spaceloft blanket was a quarter of 

those in Cabot’s Thermal Wrap. 

 

 
Fig. 12. Fibers in Aspen’s Spaceloft. 

Property   Value 

Thickness 

 
5 mm 

Density 

  

150 kg/m
3
 

Fiber composition Polyethylene and fiberglass 

Hydrophobic 

 

Yes 

Operating temperature 200 °C (maximum) 

Light transmission Yes 
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The approximate volumetric percentage of aerogel was calculated in the same 

way as was done previously for Cabot’s Thermal Wrap. First, three samples of size 5 cm 

X 5 cm were prepared. The dust present inside the blanket sample had about 10% 

calcium silicate and 5% synthetic graphite by volume [49]. The volumes of these 

materials were calculated based on the sample size and multiplied by their densities to 

get the weight of the respective compounds. It was found that there was 42% aerogel 

dust by volume. This is 9% more aerogel dust than was found in Cabot’s Thermal Wrap. 

 EDX was conducted on the sample to check if there were any other significant 

elements in the aerogel dust. The EDX confirmed the presence of silicon and oxygen 

(Fig. 13). The SEM was focused on an aerogel dust crystal at the time of measurement. 

   
Fig. 13. Graph showing the composition of aerogel in Aspen’s Spaceloft. 
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Chapter 4 
Experimental setup 

4.1.  Measurement, Materials, and Sustainable Environment Center 

(M2SEC) Building 

This building is located on the campus of the University of Kansas. Partial funding 

for the building was provided by the National Institute of Standards and Technology 

(NIST). It is a building that is exclusively for research and was built with this in mind. The 

buildings enclosure can be used to collect heat and mass transfer data across its 

components. Shown in Fig. 14 are the south and west walls of the M2SEC building. 

 
Fig. 14. M2SEC building. 
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There are a total of 60 interchangeable panels, of which 30 are in the south wall and 30 

are in the west wall. These interchangeable panels allow different building materials to 

be tested. For this research three panels were selected in the south wall on the ground 

floor as indicated in Fig. 15. 

 
Fig. 15. Instrumented panels. 

 

Inside the building, there is an easement provided on the ground and first floor of the 

building which allows the panels to be retrofitted and instrumented. The easement is 

shown in Fig. 16. Access to the easement is restricted to prevent disturbances to the 

data collected. Above the easement is a metallic tray extending along the length of the 

corridor. This can be used to hold instruments and wiring. 
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Fig. 16. M2SEC easement. 

 

The panels are shown in greater detail in a photo taken from inside the M2SEC 

building (Fig. 17). In the picture of Fig. 17, the panels are unclamped and in an open 

position. The original panels comprise of a foamed insulation at its core, a metallic-

coated steel sheet at its exterior, and a siliconized polyester as an interior finish. Each 

panel had a size of 1.62 m x 0.88 m, a thickness of 76 mm, and a nominal minimum total 

thermal resistance of 2.82 m
2
K/W. These panels can be fastened by the use of self-

tapping screws with rubber tips that act as clamps. These fasteners can be adjusted to fit 

panels of different thicknesses. The contact point between the rubber tips and the 
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interchangeable panel is a metallic frame. The metallic frame is cold rolled and acts a 

stiffer contact point between the fastener and the panel. 

 

 
Fig. 17. Interchangeable panels. 

 

4.1.1 Space cooling system 

The interior of the M2SEC building was air conditioned by a central air 

conditioning system. The thermostat for the easement was set to 23.3 °C. There are five 

air handling units (AHU’s) that were used to control air flow through the building. There 

was no recycling of air and all the air was 100% exhausted. The main chiller unit was a 

1072 kW air-cooled unit which was used in conjugation with smaller modular units. 

These operated in a glycol water loop to chill the building. Additionally, chilled water 
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pipes are exposed (chilled beam technology) in most areas of the building which 

reduces the load on the AHU’s. 

4.2. Data acquisition system 

A National Instruments NI-Cdaq-9191 (Fig. 18) wireless unit was used. This 

chassis can be fitted with a number of modules to suit the required measurements. For 

this research, module NI 9213 was used which was a 16-channel thermocouple and 

millivolt input module, which was also used to acquire heat flux data.   

 
Fig. 18. Data logger with measurement module. 
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These wireless units work by transferring data through local area wireless 

technology (Wi-Fi). This can be done by using a carrier signal that is generated by other 

devices or it can generate its own signal which can be used to form an ad hoc network 

with a host computer. Also, it has the ability to acquire data via Ethernet cable. Typically, 

the range of the wireless system is 30 m in an indoor environment. However, in the 

presence of thicker walls, this range drops drastically and the use of the Ethernet cable 

becomes necessary. Being wireless, it provides flexibility in its use and the elimination of 

an untidy wired system. The wire cable trays shown in Fig. 16 were used to house the 

data loggers on the ground floor of the building. The host computer was on the first 

floor and data were transferred using NI’s signal express data acquisition software. 

However, the initial setup was done through NI MAX, which is a software provided by 

National Instruments to facilitate connectivity with the host computer. 

4.3. Wall panel setup 

The three panels selected in the south wall were fitted with cement boards while 

maintaining an air gap of six millimeters between the panel surface and the cement 

board using spacers. The board and panel were fitted with the required instrumentation, 

namely, thermocouples (T/C) and heat flux meters (HFM) and calibrated to make sure 

that temperatures and heat fluxes matched evenly between all three panels (Fig. 19). 

There were a total of two heat flux measurements and four temperature measurements 

that were collected for each panel. The four temperature measurements were for the 

exterior panel surface, the air space panel surface, the air space cement board surface, 
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and the interior cement board surface. Two heat flux meters were attached to the 

interior cement board surface. 

 
     Fig. 19. Interior cement board after instrumentation. 

 

The second set of data collected was for the retrofit. The panels were fitted with 

the aerogel blankets and a polyester insulation board between the cement board and 

the panel surface (Fig. 20). The panel in the center was left with an air gap between the 

cement board and the panel surface to serve as the control for the experiments.  
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Fig. 20. Tested panels. 

 

4.4.  Temperature measurements 

For temperature measurements, type T thermocouples were used. This is a 

thermocouple type that is made from copper and copper-nickel wires and can be used 

for a wide range of temperatures. For each surface 12 thermocouples were attached in 

parallel to form a grid that measured average surface temperatures. The T/Cs were 

attached using aluminum tape to reduce gain and loss of heat through radiation effects. 

According to the manufacturer, T/Cs may show an error of ±0.5°C. 

In each panel, for the four layer surfaces (i.e., exterior panel surface, air space 

panel surface, air space cement board surface, and interior cement board surface), a 

total of 48 T/Cs, were attached. Thermocouples were also used to measure ambient air 
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temperatures. Two for the indoor air temperature (Fig. 21 (a)) and two for the outdoor 

air temperature (Fig. 21 (b)).   

  
         (a)                                                                (b) 

Fig. 21. Air temperatures 
(a) indoor air temperature and (b) outdoor air temperature. 

 

The thermocouples used to measure ambient air temperature were also wrapped 

in aluminum tape to reduce radiation effects. The outdoor and indoor air temperature 

T/Cs were kept away from the surface of the panels to reduce interference from the 

thermal radiation re-radiating from the surface of the panels. 
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A schematic diagram is used to show the placement of the T/Cs on the panel (Fig. 

22). The location of the T/Cs are marked by 12 green circles. 

 

 

 

 

 

 
            

Fig. 22. Thermocouple placement. 
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4.5. Heat flux measurements 

Heat flux measurements were made using a total of six heat flux meters, two for 

each panel. Each heat flux meter was 10.16 cm x 10.16 cm x 0.27 cm. They were attached 

to the cement board surface using aluminum tape. For each panel heat fluxes were 

averaged between the two heat flux meters. A schematic diagram is used to show the 

placement of heat flux meters on the panel (Fig. 23). The location of the HFMs are 

marked by two orange squares. 

 

 

 

 

 

 

 
Fig. 23. Heat flux meter placement. 
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Chapter 5 
Experimental results and discussion 

 Two sets of data were collected using three panels. The first set was for the pre-

retrofit and the second was for the retrofit. In both cases heat flux and temperature data 

were collected. The experiments were conducted over the duration of the summer (May, 

June, July, and August) for the panels located in the south wall.  

5.1. Pre-retrofit thermal performance 

Sometimes because of the shape, orientation and fenestrations of a building, 

thermal performance may vary in different sections. During the pre-retrofit phase 

calibration tests were conducted to confirm an equal thermal performance between the 

three panels. The panels are labelled in Fig. 24.  

 
Fig. 24. Labeled panels. 
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5.1.1. Surface temperatures 

Surface temperatures were measured at four different layers that made up the 

panel assembly. The average exterior surface temperature for panel 1 was 26.30 °C for 

the calibration period. Panel 2 had an average surface temperature of 26.28 °C and 

panel 3 had an average surface temperature of 26.33 °C. Panel 2 was selected as the 

control panel, and therefore, the temperature differences between panel 1 and panel 3 

in relation to panel 2 were -0.02 and +0.03 °C, respectively. The average interior surface 

temperatures were 22.0 °C, 22.20 °C, and 22.36 °C for panel 1, panel 2, and panel 3, 

respectively. When compared to panel 2, panel 1 showed a difference of -0.2 °C and 

panel 3 showed a difference of +0.16 °C. That is the difference in surface temperatures 

for the exterior and interior surfaces were less than 0.03 and 0.2 °C, respectively. 

Considering the changes in amplitude that occur for exterior surface temperatures (Fig. 

25), this exhibits the careful instrumentation and control that was carried out to get this 

level of accuracy. 

The air space formed in between the cement board and the panel surface (Fig. 

23) was instrumented with T/Cs. Care was taken so that the T/Cs did not touch and were 

adhered to the surface properly because they could not be visually inspected until the 

cement board was removed. The average air space panel surface temperatures were 

22.0 °C, 22.18 °C and 22.30 °C. The temperature differences when compared to the 

control (panel 2) were +0.18 °C and -0.12 °C for panels 1 and 3, respectively. The 

average air space cement board surface temperatures were 21.63 °C, 21.87 °C, and 22.01 

°C. This represented a temperature difference of 0.24 °C (panel 1) and 0.14 °C (panel 3) 

in relation to panel 2, respectively.  
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Heat transfer can occur at increased rates when the air surrounding the panels is 

being replaced by air at a lower or higher temperature and/or the motion of the air is 

increased. Inside buildings this may be caused by the flow of air from an air-

conditioning outlet duct. Outside the building, wind eddies often create separated flow 

zones around sharp edged buildings [50]. Measurements for the indoor air and outdoor 

air temperature were taken to check for consistency. Fig. 25 shows conformity between 

the two outdoor air temperature measurements shown in Fig. 21 (b). Fig. 26 is for the 

indoor air temperature measurements, which correspond to the probes shown in Fig. 21 

(a). 

 
Fig. 25. Outdoor air temperature comparison during pre-retrofit test. 
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Fig. 26. Indoor air temperature comparison during pre-retrofit test. 
 

The surface temperatures are summarized in Table 7.  

Table 7 
Summary of average surface temperatures during pre-retrofit test. 
Average temperatures 
 
 
 

Panel 1 
   (°C) 
 
 
 

Difference 
in relation 
to panel 2 
     (°C) 
 

Panel 2 
(°C) 

Control 
 
 

Difference 
in relation 
to panel 2 

(°C) 
 

Panel 3 
(°C) 

 
 
 

Exterior surface  
 

26.30 0.02 26.28 0.04 26.33 

Air space panel surface 
 

22.00 -0.21 22.20 0.15 22.36 

Air space cement board surface 22.01 -0.16 22.18 0.12 22.30 

Interior cement board surface 21.63 -0.24 21.87 0.14 22.01 

 

 It can be noted that the data in Table 7 show that the temperature differences 

were less than +/-0.25 °C. This showed how closely the data was matched. Surface 
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temperature readings also showed a clear difference in temperatures between the 

exterior and interior surfaces which induced heat transfer towards the interior of the 

building. Fig. 27, 28, 29, and 30 show the trend of exterior panel surface, air space panel 

surface, air space cement board surface, and interior cement board surface 

temperatures, respectively.   

 
Fig. 27. Exterior surface temperatures during pre-retrofit test. 
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Fig. 28. Air space panel surface temperatures during pre-retrofit test. 

 

 Fig. 29. Air space cement board surface temperatures during pre-retrofit test. 
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 Fig. 30. Interior surface temperatures during pre-retrofit test. 
  

Outdoor temperatures and weather conditions are constantly changing; 

therefore, this prevents steady state heat flow, which makes temperatures more prone 

to fluctuations. Data were collected every 10 seconds and averaged hourly from the 12 

T/Cs placed on each layer surface. This allowed data collected to reach a fair level of 

accuracy. It can be concluded that the thermal behavior of the three panels was similar. 
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5.1.2. Heat fluxes 

The data shown is for a 48 hour period during the calibration phase (Fig. 31). The 

difference in heat flux at the peaks when compared to the control was 4.9% for panel 1 

and 3.5% for panel 3. 

  
Fig. 31. Heat fluxes through panels during pre-retrofit test. 
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the inside, both the surfaces are in contact with a thermopile, which is essentially a 

number of thermocouples in series. This thermopile is embedded in an insulating matrix 

and converts the temperature differential into a voltage that is read by the data logger. 

This is a highly sensitive setup that may be affected from sudden changes in 

temperature, air flow, and humidity. Moreover, view angle, wavelength, and dominant 

mode of heat transfer play an important role [51]. To address this issue heat flux meters 

were recalibrated before application to make sure that their k-values were accurate. 

Another source of heat flux error is the fact that surfaces are not completely even 

and do not form a contact at all points on its surfaces. This is because no surface is 

completely flat and at a microscopic level do have variations. Care was taken, however, 

to maximize contact and prevent any unevenness while attaching the heat flux meters 

by removing dust, cleaning both surfaces, and attaching the heat flux meters firmly.  

5.2. Retrofit thermal performance 

The two blankets tested were Cabot’s Thermal Wrap and Aspen’s Spaceloft. The 

blankets were tested, each at a time, by installing them in panel 1 (aerogel panel). The 

first set tested was Cabot’s Thermal Wrap (set 1) and the second set tested was Aspen’s 

Spaceloft (set 2). Panel 3 (polyester insulation panel) was outfitted with a polyester 

insulation board and panel 2 (control panel) was left with a 6 mm air gap to serve as the 

control. The data collected for each panel included surface temperatures as detailed in 

section 4.6 and heat fluxes as detailed in section 4.7. These measurements were 
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analyzed to evaluate and compare the thermal performances of the blankets. Panel 

setup is explained in greater detail in section 4.5. 

5.2.1. Cabot’s Thermal Wrap 

Fig. 32 represents the heat flux through aerogel panel, control panel, and 

polyester insulation panel over a period of 72 hours. The peak was the point at which 

heat flux and temperature readings were a maximum over a given day. Typically, the 

peaks for the exterior surface temperature occurred at around 2 PM and the peaks for 

heat fluxes as measured on the interior surface occurred at around 4 PM. 

  In Fig. 32, aerogel panel displayed a reduction in heat fluxes at their peaks of 

24%, 20%, and 23% for peaks D1, D2, and D3 against control panel, respectively. This 

demonstrated consistency in performance, especially when considering that that 

outdoor air temperatures and exterior surface temperatures were less than 3 °C apart on 

the three consecutive days (Fig. 35). In Fig. 35, surface and ambient air temperatures are 

only shown for one panel (aerogel panel) because temperature readings from all three 

panels were identical. Polyester insulation panel displayed a reduction in heat fluxes at 

their peaks of 17%, 15%, and 10% for peaks D1, D2, and D3 against control panel, 

respectively. Aerogel panel when compared with the polyester insulation panel 

displayed a reduction in heat fluxes at their peaks of 8%, 5%, and 14% for peaks D1, D2, 

and D3, respectively. This is approximately a 9% reduction in heat flux of aerogel panel 

when compared to polyester insulation panel. 

A reduction in the amplitude of heat fluxes passing through the panels signifies a 

reduced load on the chillers. This is particularly important because of the way in which 
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electric companies charge for electricity. Electric utility companies charge for energy 

consumption in kilowatt-hour for a fixed period, typically a month, and for a maximum 

monthly demand, in kilowatt, over a specific time interval, generally 15 minutes [52]. 

Reduction of the daily maximum amplitude can significantly reduce costs by decreasing 

the monthly demand.  

  
Fig. 32. Heat fluxes through the panels for set 1. 

 

 

0

1

2

3

4

5

6

7

0 6 12 18 0 6 12 18 0 6 12 18 0

H
e
a
t 

F
lu

x
 (

W
/m

2
) 

 
Time of day 

 

Aerogel panel
Control panel
Polyester insulation panel

D 3 D 1 D 2 



 
  
 

61 
 
 

 
Fig. 33. Outdoor air and exterior surface temperatures for set 1. 

  

To get a more thorough quantification of the blankets thermal performance, the 
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14%, and 16% for days D1, D2, and D3 when compared with the polyester insulation 

panel, respectively. Therefore, the aerogel panel performed with a 15% reduction in heat 

flow when compared to the polyester insulation panel. 

In Table 8, temperatures inside the air space are shown, namely air space panel 

surface temperatures and cement board surface temperatures. This was done to indicate 

the reductions in the amplitudes of the surface temperatures in locations just before and 

after the insulations were applied. 

Table 8 
Panel air space temperatures for set 1. 

  

Air space panel  
surface                  

 (°C) 

Difference                           
(°C) 

 

Air space cement board  
surface  

(°C) 

  

Aerogel 
panel 

 
 

Control 
panel 

 
 

Polyester 
insulation 

panel 
 

Aerogel 
Panel 

 
 

Control 
panel 

 
 

Polyester 
insulation 

panel 
 

Aerogel 
panel 

 
 

Control 
panel 

 
 

Polyester 
insulation 

panel 
 

Average 22.56 22.51 22.72 0.82 0.40 0.48 21.73 22.11 22.23 

Maximum 26.14 25.44 25.98 2.39 1.21 1.77 23.75 24.23 24.21 

Minimum 20.74 20.97 21.06 0.09 0.00 -0.14 20.65 20.97 21.21 

Amplitude 5.40 4.47 4.91 2.30 1.21 1.91 3.10 3.27 3.01 

 

It was inferred from Table 8 that using the aerogel blanket would reduce indoor 

surface temperatures. The difference in amplitudes of temperatures (maximum-

minimum) between the air space panel surface and the air space cement board for 

aerogel panel, control panel, and polyester insulation panel were 2.30 °C, 1.21°C, and 

1.91°C, respectively. For the aerogel blanket, this is an average temperature reduction of 

0.82 °C when compared to the polyester insulation panel. The reductions seen at the 

minimums were less than 0.1 °C. This is not to say that the insulation was less effective 

at lower temperatures. Rather, at minimum temperatures outdoor and indoor air 
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temperatures were similar which prevented a significant temperature gradient from 

occurring. At maximum temperatures, while comparing the temperature differences 

across the air space panel, aerogel panel, control panel, and polyester insulation panel 

showed differences in temperatures of 2.39 °C, 1.21 °C, and 1.77 °C, respectively. This 

reduction in temperature changes helps maintain a constant interior surface 

temperature [53].  

Fig. 34 shows the trends seen between indoor air temperature and interior 

surface temperatures. 

 
Fig. 34. Indoor air and interior surface temperatures for set 1. 

 

0

10

20

30

40

50

60

0 6 12 18 0 6 12 18 0 6 12 18 0

T
e
m

p
e
ra

tu
re

(◦
C

) 

Time of day 

Aerogel panel

Control panel

Polyester insulation panel

Indoor air



 
  
 

64 
 
 

The maximum interior surface temperatures for aerogel panel, control panel, and 

polyester insulation panel were 23.97°C, 24.48°C, and 24.35°C, respectively. The average 

air temperature recorded for the same period was 21.16 °C. Thermal discomfort occurs 

when the difference in indoor air temperature and interior wall temperature exceeds 3 

°C [54]. This effect is more pronounced when subjects are standing closer to wall 

surfaces. The maximum panel temperatures for the control panel and the polyester 

insulation panel exceeded the 3 °C limit, whereas aerogel panel had a temperature 

difference of less than 3 °C against indoor air temperature. Moreover, it has been 

experimentally shown that thermal discomfort has an effect on human psychology and 

health. Persons working in an office environment, because of the perception of bad air 

quality (warm and/or humid air) performed tasks less efficiently [55]. 

 Some electric companies also charge for power factors less than 0.95. A power 

factor is calculated by dividing real power (kW) by apparent power (kVA). This increase 

in apparent power is caused by induction motors such as the ones that are typically 

used to run air handlers and chiller units when they are lightly loaded instead of 

switched off. Reductions in the fluctuation of indoor wall temperatures allow the air- 

conditioning systems to turn off which prevents a reduction in power factor.  

 Fig. 35 indicates the performance of the panels in terms of daily heat flows and 

peak heat fluxes. In Fig. 35, aerogel panel, control panel, and polyester insulation panel 

are compared against each other. It was observed that the aerogel panel had larger 

reductions in both daily heat flow and heat flux when compared to the polyester 

insulation panel. 
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Fig. 35. Comparison of panel performances for set 1. 
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Fig. 36 represents the heat flux through aerogel panel, control panel, and 
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peaks for the exterior surface temperature occurred at around 4 PM and the peaks for 

heat fluxes as measured on the interior surface occurred at around 5PM. 
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16%, 16%, and 22% for peaks D1, D2, and D3 against control panel, respectively. This 
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insulation panel displayed a reduction in heat fluxes at their peaks of 4%, for peak D1 

and showed a reduction of less than 1% for D2, and D3, respectively. This blanket did 

not show a significant reduction in heat flux at the peaks. In Fig. 37 exterior surface and 

ambient air temperatures are shown for all panels. Exterior surface temperatures were 

identical and well matched which implies that the panels were exposed to similar 

thermal conditions. Also, they followed trends that the outdoor air temperatures 

exhibited.  

  
Fig. 36. Heat fluxes through the panels for set 2. 

 

To get a more thorough quantification of the blankets thermal performance, the 

daily heat transfer across the panels was calculated. This is the area under the heat flux 

curve for a given day (Fig. 36). The reductions in daily heat flows for the aerogel panel 

were 29%, 37%, and 39% for days D1, D2, and D3 when compared with the control 

0

2

4

6

8

10

12

0 6 12 18 0 6 12 18 0 6 12 18 0

H
e
a
t 

F
lu

x
 (

W
/m

2
) 

Time of day 

Aerogel panel

Control panel

Polyester insuaton panel

D 2 D 3 D 1 



 
  
 

67 
 
 

panel, respectively. The aerogel panel showed a 35% average reduction in daily heat 

flow when compared to the heat flux across the control panel. For days D2 and D3, heat 

fluxes across the panels were similar and showed a similar reduction in daily heat flows. 

The reductions in daily heat flows for the polyester insulation panel were 21%, 24%, and 

24% for days D1, D2, and D3 when compared with the control panel, respectively. The 

polyester insulation panel showed an average reduction of 23% in daily heat flow when 

compared with the control panel. The reductions in daily heat flows for the aerogel 

panel were 10%, 17%, and 29% for days D1, D2, and D3 when compared with the 

polyester insulation panel, respectively. Therefore, the aerogel panel performed with a 

16% reduction in daily heat flow when compared with the polyester insulation panel. 

  
Fig. 37. Outdoor air and exterior surface temperatures for set 2. 
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It can be observed that the aerogel panel did not show significant heat flux 

reductions at the peaks. Rather, most of the reductions were seen during the off- peak 

intensities. To analyze these phenomena air space panel surface temperatures were 

examined (Fig. 38). On visual inspection of the graph, it is noticeable that the air space 

panel surface temperatures were higher for aerogel panel than control panel and 

polyester insulation panel. 

  
Fig. 38. Air space panel surface temperatures for set 2. 
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Table 9 tabulates the maximum air space surface temperatures for the air space 

panel surface and the air space cement board surface. 

Table 9 
Comparison of panel air space temperatures for set 2. 
Panel surface Aerogel 

panel            
(° C) 

 
 

Difference 
(° C) 

Control 
panel         
(° C) 

 
 

Difference  
(° C) 

Polyester 
insulation 

panel 
(° C) 

 
Air space panel surface 32.18 -2.22 29.96 -0.76 30.72 

Air space cement surface 27.25 -0.30 27.55 0.21 27.34 

 

The temperatures of the air space panel surface were higher for both aerogel panel and 

polyester insulation panel when compared to control panel. This is expected considering 

that there exists a thermal resistance at the interface between the panels and the 

insulations. However, these differences were 2.22 °C for aerogel panel and 0.76 °C for 

polyester insulation panel when compared to the control panel. Aspen’s Spaceloft 

blanket had its dust mixture (i.e., silica aerogel, calcium silicate, and synthetic graphite) 

coated between the fiber layers and also on the exterior surfaces as opposed to Cabot’s 

Thermal Wrap that contained aerogel crystals held between fibers (Fig. 9, 11, and 12). 

This exterior coated dust layer provided a high thermal resistance to the thermal energy 

coming out of the air space panel surface at the interface itself. This thermal energy 

because of the difference between the exterior surface temperature and the air space 

panel surface temperature was stored at the interface. This raised air space panel surface 

temperatures in aerogel panel. Aerogel as explained in section 1.2.3 has higher thermal 

conductivities at higher temperatures. This increases the heat flux through aerogel panel 

as it reaches the peak for any given day. At off-peak times, namely between 10 PM to 10 
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AM, reductions in outdoor ambient and surface temperatures (Fig. 37) show a coinciding 

reduction in air space panel surface temperatures and subsequently heat flux through 

aerogel panel. 

 Fig. 39 indicates the performance of the panels in terms of daily heat flows and 

peak heat fluxes. In Fig. 39, aerogel panel, control panel, and polyester insulation panel 

were compared against each other. It was observed that the aerogel blanket had larger 

reductions in both daily heat flow and peak heat flux when compared to the polyester 

insulation board. This aerogel blanket showed a noticeably larger reduction in daily heat 

flow when compared to its peak heat flux. 

 
Fig. 39. Comparison of panel performances for set 2. 
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To compare the thermal performance of Cabot’s Thermal Wrap and Aspen’s 

Spaceloft their average thermal performances at the daily peaks and their respective 

daily heat transfer were tabulated in Table 10. 

Table 10 
Insulating blankets performance during retrofit test.  
Insulating Blanket 
 
 

Control panel 
 
 

Polyester insulation  
panel 

 
 

insulation 

  Peak Daily Peak Daily 

Cabot's Thermal Wrap 22% 18% 9% 15% 

Aspen's Spaceloft 18% 35% 1% 16% 

 

The blanket’s thermal performance at lower temperatures is assumed to follow a 

linear distribution with respect to increased insulation thickness [56]. This implies that 

for a 6 mm blanket of Aspen’s Spaceloft the reduction in daily heat flow when compared 

to the polyester insulation board would be closer to 19%. This heat flow reduction is 

26% more than that Cabot’s Thermal Wrap against the polyester insulation board. 

However, a larger reduction than seen was expected. This is because Aspen’s Spaceloft 

contained approximately 27% more aerogel dust when compared with Cabot’s Thermal 

wrap. Furthermore, it also contained calcium silicate and synthetic graphite which are 

both thermal insulators. The aerogel blankets showed only a marginal increase in 

performance when compared with the polyester insulation board. 

Figs. 40 and 41 represent the R-value of the panels fitted with Cabot’s Thermal 

Wrap and Aspen’s Spaceloft over a 72 hour period. 
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Fig. 40. R-value of panel fitted with Cabot’s Thermal Wrap. 
 
 

Fig. 41. R-value of panel fitted with Aspen’s Spaceloft. 
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In Figs. 40 and 41, the R-values were an average of 2.37 m2K/W and 2.41 m2K/W 

for the control panels, respectively. This reiterated the level of accuracy that was 

maintained throughout the experiment and made the R-values of Cabot’s Thermal Wrap 

and Aspen’s Spaceloft more comparable. The panel fitted with Cabot’s Thermal Wrap 

was found to have an average R-value of 2.97 m2K/W. The panel fitted with Aspen’s 

Spaceloft had an average R-value of 3.22 m2K/W. This showed that Cabot’s Thermal 

Wrap had a lower R-value than Aspen’s Spaceloft. Aspen’s Spaceloft was expected to 

have a higher R-value based on the quantitative analysis. However, as mentioned earlier 

its R-value is not as high as was expected.  

Furthermore, the R-value and thermal conductivity of the blankets was compared 

with the R-value and thermal conductivity of an aerogel monolith. This was done by 

relating the thermal conductivity, R-value, and peak heat flux of the air space in the 

control panel with the thermal conductivity, R-value, and heat flux of the blanket in 

aerogel panel. All the panels showed similar interior and exterior temperatures, i.e., the 

driving force for the incoming heat flux. For this reason, temperature differences were 

considered to be constant. 

A 6 mm air gap has an R-value of 0.23 m2K/W or a thermal conductivity of 0.026 

W/mK. The R-value of the blankets were a minimum at peak heat fluxes (Figs. 32, 36, 40, 

and 41). At the peak heat flux, the blankets showed a minimum heat flux reduction of 

16% when compared to the control panel. This implied that the R-value of the blankets 

reached values of approximately 0.28 m2K/W or a thermal conductivity of 0.021 W/mK. 

The highest peak heat flux reduction was 24%. This means that the highest R-value 

achieved by the blankets were approximately 0.31 m2K/W or a thermal conductivity of 
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0.019 W/mK. Typical R-values for an equivalent sized silica aerogel monolith is 0.35 

m2K/W and a thermal conductivity of 0.017 W/mK [11]. This difference in R-value 

showed that the aerogel blankets did not have the same thermal performance as an 

aerogel monolith. 

 To investigate this, the infrared wavelength at which maximum radiation occurs 

was calculated using Wien’s displacement law shown in Eq. (5.1).  

                                                      𝜆𝑀𝐴𝑋 =
2897µm°K

𝑇
                                                        (5.1)                                        

In aerogels, radiation is a dominant mode of heat transfer; thus the need to quantify the 

wavelength of infrared radiation to which the aerogel dust was exposed to. This in turn 

provides an interpretation of the extinction coefficient of the aerogel dust (refer to 

section 1.2.3).  𝜆MAX  was found to be between 9-10 µm for both the blankets tested. At 

these wavelengths silica aerogel has a high attenuation which absorbs thermal radiation 

and dissipates it. Therefore, the wavelength of emitted infrared waves was not the cause 

for the underperformance of Aspen’s Spaceloft. The size of the dust particles in Aspen’s 

Spaceloft meant that it was more likely to adhere to the fiber glass and polyethylene 

fibers than to be trapped in between fibers as was the case in Cabot’s thermal wrap (Fig. 

12). Radiative fluxes at the boundary of aerogel dust are weak as a result of lower 

boundary emissivity. Heat travels in and out of aerogel mostly through conduction. The 

heat flux through the aerogel body is governed by conduction and radiation. This 

difference in modes of heat transfer at the boundary and at the interior creates an 

unusual temperature profile in which the slope for the exterior of the aerogel is far 
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steeper than the interior [16,23]. Based on Fourier’s law, because of the sudden changes 

in temperatures at the boundary, the rate of heat transfer is higher. The contact between 

the aerogel dust and fibers provides a thermal pathway for heat to leave the aerogel 

dust particles, which enhances the thermal conductivity of the composition. 

Furthermore, smaller aerogel dust particles result in faster transition periods for heat 

fluxes.  

Having smaller aerogel dust particles is not necessarily less effective provided 

they are in close contact to one another behaving much like a monolith. Gao et al. [57] 

showed that smaller particles (<0.5 mm) that are all in close contact have a lower 

thermal conductivity than larger particles (3–5 mm). This is because of a reduction in 

inter-spatial voids of the aerogel composition. This, however, is not the case with 

aerogel blankets (Figs. 9, and 11). Fig. 42 is used to illustrate. 
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Fig. 42. Inter-granular spaces of aerogel. 
 

In Fig. 42, the aerogel granules were approximated as circles of diameter of 0.5 

mm and the rhombus in the center represented the interspatial voids that are formed. 

This inter-granular distance can be estimated using Eq. (5.2). 

                                                             DV =
12

29
𝐷𝑃𝑎𝑟                                                      (5.2) 

For a particle diameter size (DPar) of 0.5 mm the minimum inter-granular distance (Dv) 

was calculated as 0.20 mm. The objective in using a composite is to minimize this 

interspatial void so as to prevent convective flows and minimize gaseous conductivity. 

This can be achieved by using smaller aerogel granules that can be more densely 

packed. To achieve the highest packing density a mixture of different granule sizes are 

1 mm 

1
 m

m
 Contact point 
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preferred. These smaller particles can fill in larger interspatial voids. Preferably, air voids 

should be less than the mean free path of air (~700 nm) which would effectively reduce 

gaseous conductivity. In the case shown in Fig. 42 granules smaller than 0.20 mm would 

reduce gaseous conductivity and convection. Moreover, an increase in the number of 

granules will increase the number of thermal contact resistances for a given volume.  

It has been shown previously by using aerogel granules that are in contact with 

one another and are densely packed within a medium result in a thermal behavior that 

was similar to an aerogel monolith. This method has been used effectively to make 

aerogel glazed units to achieve lower thermal conductivities and is commercially 

available.  
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Chapter 6 
Conclusions and recommendations 

6.1. Research summary 

The purpose of this research was to study and to test the effectiveness of aerogel 

used in blanket form as a potential next generation thermal insulation. This implied 

understanding and analyzing the thermal mechanisms that allowed aerogel to have low 

thermal conductivities and to observe if these mechanisms were sustained when aerogel 

was used in a dispersed form (Non-monolithic). Aerogel was integrated into part of one 

wall of the building enclosure of an institutional building (M2SEC) by the use of thin 

polymer blankets (<6 mm) that behaved as containment vehicles for the aerogel dust 

particles. Two blankets were tested. They were Cabot’s Thermal Wrap and Aspen’s 

Spaceloft which were both silica based aerogel blankets. A number of characterization 

tests were carried out on the aerogel to support the thermal analysis of the aerogel 

blankets. These tests include scanning electron microscopy, energy-dispersive X-ray 

spectroscopy, and quantitative analyses. 

A total of three sets of data were collected, namely pre-retrofit test or calibration 

test, Cabot’s Thermal Wrap test, and Aspen’s Spaceloft test. Calibration tests were 

carried out on three test panels that were located in the south wall of the M2SEC 

research building to confirm equal thermal performance between them and to provide 

the baseline for their comparison. The blankets were applied, one at a time, to the 

M2SEC building wall via interchangeable panels for experimental evaluation.  
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6.2. Conclusions 
 

The data from the calibration test showed a high degree of similarity between the 

thermal performances of the panels. For the exterior surface temperatures and the 

outdoor ambient air temperatures the differences in temperatures between the panels 

were less than 0.03 °C. The exterior temperature and solar irradiance were the driving 

forces for the heat fluxes that entered the building. Heat flux entering the building had 

an average difference of 4.2% between the panels. Moreover, indoor air temperatures 

were maintained at a difference of less than 0.17 °C. This high level of control ensured 

that data collected during the retrofit was accurate. 

The experiments concluded that aerogel blankets reduced peak heat fluxes by 

approximately 22% and daily heat flows by about 35% when compared to wall panels 

without aerogel. When the aerogel blankets were compared against conventional 

insulation (polyester insulation boards) it showed a peak reduction of about 9% and a 

daily heat flow reduction of less than 16% (Table 10). This reduction was less than what 

is expected from monolithic silica aerogels and showed marginal improvement when 

compared to the polyester insulation board. 

 The analysis indicated that the aerogel dust of both blankets was similar in pore 

size. This was important because pore size is a crucial factor in the thermal mechanisms 

of aerogels. Aerogel blankets differ widely in composition and manufacturing. For the 

blankets that were tested the crucial differences were: 

1) The dust in Cabot’s Thermal Wrap contained only aerogel, whereas, the dust in 

Aspen’s Spaceloft contained aerogel, synthetic graphite, and calcium silicate. 
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2) The average size of the aerogel dust particles was larger and more varied for 

Cabot’s Thermal Wrap (< 500 µm) than for Aspen’s Spaceloft (<100 µm). 

3) The quantity of aerogel dust was greater in Aspen’s Spaceloft than in Cabot’s 

Thermal Wrap on the basis of volume. 

It has been proven in a large number of research publications that silica aerogels 

have a low thermal conductivity. The issue is how to transfer this low thermal 

conductivity into building enclosures via a containment method while keeping in mind 

economic factors.  

 The thermal mechanisms that have been mathematically modelled for aerogels 

cannot be used to map thermal pathways for this heterogeneous composition (aerogel 

blankets); therefore, more research is needed in this area. By comparing the differences 

in composition and structure of both the blankets the following conclusions were made: 

1) Size and volume of aerogel particles used in aerogel blankets play a major role in 

its thermal performance.  

2) Aerogel blankets tested were not as effective as aerogel monoliths. 

3) The blankets showed marginal reductions in heat flux when compared to the 

polyester insulation board. 

4) Aerogels blankets perform better at lower temperatures. 
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6.3. Recommendations 

Aerogel blankets tested cannot be expected to have similar thermal 

performances as aerogel monoliths as their aerogel content was less than half and 

moreover in a dispersed form. The key to aerogels effectiveness as thermal insulator is 

its nanopore structure. It is crucial that a synthesis with any type of containment method 

creates macropores that are as small as possible. It is recommended that this method of 

aerogel application be investigated for wall insulations by using alternate containment 

methods that will reduce inter particular space. Optimization of packing density can be 

done by using established Euclidian geometry and circle packing principles. This should 

be experimentally tested and optimized. Furthermore, xonotlite-type calcium silicate 

(<100 nm) can be used as filler in the composite. The xonotlite-aerogel composite has 

been shown to have similar thermal trends to aerogels. This may prove more 

economical. 

As mentioned in section 5.2.2, at the surface of aerogel, conduction is a 

significant mode of heat transfer for heat entering and leaving the aerogel particles 

when compared with convection and radiation. For this reason, it is recommended that 

aerogel blankets be tested while maintaining an airspace between the blanket and the 

surface conducting heat. Moreover, it would prevent accumulation of heat at the 

composite-panel interface. 

Future research should focus on mathematically modelling the thermal 

interactions between aerogel and its supporting fibers because aerogels behave 

differently when in contact with other materials. For example, this would help optimize 
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aerogel dust and fiber diameters that may lead to lower thermal conductivities. Testing 

should also be conducted during the winter to conclusively determine and map the 

thermal performance of aerogel blankets. Furthermore, seasonal sets of data can help 

show agreement between the thermal model and experimental data or be used on 

extrapolation to mathematically model its thermal behavior. 
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