TINA Interacts with the NIMA Kinase in Aspergillus nidulans and Negatively Regulates Astral Microtubules during Metaphase Arrest

Aysha H. Osmani, Jonathan Davies, C. Elizabeth Oakley, Berl R. Oakley, and Stephen A. Osmani*

Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210

INTRODUCTION

Mitosis is regulated by cell cycle-specific phosphorylation and regulated proteolysis of regulatory proteins mediated by activation and inactivation of cyclin-dependent kinases (CDKs) (O’Farrell, 2001) in all eukaryotes, including Aspergillus nidulans (Osmani and Ye, 1996). In A. nidulans, mitosis is also regulated by a second kinase, NIMA (Ye et al., 1995; Pu et al., 1998). NIMA has also been shown to have a mitotic promoting activity of NIMA crosses species barriers from yeast to humans (Lu and Hunter, 1995a), indicating conserved NIMA substrates are involved in mitotic regulation.

The tinA gene of Aspergillus nidulans encodes a protein that interacts with the NIMA mitotic protein kinase in a cell cycle-specific manner. Highly similar proteins are encoded in Neurospora crassa and Aspergillus fumigatus. TINA and NIMA preferentially interact in interphase and larger forms of TINA are generated during mitosis. Localization studies indicate that TINA is specifically localized to the spindle pole bodies only during mitosis in a microtubule-dependent manner. Deletion of tinA alone is not lethal but displays synthetic lethality in combination with the anaphase-promoting complex/cyclosome mutation bimE7. At the bimE7 metaphase arrest point, lack of TINA enhanced the nucleation of bundles of cytoplasmic microtubules from the spindle pole bodies. These microtubules interacted to form spindles joined in series via astral microtubules as revealed by live cell imaging. Because TINA is modified and localizes to the spindle pole bodies at mitosis, and lack of TINA causes enhanced production of cytoplasmic microtubules at metaphase arrest, we suggest TINA is involved in negative regulation of the astral microtubule organizing capacity of the spindle pole bodies during metaphase.

© 2003 by The American Society for Cell Biology

www.molbiolcell.org/cgi/doi/10.1091/mbc.E02–11–0715
to meiotic (Rhee and Wolgemuth, 1997) and mitotic chromosomes (Ha et al., 2002). Recent studies have identified the Neric1 kinase as a binding partner of Nek6, which is involved in chromosome alignment and segregation at mitosis and contains an RCC1-like domain (Roig et al., 2002).

Little is known about how NIMA kinases help to bring about the dramatic changes in microtubule dynamics and chromosome architecture seen during mitosis, although NIMA has been proposed to act as a histone H3 kinase at mitosis (De Souza et al., 2000). Isolation of proteins that interact with NIMA-like kinases may help to understand their role in cell cycle progression. We report herein on the TINA protein that interacts with NIMA and displays characteristics of a protein involved in mitotic microtubule function.

MATERIALS AND METHODS

Aspergillus Genetics, Immunofluorescence, and Protein Analysis

Standard media and genetic methods were used for culture of *A. nidulans* and to generate appropriate strains (Portoncorvo, 1953). 4-6-Diamidino-2-phenylindole (DAPI) staining, protein extraction, immunoprecipitation, immunofluorescence, and *A. nidulans* transformation and analysis were as described previously (Osmani et al., 1987; Oakley and Osmani, 1993; Ye et al., 1995). TINA was hemaggulutinin (HA)-tagged after cloning into the expression vector pAL5 (Doohan et al., 1993) by using a method based upon the Stratagene (La Jolla, CA) QuikChange mutagenesis kit (Wu et al., 1998). TINA was first amplified by polymerase chain reaction (PCR) from plasmid pAO13 by using primers AO95 (5′-ATAGTGATACATCATG-GAGCAGAAGGTTGAGT-3′) and AO96 (5′-GTCCGATCCATCTTCATG-GCCCATGAAAACTC) which introduced 5′/H11032 before the desired restriction site. The PCR product was directionally cloned into the HybriZAP vector to generate a library of 1.9 × 10^6 primary clones. Portions of the primary library and amplified library were excised to generate the pAD-GAL4 phagemid library. Analysis of 32 random clones indicated an average insert size of 0.9 kb with all clones having an insert. The library was screened using the nimaA constructs described below and standard procedures as outlined in the HybriZAP two-hybrid cDNA gigapack cloning kit (Stratagene).

Construction of nimaA Baits and Rapid Amplification of cDNA Ends Analysis

Full-length nimaA cDNA was cloned as a NcoI-HincII fragment into pAS2-1 (BD Biosciences Clontech, Palo Alto, CA) to generate plasmid pAO7. Two kinase negative forms of nimaA (K40M and T199A) were generated using the QuikChange mutagenesis kit (Stratagene) to generate plasmids pAO8 and pAO10, respectively. A 3′-truncated nimaA clone was generated as a NcoI-PstI fragment cloned into pAS2-1 to generate pAO6 and a 5′-3′-truncated version as an EcoR-PstI fragment in vector pBD-GAL4 to generate pAO1. Rapid amplification of cDNA ends analysis was completed as described previously (Bussink and Osmani, 1998).

GFP Tagging and Antibody Production

The *tina* open reading frame was amplified by PCR incorporating 5′ SpeI and 3′ NotI sites by using primers AO229 (5′-CGAATTC-TACGTCATCATGAGCAGCAGA-3′) and AO230 (5′-CTCGAGG-GCCGCGTTCATGCCCCAGTAACCTCC) as described previously (Wu et al., 1991) by using primers amplified from the *alcA* promoter a fusion of TINA to plant-adapted green fluorescent protein (GFP) (Fernandez-Abalos et al., 1998). To visualize microtubules, a plasmid containing GFP-tagged *tubA* under control of its own promoter (pLO76) was generated. Plasmid pLO76 was constructed as follows. A 500-base pair EcoRI-Xmal fragment carrying the *tubA* promoter was amplified by PCR from plasmid pDP485 (Doshi et al., 1991) by using primers TUBANC (gagaacttcatggagctcgt) and TUBANC (ccacccagctggctgagggtt), and digested with EcoRl and Xmal before ligation. An Xmal-Xmal fragment carrying a sequence encoding GFP 2-5 fused to tubA was amplified from pGFPtubA [online supplementary material to Han et al., 2001 (http://images.cellpress.com/supmat/cub/2001.htm#Volume_11_Issue_9)] by using primers GFTUB (ccacccgagatgagctgagggtt) and TUBANC2 (ccacccagctggctgagggtt), this fragment was digested with Xmal before ligation. The two fragments were ligated to plasmid pPL6 (see below), which had been digested with EcoRI and Xmal. Appropriate restriction digests revealed that pLO76 carries the two PCR products in the desired orientation, giving a GFP-GFP fusion under the control of the endogenous *tubA* promoter.

Plasmid pLO76 was transformed into *A. nidulans* strain SO6 and the resulting transformants were sequenced for GFP fluorescence of microtubules. The wild-type *tubA* gene was evicted using 5-fluoroorotic acid (Dunne and Oakley, 1988), leaving the GFP-*tubA* allele in strain LO1016. The GFP-*tubA* was then introduced into other strains by genetic crosses.

Plasmid pPL6 was constructed as follows. The pyR gene was obtained as a 1.4-kg fragment from an *Ndel/XhoI* double digest of pJR15 (Oakley et al., 1987). The *XhoI* site is 458 base pairs 5′ to the start codon and the *Ndel* site is 43 base pairs 3′ to the termination codon. This fragment was inserted into the blunted *Ndel* site of pUC19, leaving the polylinking site intact.

Time-lapse GFP-tubulin images were collected using an Eclipse TE300 inverted microscope (Nikon, Tokyo, Japan) fitted with an
Ultraview spinning-disk confocal system (PerkinElmer Life Sciences, Boston, MA) and a ORCA-ER digital camera (Hamamatsu, Bridgewater, NJ). For temperature-shift experiments, a delta T4 culture system was used in combination with an objective heater system (Bioptechs, Butler, PA). Peptide-specific antibodies were generated against the C-terminal 14 amino acids of TINA with a N-terminal cysteine added (CCTLSDELGELLGMK) for cross-linking to a KLH carrier. The peptide was synthesized, linked to KLH and used to immunize rabbits and antiserum affinity purified by Bethyl Laboratories (Montgomery, TX).

Aspergillus nidulans Strains
5C (pyrG89 + alcA:tinA pyrR†; faA1; benA22; pabaA1), D31 (diploid between SO223 and SO233), DBE4 (bin17:riboA2:pyrG89), GR5 (pyrR; pyrG89; wA3). LO1016 (GFP-tuba; nima5; wA2; yA2; chaA1; pyrG89; cex16; sc12; choA1) LO1029 (GFP-tuba; pabaA1; choA1; pyrG89; faA1) LPW75 (nima5; choA1; pyrG89; faA1). SO6 (nima5; wA2; yA2; chaA1; pyrG89; cex16; sc12; choA1) SO182 (aminT23; pyrG89; pabaA1; choA1). SO223 (pyrG89 + alcA:tinA pyrR†; nimaT23; pabaA1; faA1). SO233 (pyrG89 + alcA:tinA-HA pyrR†; nimaT23; pyrR; pyrG89; wA3). SO291 and SO292 (pyrG89 + phoA4; phoA4; pyrG89; wA3). SO326 (bin7; DeltaA:pyrG+ZEO; pyrA4; riboA2; waA3). SO327 (bin17; DeltaA:pyrG+ZEO; riboA2; waA3). SO429 (bin17; DeltaA:pyrG; pyrG89; GFP-tuba; waA3; pabaA1). SO430 (bin17; GFP-tuba; waA3; choA1).

Deletion of tinA by Using BAC Recombination
Two BAC clones (27M21 and 31G32) containing tinA were identified from an A. nidulans genomic BAC library made by Dr. Ralph Dean and obtained from Clemson University Genomics Institute (http://www.genome.clemson.edu/) by hybridization with tinA cDNA as a probe with standard techniques (Sambrook et al., 1989). These BACs were introduced into Escherichia coli strain DY380 (Lee et al., 2000) in which the recombination genes eso, bet, and gam are under the control of the temperature-sensitive λ cl-repressor (Yu et al., 2000; Swaminathan et al., 2001). A deletion cassette containing Asperrigillus fumigatus pyrG 2000; Swaminathan et al., 2001) was used to immunize rabbits and antiserum affinity purified by Bethyl Laboratories (Montgomery, TX).

RESULTS

tinA Encodes a Protein That Interacts with NIMA in the Yeast Two-Hybrid System
To isolate NIMA interactive proteins that may be involved in mitotic regulation, we generated a cDNA library from growing mycelium of A. nidulans and used it in a two-hybrid screen with kinase negative and kinase positive versions of NIMA. The genes defined by the clones isolated were termed tinA through to tinF for two-hybrid interactors of NIMA. Of the six tin genes isolated tinA interacted most strongly with all versions of nima, both kinase negative and positive, with β-Gal activities ranging from 77.5 U for full-length active NIMA to 19.1 U for 3′-truncated NIMA. No interaction was detected using control p53 bait or with tinA alone.

Molecular Analysis of tinA

tinA encodes a novel protein of 553 amino acids with a predicted molecular mass of 62 kDa. Sequence data have been submitted to GenBank under accession number AWY272054. TINA has no distinguishing features apart from three high scoring potential coiled-coil domains (our unpublished data). No significant protein matches were identified at the National Center for Biotechnology Information blast site (highest BLAST alignment score of 43, Expect value [E] of 0.01). However, the genome of N. crassa (Neurospora Sequencing Project; Whitehead Institute/MIT Center for Genome Research, Cambridge, MA; www-genome.wi.mit.edu) encodes a protein (contig 3255, scaffold 15) with a BLAST alignment score of 228 and an E value of 2e-59 over a region of TINA from amino acid 6–364 (Figure 1). The N. crassa
TINA-like protein (NCU04570.1) is predicted to be significantly larger (119 kDa) than TINA (62 kDa) because of a large C-terminal extension. On BLAST analysis, this extension shows no similarities in the databanks at National Center for Biotechnology Information nor in the available A. fumigatus sequence. However, there is a highly TINA-related protein encoded in the genome of A. fumigatus (BLAST score 1193 and E value 9.0e-160. Preliminary sequence data was obtained from The Institute for Genomic Research Web site at http://www.tigr.org/).

TINA Interacts with NIMA in a Cell Cycle-specific Manner

To investigate the potential physical interaction between NIMA and TINA, strains were developed containing an extracyclic HA-tagged TINA expressed from the *alcA* promoter (Waring et al., 1989) in a *nimT23*::*cdc25* background. Another haploid strain was developed containing *nimA* also expressed from the *alcA* promoter in the *nimT23*::*cdc25* background. Stable diploids were generated from these strains by using forcing nutritional markers. The diploid (D31) is homozygous for *nimT23*::*cdc25* and also contains a copy of HA-tagged TINA and a copy of *nimA* expressed from the *alcA* promoter. By temperature shifts, we could generate a synchronous G2 arrest and release into mitosis. A rich media alcA promoter. By temperature shifts, we could generate a nimA HA-tagged TINA and a copy of

sion level of NIMA was similarly low, causing no effects on

achieved. Under these conditions, less than double the en-

larger version(s) of TINA generated after activation of

2A). Although no clear banding could be detected, there is a

similar pattern of interaction revealed if NIMA was

expressed from the *alcA* promoter in the *nimT23*::*cdc25* back-

ground. Stable diploids were generated from these strains by using forcing nutritional markers. The diploid (D31) is homozygous for *nimT23*::*cdc25* and also contains a copy of HA-tagged TINA and a copy of *nimA* expressed from the *alcA* promoter. By temperature shifts, we could generate a synchronous G2 arrest and release into mitosis. A rich media was developed (see MATERIALS AND METHODS) such that low expression from the *alcA* promoter could be achieved. Under these conditions, less than double the endogenous amount of TINA was expressed and the expression level of NIMA was similarly low, causing no effects on mitotic progression (our unpublished data).

Immunoprecipitation experiments using proteins derived from cell cycle-staged cultures indicate that TINA and NIMA physically interact and show that this interaction is regulated. At the G2 arrest point of *nimT23*::*cdc25*, when TINA is immunoprecipitated NIMA can be readily detected in the precipitates (Figure 2A). However, within 5 min of entry into mitosis this interaction is dramatically reduced, suggesting a G2-specific interaction between TINA and NIMA. A similar pattern of interaction was revealed if NIMA was immunoprecipitated and TINA detected, but in this instance some residual interaction could also be detected in the samples progressing through mitosis. This experiment was repeated three times with almost identical results, although the amount of TINA detected in the NIMA precipitates in the samples released into mitosis was highest for this particular experiment (Figure 2A).

It is also clear from these experiments that the TINA protein becomes modulated during mitosis such that its mobility is reduced during SDS-PAGE separation. This can be seen when TINA is immunoprecipitated and blotted (Figure 2A). Although no clear banding could be detected, there is a larger version(s) of TINA generated after activation of *nimT23*::*cdc25* and entry into mitosis. However, in the NIMA immunoprecipitates, at least two bands of TINA with lower mobility can be resolved in the samples released from the G2 arrest into mitosis (Figure 2A). These TINA mobility changes are reminiscent of the mobility shifts reported previously for NIMA during mitosis, which is caused by mitotic-specific phosphorylation (Ye et al., 1995)

![Figure 2](image)

Figure 2. (A) NIMA and TINA interaction is cell cycle regulated. Protein was extracted from diploid strain D31 grown to mid-log phase (log) and then shifted to 42°C for 3 h to arrest cells in G2 (G2) before releasing into mitosis. Samples were taken at 5, 10, and 20 min (5', 10', 20') or after 20 min in the presence of nucodazole to cause a pseudomitotic arrest (20' + Noc). The protein immunoprecipitated (IP) and detected (BL) is indicated to the left. (B) Lack of TINA protein in tinA deleted strains. Protein extracts were prepared from a wild-type strain (GR5), two strains with deletion of tinA as determined by PCR and Southern blotting (SO291 and SO292) and three strains without the deletion (SO293, SO294, SO295). Western blotting was completed using the TINA-specific affinity-purified anti-peptide antibody DELCEL. Equal loading and transfer of protein in each lane was confirmed by Ponceau Red staining of the nitrocellulose filter. Mobility of marker proteins is indicated to the right.

TINA Locates to the Spindle Pole Bodies during Mitosis

We undertook to see whether TINA is located within the cell in a manner indicative of a role in cell cycle progression. Initially, we used a haploid strain containing the *nimT23*::*cdc25* mutation and a HA-tagged version of TINA expressed from the *alcA* promoter. The cells were grown in media allowing mild expression of *alcA*:HA-tagged TINA and were then blocked in G2 and released into mitosis by using temperature shifts. At the G2 arrest point of *nimT23*::*cdc25* no specific localization was observed for HA-TINA (Figure 3, A and B), but upon release into mitosis, two dots of HA-TINA staining became apparent that were always in the vicinity of nuclei (Figure 3, C and D). By observing the degree of condensation and separation of nuclear DNA, it was clear that HA-TINA localized to two foci associated with nuclei throughout mi-
tosis (Figure 3, C–H). However, no clear pattern of staining was apparent either before or after mitosis. An identical pattern was observed in randomly growing cells although in this case a low percentage of cells displayed some nuclear staining as well (our unpublished data).

As the foci of TINA strongly suggested localization at the SPBs during mitosis, cells were stained to reveal microtubules by using α-tubulin-specific antibodies along with TINA-specific antibodies. Mitotic spindles were seen to have TINA located at their ends (Figure 4) as expected of a protein located at the SPBs.

The dynamic localization of TINA to SPBs was quantitated during a synchronous mitosis generated by temperature shift of a nimT23cdc25 strain. At the G2 arrest point of nimT23cdc25 no TINA could be observed at the spindle poles. On release into mitosis a synchronous wave of TINA localization to the SPBs was observed peaking at 10 min after release into mitosis and reducing as cells exited mitosis (Figure 4, graph). A matching increase of the spindle mitotic index was also observed to peak at the 10-min time point.

To determine whether localization of TINA to the SPB was dependent upon the function of microtubules, a release into mitosis was completed in the presence of the microtubule poison nocodazole. Such cells entered a mitotic state as revealed by an increase in the chromosome mitotic index (>80% from 10 min on). However, the localization of TINA to the SPB was dramatically reduced under these conditions (Figure 4, graph), indicating that functional microtubules are required for location of TINA to the SPB.

To see whether the localization of TINA to the SPB required mitotic activation of NIMA, cells containing the nimA5 mutation (LPW75) were shifted to 42°C to arrest them in G2 without nimA function. Cells were fixed and stained for TINA by using affinity-purified peptide-specific antibodies. The cells were also stained with DAPI to reveal DNA and with the γ-tubulin–specific antibody GTU-88 to locate SPBs (Oakley et al., 1990). Each G2 nucleus correlated with a single paired SPB but only 3% of these had any TINA specific staining (our unpublished data). In contrast, upon

Figure 3. TINA locates to nuclear dots at mitosis. Cells containing the nimT23 mutation, which expressed HA-tagged TINA, were arrested in G2 (A and B) and released into mitosis (C–H) by temperature shift and cells processed to visualize TINA by using anti-HA antibodies (A, C, E, and G) and DAPI to reveal DNA. Samples at various stages of mitosis are shown demonstrating lack of TINA staining at the G2 SPBs but positive location during mitotic progression. Bar, ~5 μM.

Figure 4. Micrograph shows that TINA localizes to the ends of spindles at mitosis. A metaphase cell is shown with, from the top, a differential interference contrast image, DAPI staining revealing condensed DNA, tubulin staining of the mitotic spindle, TINA staining, and a merge. The graph at right shows the kinetics of localization of TINA to spindle poles during synchronous mitosis. A strain containing the nimT23 mutation that expressed HA-tagged TINA was arrested at G2 by shift to 42°C for 3 h (time 0) before down-shift to 30°C to allow entry into mitosis (as in Figure 3). The percentage of cells displaying SPB localization of TINA was determined using immunofluorescence. Another culture, as indicated, was treated with nocodazole before release into mitosis.
release to permissive temperature for nimA5, cells entered mitosis within 5 min and their nuclei had two closely located SPBs associated with condensed DNA. The SPBs of >88% of such mitotic nuclei were positive for TINA (our unpublished data). This indicates that TINA localization to the SPB is dependent upon activation of NIMA.

Because these experiments follow endogenous TINA, the data also demonstrate that the studies using HA-tagged TINA reflect the localization of TINA and are not an artifact of the HA tag or expression from the alcA promoter. The colocalization of endogenous TINA with γ-tubulin (Oakley et al., 1990) also confirms the SPB localization of this protein at mitosis (our unpublished data).

Because the localization of TINA is dynamic, we wished to view its changes through the cell cycle in living cells. To do this, tinA was tagged with plant-adapted GFP (Fernandez-Abalos et al., 1998) under control of the alcA promoter. Transformants were identified that expressed no more than the endogenous level of TINA, and live cell imaging studies were completed. Cells were examined during normal progression through the cell cycle and after block release experiments by using TINA-GFP expressed in nimA5 or nimT23 containing strains to generate synchronous entry into and through mitosis. The results confirmed our conclusions from study of fixed cells that TINA locates to the SPBs specifically at mitosis (our unpublished data). The data also indicate the dynamic localization revealed for TINA by using immunofluorescence is not caused by the potential masking/unmasking of antibody epitopes.

Deletion of tinA

A construct that replaced the entire tinA coding sequence with a deletion cassette containing pyrG was generated using homologous recombination into a tinA containing BAC with E. coli strain DY380 (Lee et al., 2001). Southern blot and PCR analysis of 20 transformants identified two strains with clean tinA deletions (our unpublished data). These two tinA-deleted strains, and three control transformants, were analyzed by Western blotting with TINA-specific antibodies. The results confirmed that tinA was deleted from these two strains demonstrating tinA to be a nonessential gene (Figure 2B).

The tinA deleted strains were tested for sensitivity/resistance to the DNA-damaging agent MMS, the DNA synthesis inhibitor hydroxyurea, the microtubule poison nocodazole, high osmolarity, and growth at 20°, 37°, and 42°C. Under all tested conditions, they grew and developed normally compared with control strains. Neither conidia (asexual spores) nor germlings from the tinA-deleted strains were sensitive to UV irradiation, and both deleted strains underwent self crosses and crosses to other strains to yield normal meiotic progeny.

A Role for tinA during Mitosis

To further investigate the potential role of TINA in cell cycle progression, ∆tinA double mutants were generated with a range of cell cycle mutations (sonA1, nimA1, nimA5, nimA7, bimE7, nimE6, nimT23, nimX1, nimX2, and nimX3) and tested for synthetic lethality. Only the bimE7/∆tinA double mutant displayed increased temperature sensitivity compared with the two single mutants (Figure 5). The bimE7 mutation is in the APC1 component of the APC/C (Peters et al., 1996; Zachariae et al., 1996) and causes a prolonged arrest in metaphase at restrictive temperature (Morris, 1976; Osmani et al., 1988a).

The synthetic lethality between ∆tinA and bimE7 indicated that metaphase arrest may be detrimental in the absence of TINA. However, lack of TINA did not significantly change the kinetics of the mitotic arrest caused by bimE7, with both bimE7 and bimE7/∆tinA strains reaching a peak spindle mitotic index of 80–96% at 2.5–3.0 h (normal spindle mitotic index is ~4%). The bimE7 mutation caused an arrest at metaphase (Osmani et al., 1988a) with short spindles and DNA located centrally on the spindle (Figure 6, A1–A4). The bimE7 arrest has microtubules emanating from the SPBs into the cytoplasm.

Initial observations of the double bimE7/∆tinA strain suggested that lack of tinA perhaps allowed progression past metaphase into anaphase because some spindle-like structures were seen with separated DNA apparently at their poles (Figure 6, B1–B3). This seemed an unlikely outcome and, because the cells in question were of a size typical of cells with four nuclei and the “spindles” in question looked unusual, we considered alternative explanations. Interestingly, ~70% of the spindles in the bimE7/∆tinA cells had marked astral microtubule bundles emanating from their SPBs into the cytoplasm. This can be seen in Figure 6, C1–C3, where the spindle in the right of the cell has a clear bundle of astral microtubules projecting toward the tip of the cell as indicated. We considered that these astral bundles could potentially interact in the cytoplasm, giving the appearance of a telophase spindle as noticed in Figure 6B. Indeed, we were able to observe many examples, in
Figure 6. (A1–A4) Typical metaphase-arrested spindle lacking astral microtubules after inactivation of bimE. A bimE7 strain (DBE4) was germinated at permissive temperature for a period to allow germination before shift to restrictive temperature of 42°C for 2 h. Cells were fixed and processed for immunofluorescence to visualize microtubules (A2) and stained with DAPI to reveal DNA (A3). A differential interference contrast image (A1) and a merge of the microtubule and DNA image (A4) are also shown. (B1–B3 and C1–C3 and D). Astral microtubules in a bimE7+/ΔtinA double mutant. A bimE7/ΔtinA strain (SO326) was germinated at permissive temperature for a period to allow germination before shift to restrictive temperature (42°C) for 2 h. Cells were fixed and processed to visualize microtubules (green) and stained with DAPI to reveal DNA (blue, but red in D to better distinguish individual nuclei in this cell). Arrows in B indicate a spindle-like structure stretching between DNA. Arrow in C indicates a bundle of astral microtubules. Arrows in D indicate astral microtubule bundles beginning to interact between nuclei. Bar, ~5 μm.

DISCUSSION

Proteins able to interact with A. nidulans NIMA in the yeast two-hybrid system have provided insights into how mitosis is regulated from fungi to humans (Lu et al., 1996; Crenshaw et al., 1998; Shen et al., 1998; Lu et al., 2002). With this in mind, we have isolated new NIMA-interactive proteins by...
Cells containing posed metaphase arrest with tinA

A.H. Osmani et al

this point in the cell cycle neither NIMA (De Souza et al, 2000) nor TINA have a defined localization. On mitotic initiation, the interaction between TINA and NIMA is diminished and they localize to different parts of the cell. TINA rapidly concentrates to the separating SPBs as the bipolar spindle is beginning to form. However, although NIMA localizes to the SPBs at mitosis, it first localizes to the nuclear DNA and to the SPBs after metaphase (De Souza et al, 2000). Early in mitosis, TINA and NIMA therefore localize to different parts of the mitotic machinery, with TINA concentrated at the spindle poles, whereas NIMA is associated with nuclear DNA. Later during mitosis, both TINA and NIMA are localized to the spindle poles, leaving open the potential that TINA may act as a landing site for NIMA at the spindle poles at anaphase.

Whether TINA and NIMA interact during mitosis remains somewhat of an open question. For instance, if we first immunoprecipitate TINA and probe for NIMA there is apparently little or no interaction between these two proteins during mitosis. On the other hand, if we first immunoprecipitate NIMA then probe for TINA there is still some interaction that, although somewhat variable between experiments, was detectable in all experiments completed. Control immunoprecipitates failed to reveal nonspecific precipitation of TINA. The two sets of immunoprecipitation experiments therefore yield contradictory data regarding the degree of NIMA-TINA binding during mitosis. One explanation could be that the immunoprecipitation of TINA does not bring down the mitotic complex due to antigen exclusion in this complex, or the binding of the TINA-precipitating antibody could perhaps change the conformation of TINA to reduce binding of NIMA in the mitotic complex. Whatever the reason for the lack of NIMA in TINA immunoprecipitates from mitotic extracts, these two proteins do locate transiently to the SPB during the latter part of mitosis.

Because of the cell cycle-specific modification of TINA, its regulated interaction with NIMA, and its mitotic specific localization to the SPBs during mitosis, we had anticipated that deletion of tinA would cause mitotic defects, perhaps leading to lethality. However, deletion of tinA failed to reveal a clear phenotype, although synthetic lethality was observed with bimE7 (see below). Lack of effect during normal growth may be due to redundancy with another gene having overlapping functions. However, only a single TINA-like protein could be detected in the genomes of A. fumigatus or N. crassa, suggesting that in filamentous fungi only one TINA-like protein is present.

Another explanation for lack of lethality after deletion of TINA would be if its function were not essential. Although NIMA is essential for mitotic progression in A. nidulaens (Ye et al., 1998) the NIMA-like Fin1p kinase of S. pombe is non-essential (Grallert and Hagan, 2002; Krien et al., 1998) but does play a role in mitotic regulation (Krien et al., 2002). Fin1p has therefore been proposed to play a fine-tuning role for mitotic progression and TINA could also be involved in such fine-tuning nonessential mitotic functions.

One such mitotic function is suggested from studies of bimE7/dtinA double mutant strains. Lack of TINA causes synthetic lethality when APC/C function is partially compromised. The most marked phenotype observed in this double mutant was a striking increase in bundles of microtubules emanating away from the spindle, which then inter-

Figure 7. Live cell microtubule architecture during a bimE7-imposed metaphase arrest with tinA (A) and without tinA function (B). Cells containing bimE7 + GFP-tubA (A) or bimE7/dtinA + GFP-tubA (B) were shifted to 42°C to impose metaphase arrest by inactivation of bimE7. Cells were viewed using a spinning disk confocal microscope and the micrographs are maximum intensity projections of a Z-series stack taken from video-C.mov (A) and video-D.mov (B) from the 15-min exposure (910 s) during recordings. Arrowheads in B indicate spindle joined by astral microtubules. The * indicates parallel spindles with their astral microtubules interacting which form a square like structure by the end of the video. Bar, ~5 μM.
acted to join spindles together in series. These phenomena were first implied from fixed cell samples and subsequently confirmed using live cell imaging of microtubule architecture.

At the time when TINA locates to the SPB during initiation of mitosis there is a major restructuring of the microtubule cytoarchitecture. Cytoplasmic microtubules are disassembled and the mitotic spindle forms within nuclei. The SPB therefore nucleates cytoplasmic microtubules during interphase but switches to nucleate microtubules in the nucleus to orchestrate spindle formation during mitosis. After completion of mitosis, and return to interphase, this is reversed, with the SPB again organizing cytoplasmic microtubules as the nuclear spindle microtubules disappear. Little is currently known about how the nucleating capacity of the SPB undergoes such dramatic changes during transition from interphase to mitosis and back to interphase. Because of the localization of TINA to the SPB during mitosis, and the effects of lack of TINA during metaphase arrest, we speculate that TINA is involved in regulation of the cytoplasmic microtubule organizing capacity of the SPB during mitosis. The potential role for TINA in helping regulate microtubule formation during mitosis is shown in Figure 8. Although this role may not be essential, it could become more important during an extended arrest at metaphase during which excessive microtubule nucleation can occur.

Because NIMA localizes to the spindle and SPB during mitosis, and is required for spindle formation, it likely plays a role in spindle formation. It is of note that induction of full-length NIMA is able to affect microtubule architecture, promoting formation of transient spindle-like structures (Osmani et al., 1988b). Additionally, forcing cells into mitosis without normal NIMA activity by mutation of the bimE APC/C component causes marked mitotic defects with SPBs unable to nucleate normal bipolar spindles in the absence of fully active NIMA (Osmani et al., 1991b). Data from other systems also support a role for NIMA-related kinases in spindle formation (Grallert and Hagan, 2002; Krien et al., 2002). The current work indicates a potential role for the NIMA interacting protein TINA in astral microtubule formation during mitosis. Further analysis of TINA may provide an understanding of how the microtubule nucleating capacity of the SPB is so dramatically modified during the G2-M-G1 transitions.

ACKNOWLEDGMENTS

We thank our colleagues in the laboratory for help and suggestions, particularly Dr. Colin De Souza. Thanks are also extended to Drs. Christophe d’Enfert and Don Court for plasmids and guidance with recombination constructs. This work was supported by grants from the National Institutes of Health (GM 42564 to S.A.O. and GM 31837 to B.R.O.).

REFERENCES

