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Improving the Delivery of Camptothecin through the Blood-Brain Barrier via Modulation of 

Paracellular Pathway using E-Cadherin Peptide 

Kayann Tabanor 

 

Abstract 

 

The successful treatments of brain tumors and many other brain disorders have been limited due 

to the presence of barricade from microvascular endothelium called the blood-brain barrier 

(BBB). It was estimated that over 98% of newly developed pharmaceutical drugs do not cross 

the BBB; therefore, it is necessary to develop methods to improve the delivery of drugs to the 

brain. In this investigation, we evaluated the ability of HAV6 peptide (Ac-SHAVSS-NH2) to 

improve the paracellular transport of Camptothecin-glutamate (CPT-Glu) across the BBB using 

an in-situ rat brain perfusion model. CPT-Glu was synthesized through conjugation between an 

anti-cancer drug camptothecin (CPT) and L-glutamic acid via an ester bond to improve its 

solubility. A perfusate containing CPT-Glu (10 mg/kg) and 1.0 mM HAV6 peptide was 

delivered to the brain of anesthetized Sprague Dawley rats using the in-situ brain perfusion 

technique. Accumulation in the brain was determined through acidic extraction of CPT-Glu and 

its hydrolyzed product CPT from harvested brain, followed by detection using LC-MS/MS. The 

extraction and LC-MS/MS detection methods have been successfully developed to detect 0.25 

and 17 ng/mL CPT and CPT-Glu respectively. Both CPT-Glu and CPT were successfully 

detected in the rat brains after in-situ brain perfusion in the absence and presence of HAV6 

peptide. Rats perfused with CPT-Glu in combination with HAV6 had higher deposition of drug 

in the brain compared to CPT-Glu alone. The HAV6 treated rats had 650.85 ng of CPT 

equivalent delivered per gram of brain (1.30-fold) compared to 498.40 ng/g in control. The 

results also showed that CPT-Glu conjugate was hydrolyzed to CPT in the brain after delivery. In 

future studies, HAV6 peptide perfusion time will be extended for receptor saturation to promote 

effective BBB opening. The concentration of CPT-Glu will be increased to enhance delivery and 

improve detection in the brain. 
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1. INTRODUCTION 

Many potential drugs developed for the treatment of diseases of the central nervous system 

(CNS) such as neurodegenerative diseases, brain tumors and infections of the brain have failed 

during development due to their poor brain absorption. The poor absorption could be attributed 

to the presence of the blood-brain barrier (BBB) and/or unfavorable physical-chemical properties 

of the drug for penetrating the BBB [1]. The BBB is located between the systemic blood 

circulation and the brain. It is a highly selective barrier whose main function is to regulate the 

passage of nutrients into brain and provides protection against toxic compounds and pathogens 

[2, 3]. The BBB is comprised of endothelial cells that make the blood capillaries in the brain [4]. 

The transcellular transport of drug molecules is limited due to the unfavorable physicochemical 

properties of drug molecules and the presence of efflux pumps [4-7]. Paracellular passage of 

drugs is limited due to the presence of intercellular tight junctions [7]. Intercellular tight 

junctions are composed of tight junctions (TJs) and adherens junctions (AJs). Within the TJs are 

complex proteins such as occludins and claudins. AJs cadherin proteins span the intercellular 

cleft and are linked into the cell cytoplasm by the scaffolding proteins alpha, beta and gamma 

catenin [5, 8]. The AJs hold cells together giving the tissue structural support. They are essential 

for formation of tight junction and disruption of AJs leads to paracellular barrier disruptions [5, 

8]. E-cadherins are a family of transmembrane glycoproteins found in the AJs and they mediate 

specific cell-cell adhesion in the opposing cells. These Ca
2+

-dependent proteins are comprised of 

five extracellular repeats (EC1 to EC5) that form a cis-dimer between two E-cadherin molecules 

in the same cell [9]. 

 Here, our overall goal is to improve the paracellular delivery of an anticancer drug molecule 

(Camptothecin (CPT)). This is achieved by delivering a combination of CPT and an HAV6 
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peptide (Ac-SHAVSS-NH2). The HAV6 peptide was derived from the EC1 domain of E-

cadherin and have been shown modulate the intercellular junctions of the in vitro and in vivo 

models of the BBB. CPT is a naturally occurring alkaloid extracted from the camptotheca 

acuminata plant that exhibits antitumor activity in various cancers. CPT suppresses cancer 

proliferation by inhibiting topoisomerase-I, an enzyme required for replication and transcription 

of cancer cells [10-14]. Despite its promising anticancer activity, the utility of CPT in cancer 

therapeutic has been severely hampered due to its unfavorable physicochemical properties. First, 

CPT has very poor aqueous solubility (2.5 μg/mL), making it difficult to formulate and deliver 

[14]. Second, CPT undergoes lactone hydrolysis under physiological conditions (pH 7.4) to 

produce the carboxylate form (Scheme 1). CPT-carboxylate is known to readily bind human 

serum albumin (HSA) which lowers the concentration of active CPT-lactone (stable at pH <5.5) 

in bloodstream [13, 15-17]. Despite these drawbacks, several analogs such as topotecan 

(Hycamtin®) and irinotecan (Campto®) have been developed to improve solubility and 

pharmacokinetic profiles [10]. These CPT-derivatives have been approved to treat various forms 

of ovarian, cervical and lung cancers [10]. 

 

Scheme 1.  Structure of camptothecin and pH dependent equilibrium between lactone (closed 

ring, left) and carboxylate (open ring, right) form of the drug. 

 

Our group developed H-A-V (His-Ala-Val) and A-D-T (Ala-Asp-Thr) peptides that can 

modulate cadherin-cadherin interactions at the intercellular junctions to promote the passage of 
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20 20
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drug molecules through the paracellular pathway of the BBB [9, 18-20]. HAV and ADT peptides 

derived from EC1 domain of E-cadherin were used in in-vitro BBB models to evaluate their 

efficacies on paracellular porosity.  These peptides have been shown to inhibit aggregation of 

single cells of bovine brain microvessel endothelial cells (BBMECs) and to increase the 

permeability of Madin-Darby canine kidney (MDCK) cell monolayers as reflected by lowering 

transepithelial electrical resistance (TEER) values and increasing paracellular permeation of 
14

C-

mannitol [9, 18-20]. Further studies using an HAV6 peptide was found to enhance the 

paracellular permeation of anticancer drug 
3
H(G)-daunomycin and 

14
C-mannitol across the BBB 

in an in-situ brain perfusion rat model [21]. More recently, HAV6 has been shown to enhance in-

vivo delivery of gadolinium diethylenetriaminepentaacetate (Gd-DTPA) and rhodamine 800 

(R800) [22]. Gd-DTPA and R800 are a magnetic resonance imaging (MRI) contrast agent and a 

near IR dye for fluorescent imaging, respectively. 

CPT is a very insoluble molecule, which is difficult to delivery in high dose. The lactone ring 

on CPT is essential for the anticancer activity; however, it is unstable and undergoes hydrolytic 

reaction (Scheme 1). To improve its stability, the 20-OH has been conjugated to different 

moieties  to stabilize the lactone ring as well as improving solubility and pharmacokinetic 

profiles of CPT [13, 14, 23, 24]. Here, we synthesized camptothecin-glutamate (CPT-Glu) via 

conjugation of the C-terminus of L-glutamic acid to the 20-OH group of CPT. The brain delivery 

of CPT-Glu conjugate was evaluated in the presence and absence of HAV6 peptide in the in-situ 

brain perfusion rat model. To detect the amount of CPT-Glu and CPT in the brain, the extraction 

method of CPT-Glu and CPT from the brain was developed. The liquid chromatography mass 

spectrometry/mass spectrometry (LC-MS/MS) method was also developed to quantitate the 

amount of compounds in the brain extract. The LC-MS/MS is a selective and sensitive method to 
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identify and quantify the CPT-Glu and CPT in the brain homogenate and it eliminates the need 

for radiolabeled compounds [25]. 

 

2. MATERIALS AND METHODS 

2.1. Synthesis of Camptothecin-Glutamate (CPT-Glu) Conjugate 

The conjugation of Camptothecin (CPT) to L-glutamic acid (CPT-Glu) was accomplished by 

forming an ester bond between the 20-OH group of CPT and the alpha-carboxylic acid group of 

the glutamic acid using previous methods with minor modifications (Scheme 2) [26, 27]. A 

suspension mixture of camptothecin (0.10 g, 0.288 mmol), scandium triflate (0.085 g, 0.173 

mmol), N-Boc-L-glutamic acid gamma t-butyl ester (Aapptec Company, 0.524 g, 1.728 mmol) 

and N, N-dimethylaminopyridine (0.11 g, 0.864 mmol) in anhydrous dimethylformamide (DMF) 

(5 mL) was cooled to –8°C in salt water ice bath. 1, 3-Diisopropylcarbodiimide (0.142 mL, 

0.907 mmol) was added slowly to the reaction, stirred at –8 °C for 30 min and allowed to warm 

to room temperature and react for 1 h. After completion, the reaction mixture was treated with 

water (50 mL) and extracted with 100 mL dichloromethane. The organic extract was washed 

sequentially with solutions of 0.1 M HCl (200 mL) and 0.1 M NaHCO3 (200 mL), followed by 

water extraction. The organic layer was dried with sodium sulfate followed by evaporation under 

reduced pressure. The CPT-Boc-L-glutamic acid gamma t-butyl ester residue was treated with a 

solution of dichloromethane-trifluoroacetic acid (1:1, 2 mL) and stirred at room temperature for 

1 h. The solvent was removed under reduced pressure and the resulting residue was purified by 

reverse-phase HPLC using a C18 preparative grade column followed by lyophilization to give 

CPT-Glu conjugate (0.90 g).  
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2.2. LC-MS/MS Method Development 

2.2.1. Preparation of Stock and Standard Solutions  

Stock solutions (1 mg/mL) of CPT, CPT-Glu and SN-38 were dissolved in dimethyl 

sulfoxide (DMSO) and stored at –20 °C. Working solutions of CPT and CPT-Glu were prepared 

prior to experiments by diluting stocks with acetonitrile:water (1:1 v/v). Final concentrations of 

CPT and CPT-Glu calibration standards were in the range between 5 and 500 ng/mL. SN-38  

was used as an internal standard (IS). Calibration curves for both CPT and CPT-Glu were 

constructed by plotting the ratio of the peak area of the spike analyte and IS at each 

concentration. These standards were used to determine total concentration of CPT and CPT-Glu 

delivered to the brain of each rat. Working standards used for extraction recovery experiments 

were prepared by diluting stocks solutions in DMSO and phosphate buffer at pH 3 (1:1 v/v) 

before spiking in tissue homogenate. 

 

2.2.2. Extraction Recovery from Brain Tissue Homogenate 

Extraction recovery of CPT and CPT-Glu from brain tissue homogenate was determined by 

comparing the response from the analyte extracted from spiked homogenate to working 

standards of analyte spiked in blank extracts. Concentrations studied for each analyte were 50, 

250 and 500 ng/mL. The brain of an untreated rat (blank) was homogenized and 190 μL aliquots 

of tissue homogenate were spiked with 10 μL of working standards for CPT and CPT-Glu. The 

mixture was vortexed for 1 min. A mixture of phosphate buffer at pH 3 and acetonitrile (1:6 v/v) 

was added to the homogenate; then, the mixture was vigorously vortexed for 1 min followed by 

centrifugation at 12000 rpm. The supernatant was isolated and transferred to a clean tube and 
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evaporated to dryness under nitrogen at 40 °C. The dry extract was reconstituted in 300 μL of 1:1 

v/v acetonitrile:water with 0.1 % formic acid and vortexed for 30 sec. The samples were stored 

overnight at –20 °C; then, they were vortexed and centrifuge for 5 min at 12000 rpm to remove 

additional precipitated proteins. Each extract was spiked with 25 ng/mL IS before injection into 

LC-MS/MS. 

 

2.2.3. Extraction of Drug from Brain Tissue after In-situ Brain Perfusion 

A mixture (1:1 v/v) of phosphate buffer at pH 3 and 0.30 M phosphoric acid was added to 

each whole brain tissue with equal weight amount (1:1 w/w). The mixture was homogenized 

using a PowerGen 700 tissue homogenizer. Aliquots (250 μL) from rat brain homogenizes were 

treated with 1 mL of 0.30 M phosphoric acid and acetonitrile (1:6 v/v) and vortex vigorously for 

1 min. Each homogenate was centrifuged at 12000 rpm for 5 min. The resulting supernatant was 

isolated and evaporated to dryness under nitrogen at 40 °C. The residue was resuspended in 300 

μL of 1:1 v/v acetonitrile: water with 0.1 % formic acid. Samples were then stored overnight at –

20 °C, and then, they were vortexed and centrifuged (12000 rpm for 5 min ) to remove additional 

precipitated proteins before spiking with 25 ng/mL IS (SN-38). The sample (5 μL) was injected 

to LC-MS/MS.  

 

2.2.4. Instrumentation and Chromatographic Conditions for LCMS/MS 

The sample chromatography was performed on an Acquity UPLC system (Water Corp., 

Milford, MA, USA) with a temperature controlled autosampler set to 8 °C. Separation was 

performed at room temperature on a Luna UPLC C18 reversed-phase analytical column (2.1 mm 
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x 50 mm, 5 μm particle size, 100 Å; Phenomenex, Inc., Torrance, CA). A C18 guard cartridge (4 

mm x 2 mm ID) was used to protect the main column. A gradient method was used to elute the 

analytes from the column. The mobile phases consisted of a binary gradient system composed of 

(A) H2O:acetonitrile:formic acid (98.92:1:0.08) and (B) acetonitrile:H2O:formic acid 

(98.92:1:0.08). Analytes were eluted using a gradient system of 15% B (initial), 15–30% B (2.5 

min), 30–90% B (1 min), 90–15% B (0.5 min) and 15% B for 1 min. The eluent flow rate was 

0.40 mL/min with 5 μL injection volumes with a total run time of 5 min. 

On-line Mass Spectrometry (MS) detection was performed on a Quattro Ultima triple 

quadrupole mass analyzer (Micromass Ltd, Manchester, UK) equipped with an electrospray 

ionization (ESI) source coupled to the UPLC system. Data were acquired in multiple reaction 

monitoring (MRM) mode to monitor the characteristic pseudomolecular ion [MH]
+
 of the 

compounds. Nitrogen was used as the desolvation gas and argon gas used for collision-induced 

dissociation (CID). All analytes were fragmented with cone voltage and collision energy set at 

35V and 28V, respectively. MRM chromatograms were quantified using MassLynx v 4.1 

software (Micromass UK Ltd) by integration of peaks.  

 

2.3.  In-Situ Brain Perfusion Technique for Delivery of CPT-Glu 

The in-situ brain perfusion studies were done in adult male Sprague Dawley rats (250–350g) 

and the brain delivery of CPT-Glu was done in the presence and absence of HAV6 peptide as 

described by Takasato et al. with some modifications [28]. CPT-Glu was perfused in
 
bicarbonate 

buffer (pH 7.4) containing 4.2 mM KCl, 1.5 mM CaCl2, 0.9 mM MgCl2, 128 mM NaCl, 2.4 mM 

NaH2PO4 and 24 mM NaHCO3. Prior to the experiment, the perfusate was supplemented with D-
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glucose (6 mM) followed by filtration and oxygenation upon incubation under 95% O2  and  5%  

CO2 at 37 °C. The rats were anaesthetized with a combination of ketamine (100 mg/kg) and 

xylazine (5mg/kg) delivered intraperitoneally. Then, the left common carotid artery (LCCA) was 

canulated with a polyethylene catheter (PE 50) containing heparinized saline (100 IU/mL) at 

artery for perfusion and prevent coagulation. The left pteryopalatine artery, occipital, and 

superior thyroid arteries were ligated using surgical thread. The animal body temperature was 

maintained with a heat lamp during the experiment. 

Immediately after the heart was cut on the anaesthetized rat, the LCAA was washed with 

saline (10 sec) at 5 mL/min delivered with a syringe pump (Model 341 B, Sage Instruments). 

Then, the brains were perfused with 1.0 mM HAV6 in HCO3 buffered physiological saline with  

0.5 % Tween-20 at 5 mL/min for 10 mL. Then, 10 mL of a mixture of HAV6 (1.0 mM) and 

CPT-Glu (10 mg/kg) was perfused. Finally, a 10 sec post-perfusion wash with saline solution 

was delivered. The experiment was terminated by animal decapitation followed removal of the 

brain from skull. The whole brain was immediately stored in –80 °C until further use. A similar 

study was done using only CPT-Glu as a control. 

Perfusion studies for control rats (CPT-Glu only) were performed similarly as described 

above. A 4 min perfusion of 10 mL HCO3 buffer saline with 0.5% Tween-20 was followed by 10 

mL of perfusate containing test compound CPT-Glu was done as a control.  
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3. RESULTS 

3.1. Improving the Physical and Chemical Properties of Camptothecin (CPT) 

The synthesis of CPT-Glu involved a two-step reaction in DMF as a solvent (Scheme 2). The 

alcohol group of CPT was coupled to a the alpha carboxylic acid of Boc-L-Glu(O-tBu)-OH and 

the protecting groups were used to prevent the side reactions. DIPC was used to activate the 

alpha carboxylic acid of the Glu amino acid. Then, the activated carboxylic acid was reacted to 

the 20-OH group of CPT in the presence of DMAP. This conjugation reaction generated a high 

yield of the desired product (> 90% yield); however, this reaction can lead to substantial 

epimerization [27]. The tert-butyl ester and Boc protecting groups were cleaved by 50% TFA in 

DCM to give the crude CPT-Glu. The crude CPT-Glu was purified using a reversed-phase C18 

column to produce a pure conjugate. 
1
H-NMR and mass spectrometry was used to analyze the 

HPLC purified product.   

 

Scheme 2.  Chemistry for conjugation of Camptothecin (CPT) to L-glutamic acid to make CPT-

Glu. 

 

 

1. Boc-Glu(OtBu)-OH
DMAP, DIPC, Sc(Otf)3

2.   TFA : DCM 
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3.2. Characterization of CPT-Glu by NMR and ESI-MS 

After purification, CPT-Glu was characterized using ESI-MS and 
1
H-NMR. ESI-MS data 

produced a dominant peak at m/z = 478.15 which corresponds with calculated molecular weight 

of CPT-Glu (Figure 1). The CPT-Glu was dissolved in DMSO-d6 and analyzed using Bruker 

Advance AV-III 500 NMR spectrometer (Figure 2). 
1
H- NMR (DMSO-d6) δ 12.45 (s, 1H), 8.73 

(s, 1H), 8.47 (s, 2H), 8.15 (d, 2H), 7.88 (m, 1H), 7.74 (t, 1H), 7.27 (s, 1H), 5.57 (s, 2H), 5.33 (s, 

2H), 4.38 – 4.5 (s, 1H),  2.62 (m, 1H), 2.10 – 2.30 (m, 4H),  0.90 (t, 3H) 

 

Figure 1.  The ESI-MS spectrum of CPT-Glu after purification with MH
+ 

of m/z 478.15. 

 

 

CPT-Glutamic Acid-27

m/z
200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660

%

0

100

L120617 11 (1.136) Cm (8:18) 1: TOF MS ES+ 
2.88e6478.1582

479.1664

Chemical Formula: C25H23N3O7

Exact Mass: 477.15
Molecular Weight: 477.47
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Figure 2. The
 1

H-NMR spectrum of pure CPT-Glu in DMSO-d6. 

 

3.3. Detection and Analysis of Camptothecin and CPT-Glutamate by LC-MS/MS 

Standard solutions of CPT, CPT-Glu, and SN-38 (IS) were first analyzed using MS and 

MS/MS to obtain their precursor and product ions, respectively, for their use in multiple reaction 

monitoring (MRM) mode. ESI full scan spectra produced dominant peaks of MH
+
 at m/z 349.1 

for CPT, m/z 478.1 for CPT-Glu and m/z 393.1 for SN-38. LC-MS/MS collision induced 

dissociation of each MH
+
 ions to produce major fragments at m/z 305.2 for CPT (Figure 3), 

331.0 for CPT-Glu (Figure 4) and 349.1 for IS (Figure 5). Product ions from both CPT and SN-

38 were derived from the loss of CO2 (–44 mU) from the lactone ring [29]. The CPT fragment of 
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CPT-Glu was generated via the loss of L-glutamic amino acid residue (–147 mU) upon ester 

bond cleavage. 

 

 

Figure 3.  Mass spectrum of daughter ion scan of CPT. The product ion of CPT (m/z 349.1) 

was subjected to collision induced dissociation to produce daughter ion (dominant 

peak) at m/z 305.2. These ions will be selected for use in MRM [29]. 

CPT 5000ng/ml-15%B-ms/ms2

m/z
200 220 240 260 280 300 320 340 360 380 400

%

0

100

U112109 45 (3.109) Daughters of 349ES+ 
6.05e4305.2

305.0

249.0
219.9

206.1

248.0

220.1

220.4
247.8

233.3

249.4

277.1

249.5 275.2 303.0
349.2320.3

319.8 349.1

325.2

305.2
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Figure 4.  Mass spectra scan for the daughter ion of CPT-Glu. Product ion of CPT-Glu (m/z 

478) was subjected to collision induced dissociation to produce dominant peak 

(daughter ion) at m/z 331.2. Both ions will be selected for use in MRM. 

   

Figure 5.  Mass spectra scan for daughter ion of internal standard SN-38 (m/z = 393.0). 

Collision induced dissociation produced dominant peak at m/z 349.1. The ions will 

be selected for use in MRM [29]. 

CPT-Glu 5000ng/ml-15%B

m/z
200 220 240 260 280 300 320 340 360 380 400 420 440 460 480

%

0

100

U112110 27 (1.869) Daughters of 478ES+ 
1.28e5330.9

303.1

287.2
287.0

285.4

331.2

349.1

331.2

349.1
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The precursor and product ions obtained from MS/MS spectra were used to generate 

transitions for their use in MRM. The transition pairs used in MRM detection for each analyte 

were m/z 349.1 >> 305.2 for CPT, 478.1 >> 331.0 for CPT-Glu and 393.1 >> 349.1 for IS (SN-

38). Figure 6 represents MRM chromatograms of rat brain tissue before and after the in-situ 

brain perfusion of CPT-Glu. Analysis of brain tissues of untreated rats showed that there was no 

endogenous interference at the retention times of CPT, CPT-Glu, and SN-38 (Figure 6a). MRM 

chromatogram of CPT-Glu resulted in the elution of two peaks at 1.93 and 2.04 min (Figure 6b), 

which indicated the presence of a diastereomer that was generated during the esterification 

reaction. Both peaks were summed to represent the total amount of CPT-Glu detected. CPT-Glu 

was hydrolyzed to produce CPT in the brain by esterases (Figure 6c). The internal standard (IS) 

spiked into tissue homogenate after extraction (Figure 6d) was successfully separated from other 

analytes. 
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Figure 6.  MRM Chromatograms of brain tissue homogenates for CPT, CPT-Glu, and SN-38. 

(a) brain tissue extract from an untreated rat showing no interfering peaks for CPT, 

CPT-Glu and SN-38 at their respective retention times (b) brain tissue extract from 

rats detecting CPT-Glu (1.93 and 2.04 min) after in-situ brain perfusion (c) 

hydrolyzed product CPT (3.59 min) detected in brain homogenate after perfusion 

studies (d) tissue homogenate spiked with IS, SN-38 (25ng/mL) 
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3.3.1.    Extraction Efficiency of CPT and CPT-Glu 

In order to quantitatively determine the amount of drug in the brain, extraction efficiencies 

were calculated for CPT and CPT-Glu in the brain homogenate using previously published 

methods with minor modifications [30]. CPT recovery values from brain were found to be 

around 86% to 92% and CPT-Glu values were around 99–100% (Table 1). These values are ideal 

for recovery of drugs from tissues where the analysis can be hindered due to high degree of 

protein-drug binding. The recoveries for CPT and CPT-Glu were determined by the ratio of peak 

area of the analyte spiked before extraction and known concentration(s) spiked after extraction. 

Calibration curves for CPT and CPT-Glu were constructed in biological matrices (brain and 

plasma) to determine the limit of detection (LOD), limit of quantification (LOQ), linearity and 

range (Table 2).  The standards for CPT and CPT-Glu were ranged around 1–500 ng/mL and 50–

500 ng/mL, respectively. The calculated LOD and LOQ for CPT in solvent and biological 

matrices ranged around 0.25–2.4 ng/mL and 0.78–7.9 ng/mL, respectively. CPT-Glu provided 

slightly higher values of LOD and LOQ, which were around 17 and 57 ng/mL, respectively. 

Both analytes provided good linear response with regression values of 0.99. 

 

 

 

 

 

 

 

 



17 
 

Table 1. Extraction Recovery of CPT and CPT-Glu from homogenized rat brain 

Analyte 

Nominal Concentration 

(ng/mL) 

Measured concentration 

(ng/mL) 

Extraction recovery 

(%) 

 

5 4.58 92 

CPT 50 48.03 96 

 

250 214.57 86 

    

 

50 49.57 99.1 

CPT-GLU 100 99.01 99 

  250 251.08 100.4 

 

 

 

 

Table 2. Regression Analysis of Calibration Curves, limits of detection (LOD), limits of 

quantification for CPT and CPT-Glu in solvent, plasma and brain homogenate 

Analyte Matrix 

Range 

(ng/mL) 

Correlation 

coefficient (r
2
) 

LOD 

(ng/mL) 

LOQ 

(ng/mL) 

 

Solvent 1-500 0.9983 2.4 7.9 

CPT Plasma 1-500 0.9984 1.2 3.7 

 

Brain 5-500 0.9997 0.25 0.78 

      CPT-GLU Solvent 50-500 0.9983 13.4 45 

  Brain 50-500 0.9996 17 57 
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3.4. Enhancing Paracellular Transport of Camptothecin-Glutamate in Brain Perfusion Model 

The ability of HAV6 peptide to improve the paracellular transport of CPT-Glu across the 

BBB was evaluated using in-situ brain perfusion model (Figure 7). CPT-Glu was delivered to the 

brain of Sprague Dawley rats at 10 mg/kg for 4 min in the absence (control) and presence of 1.0 

mM HAV6 peptide. Although there is some trend showing increased uptake of CPT-Glu in 

HAV6 treated rats when compared to control, there is no statistical significance between the two 

groups (p = 0.128). In total, we were able to detect approximately 498 ng/g drug/brain of CPT-

lactone in brain, which represents less 0.020% delivered.  

 

Figure 7.  CPT-Glutamate detected in brain after in-situ brain perfusion. Rat brains were 

perfused with 1.0 mM HAV6 peptide at a flow rate of 5 ml/min prior to the delivery 

of CPT-Glutamate (10 mg/kg rat). Data was represented as mean ± S.E with p = 

0.128. Control and CPT-Glu + HAV6 was N = 6. 
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4. DISCUSSIONS 

The treatment of brain tumors by conventional methods such as chemotherapy has become a 

significant challenge; therefore, there has been a need for other non-invasive drug delivery 

systems to improve delivery of anticancer drugs to the brain [31]. CPT has been considered a 

promising drug in treating cancer due to its specificity in targeting DNA-topoisomerase-I, which 

is upregulated in many cancers. For example,  CPT was delivered intraperitoneally at 5 and 10 

mg/kg to athymic nude mice bearing human gastric adenocarcinomas (WIL and TOR) for 3 days 

a week over a 3 week period [32]. The results showed that CPT significantly inhibited the 

growth of WIL and TOR gastric tumors resulting in the increase in expression of cell cycle 

inhibitor  p21 and the decrease in expression of the apoptosis inhibitor Bcl-2 [32].  

Unfortunately, CPT’s success as a potential therapeutic drug was limited due to solubility and 

instability of the lactone ring, which is crucial for biological activity.  

CPT has been modified over the years to improve its physical-chemical properties while 

preserving its antitumor potency. The pentacyclic ring structure in CPT was suggested to be one 

of the most important structural features of the drug. Typically, modifications made along the  

A–D rings have been carried our to improve water solubility and provide the necessary 

framework for DNA interaction [33-35].  It should be noted that the lactone E-ring is essential 

for interaction with the amino acid residues of topoisomerase-I enzyme and is therefore 

considered an important element of all CPT derivatives [33, 36-38].  Topotecan (Hycamtin®), an 

FDA approved CPT analog is currently being used for treating patients with colon, lung, ovarian 

and brain cancers [39, 40]. The success of topotecan was stemmed from the modification of the 

benzene ring “A” located in the pentacyclic structure of CPT. However, research has shown that 

covalent modification of CPT by esterification of the alcohol at the 20-position carbon stabilizes 
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the lactone ring at physiological pH, preventing the loss of activity associated with lactone ring 

opening [13, 41].  

Our approach to address CPT chemical stability and water solubility problems is by 

conjugating L-glutamic acid at the 20-position of the lactone ring via an ester bond that will (a) 

enhance water solubility, (b) stabilize lactone ring during delivery, and (c) efficiently release the 

unmodified CPT via ester bond hydrolysis by esterases. Liehr et al. have investigated stability of 

CPT and propionate ester derivates in mouse and human plasma [42]. After 4 hours of incubation 

in phosphate-buffered saline solution containing 4% human plasma, they observed no detectable 

hydrolysis of the lactone ring in the propionate esters [42]. In contrast, the lactone ring in CPT 

was rapidly hydrolyzed to the open carboxylate form with a half-life of 11 min when incubated 

under the same conditions. This result suggests that propionate esters increased the stability of 

the lactone ring [15, 42-44].  Further investigation revealed that the ester chain in the vicinity of 

the lactone moiety inhibits albumin binding and makes the conjugate more resistant to hydrolysis 

[42]. Similarly, we can speculate that our CPT-Glu is more stable than the free CPT. In addition 

to improved stability, conjugation of L-glutamic acid improved CPT solubility more than 400-

fold. 

Once the highly soluble CPT-Glu conjugate was synthetized, it was administered with the 

HAV6 peptide in an in-situ brain perfusion model to enhance its brain delivery. Analysis and 

quantification of CPT-Glu and its metabolites in the brain were done using LC-MS/MS. Here, 

we have successfully developed and validated a sensitive and selective LC-MS/MS method that 

could quantify CPT-Glu and CPT in the rat brain tissue. The method development began with the 

determination of product ions using a full-scan mass spectrometry that detects CPT-Glu and CPT 

in the brain extracts.  Full scan spectra of all analytes were generated using electrospray 
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ionization (ESI) positive ion mode in a solvent system consisting of 50:50 acetonitrile and water 

with addition of 0.1% formic acid to provide a higher degree of ionization. The use of 

electrospray provides high sensitivity with low limits of detection and quantification for analytes. 

This was found to be an important aspect of analysis of drug molecules in biological matrices. 

CPT, CPT-Glu, and SN-38 produced protonated molecular ion peaks as theoretically calculated. 

The SN-38 (IS) was spiked in all matrices prior to introduction to LC-MS/MS as a control for 

HPLC injection and ionization variability. These values were then selected for the next step in 

the method development. 

MS/MS spectra generated after a full scan spectra were used for structural characterization of 

all analytes. This is important because it ensures selectivity of our method. Selectivity is the 

ability of an analytical method to differentiate and quantify an analyte of interest in a complex 

sample such as biological matrix. MS/MS fragmentations of the molecule not only produce 

structural detail based on a specific mass loss but provide the ability to distinguish analytes 

despite having the same molecular weight as endogenous compounds. When CPT, CPT-Glu, and 

SN-38 were subjected to collision induced dissociation (CID), the applied energy fragmented the 

lactone ring removing the CO2 residue from both CPT and SN-38 molecules producing a stable 

base peak (daughter ion) at m/z 305.2 and 349.1, respectively. CPT-Glu produced a daughter ion 

of m/z 331.1 when analyzed under the same conditions. This fragment occurred from cleavage of 

the ester bond at the 20-position of the CPT lactone ring. Comparison of the fragmentation 

pattern of CPT-Glu (m/z 478.1 >> m/z 331.1) to that of CPT (m/z 349.1 >> m/z 305.2) showed 

that the fragmentation of CPT-Glu did not involve the lactone ring, suggesting that the addition 

of the L-glutamic acid residue to CPT offers some lactone ring stability. 
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After method development, the next step was validation. To do this, quality control (QC) 

samples were used to check for accuracy, precision, sensitivity, linearity of calibration curves, 

matrix effects, recovery, stability, and reproducibility according to the FDA guidance for 

bioanalytical method validation over a concentration range of 0–500 ng/mL [45].  CPT and CPT-

Glu were quantitatively determined from peak areas calculated after the MRM scanning. CPT 

was quantified in brain homogenates at concentrations as low as 5 ng/mL with LOD at 0.25 

ng/mL. CPT-Glu had slightly higher LOQ and LOD of 57 ng/mL and 17 ng/mL, respectively.  It 

is possible that there was suppression of ionization of CPT-Glu under these LC-MS/MS 

conditions and could have led to low sensitivity of the CPT-Glu detection. All of our QC 

samples were highly reproducible with minimal deviation between runs and had coefficient of 

variations between 0.99% and 14.17 %. This indicates that this method is precise and accurate. 

We observed good linearity over the studied concentration range with R
2
 = 0.9 or better.  

The extraction recoveries of CPT and CPT-Glu from brain tissue homogenates were 

excellent with more than 86% efficiency over concentrations ranging from 1–500 ng/mL. The 

acetonitrile precipitation was used to remove interfering endogenous proteins as well as taking 

advantage of the high solubility the CPT and CPT-Glu in organic solvent. There are numerous 

literature reports to indicate that CPT hydrolyses is rapid in blood and tissue samples to produce 

CPT-carboxylate, which is an inactive form of the drug that binds HSA at high affinity. 

However, addition of phosphate buffer pH 3.0 (acidic extraction) allows for reversal of lactone 

hydrolysis. Thus, phosphate buffer pH 3.0 was added into the extraction procedure to ensure 

determination for total amount of drug delivered in lactone form. All the above taken together 

indicate that our LC-MS/MS method was robust and could be used for quantification of CPT and 

CPT-Glu after the in-situ brain perfusion. 
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To improve the delivery of CPT across the BBB, our studies explored synthetic peptides that 

can modify the BBB pathways to improve CPT-Glu uptake. The in-situ brain perfusion 

technique was used as a model to investigate the efficacy of our HAV6 peptide in modulating the 

BBB. Extensive research of this peptide in the in-vitro, in-situ, and in-vivo BBB models have 

shown that this peptide was effective in improving the delivery of small molecules and drugs to 

the brain [9, 18, 21, 22]. To take this proof-of-concept one step further, we introduced an 

anticancer drug conjugate in combination with a non-label LC-MS/MS technique that can 

monitor our conjugate and its metabolites. CPT-Glu was successfully delivered and detected in 

the brain using the in-situ brain perfusion technique. The total drug delivered to the brain was 

represented by the sum of all conjugate forms and metabolites. Perfusion of the brain with 1.0 

mM HAV6 linear peptide prior to delivery of CPT-Glu increased the uptake of the conjugate by 

approximately 1.30-fold when compared to vehicle control. However, statistical calculations 

revealed that the comparison of CPT-Glu uptake in the presence and absence of peptide has a p-

value of 0.128, which is higher than a significant p-value of less than 0.05. One of the reasons 

why we observed no significant increase in CPT-Glu uptake into the brain could be due to the 

instability of CPT-Glu ester bond during delivery. The perfusion studies were conducted in a 

buffered saline solution that mimics physiological conditions (pH and salt concentrations) of 

whole blood and there is a possibility that our conjugate hydrolyzes to CPT thereby decreasing 

the total CPT-Glu delivered to the brain. Also, the high prevalence of esterases in the BBB could 

be another contributing factor to the instability of our formulation and therefore the lack of 

significant enhancement in the delivery of CPT. In the future, studies will be focused on the use 

of linkers that are more stable than the ester linker used here. The ideal linker should be stable 
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during formulation and the delivery process but also labile enough to release the active CPT 

form once in the brain. 

 

5. CONCLUSIONS 

Our data demonstrated that we have successfully improved the physical-chemical properties 

of CPT through conjugation of L-glutamic acid. This modification improved CPT solubility 

more than 400-fold making our conjugate easier to formulate and deliver. Despite evidence of 

CPT-Glu diastereomers, both forms were successfully delivered to the brain using in-situ rat 

brain perfusion technique. The acidic extraction method developed was simultaneously able to 

extract CPT-Glu along with its hydrolyzed product CPT from brain tissue homogenates. This 

method also provided high extraction recoveries of our drug from the brain (92–100%). The 

development of a sensitive and selective LC-MS/MS method was successful in identifying and 

quantifying our CPT-Glu conjugate and it’s metabolites in brain tissue producing detection limits 

as low as 0.25 ng/mL. In the future, a longer duration of peptide incubation and a higher 

concentration of CPT-Glu will be delivered in the in-situ rat brain perfusion model to evaluate 

the effect of HAV6 peptide in enhancing the brain delivery of CPT. 
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