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INTRODUCTION. 

The purpose of this paper is to consider in detail,for 
i 

elliptic functions and also "briefly for hyper-elliptic^ func

tions, a special Riemann surface in three space,obtained as 

the projection of the intersection of two hyper-surfaces 

in four space. It will be shown that this surface has all 

the properties peculiar to a multiple sheeted Riemann sur

face in two space. 

It will be seen that the surface investigated here is 

of advantage in the fact that it can be easily identified, 

from the point of view of analysis situs,with a double faced 

disk having p holes;where p = £Clzi7 ,n being the degree of 
2* J 

the function. As is well known,in Riemanns real represen

tation this is obtained only after an artificial and some

what complicated dissection of the surface,in which the 

determination of the branch points is a very important fac

tor. In a sense this difficulty may be said in our case to 

have been merely shifted from such a dissection to the con

struction of a certain real surface from ite equation in 

three space. This construction in our case can,however,be 

made very simple. In the ordinary Riemann surface the act

ual location of the branch points is difficult at best,and 

is useless so far as the investigations bearing on the sur

face are concerned. Similarly here,the actual construction 

t "ir/ ls understood as the greatest integer in rY^~-



of the surface will he avoided,except in the simplest case, 

namely,the elliptic one,and then,only as much of its out

line as is necessary will he obtained. This construction 

will he found to he comparatively simple. 

This paper will he divided into the following main 

divisions:-

A. General Discussion. 

B. A Numerical Example of the Elliptic Case. 

C. The General Elliptic Case for which f (z) has real Hoots. 

D. The General Elliptic Case. 

E. A Numerical Example of the Hyper-elliptic Case. 

P. Some Considerations of the General Hyper-elliptic Case. 

G.. Double Curves of the Surface. 

A. GENERAL DISCUSSION. 

Let f(w,z)=0 he an irreducible polynomial in the two 

complex variables w and z,with either real or imaginary con

stant coefficients. Substituting w= u+iv and z«=x+iy in the 

above relation and separating reals from imaginaries we ob

tain the equation, 

P(x,y,u,v) + iQ(x,y,u,v)rO/ 

Whence, 

P(x,y,u,v)=0, 

Q(x,y,u,v)=0. 

The last two equations represent real three dimensional 

manifolds in the real four space (x,y,u,v). Their intersec

tion in four space will be the surface <j) • Assume that w =w0, 



when z = z0« It is then possible,in the neighborhood. z0 ,wc , 

to expand (w - w0) in powers of (z - zD),and by analytical 

continuation to go from the neighborhood of z0 to the neigh

borhood z, . As z changes from z0to z, ,w will go from w6into 

one of the values w, corresponding to z, . If this process be 

continued until z by a continuous succession of values returns 

to z0,w may or may not return to w0 . In the first case the 

representative point on $ corresponding to a pair of values 

(w,z) will describe a closed path,while in the second case 

the path will be open • The obvious one to one correspondence 

between points of the surface (J) and sets of values (w,z) ; 

shows that this surface can play the same role as the ordin

ary Riemann surface• 

If between the surfaces P-0 and Q,=0 v is eliminated there 

arises the relation, 

F(x,y,u)=0, 

which represents in the three space (x,y,u),a surface F,viz., 

the projection of (J) in that spa ce• This surface F,as well as 

(|),can be used as a Riemann image;this being the configuration 

to be investigated in this paper. We shall limit ourselves, 

as here stated,to the hyper-elliptic case. It is of course 

at once evident,that instead of eliminating v any one of the 

variables x,y or u might have been eliminated and a surface 

similar to F obtained. 

B. A NUMERICAL EXAMPLE OF THE ELLIPTIC CASE. 

Before proceeding with the general cubic a special cubic 



will be considered in detail, and enough of the resulting 

surface constructed to show its properties as a Riemann 

image. (This special cubic is chosen on account of its 

adaptability to cross-section representation). 

Consider the equation; 

Wl= Z3-3/Z-30 

Substituting w«u-4iv and x+iy in this equation,it becomes 

ux-vx-t%3-3xy*-3ix-30 + i(2.\jv-3x*y ty*+3iyjj - o; 

'whence, 

and 

Q = 2 uv-ojr'-y-y'-s/ yj = o 

The intersection of P : 0 and Q = 0 in four space is the 

surface <j). The v projection of (J) in three space has for its 

equation, 

F(y,y, u)=u*-xy-3/y-3 o; - oy^y-y-3/y/= o 

This surface is symmetric to both the XU and XY planes. The 

trace on the XU plane is the XX axis twice and the real 

curve ,• 

V2~=Xi-3l)(-30 

representing all the real pairs (w,z) satisfying the orig

inal equation. The latter consists of an infinite branch 

and an oval. (See Rig.I,a). The XY trace consists of the 

XX axis twice and the hyperbola, 





3x*-y1~=3t 

taken twice.(See Pig.II,a). This hyperbola and the XX axis 

are the only double curves of the surface. 

The facts thus far brought out seem to indicate that 

the oval is a section of a hole in P. That this is actually 

the case is shown as follows by considering sections of P 

parallel to the YU plane.Solving P(x,y,u)=0,we obtain 

Ls*+(s\T*jiy1L 

where, 

S - Xa-3Vy1-3i X-30 

and 

T= 3x*~y-y3-3i y 

In this expression for u only positive values of the inner 

radical are considered,as only real points on the surface 

P are to be considered. Por the purpose of examining sec

tions parallel to the YU plane,take, 

2 u _ t £§r y L~6 y(£/x+ 3 x 3 y¥-t & x%yl"-f 
ay= * (S^r^L5 +(s^Ttjy^ 

Then,if y=0, ̂ y = o . Por all negative values of x and pos

itive values of y, iLH. is always positive or always negative 

a c c o r d i n g  a s  u  i s  p o s i t i v e  o r  n e g a t i v e .  P o r ,  —  6 % i s  

positive and the only negative term in the expression for 

JL^L is 180x;bht as is easily seen, 

> 190* 

for all values of x. By similat reasoning it is seen that 



is always negative or always positive,according as u 
& Y 

is positive or negative,for all negative values of x and 

negative values of y. Hence,for all sections parallel to 

the YU plane,where x is negative, there will "be either both 

a maximum and minimum point,or a double point,for y equal 

zero and for no other finite value of y. The same reasoning 

holds for positive values of / = • l?or x >^f , there 

are other maximum and minimum, or double points. Since the 

oval is not a double curve all of these sections that cut 

it will have maximum and minimum points for y equal zero, 

while all other sections within the region considered will 

have double points for y equal zero. Since points on the 

oval are always maximum or minimum points for the sections 

considered here,according as u is positive or negative,and 

no other like points exist on these sections,it follows 

that the projection of P upon the XIJ plane will be nowhere 

within the oval, and hence there is a hole in the surface 

for which the oval is the central section. 

Prom the preceeding discussion and an inspection of 

the sections,(See Pigs.1,III andIV),it is obvious that the 

surface P is composed of two sheets which pass through each 

other for values of x from -co to -5,from-l to +6 and along 

the branch of the double curve T=0 which lies to the right 

of the YY axis. Along the plane curve, 

v/= x*-3i x-3 

we can pass from one sheet to the other. 

Taking any section parallel to the XU plane,(See Pig.I) 
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two branches are obtained which intersect each other in a 

point on that branch of the double curve T =0,which lies to 

the right of the YU plane. These curves continue to infinity 

without cutting themselves,or each other,at any other finite 

point. They axe symmetric to the XY plane and unite parabol-

ically at infinity. 

The sections parallel to the YTJ plane are all parabol

ic in nature,having for their asymptotic direction yrO. Like

wise, the asymptotic directions of the XU sections are x=0 and 

u»0,showing that the two sheets of the surface merge into 

eaEh other everywhere at:; infinity. 

The surface P may be reduced to a double faced disk 

with one hole as follows: I1 or all values of x greater than 

6,deform the surface in such a way that instead of cutting 

each other in two distinct points on T =0for each value of 

x,the two sheets will cut each other in two coincident 

points. This deformation will be continuous and approach 

zero in magnitude as x approaches 6 and will nowhere pro

duce a tear in the surface. Having made this deformation 

project the surface upon the XU plane and the result will 

be a double faced infinite disk with one hole. It is then 

evident that if is excluded by means of a large circle 

the result will be a double faced finite disk with one hole. 

The two faces of this disk intersect each otherJhowever,by 

a well known deformation similar to that employed by Heuman, 

the disk may be transformed into one in which the faces donor 

intersect each other. 

Starting at a point P. in sheet I and continuing in any 



direction on the surface P we can always return to P. . This 

closed path nay be all in sheet I or in both sheet I and 

sheet XX. It may or may not pass through or around the oval. 

In the latter case.the circuit can always be reduced to zero, 

while in the former it cannot be so reduced,unless there be 

an even number of such passages and they be in opposite dir

ections. Hence any closed eircuit on P can be reduced to . 

zero or to sums of multiples of two irreducible circuits. 

These facts show the elliptic function to be doubly period

ic over P. 

C. THE GENERAL ELLIPTIC CASE HAVIHG HEAL ROOTS. 

We shall now extend the preceding discussion to any 

elliptic function of the type, 

W 

where p is positive and q either positive or negative,and 

where the roots of 

t-Pi +1 =0 

are all real. It will be shown that the resulting surface 

P(x,y,u)=0 has properties identical with those of the spec

ial case already investigated,if judged from the point of 

view of the investigations of this paper. 

We obtain at once,as in the preceding case, 

F(%.y,v) = *} v i~fu ts -t1  =  o  
where, 



5- x3-dxy2"-p% fy 

and 

T = 3x'~y-y3-py 

The similarity of the XU and XY traces to those in the pre

ceding case is obvious. To investigate this surface "by 

means of sections we proceed as before. The equation 

F(x,y.v) = o 

gives 

and hence, 

\± _ ;t /r yf-6x(5%T*)J£ X'ti yv-j-6x2-y,"-6gx 
ay * + 

p0r y=0, 44> = ° * P°r all negative values of x and positive 
»y 

values of y, is always positive or always negative,ac-
® y 

cording as u is positive or negative• It is easily seen 

that if x is negative — 6 X (S* +Tz)u is positive and all 

the other terms are positive with the possible exception 

of -6qx,which,however,is negative only if q is negative. 

In this case consider the three terms, 

3X-62)f + />\ 

Itis desired to show that 

3X, + />1Mb x{. ID 

Prom the prece^di^S assumption of real and unequal roots of 



T1 -P2. + 1=0 

it is easily seen that 

hi  ^  j~l  pPf l»  (Z)  

Substituting this relation in (1),we obtain 

13 y'l-lyp/f xl Mp"i> o oj 

Since ,however, CE is a double root of the equation 

3XV- X + P*' = 0 

and no other real roots exist,it is evident that the left 

hand member of (3) is never less than zero,and consequent

ly (l) is always true• The same reasoning shows that for 

x negative and y negative, is always negative or always 
* 7 

positive,according as u is positive or negative. Hence for 

all sections parallel to the YU plane,where x is negative, 

there will be a maximum and minimum point, or double point, 

for y equal zero and for no other finite value of y. The 

same conditions hold for positive values of X % Vlf • Since 

the sum of the roots of 

ZS-PZ +7 =0 

are zero,at least one root must be negative and therefore 

the oval must at least be partly to the left of the YU 

plane and cannot lie to its left. In fact x =• is al

ways to the right of the oval. To show this let <*, be 

the roots of 

t? -PL + ̂  -0 

where . If and are both negative the prop



osition is trivial. If is positive take the known rela

tions H +^-fiand — ̂ ,oL^i = c^ . Substitute the value of 

cA, from the first relation in the second and we have 

i 2. 
= <? , (ifJ 

Prom (2) and (4) it is evident that 

Therefore, 

f -Pff > 2<f 

Eor x > ff there are other maximum and minimum points 

or double points than for y equal zero. As in the simpler 

case, these sections are parabolic in nature, their asymptotic 

direction being y=0. 

This discussion thus shows that this surface has no im

portant characteristics,from our point of view,not common 

to the more special case investigated and is therefore al

ways reducible to a double faced dish with one hole. 

D. THE GENERAL ELLIPTIC CASE. 

In the previous sections our investigations have been 

confined to the type 

WZ= Z*- PI +<7 

where p and q were both real,p positive and the roots all 

real. It will now be shown that no generality is lost by 

this restriction. 



Consider the general elliptic case, 

wz = i(i) 

where 

and 

di , &i) c*2 } , <p4y 

are real or imaginary constants. The elliptic integral 

resulting from this form may "by a well known transformation 

of f(z) "be made to depend upon an integral of the type, 

aW)=i.(z'-9iz ~ 

Ho generality is therefore lost by replacing f(z) by g(z'). 

In g(z')>gr and g3 may "be positive or negative,real or imag

inary constants. If the coefficients gz and g3 are arbitrar

ily changed the surface 3? will undergo a deformation. The 

only matter of interest in the present paper is whether 

such a deformation increases or decreases the number of 

holes in I. It is of course evident if the number of holes 

is diminished as gA and g3 assume the values and , 

that as and g3 approach g* and g, in value,one or more 

holes in the surface must be continuously decreasing in 

size in such a way that when g* and g-, are reached the sur

face has a node at the point (xa ,ye ,Uo ) on I1,and vice-versa. 

If (Xo,y0 ,u0 ,vd ) is the corresponding point on (J), the latter 

will also have a node at this point. Therefore,correspond-

*Boehm,Elliptische Eunktionen,Zweiter Teil,page 128-129. 



ing to nodes of F are nodes on (j>. At such nodes the tangent 

hyper-planes to 

P(x,y,u,v)=0 

and 

Q(x,y,u,v)-0 

are coincident. In order to investigate the nature of F at 

such places write the equations of the tangent hyper-planes 

to P and Q at the point (xp,y0 ,u«,v« ), and write the con

dition for their coincidence. The equations in question are, 

(X-XjPx.  +CY-%)Pj .  +L\J-v . )Pi  +1 u - v.) /?.' = 0 

and 

( X -  X o ) Q x .  +  ( Y - Y o ) Q y t  + C U  ~  V * ) Q i i „  +  ( v -  V o J Q v 0  =  o  

The condition for these two hyper-planes to be coincident 

is that 

-Bf- - A" - = & 
Q~io Qy, Qvo 

It is evident,however,from the relation 

Pf y, y, u,vj  + / o, (x, y, u vj  = o  

that 

Hence, 

FjCo "f - 0, /y.  ̂> Fv* ~ ̂  , ft. + Ovf - & J 

and therefore, 

f?.=0, Pj. =0 , p u'„ = 0 , P. = o 



I § / 
d Yo ~ 0 , Qy. =0 , £i, U. - 0 j t fv# ~ O » 

In the above relations 

p z v2-- Vx - 5 -U,yJ 

and 

Q  -  z v v  - T(x,v) ; 

8f ore, if 

Q* / 
/Vo - 0 and /v<> = 0 

it follows that .u =0 and v =0 and therefore, that g(z)Z0, 

Moreover,since 

Pro -b t Qau ~ 0 
and 

+ 1 Qr, ~ o 

it follows that 

i Tt. = 0 
and 

S 7, •+ t Ty, = 0 , 

Theref ore,g(s)=:0, showing that z<> is a double root of g(z)oO• 

It is evident therefore, that the surfaces P and Q,and hence 

I,may be deformed in any way we please without affecting 

its analysis situs properties,provided that during this de

formation g(z)zQ never acquires any double roots. These 

conditions allow a deformation that will change complex 

roots a+ib, c+id, e+if into real and unequal roots a', c', d', ' 

without any tv/o roots becoming equal in the process. Hence 



v/e may in tliis manner transform g(z)irito j iz"),where the 

roots of ,1 (z ") - 0 are real ana uunequal. 

The ahove conclusions shovz that no generality is lost 

in considering the simpler case and thereby avoiding the 

the difficult task of dealing with imaginary coefficients. 

The difficulty introduced "by imaginary coefficients is that 

due to the lack of symmetry with respect to the XIT plane 

which was found in our previous discussion. 

It is evident now,as was stated in the first section 

of this paper,that the surface constructed from the simplest 

possible relation is sufficient for a complete exposition 

of the Hiemann surface properties of the most general ellip

tic function. 

E. A NUMERICAL EXAMPLE OP THE HYPER-ELLIPTIC CASE. 

As an introduction to the general hyper-elliptic case 

we will consider briefly a simple numerical example. The 

details of the surface P will be considered sufficiently 

to show that what has been said about the elliptic case can 

be carried over in all its essential details to the higher 

form. Por t&is purpose consider the equation, 

WZ={2 +3J ( Z +z)Lz + i] (z-I)(z -S) 

Substituting w-»u+iv and z =xtiy and separating the reals 

from the imaginaries,there arises the equation 

Pit,y,i/, vj +/aix.y.v.v) =os 



Hence, 

P(x,y,u,v)«0, 

and 

Q,(x,y,u,v)«0; 

where, 

P-i» - v - (x* -jo y'yNxx yv - 2.0 x3  -t 60 x y*--jo t* uo y*-11 9 x + $ o) = o 

and 

Q=21/V-f(xV-M(V + vr.44xl/+JoyJ_tHyt(nJ__o 

The surface P(x,y,u)»0 will be represented by 

4 t/*- ij ux5 -T*'- o, 

where 

5 = (xs~-/oXiy3-+s-xy*-2ox'-nt>xYz--3ox'- + 3oy*-+itx4-30) 

and 

T = S-x"v -/oxxy3+yr-(>ox'-y+2oys-bo xy -t /f y. 

The surface P is symmetric to the XU and XY planes. The 

trace on the XU plane is the XX axis twice and the real 

curve; 

v/*= (X4l)(x + 2j(x-f /^(X-/J(X — 

representing all the real pairs (w,2) satisfying the orig

inal equation. The latter consists of the two ovals and 

an infinite branch. The trace on the XY plane is the XX 

axis twice and the double curve represented by the equa

tion T -0. This curve is composed of four infinite branches 

which are hyperbolic in form and coaxial. (See Pig.VI). 



r/s.izr. 



Sections parallel to the XU plane give rise to curves 

which have double points on the branches I and III of the 

double curve,as shown in the figure,and nowhere else. This 

is shown by an investigation of the value of S in the neigh

borhood of these branches. Eor the two branches to inter

sect each other it is necessary that T be equal to zero 

and S be negative. Every pair of values (x,y) on one of 

these infinite branches reduces T to zero,but none of these 

pairs on branch II or IV will cause S to be negative. There

fore the two sheets of the surface E do not cut through 

each other along either of these branches. The two sheets 

pass into each other along the curve represented by, 

I Y + 3j(y-+zHY-+/JU-/^x--JV t y = o 

and cut each other along the XX axis from - ̂  to -3,-2 to 

-ljfrom-f 1 to +5 and along the two branches I and III of 

TaO. The symmetry of the surface as shown by the equation 

\J = ± [ 5 + (Ŝ +T1jli]/z 

leads at once to the conclusion that for one sheet to pass 

into the other T must be zero and at the same time S must 

be either zero or positive,since for T zero and S negative 

we always get a cutting of the two sheets• Now S can never 

be zero when T vanishes, except for the pairs of values (x,y) 

whicigare roots of the original expression f(z)»0,but all 

these pairs have y-0. Suppose S is positive along some ' ... 

branch of the double curve T=0,than this branch of T will 

be an isolated curve. To prove as in the elliptic case that 

the two sheets never pass into each other for any finite 



value of y except zero would "be very complicated,and so 

another method is employed. It is easily seen that any sec

tion parallel to the YiJ plane will give rise to a curve 

which has a number,say d,double points. But this curve is 

composed of two branches which intersect in d points in 

the XY plane. If d is odd the two branches are odd and 

hence each branch stretches off to infinity in both direc

tions. If d is even.each branch is even and hence cuts the 

line at infinity in an even number of places and is accord

ingly a closed curve. In the first case (d odd) the XX axis 

must be composed of intersection points,while in the latter 

it is not. This leads to the conclusion that all sections 

which cut the curve vS /(X) , yc o are even branches and 

all others odd. Hence the former are always reducible to 

sections of the form, Pig .IB,(a), while the latter are always 

reducible to branches of the form Pig.El,(h/. Prom this will 

follow as in the elliptic case,that P is two sheeted and 

contains two holes. By a deformation similar to the one 

described in the example of the elliptic case.it may be 

brought into the form of a finite double faced disk with 

two holes. Hence all closed circuits on P may be reduced 

to zero or to sums of multiples of four irreducible cir

cuits . 

P. SOUS CONSIDERATIONS OP THE GENERAL HYPER-ELLIPTIC CASE. 

Having considered the elliptic case in detail and in



vestigated "briefly a special hyper-elliptic equation,we now 

proceed to the most general hyper-elliptic functionyw£«R(z), 

where B(z) is of degree n. 

Forming the equation of the surface F in the usual man

ner there arises the equation F(x,y,u)=0,where F is of de

gree 2n in (x,y,u). The above relation may always be put in 

the form, 

y i/-y u'-s -r1= o 

where S and T are polynomials in x and y of degree n. As 

has been shown in a preceding section,R(z) may be assumed 

to have only real roots. Hence the surface F is symmetric 

to the XU and XY planes. The XU trace will consist of the 

XX axis twice and a real curve consisting of all real pairs 

(w,z) satisfying the original equation. The latter curve 

will consist of one or two in finite branches,according as 

n is odd or even,and p ovals. The XT trace T «0 will con

sist of the XX axis twice and a double curve represented by 

an equation of degree (n-1). This double curve represents 

all the real double points of the surface F. 

The surface F is composed of two sheets which hang 

together along the curve, 

v/- R (*), y -o 

and cut each other along the XX axis for all real values 

of x not included in the relation u =R(x),and also along 

certain other parts of the double curve T»0. Corresponding 

to the p ovals there will be p holes in F. All closed cir

cuits on F may be reduced to sums of multiples of 2p ir



reducible circuits. 

G. DOUBLE CURVES. 

The double curves of the surface E arise as the result 

of projecting the surface $ from four space into three space, 

the center of projection "being at infinity. When ever a pro

jecting line cuts (J in two places a double point occurs on 

E. If the two points on $ be real the double point on E will 

be a real double point connected with the surface E, but 

if the two points on (j> be imaginary the resulting double point 

on E will be isolated. This gives rise to two classes of 

double curves,one being on the surface E and the other be

ing related to the surface but isolated from it. 

In the elliptic cases studied the double curves con

sisted of the XX axis and an hyperbola. That part of the 

XX axis included by the real part of the curve u =1 (x), y=0 

is isolated. Of the hyperbola,that branch lying to the left 

of the YU plane is isolated. 

In the hyper-elliptic example the double curve consists 

of the XX axis and four infinite branches. What was said 

of the XX axis for the elliptic case holds here also. Of 

the four infinite branches two are isolated,(See Eig.SX ), 

and two are curves of intersection of the tv/o sheets of the 

surface • 

The same conditions will exist in the general hyper-

elliptic case,the XX axis always being a double curve with 



the same law as to isolated points as in the simpler cases. 

The other double curves will be partly isolated and partly 

curves of intersection of the two sheets of the surface. 

The isolated curves separate themselves from the other class 

in that they always pass through one or more of the ovals, 

while the curves of intersection of sheets never do. 


