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ABSTRACT 

 

In order to develop a clearer picture of the paleoenvironment of the Crato Formation, an 

early Cretaceous Fossil-Lagerstätte, the taphonomy and taxonomy of fossil spiders were 

examined. The Crato Formation is represented by deposits of thinly laminated limestones with 

abundant terrestrial invertebrate fossils. One aspect of the Crato Formation depositional 

environment that has been debated is the salinity of the ancient lake in which this unit was 

deposited. To investigate the paleosalinity, the leg orientations of fossil spiders from the Crato, 

Green River, and Florissant formations were examined as well as the leg orientations of modern 

spiders drowned in varying salinities. The leg orientations of drowned modern spiders suggest 

hypersalinity produces a tightly curled leg orientation and fresh water produces an extended leg 

orientation. The results of drowned modern spiders are comparable to the fossil spiders preserved 

in lacustrine deposits of similar salinity, and thus, suggest the Crato Formation was deposited in 

hypersaline water. In addition, the taxonomy of the fossil spiders from the Crato Formation was 

elucidated. The abundant araneoids previously named Cretaraneus martinsnetoi Mesquita, 1996 

have been redescribed and placed in a new genus, Olindarachne, within Araneidae. Two other 

families of spider have been described, Nephilidae and Palpimanidae. The age range of 

Palpimanidae is extended back nearly 90 million years from a previous specimen from 

Dominican amber (Neogene), and the geographic range for Araneidae, Nephilidae, and 

Palpimanidae has been expanded to the South American continent during the Early Cretaceous.  
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INTRODUCTION 

 This thesis is composed of two projects focusing on fossil spiders from the Crato 

Formation of Brazil in order to make inferences about the depositional environment, specifically 

the salinity, and to describe the biodiversity of spiders present in the early Cretaceous.  

Reconstructing the biotic and abiotic components of such environments is important in 

understanding geologic history, climate, and the history and evolution of life. Fossil-Lagerstätten 

provide an extraordinary opportunity for reconstructing past environments due to the 

exceptionally preserved fossils for which they are known (Briggs, 2003; Nudds and Selden, 

2008). The Crato Formation is one such example from the Early Cretaceous with an abundance 

of well-preserved fossils, including spiders, and thus received great attention in reconstructing 

the geologic history of the deposit and the biological communities present during deposition. The 

Crato Formation also presents the unique opportunity to study the biogeography of spiders 

during the breakup of Gondwana, and is one of the few localities in which spiders are preserved 

in the Southern Hemisphere. Many studies have investigated different aspects of the Crato 

Formation, however, there are several controversies surrounding the depositional environment 

and the taxonomy of spiders preserved in this locality. 

 Environmental reconstruction is typically done through analysis of lithology and 

environment-sensitive organisms preserved as fossils. Benthic organisms are absent and 

ostracods that are commonly used as proxies for salinity are scarce (Martill and Wilby, 1993; 

Schweigert et al., 2007). Multiple hypotheses have been proposed for the salinity of the ancient 

lake in which the Crato Formation was deposited. Maisey (1990) suggested freshwater 

conditions based on aquatic larval forms of insects that only live in fresh water. In contrast, 
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hypersalinity has been suggested based on the occurrence of pseudomorphs after halite present in 

the Crato Formation (Martill et al., 2007).  

The first chapter of this thesis examines the problem of elucidating the salinity of the 

Crato Formation by using the post-mortem leg orientation of spiders as an indicator for salinity, a 

previously unused method in paleosalinity reconstruction. This study compares the leg 

orientations of modern spiders to the leg orientations of fossil spiders preserved in lacustrine 

deposits. Three distinct salinities (fresh, saline, and hypersaline) are tested in the modern spider 

drowning experiments to see if salinity is a taphonomic control on leg orientation after death. In 

addition, some spiders were allowed to expire in air and subsequently submerged in a solution of 

hypersaline water or fresh water. These results are compared to the fossil record in which spiders 

from the Crato, Green River, and Florissant formations are preserved. Salinity for the Green 

River and Florissant formations has previously been interpreted as stratified saline and fresh, 

respectively (Cole, 1985; Meyer, 2003). The results reveal that death in fresh water produces an 

extended leg orientation in spiders, a pattern that is supported by the extended leg orientation of 

fossil spiders from the Florissant Formation. Similarly, spiders drowned in saline water have 

extended and curled leg orientations in near equal abundance, which is consistent with fossil 

spiders from the Green River Formation. Conversely, leg orientations of spiders drowned in 

hypersaline conditions produces a strong pattern of tightly curled legs similar to what is observed 

of fossil spiders in the Crato Formation. Spiders allowed to expire in air have an initial curled leg 

orientation. Once submerged, the legs of spiders begin to uncurl in fresh water and stay tightly 

curled in hypersaline water. The modern taphonomy experiments on the relationship between 

salinity and leg orientation are consistent with what is observed in the fossil record, suggesting 

hypersaline conditions present during deposition of the Crato Formation to produce the curled 
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leg orientation trend in fossil spiders, although death on land cannot be ruled out as a possible 

scenario.  

The second chapter of this thesis revisits the taxonomy of spiders preserved in the Crato 

Formation. Fossil spiders are relatively rare compared to other groups of arthropods, and most 

are preserved in amber of Cenozoic age (Selden et al., 2009). Most Mesozoic spiders are 

preserved in rock, and the Crato Formation is one out of a handful of units in which spiders of 

this age can be studied and, therefore, is important in reconstructing the biogeographic and 

evolutionary history of these arachnids. Few spiders have been described from the Crato 

Formation, and include Cretadiplura ceara Selden, 2006 and Dinodiplura ambulacra Selden, 

2006 belonging to the suborder Mygalomorphae, and Cretaraneus martinsnetoi Mesquita, 1996, 

the first formally described spider from the Crato Formation (Mesquita, 1996; Selden et al., 

2006).  

Cretaraneus martinsnetoi was assigned to the genus Cretaraneus, previously described 

by Selden, 1990 from an early Cretaceous spider from the Sierra de Montsech, Spain. Most of 

the spiders of the Crato Formation appear to be the same species, which was placed in 

Cretaraneus. This classification was later questioned, and C. martinsnetoi was thought to not be 

congeneric with Cretaraneus (Dunlop et al., 2007). A re-examination of the Crato fossil spiders 

and the C. martinsnetoi holotype has shown this classification to be incorrect. This group, 

previously described as C. martinsnetoi, is a distinct genus justified by the extremely long first 

pairs of legs, robust femurs, and spines on the patellae, traits unlike Cretaraneus. Cretaraneus 

was later placed in the family Nephilidae, the golden orbweavers, based on size of the male and 

by a long, slightly twisted, embolus on the pedipalps (Selden and Penney, 2003). Four fossil 
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spiders described in this thesis closely resemble family Araneidae, the true orbweavers, 

suggested by leg length, squarish endites, the absence of a cribellum, and a globose abdomen.  

A new genus, Olindarachne, is erected for the four Crato Formation specimens and is 

placed in the family Araneidae, expanding the geographic distribution of this family during the 

Cretaceous. Previously, fossil Araneidae were only known to exist in the Northern Hemisphere; 

however, this study has shown araneids were also present in South America during this time and 

suggests the family would have been distributed throughout Pangaea before the continents 

separated. In addition, two other fossil spiders have been described to the family level, and 

represent families Nephilidae and Palpimanidae. This extends the known age range of 

Palpimanidae back nearly 90 million years from a previously described palpimanid in Neogene 

Dominican amber (Wunderlich, 1988). 

This project has amended previous interpretations about the taxonomy of the abundant 

araneoid spiders present in the Crato Formation and provided further evidence for hypersaline 

conditions during deposition. The results from this project suggest a relationship between salinity 

and the leg orientation of fossil spiders in ancient lacustrine environments. The erection of a new 

genus for the araneid Olindarachne martinsnetoi and the presence of two additional families, 

Nephilidae and Palpimanidae, expand pre-existing knowledge spider diversity during the 

Mesozoic Era.  
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CHAPTER 1: SPIDER LEG ORIENTATION AS A PROXY FOR ESTIMATING 

SALINITY IN LACUSTRINE PALEOENVIRONMENTS 

Abstract 

The Crato Formation of Brazil is a Fossil-Lagerstätte and a significant source of Early 

Cretaceous fossil spiders. The Crato Formation contains alternating heterolithic beds and 

laminated limestone deposited in a lacustrine setting. Two other lacustrine deposits in which 

spider-bearing beds are present are the Green River and Florissant formations of the early to 

mid-Eocene and late Eocene age, respectively. While these three formations are the result of 

similar depositional settings, the proposed salinity for the Florissant, Green River, and Crato 

spider-bearing beds differ as fresh, stratified saline, and multiple interpretations that range from 

fresh to hypersaline, respectively. The leg orientations of fossil spiders preserved in each of the 

three formations also vary. Florissant spiders commonly display legs extended outward from the 

body, Green River Formation spiders display a mix of curled and extended legs, and those in the 

Crato Formation typically have legs curled under the body. To investigate the differences in leg 

orientation among the three formations, the leg orientation for over 200 fossil spiders from the 

Florissant, Green River, and Crato formations was determined and compared to the leg 

orientations of modern postmortem spiders. Modern spiders were either allowed to expire in air 

and subsequently submerged in a solution or drowned in water of three different salinities: fresh 

(<0.5 ppt), saline (35 ppt), and hypersaline (160 ppt). Spiders expired in air exhibited curled legs, 

but most decayed; however, three spiders were subsequently placed in fresh water and three were 

placed in hypersaline water. The legs of subaerial death spiders submerged in fresh water 

uncurled but did not fully extended. Conversely, subaerial death spiders submerged in 

hypersaline water did not exhibit any change from the tightly curled leg orientation. The leg 
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orientations of spiders drowned in fresh, saline, and hypersaline water were extended, mixed, 

and curled, respectively. These results suggest the difference in leg orientation appears to be 

driven by salinity. This trend was also recognized in fossil spiders: Florissant, Green River, and 

Crato formations exhibited extended, mixed, and curled leg orientations. The results suggest an 

increase in curled leg orientation with salinity and, therefore, suggest hypersalinity present 

during deposition of the spider-bearing units in the Crato Formation, as opposed to spider-

bearing units in the Green River and Florissant formations. 

  

Keywords: Araneae, Taphonomy, Crato Formation, Paleosalinity, Hypersalinity 

 

Introduction 

Body and trace fossils are used to reconstruct ancient environments, providing 

information regarding past organisms including their morphology, ecology, and biogeography, 

and can act as environmental indicators of such parameters as temperature, water chemistry, and 

many others (e.g., Goodfriend, 1992, Hasiotis, 2004). For example, such benthic organisms as 

ostracodes are used commonly in paleoenvironmental reconstruction because they are abundant 

and sensitive to surrounding conditions (Rosenfeld and Vesper, 1977; Chivas et al., 1986; De 

Deckker et al., 1988). In addition, trace fossils are also used in reconstructing paleoenvironments 

(e.g., Bromley, 1996; Hasiotis, 2002). In rare cases, fossils can be exceptionally preserved to 

include soft tissues and such delicate features as hairs. These deposits, termed Fossil-

Lagerstätten, provide a more complete view of organism morphology and ecosystems by 

preserving organisms and parts of organisms that would not normally become fossilized (e.g., 

Allison and Briggs, 1993; Brett et al., 1997; Briggs, 2003; Nudds and Selden, 2008).  
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The Lower Cretaceous Crato Formation of Brazil is one example of a Konservat-

Lagerstätte, a deposit with exceptional preservation that includes soft tissues, represented by 

laminated limestones with an abundance of terrestrial arthropods, fish and other vertebrates, and 

plants (Martill et al., 2007). Terrestrial arthropods include insects, spiders, and other arachnids. 

Benthic organisms are absent and ostracodes are generally scarce, although there are a few 

horizons within the Crato Formation with abundant ostracodes (Martill and Wilby, 1993; 

Schweigert et al., 2007). The Crato Formation presents a unique view of an Early Cretaceous 

terrestrial ecosystem during the breakup of South America and Africa. 

Paleontological, geochemical, and stratigraphic studies suggest deposition in a low-

energy lake in a semiarid to arid climate (Heimhofer et al., 2010). Though general aspects of the 

environment of deposition for the Crato Formation have been determined, the water salinity is 

still debated, in part due to the absence of such indicators as benthic organisms and ostracodes.  

Multiple hypotheses have been proposed for the salinity of the ancient Crato Lake, ranging from 

fresh to hypersaline (Maisey, 1990; Neumann, 2003; Martill et al., 2007). Most recently, Martill 

et al. (2007) suggested pseudomorphs after halite as evidence for hypersalinity, focusing on 

geochemical data rather than paleontological evidence. The Crato Formation presents a unique 

opportunity to use a fossil assemblage dominated by terrestrial organisms as a potential proxy for 

salinity.  

The Crato Formation fossils are predominantly insects and spiders (Maisey, 1991). 

Spiders in the Crato Formation are of particular interest due to their curled legs, an attribute 

unlike fossil spiders from other lacustrine localities, which usually have legs extended outward  

(Meyer, 2003; Dunlop et al., 2007). This extended leg pattern is evident in lacustrine deposits of 

the Green River and Florissant formations, which were likely deposited in saline water and fresh 
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water, respectively (Cole, 1985; Meyer, 2003). A connection likely exists between the unique 

curled leg pattern of Crato Formation spider fossils and the unknown salinity, suggesting the leg 

orientation of fossil spiders can be used as a potential indicator of salinity in the ancient 

lacustrine deposits in which they are preserved. This paper seeks to determine if an increase in 

the amount of curled legs observed is related to elevated levels of salinity, and proposes 

hypersaline conditions during the deposition of the spider-bearing beds in the Crato Formation 

based on taphonomy experiments conducted on modern spiders, as well as analyses of fossil 

spiders. 

Geologic Setting 

The Crato Formation is a series of alternating heterolithic beds and carbonate deposits 

located northeastern Brazil (Martill and Wilby, 1993, Neumann et al., 2003; Fig. 1). Theses beds 

were deposited in the Araripe Basin, one of several fault-bounded intracratonic rift basins 

controlled by extensional tectonics during the break up of South America and Africa (Heimhofer 

et al., 2010). At the base of the Crato Formation is the Nova Olinda Member—the focus of this 

work—composed of a series of laminated carbonates in which the vast majority of the well-

preserved fossils are found. Neumann et al. (2003) described two types of laminated carbonate 

facies: clay-carbonate rhythmites and laminated limestones. The laminated limestones are 

represented by the fossil-rich plattenkalk, thinly laminated limestones with little to no 

bioturbation, in which terrestrial arthropods are abundant. Bioturbation and fossils of benthic 

organisms are absent in the Nova Olinda Member (Martill and Wilby, 1993). Carbon and oxygen 

stable isotopic composition of the carbonates have confirmed a lacustrine origin for these 

deposits (Heimhofer et al., 2010). The ubiquitous thin laminations suggest that the lake in which 

the Crato Formation was deposited experienced low-energy conditions, in relatively deep water, 
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below storm wave base (Heimhofer et al., 2010). The carbonates of the Crato Formation have 

been interpreted as biologically induced or mediated precipitation from the water column 

(Heimhofer et al., 2010). Other members of the Crato Formation, listed in increasing 

stratigraphic order, include the Casa de Pedra, Jamacaru, and Caldas (Fig. 1). The Crato 

Formation is overlain by the Ipubi Formation, a unit composed of evaporites (Martill and Wilby, 

1993).   

Figure 1.1– Location and stratigraphy of the Araripe Basin. Araripe Basin located in 

northeastern Brazil near the town of Crato for which the Crato Formation is named  

(modified from Heimhofer et al., 2010). Stratigraphic column showing lithologies of the Crato 

Formation within the basin (modified from Martill et al., 2007). 

The age of the Crato Formation has been interpreted as Aptian (Early Cretaceous) based 

on ostracode and palynomorph studies (Coimbra et al., 2002; Batten et al., 2007). During the late 



12 
 

Aptian, the Araripe Basin was positioned 10–15°S in the tropics and experienced mostly arid 

conditions (Hallam, 1984, 1985; Chumakov et al., 1995; Föllmi, 2012).  Additional support for a 

semiarid climate is fossil plant life that likely thrived in areas with limited water based on 

morphological characteristics including sunken stomata and reduced leaves (Alvin, 1982; Ziegler 

et al., 2003; Barbara et al., 2007). Fossil camel spiders (Solpugida) have also been found in the 

Crato Formation, and modern-day representatives typically live in desert or semiarid climates 

(Selden and Shear, 1996; Punzo, 1998; Dunlop and Martill, 2004).  

 Although there is general agreement about a lacustrine interpretation, the salinity of the 

lake in which the Nova Olinda Member was deposited is unclear. Estimates of paleosalinity 

range from fresh to hypersaline. The absence of benthic organisms used as salinity indicators, 

such as ostracodes, has made salinity interpretations ambiguous in the Nova Olinda Member. A 

freshwater interpretation has been proposed based on such fossils of freshwater organisms as 

aquatic insect larval forms and fish (Maisey 1991). In marked contrast, hypersalinity is suggested 

by hopper-cast pseudomorphs after halite throughout the laminated limestones (Martill et al., 

2007).  

 Two other well-known localities for spider fossils in lacustrine deposits are the Green 

River Formation (early to mid-Eocene) in Utah, Colorado, and Wyoming and the Florissant 

Formation (late Eocene) in Colorado (Meyer, 2003; Smith et al., 2008). Green River Formation 

fossils used in this study are from the Parachute Creek Member (49–50 Ma), which is an oil 

shale likely deposited in a chemically stratified lake in which saline bottom waters were overlain 

by tongues of fresh water (Brobst and Tucker, 1973; Cole, 1985). The Florissant Formation (34 

Ma) is composed of shales and volcanic tuffs, deposited in a volcanically dammed lake (Evanoff 

et al., 2001; Meyer, 2003). Freshwater conditions, based on freshwater diatoms, mollusks, algae, 
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and aquatic angiosperms, existed during the deposition of the lacustrine sediments (Meyer, 

2003).  

Materials and Methods 

Paleontological 

Spider fossils were examined and photographed from the Crato, Green River, and 

Florissant formations. Ninety-five Crato Formation spiders were photographed at the University 

of Kansas, Lawrence, Kansas, using a Canon 5D Mark II digital camera attached to a Leica 

M650C microscope. One hundred twenty-five Green River Formation spiders and 42 Florissant 

Formation spiders were photographed at the University of Colorado, Boulder Natural History 

Museum. Leg orientations of the fossil spiders from all formations were determined from the 

photographs in Adobe Photoshop using the measure tool. Femur-patella and tibia-metatarsus 

joint angles were measured and leg orientation was categorized as extended or curled for each 

individual specimen. A curled leg was defined as any leg with an angle formed at the femur-

patella joint and coinciding tibia-metatarsus joint that positions the leg under the body. Smaller 

femur-patella joint angles, usually < 100°, and smaller tibia-metatarsus joint angles, usually < 

130°, result in a leg positioned under the body. Individual specimens with four or more of their 

legs meeting this criterion were considered curled. In contrast, both femur-patella and tibia-

metatarsus joint angles that are exceptionally obtuse, approach 180°, do not position legs under 

the body and are considered extended. Leg orientation and joint measurements were recorded for 

each fossil specimen.  

Modern spider taphonomy experiments 
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This study utilized a comparison with modern spiders to explore possible causes for 

differences in spider leg angles. One hundred seven spiders were collected at Clinton Lake State 

Park, Lawrence, Kansas during July to August 2013. Most spiders were Mangora maculata, a 

small (2–3 mm) green araneid spider, typically found in low brush. Mangora maculata is 

distinguished by abundant spines and prominent cluster of trichobothria on the femur of the third 

pair of legs (Levi, 1975). Twenty-five spiders were selected to be left in vials and expire in air 

for subsequent submersion in solutions of varying salinity. Eighty-two spiders were placed in 

solutions of varying salinities and allowed to drown immediately after being caught. 

The live spiders were drowned in solutions of three distinct salinities: freshwater (<0.5 

ppt), saline water (35 ppt), and hypersaline water (160 ppt). Freshwater solution used tap water, 

such as is commonly used in freshwater aquariums and has negligible salinity (chemicals were 

not added to remove chlorination). Saline and hypersaline solutions were created using Instant 

Ocean
®
 Sea Salt (Spectrum Brands, Inc.), a mix commonly used in saltwater aquariums. Saline 

solutions consisted of 35 ppt (average seawater salinity) and hypersaline conditions consisted of 

160 ppt, a concentration of salts much greater than that of ocean water. Saline lakes have 

previously been defined as lakes containing >5 ppt salinity, a value based on biological 

tolerances; however, multiple classifications for salinity based on solute concentration exist 

(Williams, 1967; Beadle, 1974; Carpenter, 1978; Hammer, 1986; Last, 2002; Last and Ginn, 

2005). Hypersalinity is generally considered greater than the salinity of seawater (35 ppt); 

however, the Venice Classification System (1959) for salinity, a standard used by many 

scientists for classifying salinity, considers 40 ppt and above hyperhaline (hypersaline). In this 

experiment, 160 ppt was chosen to test hypersalinity that is observed in Great Salt Lake, a large 

hypersaline lake (Nicholson and Marcarelli, 2004).  
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Each spider was placed in a glass beaker and solution was poured over it. The spider and 

the solution were then poured into a glass vial. The vial was filled with more solution until it was 

full, and then sealed with a plastic cap. In some cases, the spider would sink immediately. 

Usually, the spider would either be floating on the surface or the water or float just beneath the 

surface. In either case, the vial was then turned upside down repeatedly to sink the spider. If the 

spider was still floating, it was left overnight and turned upside down the next day until it sank. 

Once all spiders were fully submerged, they were not subjected to further agitation. During this 

time period, vials were maintained at room temperature, and leg orientations were recorded over 

a period of five days. Spiders were left in the vials longer to monitor for further changes in leg 

orientation.  Once spiders attained a consistent leg orientation they were photographed from the 

anterior, dorsal or ventral, and lateral views to capture the range of the arrangement of the legs. 

The leg orientation for each drowned spider was measured from the photographs in Adobe 

Illustrator CS5, and subsequently recorded as curled or extended, using similar criteria as the 

fossil specimens. 

Statistical tests 

 Data collected from each of the fossil spiders and modern spiders was analyzed in 

Minitab 15 Statistical Software. For raw leg angle data, recorded in degrees, an arcsine 

transformation was used. After the transformation, a one-way analysis of variance (ANOVA) 

was conducted to test for a significant difference in the means between 1) the fossil groups and 

2) the modern spider groups. In addition, a Chi-Square Goodness-of-Fit test was performed on 

each individual group: Florissant, Green River, Crato, Fresh, Saline, and Hypersaline, with leg 

orientation data categorized as curled or extended to test if leg orientation was significantly 

curled or extended within each group.  
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Results 

Leg orientation of fossil spiders in lacustrine deposits 

Fossil specimens include a range of femur-patella joint angles within and among the 

formations (Fig. 2). A one-way ANOVA performed using the leg angles of fossil spiders showed 

a significant difference in the means of the Crato, Florissant, and Green River formations, 

F(2,228) = 130.76, p  < 0.05 (Table 1). The categorical data (curled vs extended) reveal that 

fossil spiders from the Crato Formation display a statistically significant consistency in curled 

leg orientation, p < 0.05. The legs are curled under the body in 96% of the Crato Formation 

samples. The average angle formed at the femur-patella joint is 85.85° (s.d. = 39.63°). The 

spiders from the Crato Formation have legs that are curled more closely to the body than the 

other formations (Figs 2, 3; Table 1). Green River Formation fossil spiders showed a much more 

variable pattern in leg orientation than the other two formations. The legs are extended in 58% of 

the samples with a p-vale of 0.089, and thus curling is not statistically significant. The average 

femur-patella joint angle is 151.57° (s.d. = 31.04°). In nearly all of the cases where the legs of 

spiders are considered curled, very few of the legs of specimens were curled as tightly as what 

was observed in the Crato Formation, where joint angles are typically acute. Many specimens 

from the Green River Formation have a leg arrangement near the boundary distinguishing 

between curled and extended. At the other end of the spectrum, spiders from the Florissant 

Formation exhibit a dominant leg orientation in which legs in 98% of the specimens are 

extended. Many samples included fully outstretched legs, at nearly 180°, resulting in a p-value < 

0.05 and a statistically significant proportion of extended legs. The average femur-patella joint 

angle in the Florissant fossil spiders is 169.73° (s.d. = 21.11°).  
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Taphonomy experiments and leg orientation 

All of the 25 spiders that were allowed to expire in subaerial conditions exhibited a 

curled leg orientation, but 19 of the spiders quickly decayed beyond recognition while sealed in 

the vials before submersion. The six spiders that did not completely decay were submerged in 

vials of fresh water and hypersaline water. The legs of subaerial death spiders placed in fresh 

water began to uncurl, but still maintained a curled leg orientation. Subaerial death spiders 

placed in hypersaline water did not change from the tightly curled leg position.   

For the 82 drowned spiders, the leg orientation of spiders varied greatly, immediately 

following submersion, with no consistent trend in leg orientation. After a period of three days 

when all spiders had expired, leg orientations had changed from their initial pose, and no further 

changes beyond three days were observed. An one-way ANOVA for fresh, saline, and 

hypersaline, revealed that the means of the three groups are significantly different, F(2,77) = 

17.52, p < 0.05. Spiders drowned in fresh water typically displayed extended legs, p < 0.05, and 

large femur-patella joint angles with an average of 145.84° (s.d.  = 28.96°). Spiders drowned in 

saline conditions had a wide range of femur-patella joint angles ranging from 49.4° to 180°, and 

had nearly equal abundance of curled (55.2%) and extended (44.8%) legs with an average of 

113.34° (s.d.  = 30.9°). Curling was not statistically significant in spiders drowned in saline 

water, p = 0.493. A statistically significant number of spiders, p-value < 0.05, drowned in 

hypersaline conditions had legs that were tightly curled under the body with small femur-patella 

joint angles and tibia-metatarsus joint angles smaller than those spiders drowned in saline and 

fresh water (Table 1). The average femur-patella joint angle in spiders drowned in hypersaline 

water was 93.79° (s.d. = 22.52°).  
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Figure 1.2 – Fossil spiders from the Crato (A–C), Green River (D–F), and the Florissant (G–I) 

formations.  
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Figure 1.3 – Femur-patella leg angles within the three formations. The Florissant Formation is 

dominated by leg angles near 180
o
 indicating fully outstretched legs. The Green River Formation 

also has many 180° but populates a wider range of angles. The Crato Formation leg angles are 

concentrated at lower, mostly acute, leg angles indicating curled legs. Black = Crato Formation, 

Red = Florissant Formation, Green = Green River Formation. 

 

 

 

 

 

 



20 
 

 

Figure 1.4 – Drowned spiders in various salinities. (A-C) Hypersaline water. Spiders typically 

have strongly curled legs. (D-F) Saline water. D shows a curled leg orientation in saline water. 

The femur-patella joint angle is acute, but the tibia-metatarsus joint in not bent significantly 

resulting in a curled leg orientation that is weak compared to hypersaline conditions. (G-I) Fresh 

water. Leg orientation is dominated by an extended leg pattern.  
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Figure 1.5 – Femur-patella leg angles for the three salinities. Black = Fresh Water, Green = 

Saline, Red = Hypersaline.  

Discussion 

The curling of spider legs after subaerial death is the result of physiological processes. 

Spiders have muscles for the contraction of legs, but lack extensor muscles. Extension of spiders 

legs is instead, controlled by a hydraulic mechanism (Ellis, 1944; Parry and Brown, 1955). 

Spider hemolymph, the fluid in the circulatory system of arthropods, is pumped into the legs, 

thus increasing the fluid pressure, and results in extension of the legs. After death in subaerial 

conditions, this hydraulic mechanism ceases and gives way to contraction of the legs via the 

flexor muscles.  
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Spiders clearly did not live in the lake in which the Crato Formation was deposited, 

although they were deposited with lacustrine sediment. Several observations during the course of 

the experiments provided insight on taphonomic processes affecting the spiders. One possible 

explanation for the curled legs observed in the Crato Formation is death either on land or floating 

on the surface of the water, in which the legs would curl, followed by subsequent deposition in 

the lake. Death on land or the surface of the water, however, would also increase the chance of 

decay or removal by predators and scavengers, as exceptional preservation requires quick 

deposition (Smith et al., 2002). Smith et al. (2002) provided an explanation of the pathway 

leading to fossilization for insects in the Florissant Formation. This included insects making it to 

the lake, submerging and sinking through the water column to a burial environment in which the 

insects can be preserved. Many taphonomic controls exist along this pathway to preservation 

including predators, scavengers, decomposers, disarticulation, and microbial action that can 

hinder preservation. O’Brien et al. (2002) proposed that microbial mats aided insect in 

preservation in the Florissant Formation by forming a protective coating that hinders 

decomposition during sinking through the water column. For exceptional insect preservation, 

three conditions are crucial: 1) a fast sinking rate to limit removal by scavengers; 2) bottom 

water anoxia; and 3) microbes that facilitate preservation (Smith et al., 2002). A similar possible 

pathway exists for spiders, and can be applied to fossil spiders of the Crato Formation. Dunlop 

and Martill (2004) suggested a mechanism of transport for nonflying terrestrial biota, in which 

such organisms as spiders were washed in through rivers and streams during flash-flood events, 

an interpretation suggested by the presence of whole plants preserved with roots, stems, leaves, 

and surrounding soil attached to roots. Other methods of transport to the ancient Crato lake are 
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possible, and include spiders blown in or falling on the lake surface during ballooning events, a 

method of areal dispersal used by some spiders, or strong winds (Humphrey, 1987).  

Spiders preserved in the rock record obviously did not decay, although, the spiders 

allowed to expire in air quickly decayed. The rapid decay of spiders allowed to expire in air 

could be attributed to humidity and favorable conditions for decomposers sealed in the vials. To 

better test a death on land scenario, spiders should be allowed to expire in air and subsequently 

desiccated, which would likely reduce the risk of complete decay and be more consistent with 

the hypothesized semiarid climate of the paleolake in which the Crato Formation was deposited. 

The legs of the three spiders placed in fresh water after subaerial death began to uncurl, but did 

not fully extend, and exhibited a leg orientation similar to spiders drowned in saline water. In 

contrast, the legs of three spiders placed in hypersaline water after subaerial death did not uncurl, 

and were similar to the spiders drowned in hypersaline water. Thus, the death on land scenario 

cannot be fully ruled out for spiders preserved in the Crato Formation, as a curled leg orientation 

is possible after death on land and subsequent submersion in hypersaline water.  

For spiders that have expired in water, leg extension and contraction are likely controlled 

by osmosis, the diffusion of water across semipermeable membranes. In a freshwater solution, 

water diffuses into the spider, through osmosis, creating a pressure that causes the legs to extend, 

overpowering the flexor muscles for contraction. The pressure of the water mimics the 

hemolymph pressure used by spiders to extend their legs. In a hypersaline solution, water moves 

from the spider into the area of higher solute concentration (the solution surrounding the spider) 

and allows for the contraction of the legs tightly under the body, creating a smaller angle at the 

femur-patella and tibia-metatarsus joints. Although water does permeate the spider body and 

void spaces are filled with water in high salinity, sufficient pressure is not created to fully extend 
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the legs as observed in fresh water. Evidence for this phenomenon was observed when spiders 

that had shrunk after dying in air were later placed in a solution and swelled after absorbing 

water.  

Modern spiders in this study that died in fresh water revealed that the legs of spiders were 

predominantly extended (curled = 2 and extended = 19). In contrast, spiders that drowned in 

saline water included specimens with curled legs and others with extended legs in roughly equal 

abundance (curled = 55.2% and extended = 44.8%), suggesting salinity hinders the action to 

produce spiders with fully extended legs (Table 1). Most spiders of those that had a curled leg 

orientation did not have legs that were curled very tightly—legs positioned under the body with 

joint angles > 100 (Fig. 4 – D). In hypersaline water, most spiders had a curled leg orientation 

(84.2% curled), with most of the legs being curled tightly under the body—femur-patella joint 

angles ~90° and tibia-metatarsus joint angles ~113° (Table 1; Figs. 4, 8). The average femur-

patella angle of curled spiders in hypersaline water was 91.56°, and the average for curled 

spiders in saline water was 98.09°. The tibia-metatarsus joint also differed between hypersaline 

and saline water in curled spiders at 113.49° and 138.33°, respectively. The angle at both joints, 

the femur-patella and tibia-metatarsus, give the appearance of extended or curled legs. Smaller 

angles at both joints produce a more tightly curled leg.  

These patterns provide insights that can be applied to understand the fossil samples. 

Previous explanations for patterns in the leg orientation of fossil spiders include acidity and 

temperature. Meyer (2003) speculated that the extended legs of spiders in the Florissant 

Formation were the result of acidic or warm waters, due to volcanic ashfall or thermal vents. 

High temperatures were also suggested as a leg extension mechanism for Florissant spiders by 

Licht (1896) suggested high water temperatures produced leg extension in Florissant Formation 
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spiders based on experiments with spiders placed in warm, hot, and boiling water, each 

producing extended legs; no specific water temperatures were reported. Each of these 

experiments was likely conducted in fresh water, as no addition of salts were reported, which 

would explain the extended legs. Boiling water may have also resulted in denaturing proteins in 

the muscles of the legs of spiders, removing the ability of legs to contract (Wu and Wu, 1925). 

Instead, the osmotic mechanism for leg extension and curling can also be applied to the 

fossil specimens. For example, the Florissant Formation has been interpreted to represent an 

ancient freshwater lake environment (Meyer, 2003). Most of the spider fossils in the Florissant 

Formation display extended legs, consistent with the observations in the freshwater drowning 

experiments (Table 1). In contrast, the Parachute Creek Member of the Green River Formation 

has been interpreted to reflect an ancient stratified saline lake environment (Cole, 1985). Fossil 

spiders from this unit display more curled leg orientations than the Florissant Formation based on 

measurements herein. The fossil spiders of the Green River Formation are similar to the modern 

spiders in saline drowning experiments in two ways: 1) the ratio of spiders with curled to 

extended legs is about equal; and 2) most spiders with a curled leg orientation have legs that 

were not curled very tightly—legs were curled under the body, but joint angles were typically 

>100° (Fig. 2 – E, F). The joint angles of fossil spiders from the Green River Formation suggest 

an intermediate salinity between fresh and hypersaline because they are not fully extended, yet 

not contracted close to the body. At the other end of the spectrum, the Crato Formation has an 

abundance of spider fossils with legs curled tightly under the body. These specimens exhibit a 

narrow range of femur-patella joint angles (mostly acute) in spiders with curled legs, and a 

smaller average femur-patella joint angle. These results from fossil spiders from the Crato 
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Formation suggest they are very similar to the spiders drowned in hypersaline conditions (Figs. 

4, 6, Table 1).  

 

Figure 1.6 – Box plots of leg angles from fossil spiders (top) and modern spiders (bottom). Fresh 

water and the Florissant Formation have the largest leg angles. Saline water and the Green River 
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formation leg angles represent the middle part of the spectrum, but still have leg angles greater 

than hypersalinity and the Crato Formation, which are represented by smaller leg angles.  

 

Formation 

Salinity 

Sample 

size 

Curled 

(C) 

Extended 

(E) 
% C % E Av. F-P 

F-P sd Av. T-M T-M sd P-value 

FF 42 3 39 7.1 92.9 168.98 21.69 173.59 14.15 <0.05 

GRF 125 56 69 44.8 55.2 151.57 31.02 149.46 32.66 0.089 

CF 95 80 15 84.2 15.8 85.84 39.4 120.75 26.79 <0.05 

FW 21 2 19 9.5 90.5 145.84 28.96 157.84 27.73 <0.05 

S 34 19 15 55.2 44.8 113.34 30.9 147.4 20.92 0.493 

HS 27 26 1 96.3 3.7 93.79 22.52 113.8 22.02 <0.05 

Test F P 

ANOVA Fossil Groups F(2,288) = 130.76 < 0.05 

ANOVA Drowning Groups F(2,77) = 17.52 < 0.05 

 

Table 1 – Summary of the leg orientations of fossil and modern spiders. FF = Florissant 

Formation, GRF = Green River Formation, CF = Crato Formation, FW = Fresh Water, S = 

Saline, HS = Hypersaline, F-P = Femur-patella joint angle, T-M = Tibia-metatarsus joint angle, 

sd = standard deviation, Av. = average 

 

The paleosalinity of the lake in which the Crato Formation was deposited has been a 

subject of debate for the last 20 years. The main evidence for freshwater conditions includes the 
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presence of mayfly larva and fish from the genus Dastilbe (Maisey, 1990). Mayfly larvae are 

exclusively freshwater inhabitants. Fossils of these insects occur in the thousands, and are the 

most common insect fossil within the Crato Formation (McCafferty, 1990; Martins-Neto, 1996). 

These insects were most likely not inhabitants of the actual ancient lake, but instead, inhabitants 

of freshwater rivers and streams that drained into the lake (Martill and Wilby, 1993). Dastilbe 

also occur in large numbers, and the majority appears to be juveniles (Davis and Martill, 2003). 

These fish are widely assumed to have been freshwater fish; however, extant gonorhynchiform 

fish are known to tolerate high levels of salinity (Herald, 1961; Patterson, 1984; Davis and 

Martill, 2003). Large concentrations of juveniles preserved within the same layer are suggestive 

of mass mortality episodes (Martill et al., 2008). A number of mechanisms can result in fish 

mass mortality events, including changes in salinity or temperature and oxygen depletion by 

algal blooms or the overturn of bottom waters (Marti-Cardona et al., 2008; Martill et al., 2008; 

Rao et al., 2014). Martill and Wilby (1993) suggested fish likely lived above the halocline within 

a surface layer of fresh water, and died en masse brought on by the breakdown of the halocline 

as a result of storms or seasonal overturn. Another possible scenario responsible for the presence 

of freshwater organisms is freshening episodes that lowered the salinity of the paleolake to a 

suitable level for survival of the organisms during brief periods, and a later increase in salinity 

through evaporation that resulted in mass mortality events as is observed in Lake Eyre of 

Australia (Croke et al., 1996; Stephen Hasiotis, personal communication, November 14, 2014).  

Previous evidence for hypersalinity is based primarily on sedimentological and 

stratigraphic evidence rather than paleontological evidence. A variety of pseudomorphs after 

hopper-face halite morphologies occur throughout the Crato Formation, and indicate widespread 

hypersalinity (Martill and Wilby, 1993; Martill et al., 2007b). These halite pseudomorphs are 
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present in the Nova Olinda Member at the bottom of the Crato Formation, and also in the 

Jamacaru Member further up in the section. Immediately above the Crato Formation lies the 

Ipubi Formation, a series of bedded and massive evaporite deposits indicating high rates of 

evaporation and high levels of salinity (Martill and Wilby, 1993). The sequence throughout the 

Crato Formation and the Ipubi Formation suggest a lake environment with episodes of 

fluctuating salinity and hypersalinity. Hypersaline conditions are in congruence with the semiarid 

to arid climate interpretation based on paleogeography and the fossil terrestrial plant and animal 

life.  

Salinity is a common environmental parameter determined when studying bodies of 

water, with ties to climate and ecology (e.g., Williams et al., 1990; Henderson, 2002). Many 

climate studies focus on oceanography; however, lakes are also important proxies for climate 

change (Street-Perrot and Harrison, 1985; Winter 1990; Mason et al., 1994; Cohen, 2003). 

Fluctuations in salinity can provide insight on rates of evaporation and rainfall for an area. Saline 

lakes, for example, are dependent on a rate of evaporation that exceeds the rate of precipitation 

resulting in a higher concentration of salts (e.g., Eugster and Hardie, 1978; Horne and Goldman, 

1994). Lakes in semiarid to arid region are particularly sensitive to changes in climate (Last and 

Selzak, 1988). Lakes are also relevant to the carbon cycle. Large amounts of carbon can be 

stored in lakes and, conversely, released from lakes into the atmosphere (Tranvik et al., 2009). 

With respect to ecology, salinity influences what types of plants and aquatic life can be present 

in a certain environment (Hammer 1986; Grande 1994). High levels of salinity result in lower 

levels of dissolved oxygen restricting the types of organisms that need highly oxygenated water 

(Hammer 1986). Proxies for salinity in ancient lake environments are valuable, but when these 
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are ambiguous, such as in the Crato Formation, other methods must be used to determine 

salinity.  

 

 

Conclusions 

 This study suggests that a relationship exists between the leg orientation of drowned 

spiders and salinity of the water in which they were accumulated. Osmosis is likely the 

mechanism responsible for the differences in leg orientations in varying salinity. High levels of 

salinity produce more acute femur-patella and tibia-metatarsus joint angles, resulting in more 

tightly curled legs. In freshwater conditions, legs typically are extended out from the body with 

obtuse joint angles approaching 180°. Solutions of saline water produce a wide range of leg 

angles that fall in between fresh and the hypersaline conditions tested, suggesting increasing 

salinity results in an increase in the curled leg orientation.  

Application of these results to the spider-bearing strata in the geologic record reveals a 

similar pattern of leg orientation with respect to salinity. Spider fossils from the Florissant 

Formation were deposited in a freshwater lacustrine environment and show the same out-

stretched leg pattern as freshwater experiments. Spider fossils from the Parachute Creek Member 

of the Green River Formation were deposited in saline conditions, and the pattern in leg 

orientations for those fossils is similar to the saline experiments. These results suggest spiders 

preserved in spider-bearing beds of the Crato Formation were deposited in hypersaline 

conditions to produce the dominant curled leg pattern observed in the spider fossils. Spiders that 

die in subaerial conditions will also produce a curled leg orientation, even after subsequent 
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submersion in hypersaline water, and thus, cannot be ruled out as a possible scenario to produce 

curled leg pattern in fossil spiders. Spiders that die in air and are subsequently submerged in 

fresh water produce an initial curled leg orientation that slightly uncurls. 

This study has revealed that salinity is a taphonomic control on spiders, and thus a new 

potential proxy for salinity in lacustrine environments is proposed based on spider leg orientation 

where salinity indicators are otherwise ambiguous. Future studies could focus on other potential 

scenarios including death in fresh water followed by submersion in hypersaline water and 

desiccation flowed by submersion in water. In addition, further experiments finding the threshold 

where different leg orientations are represented in more specific salinities, especially between 35 

ppt and 160 ppt, constraining salinity to distinct values, and thus be applied to other aquatic 

paleoenvironments where fossil spiders can be found. Although fossil spiders are considered 

rare, they occur in many deposits around the world including Daohugou, China (Selden et al., 

2013), Montsech and Las Hoyas, Spain (Selden and Penney, 2003), and the Isle of Wight, 

England (Selden, 2014). Investigating the fossil spiders from deposits of this nature, after further 

salinity experiments on modern spiders, would allow for more discrete interpretations of salinity 

for paleoenvironments reconstructed from spider-bearing strata.  
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CHAPTER 2: SPIDER DIVERSITY IN THE CRATO FORMATION, A LOWER 

CRETACEOUS FOSSIL-LAGERSTÄTTE OF BRAZIL 

Abstract 

The Crato Formation is a Fossil-Lagerstätte, and an important source of Cretaceous 

spiders, but from where few specimens have been formally described (Mesquita 1996; Selden et 

al. 2006). Examination of 95 fossil spiders reveals three new families of spiders present in the 

Crato Formation: Araneidae, Nephilidae, and Palpimanidae. Although the spiders are preserved 

in exceptional detail, many characteristics used to differentiate taxa are absent in the specimens, 

so identification is only possible to family level for Nephilidae and Palpimanidae. The majority 

of spider specimens present in the Crato Formation deposits can be ascribed to Cretaraneus 

martinsetoi Mesquita 1996, a genus of nephilid. A redescription of the holotype and other 

specimens has resulted in the erection of a new genus, Olindarachne n. gen., for this species, and 

its placement in Araneidae. The recognition of these families presents a clearer picture of spider 

biodiversity on the South American continent during the break up of Gondwana in the Early 

Cretaceous. 

Keywords: Mesozoic, Araneidae, Nephilidae, Palpimanidae
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Introduction 

Herein, the abundant orbweaving araneoid in the Lower Cretaceous Crato Formation in 

Brazil, Cretaraneus martinsnetoi Mesquita 1996, is redescribed and placed into a new genus in 

Araneidae. Other fossil spiders described for the first time from the Crato Formation include 

members of Nephilidae and Palpimanidae. This study, thus, extends the paleogeographic 

distribution of Araneidae, Palpimanidae, and Nephilidae to the South American continent during 

the breakup of Gondwana in the Early Cretaceous, and extends the fossil record of the 

Palpimanidae back by almost 90 million years.  

The orbweavers, Araneidae, are one of the most common groups of spiders with over 3,000 

species. The orb web likely played a major role in insect evolution along with flowering plants 

during the Cretaceous (Volrath & Selden, 2007). The oldest known true orbweaver (Araneidae) 

is Mesozygiella dunlopi Penney & Ortuño 2006, from the Lower Cretaceous of Spain. Other 

spiders that produce orb webs, including Tetragnathidae and Uloboridae, have been found in 

Cretaceous deposits. The origin of all orbweaving spiders is hypothesized dates to be Jurassic or 

even earlier (Penney & Ortuño 2006).  

Nephilids are some of the largest web-weaving spiders, and typically live in tropical to 

subtropical regions (Kuntner & Coddington 2009). Currently, the fossil record of Nephilidae 

extends back to the Early Cretaceous (Selden 1990). A supposed nephilid, Nephila jurassica 

Selden, Shih & Ren 2011, was recently redescribed and placed in the new genus Mongolarachne 

Selden, Shih & Ren 2013, family Mongolarachnidae. The fossil record of Mesozoic nephilids is 

therefore currently limited to the Cretaceous, including Cretaraneus liaoningensis Cheng, Meng, 

Wang & Gao, 2008, from the Jehol Biota of China, Geratonephila burmicana Poinar & Buckley 
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2012, from Myanmar amber, Cretaraneus vilaltae Selden 1990, from Spain, and Cretaraneus 

martinsnetoi and an unnamed Nephila sp. (figured in Dunlop & Penney 2012) from the Crato 

Formation. The first of these, C. liaoningensis, shows no characters of Cretaraneus (Selden et al. 

2011), and the last two are the subject of this paper. Cenozoic nephilids are predominantly 

preserved in Dominican and Baltic ambers (Wunderlich 2004) with the exception of one 

nonamber fossil nephilid from the Florissant Formation (34 Ma) of Colorado, Nephila 

pennatipes Scudder 1885.  

Palpimanids are ground-dwelling araneophagous spiders that live in tropical to 

Mediterranean regions. There is a single fossil specimen from Cenozoic Dominican amber, 

Otiothops sp. Wunderlich 1988 (Wunderlich 1988). There are many spiders representative of 

superfamily Palpimanoidea from the Mesozoic, however, including Baltic ambers and Myanmar 

ambers and others, although no Mesozoic fossil of Palpimanidae has previously been described 

(Penney 2005; Wunderlich 2006, 2008, 2011, 2012).  

Fossil spiders are relatively abundant in the Crato Formation, and most appear to be the same 

species. Only a few species of spider from the Crato Formation have been formally described: 

Cretadiplura ceara Selden 2006 and Dinodiplura ambulacra Selden 2006 belong to the suborder 

Mygalomorphae (Selden et al. 2006). The majority of Crato spiders appear to be araneomorphs. 

The first spider described from the Crato Formation was Cretaraneus martinsnetoi Mesquita 

1996. The generic assignment was based on an earlier description of an araneomorph spider of 

the genus Cretaraneus from the Lower Cretaceous of Spain (Selden 1990). Cretaraneus is 

currently placed in family Nephilidae (Selden & Penney 2003). The commonest Crato spider is 

C. martinsnetoi, but its characters suggest the assignment to Cretaraneus is incorrect. So, the 
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species is redescribed here after examination of the holotype and additional specimens from the 

Crato Formation.  

Geologic Setting 

During the Early Cretaceous, the Crato Formation was being deposited in the Araripe Basin 

in modern-day Brazil. The Crato Formation is a series of alternating heterolithic beds and 

laminated carbonates (Martill & Wilby 1993). The age of the formation has been interpreted as 

late Aptian, based on ostracodes and palynomorphs (Coimbra et al. 2002; Batten 2007). At the 

base of the Crato Formation is the Nova Olinda Member. The Nova Olinda Member is a fossil-

rich Plattenkalk, laminated limestones, with two types of laminated carbonate facies: clay-

carbonate rhythmites and laminated limestones (Neumann et al. 2003). Bioturbation, traces, and 

fossils of benthic organisms are absent in this member, suggesting anoxic bottom conditions 

(Martill & Wilby 1993).  

The Araripe Basin was positioned ~10° south of the paleoequator, and thus located within the 

tropics (Hallam 1984, 1985; Chumakov et al. 1995; Föllmi 2012). In addition, the fossil flora 

within the Crato Formation possess characteristics of extant plants that live in areas of limited 

rainfall and dry conditions, suggesting a semiarid to arid climate (Alvin 1982; Selden & Shear 

1996; Dunlop & Martill 2004; Martill et al. 2007). The thin laminations suggest a low-energy 

environment during deposition of the Nova Olinda Member. Salinity of the lake in which the 

Crato Formation was deposited has been debated, and interpretations range from fresh water to 

hypersaline (Maisey 1991; Neumann et al. 2003; Martill et al. 2007). Recently, the paleosalinity 

was reinvestigated using spider taphonomy experiments that support hypersaline conditions 

present in the ancient lake that deposited the spider-bearing member (Downen & Selden 2013). 
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This is in congruence with evidence of hypersalinity suggested by the presence of pseudomorphs 

after halite (Martill et al. 2007). A hypersaline lake with overlapping tongues of freshwater is the 

most supported and most likely scenario (Martill & Wilby 1993).  

Materials and Methods 

The holotype of Cretaraneus martinsnetoi, UnG/1T-50, was studied by PAS in 2002 at the 

Universidade Guarulhos, São Paulo, Brazil. Photographic slides of the holotype were scanned 

with an Epson scanner at 24-bit color and 4800 dpi resolution for study at the University of 

Kansas. The Crato fossil spider collection at the University of Kansas consists of 90 specimens, 

79 of which are considered to be conspecific with C. martinsnetoi. Three of these were selected 

for the redescription: Crato 012, Crato 033, and Crato 071, as they are the best well preserved. 

Another specimen, Crato 096, was selected for describing Nephilidae, and a single specimen of 

Palpimanidae, Crato 098. 3 few spiders in the collection resemble mygalomorphs, and others 

have not been determined. Specimens were photographed with a Canon EOS 5D Mark II digital 

camera attached to a Leica M650C microscope. Seventy percent ethanol was used to wet the 

surfaces of the fossils and enhance details not easily seen in the dry specimens. Measurements 

were made from the photographs using the measurement tool in Adobe Photoshop, and drawings 

were made from the photographs using Adobe Illustrator CS5. Abbreviations are as follows: BL 

= book lung, cl = claw, cx = coxa, EF = epigastric furrow, at = anal tubercle, fe = femur, pa = 

patella, ti = tibia, mt = metatarsus, ta = tarsus, pr = prosoma, op = opisthosoma, st = sternum, lb 

= labium, pd = pedipalps, cy = cymbium, AT = Anal Tubercle, ch = chelicerae, en = endite, sp = 

spinnerets. All measurements are in millimeters. A “+” following a measurement indicates a 

body part that is not fully visible.  
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Interpretation of the Fossils 

Taphonomy.—The Crato Formation fossil spiders exhibit excellent preservation, and many are 

preserved in three dimensions. The spiders have been replaced by dark brown goethite, 

(FeO(OH)), and are supported by a matrix of light-colored, fine-grained lime mudstone (Barling 

et al., 2014). Cavities in the body of the spiders have been infilled with white crystalline CaCO3. 

Pyrolusite (MnO2) speckles many of the samples, and in Crato 071 clusters of pyrolusite are 

present on the abdomen and legs. Spiders preserved in the Crato Formation typically display a 

curled arrangement of legs making total leg length difficult to calculate. This curled leg 

orientation is related to hypersaline conditions present in the environment in which they were 

deposited (Downen et al., 2014, in prep.).  

Morphological interpretation.—The holotype of C. martinsnetoi, UnG/1T-50, is preserved 

dorsal side up, and with extended legs (Fig. 1). Pedipalps are visible and unmodified, indicating 

the specimen is female. Parts of the opisthosoma and the coxae are obscured by matrix. The 

carapace appears mostly intact, but eyes cannot be seen.  

Crato 012 is preserved dorsal side up in the matrix with legs and pedipalps curled tightly 

under the body (Fig. 2). Although the pedipalps are curled, they are distinctly swollen, indicating 

the specimen is male. Hairs and spines are not visible. Part of the carapace has been removed 

and/or crushed.  

Crato 033 is preserved dorsal side up in the matrix (Fig. 3). Chelicerae and pedipalps are 

visible. Part of the carapace appears removed. Coxae 2–4 are clearly visible on both sides of the 

spider, but coxae 1 are not easily visible on either side. Hairs and spines are most easily seen as 

dark brown impressions where part of the cuticle has broken away. A circular spot near the end 
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of the abdomen where the spinnerets would be present has weathered out. Two book lungs are 

present and discolored yellow in the specimen. The opisthosoma of many of the Crato Formation 

spiders have a wrinkled appearance. All eight legs are present, but only the anterior two pairs are 

mostly visible, as the others are truncated by the sample or curled under the body. Crato 071 is 

preserved dorsal side up (Fig. 4). Part of the carapace has been removed to reveal the sternum 

and coxae. The pedipalps are unmodified indicating the specimen is female. Crato 071 displays 

extended legs, but the metatarsi and tarsi of some legs disappear into the matrix. 

Crato 096 is preserved in lateral view, with the left side facing upward, and is one of the 

largest spiders in the collection (Fig. 5). Preparation around the specimen has removed most pre-

existing hairs, spines, or trichobothria, with the exception of a single pedipalp preserved as an 

impression and a few scattered hairs. Only the first two pairs of legs are fully visible, as well as 

one of the last posterior legs. The other legs are either completely absent or only partially 

preserved.  

Crato 98 is preserved ventral side up, with the end podomeres of some legs disappearing into 

the matrix and, therefore, a walking leg formula cannot be determined (Fig. 6). Pedipalps and 

chelicerae are either hidden by matrix or truncated by the sample, but no swelling is visible in the 

pedipalps, so the specimen is assumed female. The abdomen appears crushed, and pieces of the 

cuticle are not preserved. Some parts of the abdomen are exceptionally preserved, but appear 

disturbed either through a taphonomic process or preparation of the fossil, separating the 

spinnerets from the rest of the abdomen. The specimen is strongly preserved in three dimensions.  
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Eyes are not visible in any of the specimens examined due to preservation ventral side up or 

partial removal of the carapace. Trichobothria, presumed to have been present during life, are not 

seen in any of the specimens. 

Systematic Paleontology 

Order Araneae Clerck 1757 

Suborder Opisthothelae Pocock 1892 

Infraorder Araneomorphae Smith 1902 

Suborder Araneoidea Latreille 1806 

Family Araneidae Simon 1895 

Genus Olindarachne new genus 

Diagnosis.—Araneid spider with very long first two pairs of legs (twice the length of the body); 

robust femora; femur I length to body length ratio of ~1.58; spines present on patella. 

Etymology.—After the Nova Olinda Member of the Crato Formation, the strata in which the 

specimens are found. 

Type species.—Cretaraneus martinsnetoi Mesquita 1996. 

Olindarachne martinsnetoi new combination 

Figures 1–3. 

Material studied.—Holotype, UnG/1T-50, female specimen in the paleontological collections at 
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the Department of Geosciences, Universidade Guarilhos, São Paulo, Brazil. Crato 012 (male), 

Crato 033, Crato 071 (females), in the Department of Invertebrate Paleontology, University of 

Kansas Natural History Museum. Lawrence, Kansas. All specimens come from the Lower 

Cretaceous (Aptian) Nova Olinda Member of the Crato Formation, northeast Brazil. 

Description of holotype.—Adult female. Carapace longer than wide (ratio 1.16), length 1.82, 

width 1.56; narrows anteriorly. Raised eye region. Opisthosoma subelliptical, longer than wide 

(ratio 1.33), length 2.83, width 2.13. Walking leg formula 1243. Legs I and II robust. Leg III 

noticeably shorter than others. Macrosetae on fe, pa, ti, mt. Leg I fe length to carapace length 

ratio 1.58. Leg I twice as long as body length. Podomere lengths: Leg I fe 2.88, pa 1.04, ti 2.42, 

mt 1.92, ta 0.81, Leg II fe 2.74, pa 0.85, ti 1.87, mt 1.97, ta 0.87, Leg III fe 1.61, pa 0.41, ti 1.16, 

mt 0.97, ta 0.41, Leg IV fe 1.42, pa 0.56, ti 1.49, mt 1.36, ta 0.57.  

Description of Crato 012. —Adult male. Subrounded carapace bulging laterally, narrows 

anteriorly, length 2.48, width 2.88 (raio 0.86).  Opisthosoma oval, slightly tapering toward 

posterior, length 3.03, width 2.33. Walking leg formula 1243. Legs I and II robust. Femur length 

to carapace length ratio 1.50. Podomere lengths: Leg I fe 3.72, pa 1.05, ti 2.67, Leg II fe 3.11, pa 

0.89, ti 2.20, mt 1.36+, Leg III fe 1.58, Leg IV fe 2.19, pa 0.73, ti 2.27, mt 0.88+.  

Description of Crato 033.—Adult female. Carapace longer than wide (ratio 1.14), length 1.62, 

width 1.42. Labium wider than long, rhombus-like shape with rounded edges. Sternum 

subtriangular, longer than wide, concave toward chelicerae, tapering toward abdomen. Setae and 

macrosetae present on fe, pa, ti, mt. Opisthosoma oval, longer than wide (ratio 1.19), length 1.87, 

width 1.56 . Walking leg formula 1243. Legs I and II robust. Femur I length to carapace length 

ratio 1.58. Leg I nearly twice as long as body. Podomere lengths: Leg I fe 2.70, pa 0.52, ti 2.16, 
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mt 0.97+, Leg II fe 1.94, pa 0.34, ti 1.56, mt 0.86, ta 0.44, Leg III fe 1.18, pa 0.39, ti 0.49+, Leg 

IV fe 1.25. 

Description of Crato 071.—Adult female. Rounded carapace outline, longer than wide, narrows 

anteriorly, length 4.00, width 3.79. Raised eye region. Chelicerae project down. Opisthosoma 

oval, length 4.64, width 3.03. Leg formula 1243. Left Leg I longest (18.17) and Leg III shortest 

(9.13). Legs I and II more robust than III and IV. Two tarsal claws on right leg III and right leg 

IV. Setae and macrosetae present on legs including patella. Femur I length to carapace length 

ratio: 1.52. Leg I twice as long as body length. Podomere lengths: Leg I fe 6.08, pa 1.95, ti 

0.73+, Leg II fe 4.66, pa 1.54, ti 3.7, mt 4.01, ta 1.65, Leg III fe 2.81, pa 1.05, ti 1.93, mt 2.21, ta 

1.13, Leg IV fe 3.38, pa 1.34, ti 3.55, mt 2.89, ta 1.21.  

 

Figure 2.1 – Olindarachne martinsnetoi n. gen., holotype UnG/1T-50, photograph and 

interpretative drawing. 
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Figure 2.2 – Olindarachne martinsnetoi n. gen., Crato 012, photograph and interpretative 

drawing. 

 

Figure 2.3 – Olindarachne martinsnetoi n. gen., Crato 033, photograph and interpretative 

drawing. 
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Figure 2.4 – Olindarachne martinsnetoi n. gen., Crato 071, photograph and interpretative 

drawing. 

 

Remarks.—The previous interpretation of these abundant spiders in the Crato Formation was by 

Mesquita (1996), who placed them in the genus Cretaraneus. Selden (1990) described 

Cretaraneus vilaltae from an Early Cretaceous locality at Sierra de Montsech, Spain. The 

diagnosis of Cretaraneus is as follows: “Araneoid spider with subelliptical carapace bearing 

raised cephalic area and no fovea; subtriangular sternum; small, subtriangular labium; serrate 

setae covering all parts of body. Chelicerae relatively large (0·4 × length of carapace), forwardly 

directed (at least in adult male), with inner and outer row of denticles (not peg-teeth), and mesal 

ridge; male palp with long embolus, and small, proximal ?paracymbium; legs relatively equal in 
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length, about three times the length of carapace; femora, tibiae and metatarsi with spines; tarsi 

with pectinate paired claws, small median claw, and associated serrate bristles; no true 

trichobothria  globose abdomen.” (Selden 1990, p. 270).  

The definition of Cretaraneus martinsnetoi Mesquita (1996, p. 25) is as follows “afora os 

caracteres listados para o gênero, esta espécie apresenta diferenciação das quelíceras, com 

formato arredondado e presença de espinhos na patela”; i.e., apart from the characters listed for 

the genus, this species is differentiated by the chelicerae with rounded shape and the presence of 

spines on the patella.” In addition, Mesquita (1996 p. 26) mentioned further differences, in that 

the chelicerae being of rounded shape in C. martinsnetoi, they are turned back over the carapace 

and lack a claw (“O espécime em discussão difere na posição das queliceras, que se encontram 

voltadas sobre o abdome, possuem o formato arredondado e sem garras”). The Crato fossil 

spiders do share traits in common with Cretaraneus vilaltae Selden 1990, including a raised 

cephalic area, abundant setae and large chelicerae. Several differences exist, however, that 

suggest the Crato spiders do not represent Cretaraneus. The carapace is rounded and narrows 

anteriorly. The legs are not relatively equal in length. The first two pairs of legs (I and II) of the 

Crato spiders described here are much longer compared to legs III and IV. The femur/carapace 

length ratio is approximately 1.58 whereas the femur/carapace length ratio of Cretaraneus 

vilaltae is 1:1. The holotype has a leg I length to carapace ratio of 4.98, and specimen Crato 071 

has a leg I length to carapace ratio of 4.54, whereas Cretaraneus vivaltae has a ratio of 3.54, 

indicating much longer legs in the specimens described here. The third pair of legs (III) is 

noticeably shorter than the others. Spines are present on the patellae of the Crato spiders, unlike 

Cretaraneus vilaltae, a difference also noted by Mesquita (1996).  
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At the time of the description of C. martinsnetoi, Cretaraneus was not placed in a family, but 

the genus was later recognized as belonging to Nephilidae based on morphology of the male 

pedipalp (Selden & Penney 2003). Though the Crato spider shares some characteristics with 

Nephilidae, several characteristics of the spiders described here suggest they instead belong to 

family Araneidae: the first pair of legs is the longest and the third pair of legs is the shortest, the 

carapace is longer than wide and has a narrowed raised cephalic region, the sternum is longer 

than wide, there is a short, stout cheliceral fang, there are abundant setae and macrosetae, the 

globose abdomen is longer than wide, a cribellum is absent, the labium is wider than long, and 

the endites are squarish. Nephilids possess a wider than long sternum and endites that widen 

anteriorly, suggesting the holotype, Crato 033, and Crato 071 do not belong to Nephilidae. In 

addition, male nephilids are typically much smaller in size compared to females (Coddington et 

al. 1997). The male O. martinsnetoi (Crato 012) is not greatly reduced in size compared to 

females. Some characteristics are shared with the family Tetragnathidae, but tetragnathids 

typically possess longer, forward-projecting chelicerae, endites that widen distally, a labium 

longer than wide, and slender legs. 

Family Nephilidae Simon 1894 

Nephilidae incertae sedis 

Material.—Crato 096 (female) in the Department of Invertebrate Paleontology, University of 

Kansas Natural History Museum. Lawrence, Kansas; from the Lower Cretaceous (Aptian) Nova 

Olinda Member of the Crato Formation, northeast Brazil. 

Description.—Adult female. First pair of legs very long. Three tarsal claws. Opisthosoma 

elongate, subelliptical, raised higher than carapace at anterior, tapered toward posterior, 
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Opisthosoma length: 12.56, width: 6.99. Walking leg formula: 1243. Podomere lengths: Left Leg 

I fe 19.07, pa 4.74, ti 16.51, mt 17.91, ta 4.35, Left Leg II fe 14.31, pa 2.82, ti 12.32, mt 12.00, ta 

3.40, Left Leg 4 fe 7.76, pa 2.81, ti 11.30, mt 7.63, ta 3.71.  

Remarks.—The extremely large size of the spider and subelliptical, tapering opisthosoma are 

suggestive of Nephilidae. The specimen here is female, but sexual dimorphism cannot be 

confirmed until a male is found.  

 

 

 

 

 

 

 

 

Figure 2.5 – Nephilidae incertae sedis, Crato 096, photograph and interpretative drawing. 
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Superfamily Palpimanoidea sensu Agnarsson et al. 2013 

Family Palpimanidae Thorell 1870 

Palpimanidae incertae sedis 

Material.—Crato 098 (female) in the Department of Invertebrate Paleontology, University of 

Kansas Natural History Museum. Lawrence, Kansas; from the Lower Cretaceous (Aptian) Nova 

Olinda Member of the Crato Formation, northeast Brazil. 

Description.—Female spider. Body length 3.2. Sternum shield-shaped, nearly as wide as long. 

Labium triangular. Endites short and close together. Opisthosoma oval with heavily sclerotized 

epigastric region forming a ring shape around pedicle. Epigastric region with dotted pattern. Two 

spinnerets. Robust first pair of legs. Three tarsal claws on right leg III. Podomere lengths: Leg I 

fe 1.69, pa 0.80, ti 0.73, Leg II fe 0.74, pa 0.30, ti 0.61+, Leg III fe 0.91, pa 0.26, ti 0.94, mt 0.66, 

ta 0.35, Leg IV fe 1.53, pa 0.43, ti 1.17, mt 1.10, ta 0.15+.  

Remarks.—Crato 098 is easily recognized from other spiders preserved in the Crato Formation 

by its distinct enlarged front pair of legs, which are characertistic of the superfamily 

Palpimanoidea. The enlarged front pair of legs could suggest the family Stenochilidae, but Crato 

098 most closely resembles Palpimanidae based on the triangular shape of the labium, a reduced 

number of spinnerets, and a heavily sclerotized, ring-shaped part of the epigastric region, which 

is suggestive of further classification into subfamily Palpimaninae. A specific genus cannot be 

determined due to a lack of diagnostic details.  
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Figure 2.6 – Palpimanidae incertae sedis, Crato 098, photograph and interpretative drawing.  

 

Discussion 

The placement of Olindarachne in Araneidae does not extend the age of the family because 

the araneid Mesozygiella dunlopi was described from the Aptian  (Penney & Ortuño, 2006), and 

the Crato Formation is considered to be late Aptian in age (Batten 2007). This placement does 

expand the known paleogeographic distribution of araneids during the Mesozoic. M. dunlopi 

comes from Spain, and would have been separated from South America during the Early 

Cretaceous by a young North Atlantic Ocean. One other Mesozoic araneid spider has been 

described: a juvenile from Late Cretaceous amber in New Jersey (Penney 2004). Possibly, 

araneids were distributed across parts of Pangaea before its breakup beginning in the Mesozoic. 

Other araneids have been reported or suggested, but are either questionably identified or not 
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formally described (Dunlop et al. 2014). Araneids would have likely constructed orb webs in the 

vegetation surrounding the ancient lake in which the Crato Formation was deposited. Extant 

nephilids also weave orb webs, sometimes up to 1.5 m in diameter (Kuntner & Coddington 

2009). The insect fossil assemblage of the Crato formation is dominated by mayflies, 

dragonflies, and grasshoppers, and these insects would have likely been common prey for the 

araneid and nephilid spiders (Maisey 1990). Specimen Crato 098 extends the age range of 

Palpimanidae back nearly 90 million years. Palpimanids are ground-dwelling spiders that prey 

upon other spiders, and likely would have lived relatively close to the shoreline or a stream 

entering the ancient lake to be washed in during flooding events (Jocqué & Dippenaar-Schoeman 

2007).  

Conclusions 

The area surrounding the ancient lake in which the Crato Formation was deposited supported 

a variety of life, evidenced by a diverse fossil assemblage. The fossils are dominated by 

terrestrial arthropods including insects and spiders. Previously, only a few spiders had been 

described: Cretaraneus martinsnetoi Mesquita 1996 and a few mygalomorphs. A redescription 

of the spider described by Mesquita and examination of other specimens has shown the presence 

of three new families: Araneidae, Nephilidae, and Palpimanidae, that existed in the Early 

Cretaceous of present-day Brazil. Many more fossil spiders have been found and await 

description, and have the potential to further increase our understanding of spider biodiversity in 

the early Cretaceous.  
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CONCLUSION 

Two common aspects of paleontological research are reconstruction of depositional 

environments and the description and classification of ancient organisms. Study of past life can 

reveal constraints on the physical environment and insight into the ecological communities 

present during times which cannot be directly observed. The purpose of this thesis was to 

illustrate the practicality of fossil spiders for interpreting salinity in lacustrine depositional 

environments, and to rectify previous interpretations of the taxonomic status of an abundant 

spider taxon preserved in the Crato Formation. An important abiotic factor, salinity, and biotic 

factor, the type of spiders, have been made clear and expand upon pre-existing knowledge of the 

paleoenvironment of the Crato Formation. 

The results of these projects have provided evidence of a relationship between post-

mortem leg orientations and variations in salinity based on leg joint angle measurements. Spiders 

deposited in freshwater typically display fully extended legs. As salinity increases, the legs 

become increasingly curled. When hypersaline conditions are present, the legs of spiders curl 

tightly under the body.  Leg orientations were quantified by measuring angles at the femur-

patella and tibia-metatarsus joints to show that smaller angles (~90°) are present in hypersaline 

conditions and larger angles are present in fresh conditions (~180°). The results of the modern 

taphonomy experiments are consistent with observations of fossil spiders preserved in lacustrine 

deposits. For example, fossil spiders deposited in the Florissant Formation, which has been 

interpreted as deposition in fresh water, have similar leg orientations as modern spiders drowned 

in fresh water. Using the results of this study, the unique pattern of tightly curled legs of fossil 

spiders in the Crato Formation is suggestive of hypersaline conditions existing during deposition. 

This conclusion concurs with previous studies suggesting evidence of hypersalinity and aims to 
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remedy the controversy surrounding an interpretation of salinity for the Crato Formation. 

Additional observations on spiders allowed to expire in air showed a tightly curled leg 

orientation can also be produced by death on land and subsequent submersion in hypersaline 

water. Further experiments are needed to constrain salinity levels and understand other possible 

scenarios including death on land after desiccation and changes in salinity for an individual 

spider.  

The spider taphonomy experiments show that fossil spider leg orientation may be a useful 

proxy for salinity for other lacustrine deposits in which fossil spiders are present. These 

conclusions are already supported by two such localities, the Green River Formation and the 

Florissant Formation. Other ancient lacustrine environments to which similar studies can be 

applied include, but are not limited to, deposits in Spain, China, Russia, France, and New South 

Wales. Expanding upon the taphonomy experiments, salinity could potentially be constrained 

further to more precise measurements by discovered thresholds in which specific leg angles and 

orientations are present. This type of data could be useful to paleoclimate studies in which 

salinity may allow inference for rates of evaporation and/or precipitation in lacustrine settings.  

In addition to understanding a previously ambiguous abiotic constraint of the Crato 

Formation depositional environment, insight into a biotic component of this ancient lacustrine 

setting was achieved. The previously interpreted Cretaraneus martinsnetoi Mesquita, 1996 has 

been revised through redescription, the erection of the new genus Olindarachne, and placement 

in the family Araneidae. Olindarachne martinsnetoi (Mesquita, 1996), was previously described 

as genus Cretaraneus in the family Nephilidae. Several characteristics of the Crato spiders 

described here support assignment to family Araneidae, the true orbweavers, including leg 

length, squarish endites, short stout fangs, the absence of a cribellum, and a globose abdomen. In 
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addition, redescription revealed that the Crato spiders do not belong in Cretaraneus, but instead, 

belong to a new genus diagnosed by robust femurs, an extremely long first two pair of legs, and 

the presence of spines on the patellae. Olindarachne martinsetoi (Mesquita, 1996) suggests an 

expanded distribution of araneids shortly after the breakup of Gondwana in the early Cretaceous 

improving our knowledge of spider biogeography. In addition, the families Nephilidae and 

Palpimanidae have been shown to be present during the early Cretaceous of South America as 

well, and extended the range of Palpimanidae back nearly 90 million years.  

Both projects have aided in further reconstructing the paleoenvironment of the Crato 

Formation by clarifying paleosalinity and the types of spiders present in this area during 

deposition. A more complete reconstruction of this environment includes deposition in a calm 

stratified hypersaline lake with freshwater lenses situated in a semi-arid to arid setting. 

Vegetation that thrives in limited water would have likely bordered the lake, and been home to 

araneid and nephilid spiders capturing prey such as crickets and flying insects in their orb-shaped 

webs. Palpimanid spiders are ground-dwellers, and would have preyed upon other spiders. 

Precipitation would have been limited, but occasional storms and flash flooding events would 

have likely blown and/or washed spiders into the lake. After sinking though the water column, 

spiders would subsequently be deposited and preserved as part of the exceptional fossil 

assemblage for which the Crato Formation is known.  
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Appendix 

TABLE A1—Fossil spiders, leg angles, and leg orientations. CF = Crato Formation, Sp = 

specimen, Or = orientation, F-P = Femur-patella joint angle, T-M = Tibia-metatarsus joint angle, 

E = extended, C = curled, U = unknown, unknown = no specimen number, blank = no data. 

CF Sp CF F-P CF T-M CF 
Or 

374670 79.7 142.9 C 

374671 59.8 136.4 C 

374672 40 150.9 C 

AMNH 48338     C 

374673 57 91.8 C 

374674 75.9 116.2 C 

Wun001 54.8 128.5 C 

8 68 99.3 C 

374675 87.4 120 C 

374676 69.6   C 

DM X94.2 94.1 101.7 C 

F18871/SAN/AP/JW 83.5   C 

DM 002B 47.3   E 

374677 80.6 117.3 C 

DM X94.1 111.8 115.9 C 

Wun005 114.8 53.9 C 

374678 53.7   C 

BD7DM 180   E 

Berlin009 120.9 102.9 C 

Wun009 157.9 172.5 E 

374679 65.1 91.8 C 

BD6DM 90.8   C 

374680 64.7 112.9 C 

BD1DM 105.3 91.4 C 

BD12DM 67 80.8 C 

BD11DM 83.1   C 

BD8DM 85.2 109.6 C 

28 71.7 114.6 C 

BD13DM 54.5 107.7 C 

DM003     C 
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374681 80.5 100.8 C 

BD15DM 54.4 127.1 C 

Wun002 56.6 96 C 

BD4DM 55.2 101.4 C 

801W 79.7 123.8 C 

374682 122.5 111.9 C 

Wun003 62.9 137.3 C 

Wun007 94.7 112.5 C 

Wun006 76.9 91.2 C 

374683 75.8   C 

MJS6 80.1 112.1 C 

MBA 983 45.1 95.1 C 

374684 74 100.8 C 

374685 46.1 108 C 

374686 63.9 108.5 C 

374687 61.2 135.7 C 

374688 60.6 92.4 C 

374689 51.1   C 

MJS1 46.5 111.1 C 

374690 61.7 101.4 C 

51 58.8   C 

374691 53.6 100.2 C 

BD3DM 59.3 92.6 C 

BD17DM 50.3 101.4 C 

374692     C 

Berlin005 71.4 119.5 C 

374693 63.4   C 

Wun004     C 

DM001     C 

JS133 70.8 116 C 

61 81.9 116.1 C 

DM X94.3 139.6   C 

374694 180 180 E 

374695 61.4   C 

DM X94.5 51.1 117.7 C 

DM X94.4     C 

374696 91.8 122.6 C 

DM2A 52.9 153.1 E 

DM004 155.1 123.5 E 
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DM005 148.2 155.9 E 

374697 68.8 141.9 C 

73 76.5 105.6 C 

374698     C 

374699     C 

374700 84.3 153.5 C 

BD16DM 44.2 123.8 C 

BD20DM 52.6 103.3 C 

BD14DM 64 111.5 C 

374701 64.4 96.8 C 

MJS2 180 146.1 E 

83 98.8 107.7 C 

Berlin006 162.3 141.1 E 

374702 180 180 E 

DM X94.6 56.2   C 

374703 180 180 E 

MBA 984 180 180 E 

B2 2 DM 127.3 159.6 E 

BD18DM 56.9 103.6 C 

DM 4 90.5 157.7 C 

374704 180 180 E 

D43? 66.9   C 

Berlin004 91 144.8 C 

BD19DM 65 110.7 C 

374705 150   E 
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TABLE A2—Fossil spiders, leg angles, and leg orientations. FF = Florissant Formation, GRF = 

Green River Formation, Sp = specimen, Or = orientation, F-P = Femur-patella joint angle, T-M = 

Tibia-metatarsus joint angle, E = extended, C = curled, U = unknown, unknown = no specimen 

number, blank = no data. 

 

FF Sp FF F-P FF T-M FF Or 
GRF Sp 
(UMC) 

GRF F-P 
GRF T-
M 

GRF Or 

35035 180 180 E 45166 180 180 E 

4111 171.3 146.5 E 45891 180 180 E 

35048a 180 180 E 46131 180 180 E 

29634b 170.2 180 E 46143b 180 180 E 

34338 159.1 142.7 E 46134 165.3 148.1 C 

29641 128.2 158.6 E 46142 155.9 180 E 

4941 180 180 E unknown 67.4 162.5 C 

29642 180 180 E 46140 169.8   E 

35040 180 174.5 E 46123 127.8 146.9 C 

29639 167.7 180 E 46126 174 178.1 U 

35034     C 45078 122.6 112 C 

34337 111.1 131.6 C 45166 169.3 172.3 E 

29636 172.8 180 E 45891 175 180 E 

36540 171.4 169.8 E 45193 172.2   E 

35033 164 160.7 E 46170 163.6 95.3 C 

37471 180 180 E 46172 160.4 167.2 E 

35036 141.7 160.7 E 46161 111.9 58.7 C 

29633 180 180 E 43654 111.6 117.3 C 

35050 180 180 E 46496 180 180   

35049 180 180 E 46497 161.5 159 E 

29638 180 180 E 46494 74.8 107.4 C 

35051 176.1 180 E 48344   139.8 C 

29635 180 180 E 46425 167.8 180 E 

35042 180 180 E 46423 157.2 134.5 C 

35037 166.5 180 E 46426     E 

34342b 165.5 180 E 46427 147.2   E 

35044 180 180 E unknown   180 E 

25052 180 180 E 51642 77.8 116.2 C 
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35041a 180 180 E 51569 48.2 142.3 C 

35043 150.5   E 46483 132.9 164 C 

35045 180 180 E 51499   90.2 C 

29631 180 180 E 46499 106.5 147.7 C 

35038 180 180 E 46501 166.9 118.2 E 

36092 180 180 E 46502 142.5 170.1 C 

35047 180 180 E 37624 168.7 132.4 E 

34339 180 180 E 46414 178.6 180 E 

35035a** 180 180 E 37736 153.5 180 E 

35046 78.2 125.1 C 42908 150.1 143.5 C 

4110 180 180 E 46155 131.6 70.4 C 

35054 180 180 E 37141   112.8 C 

35056a 133.9   E 37142 164.5 106.1 E 

17705 180 180 E 39615 180 180 E 

        39957     E 

        39583 180 180 E 

        40643 162.3 162.2 E 

        40150     C 

        40615   125.2 E 

        40614 146.2 151.2 U 

        40613     U 

        39963 171.1 147.7 C 

        unknown 180 180 E 

        46159 180   E 

        43018 159.9 165.9 C 

        46143 67.2 142.2 C 

        43202   135.4 C 

        46489   180 E 

        46490 180 180 E 

        53498 157.3 107.1 C 

        46446 112 121.6 C 

        46165 180 166.4 E 

        40073 180 180 E 

        42730 144.7 180 C 

        42729 165.4 180 E 

        42737 180 180 E 

        42670 95.3 116.7 C 

        46487   176 E 
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        47192 65.6 165.6 E 

        47193 133.9 144.8 E 

        46440 145.4 119.8 C 

        unknown 180 180 E 

        unknown     C 

        unknown     C 

        46435 124.4 99.9 C 

        46436 147.6 122.9 C 

        46451 180 180 E 

        46452 129.3 97.2 C 

        46416 180 180 E 

        46418 151.6 159.2 C 

        46417     C 

        46453     C 

        46419 147.1 168.3 E 

        46420     C 

        46428 180 180 E 

        46430 157.8 174.7 E 

        unknown     E 

        46431 180 180 E 

        46432 180 180 E 

        46460 126.5 141.8 C 

        46463   84.7 C 

        46465 180 180 E 

        46457   104.6 C 

        46458     C 

        46459 177.6   E 

        46471   150 C 

        46472 167.4 180 E 

        46467     U 

        46468 147.9 180 E 

        46475   112.9 C 

        GRF0074a 180 180 E 

        GRF0074b 133.5 180 E 

        GRF0074c 180 180 E 

        GRF0078a 180 180 E 

        GRF0078b   137.5 C 

        GRF0079a 180 180 E 
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        GRF0079b     E 

        GRF0103 155.2 137.7 E 

        GRF0104 146.9 90.7 C 

        GRF0105 153.2 169.1 E 

        GRF0106 163.5 154.4 E 

        GRF0109 168.7 162.6 E 

        GRF0110 163.8 174.1 E 

        GRF0125 180   E 

        YWS29 152.4   E 

        YWS49 139.7 147.7 C 

        YWS18     C 

        YWS11 117.7 112.8 C 

        YWS10 83.7   C 

        YWS14 155.3 99.2 C 

        YWS5 163.2   E 

        YWS7 123.1 109.3 C 

        YWS54 180 180 E 

        YWS8 180 180 E 

        YWS9 160.1   E 

        YWS17 180 180 E 

        YWS2 161.2 164.9 E 

        YWS16 151.6 92.3 C 

        YWS37 113.7 109.7 C 

        YWS45 133.4 102.7 C 

        YWS34 134.8 91.3 C 

        YWS55 116.8   E 
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TABLE A3— Modern spider drowning experiments. FW = fresh water. S = saline, HS = 

hypersaline, see Table 2 for further abbreviations.  

 

FW 
Sp 

FW F-P FW T-M FW 
Or 

S Sp S F-P S T-M S 
Or 

HS 
Sp 

HS F-P HS T-M HS 
Or 

1 76.8 106.1 C 1 121.4 149.3 C 1 73.7 81.3 C 

2 163 180 E 2 152.7 180 E 2 69.2 125.7 C 

3 166.5 180 E 3 75.6 96.1 C 3 72.1 116.4 C 

4 113.3 139.9 E 4 67.7 149.1 C 4 82.1  C 

5 161.7 164.2 E 5 163.4 173.8 E 5 151.9 123.7 E 

6 159  E 6 136.1 180 E 6 75.4 99.7 C 

7 109.6 94.5 E 7 115.1 109.7 C 7 88.6 151.7 C 

8 163.7 124.3 E 8 157.5 169.6 C 8 134.2 92 C 

9 159.3 180 E 9 118.5 125.9 C 9 81.9 130.1 C 

10 158.6  E 10 57.8 159.4 E 10 134.2 59.2 C 

11 174 167 E 11 142.8 154.6 E 11 81.8 115.3 C 

12 117.6 162.3 E 12 145.2 128.3 E 12 119.9 135.6 C 

13 161.7 175.7 E 13 122.1 134.3 E 13 92.8 116.3 C 

14 85.7 125.4 C 14 151.6 180 E 14 119.5 143.4 C 

15 135.7 180 E 15 87.9 126.5 C 15 50.3 150.2 C 

16 163.8 180 E 16 74.6 149.2 C 16 92.6 106.9 C 

17 134.2 165.3 E 17 101 148 E 17 89.6 91.3 C 

18 153.2  E 18 84.7 130.1 C 18 95.7 128.1 C 

19 165.6 180 E 19 123.7 139.4 E 19 91.4 126.9 C 

20 180 158.3 E 20 49.4 154.4 C 20 97.2 98.2 C 

21 159.6 178.2 E 21 109.2  C 21 85.6 120.5 C 

    22 115 160.9 E 22 98.8 99.3 C 

    23 89.6 134.4 C 23 94.4 121.2 C 

    24 164.3 173.4 E 24 71.6 135.6 C 

    25 104.5 142.1 C 25 79.6 95.3 C 

    26 115.1 157.3 C 26 103 101.1 C 

    27 107.1 142.4 C 27 105.3 96 C 

    28 87.3 130.7 C     

    29 161.7 174.9 E     

    30 85.2 166.8 C     

    31 122.1 135.5 E     

    32 106.3 124 C     

    33 130.3 151.7 E     

    34 107 132.3 C     
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Chi-Square Goodness-of-Fit Tests  

Chi-Square Goodness-of-Fit Tests for Florissant Formation (FF), Green River Formation (GRF), 

Crato Formation (CF), Freshwater solution (Fresh_1), Saline solution (Saline_1), Hypersaline 

solution (Hypersaline_1). 

 

Chi-Square Goodness-of-Fit Test for Categorical Variable: FF  

 

                          Test            Contribution 

Category  Observed  Proportion  Expected     to Chi-Sq 

curled           1         0.5        21       19.0476 

extended        41         0.5        21       19.0476 

 

 

 N  N*  DF   Chi-Sq  P-Value 

42   0   1  38.0952    0.000 

 

 Chi-Square Goodness-of-Fit Test for Categorical Variable: GRF  

 

                          Test            Contribution 

Category  Observed  Proportion  Expected     to Chi-Sq 

curled          53         0.5      62.5         1.444 

extended        72         0.5      62.5         1.444 

 

 

  N  N*  DF  Chi-Sq  P-Value 

125   0   1   2.888    0.089 
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Chi-Square Goodness-of-Fit Test for Categorical Variable: CF  

 

                          Test            Contribution 

Category  Observed  Proportion  Expected     to Chi-Sq 

curled          80         0.5      47.5       22.2368 

extended        15         0.5      47.5       22.2368 

 

 N  N*  DF   Chi-Sq  P-Value 

95   0   1  44.4737    0.000 

 

Chi-Square Goodness-of-Fit Test for Categorical Variable: Fresh_1  

 

                          Test            Contribution 

Category  Observed  Proportion  Expected     to Chi-Sq 

curled           2         0.5        11       7.36364 

extended        20         0.5        11       7.36364 

 

 

 N  N*  DF   Chi-Sq  P-Value 

22   0   1  14.7273    0.000 

 

Chi-Square Goodness-of-Fit Test for Categorical Variable: Saline_1  

 

                          Test            Contribution 

Category  Observed  Proportion  Expected     to Chi-Sq 

curled          19         0.5        17      0.235294 

extended        15         0.5        17      0.235294 
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 N  N*  DF    Chi-Sq  P-Value 

34   0   1  0.470588    0.493 

  

Chi-Square Goodness-of-Fit Test for Categorical Variable: Hypersaline_1  

 

                          Test            Contribution 

Category  Observed  Proportion  Expected     to Chi-Sq 

curled          26         0.5      13.5       11.5741 

extended         1         0.5      13.5       11.5741 

 

 

 N  N*  DF   Chi-Sq  P-Value 

27   0   1  23.1481    0.000 
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ANOVA Statistical Tests 

One-way ANOVA for fossil groups using arcsine transformed data in minitab: Florissant 

Formation (Florissant Transformed), Green River Formation (grf trans), and Crato Formation (cf 

trans). One-way ANOVA for drowning experiment groups: freshwater solution (fresh trans), 

saline solution (saline trans), and hypersaline solution (hyper trans).  

One-way ANOVA: Florissant Transformed, grf trans, cf trans  

 

Source   DF       SS       MS       F      P 

Factor    2  211.345  105.673  130.76  0.000 

Error   228  184.260    0.808 

Total   230  395.605 

 

S = 0.8990   R-Sq = 53.42%   R-Sq(adj) = 53.01% 

 

 

Level                     N    Mean   StDev 

Florissant Transformed   44  7.4654  0.5211 

grf trans               102  7.0177  0.8055 

cf trans                 85  5.1983  1.1289 

 

                        Individual 95% CIs For Mean Based on 

                        Pooled StDev 

Level                   --------+---------+---------+---------+- 

Florissant Transformed                                 (---*--) 

grf trans                                         (-*--) 

cf trans                (-*--) 

                        --------+---------+---------+---------+- 

                              5.60      6.30      7.00      7.70 

 

Pooled StDev = 0.8990 
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One-way ANOVA: fresh trans, saline trans, hyper trans  

 

Source  DF      SS      MS      F      P 

Factor   2  21.269  10.635  17.52  0.000 

Error   77  46.734   0.607 

Total   79  68.003 

 

S = 0.7791   R-Sq = 31.28%   R-Sq(adj) = 29.49% 

 

 

                                  Individual 95% CIs For Mean Based on 

                                  Pooled StDev 

Level          N    Mean   StDev  ---+---------+---------+---------+------ 

fresh trans   20  6.8779  0.7588                        (-----*----) 

saline trans  33  6.0536  0.8772           (----*---) 

hyper trans   27  5.5185  0.6555  (----*----) 

                                  ---+---------+---------+---------+------ 

                                   5.40      6.00      6.60      7.20 

 

Pooled StDev = 0.7791 


