A Class of Stationary Electromagnetic Vacuum Fields

Werner Israel and Gordon A. Wilson

Citation: Journal of Mathematical Physics 13, 865 (1972); doi: 10.1063/1.1666066
View online: http://dx.doi.org/10.1063/1.1666066
View Table of Contents: http://scitation.aip.org/content/aip/journal/jmp/13/6?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Finite element method for stationary and static electromagnetic fields
J. Appl. Phys. 81, 4079 (1997); 10.1063/1.365085

Axisymmetric stationary Brans–Dicke vacuum fields

Stationary "Noncanonical" Solutions of the Einstein Vacuum Field Equations

Stationary Electromagnetic Fields in General Relativity
J. Math. Phys. 9, 1715 (1968); 10.1063/1.1664503

Two Classes of New Conservation Laws for the Electromagnetic Field and for Other Massless Fields
LOCAL EXISTENCE OF SOLUTIONS

865

given in terms of the field at the origin point \(P \). Thus, we can calculate \(\Gamma_{ik}^I(R) \) and by similar arguments \(g_{ij}(R) \) provided a consistent set of \(\Gamma_{ik}^I \) exists at \(P \). A consistent set of \(\Gamma_{ik}^I \) at \(P \) must satisfy the requirement that the mixed derivatives \(6 \) of all functions of \(\Gamma_{ik}^I \) and \(g_{ij} \) be symmetric. These relations are just given by Eqs. (8) and (9). Thus, we conclude that local existence depends on being able to obtain solutions to (8) and (9) which, in fact, we have already found. A solution to (8) and (9) is given by (10), (11), and (12).

3. CONCLUSION

Thus, nontrivial solutions to (1) and (2) with \(R^1 \not= 0 \) exist locally. Further investigations of the \(\Gamma_{ik}^I \) and \(R^1 \not= 0 \) field theory appear elsewhere. \(7 \)

A Class of Stationary Electromagnetic Vacuum Fields

Werner Israel
Mathematics Department, University of Alberta, Edmonton, Canada

and

Gordon A. Wilson
Physics Department, University of Alberta, Edmonton, Canada

(Received 2 June 1971; Revised Manuscript Received 10 January 1972)

It is shown how a new class of stationary electromagnetic vacuum fields can be generated from solutions of Laplace's equation. These fields are a stationary generalization of the static electromagnetic vacuum fields of Weyl, Majumdar, and Papapetrou, and are plausibly interpreted as external fields of static or steadily moving distributions of charged dust having numerically equal charge and mass densities.

1. INTRODUCTION

Coulomb's law and Newton's law of gravity are formally identical apart from a sign. Hence, classically, any unstressed distribution of matter can, if suitably charged, be maintained in neutral equilibrium under a balance between the gravitational attraction and electrical repulsion of its parts.

Indications that this obvious Newtonian fact has a relativistic analog first emerged when Weyl \(^1\) obtained a particular class of static electromagnetic vacuum fields, later generalized by Majumdar \(^2\) and Papapetrou \(^3\) to remove Weyl's original restriction to axial symmetry, and further studied by Bonnor \(^4\) and Synge \(^5\). The Papapetrou-Majumdar fields are to all appearances the external fields of static sources whose charge and mass are numerically equal (in relativistic units: \(G = c = 1 \)). That they are indeed interpretable as external fields of static distributions of charged dust having equal charge and mass densities has been shown by Das \(^6\) who has examined the corresponding interior fields.

Astrophysical bodies are electrically neutral to a good approximation, and the Papapetrou-Majumdar solutions have up to now received little attention. It seems to us, however, that they can play a useful, if limited, astrophysical role in providing simple quasi-static analogues for complex dynamical processes like the disappearance of asymmetries in gravitational collapse or the collision of black holes. In reality, such a process always involves large kinetic energies and at present can only be handled by elaborate numerical integrations under the assumption of small departures from spherical symmetry. \(^7,8\) However, for charged bodies in neutral equilibrium the process can be made arbitrarily slow, and the details easily followed as a sequence of stationary configurations. While this procedure prevents us from considering features of undeniable observational importance, such as the emission of gravitational waves, it is for that very reason ideally suited for isolating and elucidating certain basic issues of principle relating to the final phases of the process.

Some of these questions are pursued in detail elsewhere. \(^9\) Our purpose here is to demonstrate that the Papapetrou-Majumdar class can be extended straightforwardly from the static to the stationary realm.

2. STATIONARY FIELDS

The metric of an arbitrary stationary field is conveniently expressed in the form \(^{10}\)

\[
\begin{align*}
\begin{array}{c}
 ds^2 = g_{\mu \nu} dx^\mu dx^\nu = - f^{-1} \gamma_{mn} dx^m dx^n \\
\quad + f (\omega_m dx^m + dx^4)^2, \quad (1)
\end{array}
\end{align*}
\]

in which \(f, \gamma_{mn}, \) and \(\omega_m \) are independent of the time coordinate \(x^4 \). The inverse of \(g_{\mu \nu} \) is given by

\[
\begin{align*}
 \frac{\partial}{\partial x^\mu} \frac{\partial}{\partial x^\nu} - f \gamma_{mn} \frac{\partial}{\partial x^m} \frac{\partial}{\partial x^n} + 2f \omega_m \frac{\partial}{\partial x^m} \frac{\partial}{\partial x^4} \\
\quad + (f^{-1} - f \omega^2) \frac{\partial^2}{\partial (x^4)^2}, \quad (2)
\end{align*}
\]

where γ^{mn} is the 3×3 symmetric matrix inverse to γ_{mn}, $\omega_n = \gamma^{mn} \omega_m$ and $\omega^2 = \gamma^{mn} \omega_m \omega_n$. The determinants of $\omega_{\mu
u}$ and ω_{mn} are related by
\[
(-g)^{1/2} = f^{-1} \gamma^{1/2}.
\]
The 3-vector ω_m in (1) is arbitrary up to an additive gradient $\partial_m \lambda(x^1, x^2, x^3)$, corresponding to the possibility of making arbitrary time translations $x^4 \to x^4' = x^4 - \lambda(x^1, x^2, x^3)$. However, we can derive from it an invariant "torsion vector"
\[
f^{-2} \tau^m = - \gamma^{-1/2} \epsilon^m_{\rho\sigma} \partial_\rho \omega_\sigma \quad \text{or} \quad f^{-2} \tau = - \text{curl} \, \omega\text{ (4)}
\]
in terms of a three-dimensional vector calculus employing $\gamma_{mn} dx^m dx^n$ as base metric.

We next consider a stationary electromagnetic field $F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu$ in the space-time (1). The condition of time independence $\partial_4 A_\mu = 0$ yields for the "electric" components
\[
F_{4\mu} = \partial_\mu A_4,
\]
while the source-free Maxwell equations
\[
\partial_\mu (f^{-1/2} \epsilon_{\mu\rho\sigma} \partial_\rho \Phi) = 0
\]
for $\mu = m$ give the "magnetic" components
\[
(4) F_{\mu\nu} = f^{-1/2} \epsilon_{\mu\rho\sigma} \partial_\rho \Phi
\]
in terms of a magnetic scalar potential Φ. All remaining components are then conveniently expressed in terms of these six; for example,
\[
(4) F_{4\mu} = \omega_m \text{ (4)} F_{\mu\nu} + F_{4\mu} \gamma^{mn},
\]
an identity which follows readily from (1) or (2). Equation (6) with $\mu = 4$ now yields, on substituting (8), (7), and (4),
\[
\text{div} \left(f^{-1} \nabla A_4 \right) = - f^{-2} \tau \nabla \Phi.
\]
Next, writing $F_{\mu\nu}(= \partial_\mu A_\nu - \partial_\nu A_\mu)$ in terms of (5) and (7) and expressing the cyclic identity $\epsilon_{\mu\rho\sigma} \partial_\rho F_{\mu\nu} = 0$, we obtain
\[
\text{div} \left(f^{-1} \nabla \Phi \right) = f^{-2} \tau \ast \nabla A_4.
\]
If we now introduce the complex scalar potential
\[
\Phi = A_4 + i \psi,
\]
then (9) and (10) combine to give
\[
\text{div} \left(f^{-1} \nabla \psi \right) = i f^{-2} \tau \ast \nabla \psi.
\]
We have thus reduced the entire set of Maxwell's equations to the single complex equation (12).

3. GRAVITATIONAL FIELD EQUATIONS

The Ricci tensor
\[
R_{\mu\nu} = \partial_\mu \Gamma^\alpha_{\nu\alpha} - \partial_\alpha \Gamma^\alpha_{\mu\nu} + \Gamma^\gamma_{\nu\sigma} \Gamma^\alpha_{\sigma\mu} - \Gamma^\gamma_{\nu\alpha} \Gamma^\alpha_{\sigma\mu}
\]
for the general stationary metric (1) is conveniently expressed in terms of a complex 3-vector G, defined by
\[
\frac{2}{G} = \nabla \Psi + i \tau.
\]
Then
\[
-f^{-2} R_{44} = \text{div} \, G + (G^* - G) \cdot G,
\]
and
\[
-2 i f^{-2} \left(\frac{1}{4} R_{mn} \gamma_{pq} \gamma_{44} + \gamma_{mn} R_{44} \right) = G^* \gamma_4 + G \gamma_4^* + G^* \gamma_4 + G \gamma_4^*.
\]
Here, $R_{mn}(\gamma)$ denotes the Ricci tensor formed from the 3-metric $\gamma_{mn} dx^m dx^n$.

For the electromagnetic energy tensor
\[
-4 \pi T_{\mu\nu} = f^{-1} \ast F_{\mu\nu} F_{\nu\sigma} - \frac{1}{4} \delta_{\mu\nu} F_{\lambda\sigma} F^{\lambda\sigma},
\]
one derives from the formulas of the previous section
\[
\frac{1}{2} f^{-1} F_{\mu\nu} F^{\mu\nu} = (\nabla \Phi)^2 - (\nabla A_4)^2,
\]
and
\[
4 \pi f^{-1} T_{44} = (\nabla \Phi)^2 + (\nabla A_4)^2,
\]
with $\gamma_{mn} = \gamma^mn \delta_{\mu\nu}$.

We can now impose the Einstein field equations
\[
R_{\mu\nu} = - 8 \pi T_{\mu\nu}.
\]
From (16a), (16b), we find
\[
\text{curl} \, \tau = -4 \nabla \Phi \times \nabla A_4
\]
\[
= i \text{curl} \left(\Psi \nabla \psi^* - \psi \ast \nabla \Psi \right),
\]
so that the equation
\[
\tau + i (\Psi \ast \nabla \psi - \Psi \ast \nabla \psi^*) = \nabla \psi
\]
defines a real scalar ψ up to an additive constant.

We next define a complex function
\[
\psi = \frac{1}{2} \left(\psi + \psi^* \right) + i \psi^*.
\]
By virtue of (13) and (17),
\[
f G = \frac{1}{2} \nabla \delta + \Psi \ast \nabla \Psi.
\]
Substituting (19) into the field equations (14a), (14b) and employing (12) leads to
\[
f \nabla \Psi = \nabla \psi \ast \left(\nabla \delta + 2 \Psi \ast \nabla \psi \right),
\]
while (12) itself can be written
\[
f \nabla \psi = \nabla \psi \ast \left(\nabla \delta + 2 \Psi \ast \nabla \psi \right),
\]
and we note from (18) that
\[
f = \frac{1}{2} \left(\delta + \delta^* \right) + \Psi \ast \Psi.
\]
Finally the field equations (16a), (16b) reduce to
\[
-f^2 R_{mn}(\gamma) = \frac{1}{2} \delta (\gamma_{mn} \delta^* + \psi \ast \delta \ast \psi + \psi \ast \delta \ast \psi^*) - \left(\delta + \delta^* \right) \psi \ast (\gamma_{mn} \psi^*),
\]
in which, for example,
4. GENERALIZED PAPAPETROU–MAJUMDAR SOLUTIONS

So far, our considerations have been quite general. We now examine whether solutions of the system (20), (21), and (23) exist for which the background metric $\gamma_{mn} dx^m dx^n$ is flat. In this case equations (23) [with $R_{mn}(\gamma) = 0$] are satisfied if and only if there is a linear relation

$$\Psi = a + b \delta, \quad \text{with } a^* b + ab^* = -\frac{1}{\delta},$$

(as one easily verifies, for example, by choosing $\delta = x^1$ and $\delta^* = x^2$ as coordinates). Both δ and Ψ contain arbitrary additive constants, and it is convenient to adjust these so that $\delta \to 1$ when $\Psi \to 0$. We thus obtain

$$\Psi = \frac{1}{2} e^{i\alpha} (1 - \delta),$$

in which the arbitrary real constant α represents the "complexion" of the electromagnetic field. We can construct this field to any constant duality rotation without affecting the geometry.

If we now substitute (24) into (20) and (21), both reduce to

$$\nabla^2 [(1 + \delta)^{-1}] = 0$$

which is Laplace’s equation in Euclidean 3-space.

We conclude by summarizing the procedure for obtaining the complete field. (a) Write down a solution of (25) in terms of any convenient coordinates x^m. Suppose the Euclidean line element takes the form $\gamma_{mn} dx^m dx^n$ in these coordinates. (b) Obtain f, τ, and ω from the equations

$$f = \frac{1}{2} (1 + \delta^*) (1 + \delta^*),$$

$$i\tau^{-1} \tau = \nabla \ln [(1 + \delta)/(1 + \delta^*)],$$

$$\text{curl } \omega = -f^2 \tau.$$

The space–time metric is given by (1). (c) Obtain $\Psi = A_3 + iB$ from (24). The electromagnetic field can be found from (3) and (7).

5. EXAMPLE: CHARGED KERR-LIKE SOLUTIONS

The Kerr–Newman solution with $m^2 = e^2$ corresponds to the simplest complex solution of (25). We choose

$$2/(1 + \delta) = 1 + m/R, \quad \text{with } R^2 = x^2 + y^2 + (z - i a)^2,$$

where a and m are real constants and x, y, z Cartesian coordinates. In terms of oblate spheroidal coordinates τ, δ, ϕ defined by

$$x + iy = [(r - m)^2 + a^2]^{1/2} \sin \delta \cos \phi, \quad z = (r - m) \cos \delta,$$

the Euclidean 3-metric becomes

$$\gamma_{mn} dx^m dx^n = [(r - m)^2 + a^2 \cos^2 \delta]/[(r - m)^2 + a^2 + d\tau^2 + (r - m)^2 + a^2 \sin^2 \delta + a^2 d\phi^2].$$

Further, we find

$$R = r - m - i a \cos \delta,$$

$$f = [(r - m)^2 + a^2 \cos^2 \delta]/(r^2 + a^2 \cos^2 \delta),$$

$$\Psi = e^{i\alpha} m/(r - i a \cos \delta),$$

and after a somewhat lengthy calculation,

$$\omega_{mn} dx^m = [(m \tau - m^2) a \sin^2 \delta]/[(r - m)^2 + a^2 \cos^2 \delta] d\phi.$$

Putting everything together, we recover the charged Kerr metric with $m^2 = e^2$ in its usual form. As a natural generalization of (27), one may consider

$$\frac{2}{1 + \delta} = 1 + \sum_{k=1}^{\infty} \frac{m_k}{R_k},$$

where $R_k^2 = (r - c_k)^2$, r is the Euclidean position vector, and c_k an arbitrary set of constant, complex vectors. The resulting metric will represent the field of an arbitrarily spinning, charged Kerr-like particle in neutral equilibrium. For the static analog of this solution, representing a set of Reissner–Nordström fields with $e_k = m_k$; see Ref. 5.

Note added in proof: The stationary extension of the Papapetrou–Majumdar solutions has since been obtained independently by Z. Perjés, Phys. Rev. Letters 28, 1668 (1971).*

* Work partially supported by the National Research Council of Canada.
10. Greek indices run from 1 to 4, Latin indices from 1 to 3. Lowering and raising of Latin indices is always carried out with γ_{mn} and its inverse γ^{mn} unless specifically noted by a left superscript 4. Thus, if F_{mn} is a covariant tensor, we write $F^{4mn} = \gamma_{4mn} F_{mn}$ and $F^{44mn} = \gamma_{44mn} F_{4mn}$.
11. Cf., for the special case of axial symmetry, F. J. Ernst, Phys. Rev. 160, 1415 (1966), where the idea of a complex potential is first introduced. We have been informed that B. K. Harrison (1966, unpublished) has cast the stationary electromagnetic vacuum equations into a form similar to that given in Secs. 2 and 3. See also B. K. Harrison, J. Math. Phys. 9, 748 (1968). A recent publication by Ernst, J. Math. Phys. 13, 2395 (1972) treats the general stationary vacuum case.