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Simple time-variant, band-pass filtering

by operator scaling

Choonbyong Park* and Ross A. Black#

ABSTRACT

A convolutional method of time-variant, band-pass
filtering presented shows that a change of filter cutoff
frequencies with time is achieved by frequency scaling
the amplitude spectrum of a reference operator. Ac-
cording to the scaling property of the Fourier trans-
form, this frequency scaling is actually accomplished
by a simple time-domain scaling of the reference
operator in which the filter operator at a sample point
on a seismogram is obtained by compressing the
reference operator after multiplication by a constant
value. Therefore, the length of filter operator changes
as the cutoff frequencies and the pass band change
with time; the higher the cutoff frequencies and the
broader the passband, the shorter the operator length.
The algorithm does not involve any complex-valued

arithmetic that may significantly reduce the computa-
tional efficiency if a small computer is used. Because
the time-variant convolution formula is exact, the
change of cutoff frequencies is not limited to slowly
varying or monotonic variations used in other algo-
rithms.

The way of changing cutoff frequencies restricts the
passband of the filter to a constant value in terms of
octaves. However, this restriction can be relaxed
significantly in practical usage by a cascaded imple-
mentation if the Nyquist frequency is well above the
passband of the filter. Computational efficiency of the
method is quite comparable to that of the time-invari-
ant, band-pass filtering. Tests of the method on both
real and synthetic data sets confirm the effectiveness
of the filter.

INTRODUCTION

In reflection seismology, a noticeable change in the appar-
ent frequency of reflection events is quite often observed
within finite time gates of interest. The dominant cause of
this frequency variation is the absorption of seismic energy
in the form of heat energy (Dobrin and Savit, 1988, 46).
High-frequency energy is attenuated at a greater rate than
lower-frequency energy, resulting in a progressive lowering
of apparent frequency of reflection events with increasing
time. In high-resolution shailow reflection data, this charac-
ter is observed more frequently than in conventional reflec-
tion data. The reasons for this seem to be related to the rapid
change of elastic parameters with depth in the near surface
(Born, 1941). Time-variant deconvolution can be used to
compensate for the loss of high-frequency components of
reflection energy, but this process can also accentuate noise
if the level of reflection energy has been attenuated below
that of the noise. This situation of low signal-to-noise ratio

(S/N) is common in shallow reflection data. Therefore,
time-variant, band-pass filtering, which honors the time-
variant nature of signal and attempts to curtail (instead of
boost and balance) noise, can be useful in improving S/N.
Many authors have developed various kinds of time-
variant, band-pass filters for geophysical data processing.
These filters can be grouped into several distinct categories
according to the method of implementing the time variance
of the filter cutoff frequencies. One straightforward method
uses an overlapping sequence of gate-wise time-invariant
filters (Lenihan, 1972). An alternative method uses filter
cutoff frequencies that change continuously with time (the
true time-variant method) (Nikolic, 1975; Pann and Shin,
1976; Stein and Bartley, 1983; Scheuer and Oldenburg,
1988). According to the method of filter implementation,
such filters may be grouped into convolutional (Pann and
Shin, 1976; Scheuer and Oldenburg, 1988) and recursive
(Shanks, 1967; Stein, 1981; Stein and Bartley, 1983; Nikolic,
1975) methods. The convolutional method is based upon the
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well-known notion that filtering in the frequency domain is
equivalent to convolution in the time domain. In the recur-
sive method the filter coefficients are computed based upon
the recursive difference equation obtained from the system
transfer function (usually of the Butterworth type), and these
coefficients are used as weights for input and previous output
values to perform the prescribed filtering (Oppenheim and
Schafer, 1989, 36). Advantages and disadvantages of each
group are well summarized in Scheuer and Oldenburg (1988).
However, several filter features are worth mentioning here
in the context of the characteristics of our method. The
standard method of the gate-wise, time-invariant filter is
easiest to implement, however, the transition effects be-
tween the adjacent gates may become troublesome. A con-
tinuous time-variant method can better account for the
variation of the apparent frequency on a real seismogram,
but the algorithm is more involved and computationally
intensive than is the standard time-invariant method. The
recursive method, compared to the convolutional method, is
easy to implement and computationally efficient. However,
the filter response may differ from the one desired if a small
number of filter coefficients are used. Furthermore, the
phase response of the recursive filter is not zero-phase and
requires both forward- and reverse-time implementations to
achieve the desired zero-phase response. The convolutional
method, in contrast, allows the filter response to be con-
trolled precisely. Most convolutional methods currently
used involve complex-domain calculations to allow the cut-
off frequencies to change continuously with time, which may
make the algorithm more involved and computationally
intensive (Pann and Shin, 1976; Scheuer and Oldenburg,
1988). Efforts to reduce the computational costs in these
complex-valued convolutional methods involve the sacrifice
of some generality. For example, in the method in Pann and
Shin (1976) the bandwidth of the filter is restricted to a
constant value and the cutoff frequencies change slowly with
time. In the method in Scheuer and Oldenburg (1988) the
cutoff frequencies change slowly to increase the computa-
tional efficiency.

We present a continuous time-variant, band-pass filter
based upon the scaling property of the Fourier transform.
The change of the cutoff frequencies with time is accommo-
dated by frequency scaling the amplitude spectrum of a
reference operator, and in actual implementation this scaling
is accomplished in the time domain by compressing the
reference operator after multiplication by a constant value.
The scaling (the compressing) ratio at a particular sampling
point on a seismogram is determined by the ratio of the low
(or high)-cutoff frequency specified at a given sample point
to the low (or high)-cutoff frequency of the reference oper-
ator. The compression is accomplished using a simple linear
interpolation scheme and no other higher-order polynomial
scheme needs to be used. Because of the compression, the
operator length changes from one sample point to another
and is always less than or equal to that of the reference
operator. Therefore, the method is simple and computation-
ally efficient. Furthermore, the algorithm does not involve
any complex-valued arithmetic that may significantly reduce
the computational efficiency if a small computer is used, as is
usually the case in engineering seismology. Changing the
cutoff frequencies through the frequency scaling of the

reference operator restricts the passband of the filter opera-
tor to a constant value in octaves. However, this restriction
can be relaxed in practical usage by a cascaded implemen-
tation if the Nyquist frequency is far above the passband of
the filter. Since the time-variant convolution formula is
exact, the change in cutoff frequency is not limited to slowly
varying or to monotonic types developed by previous inves-
tigators. Although the method has been developed for high-
resolution shallow reflection data, it is equally applicable to
conventional exploration seismic data.

ALGORITHM

A key assumption in the development of the time-variant,
band-pass filtering algorithm described here is that the width
of the passband of the filter is assumed to remain a constant
value in octaves. Therefore, it is assumed that the low- and
high-cutoff frequency functions, f; (¢) and fy(¢), are not
independent but are related through the bandwidth a. A way
to relax this restriction in practical usage will be discussed in
the next section.

Let x(¢) represent the input seismic trace, y(¢) the output
filtered trace, and A,(7) the time-domain expression of filter
operator at time ¢. Next, /,(t) is assumed to be real and
zero-phase. Then the output is obtained by convolution of
the input x(¢) with the filter operator 4,(7):

o) = f " he()x(t - 7) d. 1)

—

Let |H,(f)| represent the amplitude spectrum of k(7).
Since h,(7) is real and symmetrical, H,(f) is also real and
symmetrical (Oppenheim and Willsky, 1983, 203). Consider
a reference amplitude spectrum |H,(f)| of idealized rectan-
gular shape with low- and high-cutoff frequencies of f,. and
fue» tespectively. Assume that the amplitude spectrum
|H,(f)| of the filter operator at time ¢, A,(7), is obtained by
scaling |H,(f)| along the frequency axis with a positive
scaling ratio a, i.e.,

H:(f)| = |H,(af)]  (a>0), )
then 4,(t) can be expressed as
1 T
he(7) =—hr(_)- 3)
a a

This is the scaling property of the Fourier transform
(Oppenheim and Willsky, 1983, 207). It says that the filter
operator at time ¢ is obtained by amplitude and time scaling
the reference operator 4,(7) with a scaling ratio 1/a. The
cutoff frequencies of the filter at time ¢ have now become
fec/a and fy./a, but the bandwidth in octaves remains un-
changed, i.e., log; (afjc/afe.) = 10gy (fic/fe:)- The scaling ratio
a is a function of time and is determined by the ratio of either
the low-cutoff frequency f; (¢) or the high-cutoff frequency
f(2) at time ¢ to the corresponding cutoff frequency (f,. or
fae) of the reference operator. That is, if f; (¢) is given, then

a(t) = feclfL (D), (4)
or, if 5 (¢) is given, then
a(t) = faclfu (o). (5)
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Substituting equation (4) into (3) and equation (3) into (1)
results in the following convolution formula for a time-
variant, band-pass filter in which the low-cutoff frequency
function f; (¢) and the bandwidth « in octaves of the filter are
given as

) = © fL(t) hr( fL(@)

T
—® ft’c ft’c

The design of the reference filter operator 4,(t) in equation
(6) is now the critical factor in implementing this basic
algorithm.

)x(t - 1) dT. (6)

DESIGN OF REFERENCE FILTER OPERATOR

The reference filter operator 4,(t) is usually obtained as
follows: an amplitude spectrum is designed in the frequency
domain with specific cutoff frequencies and rolloff charac-
teristics, then it is inverse-Fourier transformed to generate
the time-domain expression, and finally the expression is
truncated effectively. In the following discussion the band-
width of the filter operator is given in octaves unless other-
wise stated.

If only a bandwidth « is given for the reference operator,
there can be infinitely many choices for the cutoff frequen-
cies fo. and fi,. = fe.2%. If the processing were done in
analog form, there would be no advantage in choosing one
particular reference operator over another. In discrete signal
processing, however, the accuracy of the time scaled oper-
ator becomes an issue because the scaling involves interpo-
lation along the time axis as indicated by equation (6). The
time scaling may be either compression or stretching, de-
pending upon the ratio a(¢). Compression occurs if a(z) is
smaller than 1, and stretching results if a(¢) is greater than 1.
Compression is always more desirable than stretching be-
cause stretching requires a higher-order interpolation
scheme to achieve the same degree of accuracy (Burden and
Faires, 1985, 78). Thus, if the bandwidth a and the low-cutoff
frequency function f (¢) are given, the minimum of the
low-cutoff frequencies, MIN {f; (¢)}, and 2*MIN {f; (¢)}
may be used for the low- and high-cutoff frequencies of the
reference operator, respectively.

The convolutional method of filtering has the inherent
property that both performance and computation time are
sensitive to the operator length. The effective operator
length is usually determined by truncating the time-domain
representation of the desired (ideal) frequency-domain am-
plitude spectrum at a sample point where the discarded filter
energy becomes negligible. This length affects the computa-
tion time of filtering because each sample on a seismogram is
multiplied and summed as many times as the number of
coefficients included in the truncated operator. Truncation in
the time domain also affects the accuracy of the filtering
because it causes the amplitude spectrum of the actual
operator to deviate from the desired one. The truncation of
all the reference operators used in this paper was done at the
sample point where the cumulative energy is 90% of the total
energy. Once the effective operator length N, ¢ of the
reference operator has been determined, the length N ¢(¢)
of the operator at time # is determined by the scaling ratio
a(t) as

Neff(t) = a(t)Nr,eff’ (7)

and if the nature of the scaling is to be compression,

Negr(t) = Ny ey

This reduction of the operator length can be used to save
computation time during the convolutional calculation. This
topic will be discussed in a later section on ‘“‘computational
efficiency.”

For given cutoff frequencies and bandwidth, the effective
length of the reference operator N, ¢ depends on the rolloff
characteristics (the shape) of the amplitude spectrum. For
example, two typical types of amplitude spectra used com-
monly in filter design are rectangular and Hanning windows
(Ziemer et al., 1989, 464). The Hanning window amplitude
spectrum results in a shorter effective filter length and less
deviation of the actual spectral shape from the desired one
than does the rectangular window. Therefore, the Hanning
window is preferred in the design of the reference operator
unless a strict definition of cutoff frequencies is required
during the filtering.

(¢ 0). ®)

EXAMPLES OF CONSTANT-OCTAVE, BAND-PASS FILTERING

Figure 1a shows a set of sinusoidal signals in which the
frequency changes from 50 Hz to 300 Hz in 5 Hz increments.
Each trace is 512 ms long with a 0.5-ms sampling interval.
These data were used as input data for the time-variant,
band-pass filtering with constant-octave bandwidth. The
filtering had a one-octave passband of 50 Hz to 100 Hz at
0 ms, 150 Hz to 300 Hz at 256 ms, and back to 50 Hz to
100 Hz at 512 ms as indicated by the solid lines superim-
posed on the filtered section. Although the time-varying
trend of the cutoff frequency can be any type, a linearly
varying trend was used for simplicity. The reference opera-
tor was designed with low- and high-cutoff frequencies of
50 Hz and 100 Hz, respectively, using the Hanning window
amplitude spectrum with a 17-dB amplitude response at the
two cutoff frequencies. The two cutoff frequencies are the
minima of the low- and high-cutoff frequencies. The com-
pressed operator was obtained from the reference operator
by a simple linear interpolation.

Figure 1b shows the output of the filtering. The time-
domain expressions of the operator and the amplitude spec-
tra are also shown below the output section at every 25 ms.
These output data confirm the effectiveness of the filter.

Two high-resolution shallow reflection field files (with
first-arrival muting applied) are shown in Figure 2a. Several
reflections are identifiable at shallow depth. The apparent
frequency of the reflections changes rapidly from about
120 Hz for reflection R, to 40 Hz for reflection R,. Shallow
reflection seismology deals with the most attenuative part of
the earth, and it is not uncommon to observe this much
drastic change in the frequency content of reflection signals
over a short time period. Constant-octave, time-variant,
band-pass filtering was applied to this data set with low- and
high-cutoff frequencies varying linearly with time from
80 Hz-240 Hz to 20 Hz-60 Hz over the hyperbolic time gate
defined by the onset times of the two reflections R; and R,.
The cutoff frequencies above and below this time gate were
set to be time-invariant at 80 Hz-240 Hz and 20 Hz-60 Hz,
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respectively. The Hanning window amplitude spectrum with
a 20 Hz-60 Hz passband and with —17 dB amplitude
response at the cutoff frequencies was used to design the
reference operator. The filtered output sections reveal bet-
ter-defined reflections with improved S/N ratio.

CASCADED IMPLEMENTATION TO RELAX
THE RESTRICTION

The restriction of constant bandwidth described in the
previous section raises a limitation in the practical usage of
this filter concept. However, as long as the Nyquist fre-
quency is far above the effective signal frequencies, the

a)

Frequency (Hz)
100 150 200 250 300
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restriction may be relaxed by using a cascaded implementa-
tion of the constant-octave filtering algorithm.

If it were possible to design true low- and high-cut filters
based upon the method of operator scaling presented, the
restriction would be removed by a cascaded implementation
with two independent low- and high-cut filtering passes. The
design of a high-cut filter would not be a problem because the
low-cutoff frequency could be set to 0 Hz regardless of the
scaling ratio (Figure 3a). However, the method cannot be
used to design the low-cut filter because of folding about the
Nyquist frequency or drifting of the high-cutoff frequency to
a lower value than the Nyquist frequency. Scaling the
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Fic. 1. (a) A set of sinusoidal signals in which the frequency changes from 50 Hz at the bottom trace to 300 Hz at the top trace
in 5 Hz increments. A sampling interval of 0.5 ms was used giving a Nyquist frequency of 1000 Hz. (b) The output filtered
section obtained by using the method of time-variant, constant (one)-octave, band-pass filtering presented with the cutoff
frequencies varying with time as indicated by the solid lines. (c) The time-domain and (d) the frequency-domain expressions of
the filter operator displayed at every 25 ms interval. The reference operator was designed using a Hanning-window amplitude

spectrum with a passband of 50 Hz-100 Hz.
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Fic. 2. (a) Two high-resolution shallow reflection field files in which the apparent fre%uency of reflection changes a

from 120 Hz at reflection R1 to 40 Hz at reflection R2. (b) Time-variant band-pass

p
Itering of (a) using the methog

1531

roximategf

presente

Passband of the filtering varies from 80 Hz-240 Hz to 20 Hz—60 Hz within the hyperbolic time-gate defined by the approximate
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low-cut operator will cause ““‘folding back™ of the frequen-
cies higher than the Nyquist frequency if the scaling ratio is
smaller than unity, and it will cause drifting of the high-cutoff
frequency to a lower value than the Nyquist frequency,
resulting in a band-pass filter instead of low-cut filter, if the
ratio is greater than the unity (Figure 3b).

Arbitrary band-pass filters may be constructed by cascad-
ing constant-octave, band-pass filters. Low- and high-cut
filtering may be done in a cascaded form using this method if
the scaling ratio a(z) and the bandwidth a of the reference
operator are properly chosen based upon low- and high-
cutoff frequency functions f; (¢) and fy(¢) for two separate
filter runs (Figure 4). Assume f; (¢) and fy(¢) are given
independently, then for high-cut filtering, the scaling ratio
a(t) is determined as a ratio of the high-cutoff frequency fj,.
of the reference operator to the value given by fy(¢), i.e.,

a(t) = fuclfu(?). 9)

In this implementation, the low-cutoff frequency f. (¢) of the
operator at time ¢ must be smaller than or equal to the value

given by f; (¢), i.e.,
fec(t) < fL(2). (10)

For the high-cut run, a high-cut filter with the passband
starting at 0 Hz could be used, but the operator length is
longer than that of the band-pass because of the inclusion of
excessive low-frequency components in the design of the
reference operator. Accordingly, for the low-cut run, a(t) is
determined as a ratio of the low-cut frequency f,. of the
reference operator to the value given by f; (¢), i.c.,

a) PRt |
v
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b) a<i
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N [

FiG. 3. A schematic illustration showing the feasibility of
designing time-variant, high-cut and low-cut filters based on
the presented method of frequency scaling a reference
amplitude spectrum. (a) Designing the time-variant, high-cut
filter is possible because the low-cutoff frequency could be
set to 0 Hz regardless of the scaling ratio, but (1()?, designing
the time-variant, low-cut filter is not possible because of
either folding about the Nyquist frequency or drifting of the
high-cutoff frequency to a lower value than the Nyquist.

Nyquist Frequency ‘

a(t) = felfL(2). (11)

It must be assured that the high-cutoff frequency f},. (¢) of the
operator at time ¢ be greater than or equal to the value given

bny(l), i-e-’
Fhe(t) <fu(e). (12)

There is, however, another condition to be met in the
low-cut run: the high-cutoff frequency fj,. (¢) of the operator
should not exceed the Nyquist frequency fy, at any time
because of the reasons explained in the previous paragraph,
ie.,

Jne(2) < frg(2). (13)

Thus, three inequalities, (10), (12), and (13), should be
satisfied simultaneously. The remaining issue now is the
selection of the bandwidth « for the reference operator. In
order to satisfy the two inequalities (10) and (12) simulta-
neously it is obvious that a should satisfy the following
condition:

a = MAX {fx(@)/fL@®)}. (14)

Therefore, taking the maximum bandwidth set by the two
cutoff frequency functions f; (¢) and f(¢) would be a choice
for the bandwidth of the reference operator. Then, the
following cutoff frequencies may be selected to design the
two reference operators for high- and low-cut runs:

a)
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Fic. 4. Band-pass filtering with arbitrary cutoff frequencies
can be accomplished by a cascaded run of two constant-
octave, band-pass filters with each filter run to set the
high-cut and low-cut, respectively.
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(For High-Cut Run) fe, = MIN {fg(£)}/2°,

fre = MIN {fu ()}, (15)
and
(For Low-Cut Run) f,. = MIN {f.(2)},
fre = 2% MIN {f. (1)},
with
a = MAX {fy()ifL(®)}- (16)

Inequality (13) can now be expressed in terms of two cutoff
frequency functions f; (¢) and fy(¢):

1533

Therefore, this condition can be checked once the cutoff
frequency functions are given. It is this condition that
prevents the low- and high-cutoff frequency functions f; ()
and f(¢) from being completely independent. However, in
most seismic data, the Nyquist frequency is well above the
effective band of signal, and the inequality (17) can usually
be satisfied.

It has been assumed implicitly that in the cascaded imple-
mentation the type of amplitude spectra for the reference
operator should be the rectangular window instead of the
Hanning window. This is required because the rolloff char-
acteristics in the passband of the filter can remain unchanged
only if the rectangular window is used. However, as dis-
cussed in an earlier section, the rectangular window ampli-

MAX {fhc (8)} = 2° MAX {f1.(8)} < fng- 17 tude spectrum results in a longer operator than does the
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Fic. 5. An example of cascaded implementation to accomplish a time-variant filtering with a fairly arbitrary passband. (a)
Filtered output section on which solid lines are superimposed to indicate the passband of the filtering; time- and

frequency-domain representations of the operator in (b) the high-cut run, and (c) in the low-cut run. The passband resulting from
the cascaded implementation is the overlapping band of these two spectra.
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Hanning window amplitude spectrum. Therefore, if the
cutoff frequency functions do not deviate significantly from
the constant-octave trend and a strict preservation is not a
main issue, the Hanning window filter may still be used to
increase the computational efficiency.

Figure 5 shows an example of the cascaded implementa-
tion. The cutoff frequency functions are indicated by the
solid lines. Rectangular amplitude spectra were used during
the design of the two reference operators, and a 0.5-ms
sampling interval was used to produce a 1000-Hz Nyquist
frequency. Low- and high-cutoff frequencies were chosen
arbitrarily, and their changing trend included the extreme
case of staircase variation. This example illustrates that the
cascaded implementation can significantly relax the restric-
tion of the constant-octave bandwidth in practical usage and
also that there is no restriction on the changing trend of
cutoff frequencies.

COMPUTATIONAL EFFICIENCY

The computational efficiency of a convolutional method of
filtering is directly proportional to the length of the filter
operator. Our method of time-variant, band-pass filtering has
a filter operator whose length changes with time and is
always less than that of the reference operator. Recalcula-
tion of the coefficients does not involve any more compli-
cated operation than does a linear interpolation. Because of
these two facts, the method is fast, and its computational
efficiency is comparable to that of time-invariant, convolu-
tional, band-pass filtering. This is explained in the following
using a specific example.

The time-variant passband of our method for a constant-
octave case is illustrated in Figure 6a. Cutoff frequencies
change linearly with time from 80 Hz—240 Hz to 20 Hz—60 Hz
over 512 ms of recording time. The change of operator length
with time is illustrated below. The length changes nonlin-
early with time and is less than or equal to that of the
reference operator (20 Hz—60 Hz). To evaluate the compu-
tational efficiency, the operator length for this time-variant
filtering is compared to three time-invariant cases. Pass-
bands for the time-invariant cases are those that might be
chosen for a seismogram whose effective signal band
changes according to the trend shown in Figure 6a. Total
cumulative operator lengths for both time-invariant and
time-variant cases are shown in Figure 6c and confirm that
the length for the time-variant case is about the same as the
average length of the three time-invariant cases. Thus, the
computation times of both cases should be about the same.
However, there is one additional step that takes extra
computation time in the case of time-variant filtering, which
is the recalculation of the operator because of the compres-
sion of the reference operator. A linear interpolation scheme
turned out to be accurate enough for this recalculation and
no higher-order interpolation scheme needs to be used. The
linear interpolation algorithm involves several multiplication
and summations for each filter coefficient, therefore, the
actual computation time for the time-variant case may be
several times longer than that for the time-invariant case.

This ratio, however, can be reduced if an additional
checking statement is incorporated into the algorithm to
determine if the change of cutoff frequencies is significant

enough to warrant recalculation of the coefficients. If the
change of cutoff frequencies from one sample point on a
seismogram to the next sample is small (say, less than 1 Hz)
it may not be necessary to recalculate the coefficients. This
will omit the step of linear interpolation and save computa-
tion time. From extensive synthetic experiments, we con-
clude that, regardless of whether we are dealing with high-
resolution or conventional exploration seismic data, a
recalculation is not necessary over several sample points on
a seismogram. Because the cascaded implementation dis-
cussed in the previous section simply consists of a serial
application of two constant-octave runs, our method in its
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Fic. 6. Computational efficiency of the method is illustrated
here in terms of the length of the filter operator. (a) Cutoff
frequency functions with the constant-octave bandwidth. (b

Change of the length of the filter operator with time. (c

Comparison of the total cumulative length of the operator for
the method presented of a constant-octave, time-variant
case with three time-invariant cases whose passbands are
indicated above each bar.
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most general form will take about twice the computation
time as that of the time-invariant, band-pass filtering case.

CONCLUSIONS

The technique of time and amplitude scaling a reference
filter operator can be used to produce an effective time-
variant, band-pass filter with constant-octave bandwidth.
The scaling makes the filter algorithm simple and computa-
tionally efficient. The reference operator should be of as low
a frequency as possible to avoid inaccuracies that may occur
during the interpolation of the reference operator. The
Hanning window amplitude spectrum may be used preferen-
tially to increase the computational efficiency of the filtering.
The method can be implemented in a cascaded form to
effectively relax the restriction of the constant-octave band-
width. In this case, the effectiveness of the filter may be
limited by the Nyquist frequency and also by the shape of
the amplitude spectrum of the reference operator. However,
in most practical situations, the limitation will not occur.
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