Using GIS to Examine the Spatial-Temporal Dynamics of Soil Moisture-Precipitation Interactions

Aubrey R. Jones
Department of Geography
University of Kansas
Research Questions

Geographic Information Systems provide a framework in which to quantify the spatial-temporal interactions between the surface and the atmosphere.

- How does altering the amount of spatial heterogeneity and mean soil moisture modify the precipitation patterns in a region through feedbacks between the land surface and atmosphere?

- How does the magnitude of feedback between soil moisture and precipitation vary in both space and time?
Moist Soil

- darker soil
- lower albedo

increased

- surface net radiation

- atmospheric water vapor increased

- moist static energy increased

- convective potential increased

precipitation occurs
• University of Oklahoma’s Advanced Regional Prediction System (ARPS) mesoscale model

• A suite of 15 model runs with varying initial soil moisture and resolution focused on the Konza Prairie

• Using the model output, we examine the spatial and temporal dynamics of the coupling between soil moisture and precipitation
Scaling Analysis
Spatial-Temporal Interactions

Vertical Cross Section of Humidity

Lagged Correlation between Soil Moisture and Precipitation

Correlation
Summary

- We can use a GIS framework to investigate the relationships between soil moisture and precipitation.
- Altering the amount of spatial heterogeneity and mean soil moisture, such as through irrigation, can potentially alter the precipitation patterns in a region.
- Understanding these relationships has important implications for predictability of crop yields and water availability for agricultural and urban uses.