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Abstract. Geologic mapping, structural analysis, petrologic 
study, and U-Pb geochronology at Iron Mountain, 20 km 
southwest of Barstow, California, place important constraints 
on the paleogeographic affinities of metasedimentary rocks in 
the area and provide new data to test Mesozoic and Cenozoic 
tectonic models for the central Mojave Desert. Rocks present 
at Iron Mountain include: Precambrian(?) and/or lower 
Paleozoic(?) miogeoclinal rocks, Middle Jurassic tonalite, 
Middle Jurassic Hodge volcanic series, Late Jurassic 
hornblende diorite, Cretaceous(?) peruluminous granite, and 
Cretaceous(?) granodiorite prophyry. Two phases of ductile 
deformation are present at kon Mountain. The first phase, 
which penetratively deforms the miogeoclinal rocks, tonalite, 
and Hodge volcanic series, developed under amphibolite and 
greenschist facies metamorphic conditions. Fabric 
development in the Hodge volcanic series preceded 
emplacement of 151 + 11 Ma granite. The second fabric 
deforms peraluminous granite and Late Jurassic hornblende 
diorite as well, and consists of spaced mylonitic shear zones. 
The shear zones predate emplacement of Late Cretaceous 
dikes (83 + 1 Ma). The presence of probable miogeoclinal 
strata indicates that the boundary between allochthonous 
eugeoclinal rocks and parautochthonous miogeoclinal/cratonal 
rocks must lie north of Iron Mountain. The older amphibolite 
facies metamorphism and conlxactile deformation at Iron 
Mountain are interpreted to be part of a belt of Middle to Late 
Jurassic age deformation that runs northeastward through the 
Mojave Desert and forms the southern continuation of the east 
Sierran contractile belt. Newly recognized subvertical 
mylonitic shear zones of Cretaceous age at Iron Mountain 
have not been documented elsewhere in the central Mojave 
Desert. No significant Tertiary ductile deformation fabrics are 
present at Iron Mountain. 

INTRODUCTION 

Much of the geologic history of the central Mojave Desert in 
southern California is recorded in mountain ranges separated 
by large expanses of alluvium. Each range contains important 
information, but correlation of structural, lithologic, and 
geochronologic data from range to range has proven difficult. 
In recent years, detailed mapping coupled with U-Pb 
geochronology has shown that structural elements exposed 
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within the ranges are regionally extensive and can be 
accounted for in tectonic models for the Mojave Desert. 

New geologic mapping and U-Pb geochronology at Iron 
Mountain, located 20 km southwest of Barstow, California 
place constraints on the location of regional structures in the 
central Mojave Desert (Figures 1 and 2). Iron Mountain 
provides an excellent locality to address Mesozoic tectonic 
models that predict contraction or extension for the Mojave 
Desert and eastern Sierra Nevada owing to its proximity to 
ranges where evidence for current models has been obtained. 
Specifically, ignimbrite and quartz sandstone of the 
Sidewinder volcanic series, exposed in the Sidewinder 
Mountains ~20 km southeast of Iron Mountain, has been cited 
as evidence for the extensional nature of the early Mesozoic 
arc in the Mojave Desert [Busby-Spera, 1988]. In contrast, 
Late Jurassic contractile deformation has been documented in 
the Cronese Hills [Walker et al., 1990a], located ~50 km to the 
northeast of Iron Mountain and in the White-Inyo Mountains 
and Argus Range north of the Garlock fault in eastern 
California [Dunne et al., 1978; Dunne, 1986]. Specific 
geologic problems at Iron Mountain that bear on this question 
include the timing and tectonic significance of an inferred 
kilometer-scale, isoclinal fold and meter- to centimeter-scale, 
tight- to isoclinal-type folds. 

In addition, evaluation of rock types present in a 1 km wide 
exposure of metasedimentary rocks in the northem part of Iron 
Mountain provides new data on the location of the 
miogeoclinal/eugeoclinal boundary in the central Mojave 
Desert. The correlation of metasedimentary rocks at Iron 
Mountain with Late Precambrian to lower Paleozoic 

sedimentary rocks of the Cordilleran miogeocline and its 
bearing on the location of proposed regional structures will be 
addressed in this paper. 

Last, the postition of Tertiary detachment faults relative to 
numerous ranges in the central Mojave Desert remains 
unclear. Iron Mountain, located ~ 15 km southwest of 
exposures of known footwall rocks in the Hinkley Hills has 
been described as possibly lying in the footwall of the central 
Mojave metamorphic core complex [Walker et al., 1990b]. 
The nature and tectonic significance of structures at Iron 
Mountain are discussed in this paper in the context of recently 
proposed models for the magnitude and significance of 
Tertiary extension in the Mojave Desert. 

LITHOLOGIC DESCRIPTIONS 

Previous geologic investigations at Iron Mountain include 
work by Miller [ 1944], who discussed lithologies and possible 
regional correlations, and by Bowen [1954], who published a 
1:125,000 geologic map of the Barstow 30' quadrangle. 
Dibblee [1960] published a geologic map of the Barstow 15' 
quadrangle, mapped Iron Mountain [Dibblee, 1967] at a scale 
of 1:62,500, and presented the first description of many of the 
rock types at Iron Mountain. 

Detailed geologic mapping at 1:12,000 of the entire range, 
undertaken by S.S. Boettcher in the Fall of 1989, has led to the 
refinement of earlier descriptions, documentation of field 
relations, and discovery of previously unrecognized structural 
complexities (Figure 3; Boettcher, [ 1990a, b]; Boettcher and 
Walker, [1990]). To better define the chronology of 
intrusion/extrusion, metamorphism and deformation, U-Pb 
analysis of zircon and monazite was done on several of the 
igneous units. Results are given in Table 1 and presented in 
Figure 4. We analyzed samples of the Hodge volcanic series 
(sample QBmv) and postkinematic granite (WCG) from the 
southern area, and gneissic tonalite (IM-101) and 
postkinematic muscovite garnet granite dikes (mgg-1) from 
the northern area. This new U-Pb geochronology and 
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Fig. 1. Map of the southwestern United States 
showing regional structures and the location of 
Iron Mountain (IM). The Permo-Triassic 
truncation boundary (PTTB), east Sierran thrust 
system (ESTS), Mojave-Snow Lake fault (MSLF), 
and Waterman Hills detachment fault (WHDF) are 
of particular interest to this study. Other important 

TS 

regional structures and localities include the San 
Andreas fault (SAF), Garlock fault (GF), Old 
Woman Mountains (OWM) and the Maria fold and 
thrust belt (MFTB). Abbreviations for geographic 
markers are: LV, Las Vegas; ND, Needles; PH, 
Phoenix; TS, Tucson; LA, Los Angeles; and SB, 
Santa Barbara. 

lithologic comparison with similar rock types elsewhere in the 
Mojave Desert are the basis of age constraints for units in this 
study. Table 2 is a summary of age constraints and lithologies 
for the different rock types at Iron Mountain. 

Metasedimentary Sequence 

The northern area of Iron Mountain consists of light colored, 
low hills dominated by coarsely crystalline dolomitic marble 
that is massive to finely laminated. A distinct, micaceous 
quartzite unit, up to 50 m thick, forms a prominent marker. It 
contains abundant, closely spaced, dark laminations of biotite, 
magnetite and other heavy minerals and is commingled with 
isoclinally folded quartz-feldspar injection gneiss. The 
laminations in the quartzite and the compositional layering in 
the marble are probably primary bedding structures that have 
been transposed during deformation and metamorphism. Four 
other vitreous quartzite units, generally less than 5 m thick, 
occur as 25 to 500 m long pods along strike and locally 
contain a biotite lineafion that plunges shallowly to the 
northeast. Dark-weathering, banded calc-silicate gneiss and 
muscovite-biotite schist occur locally and are discontinuous 
along strike. Sedimentary structures are not recognized and 
have presumably been obliterated by deformation. 

The local occurrence of fibrolitic sillimanite in micaceous 
quartzite, prismatic sillimanite and garnet in biotite-muscovite 
schist, hornblende and plagioclase in calc-silicate gneiss, and 
more widespread occurrences of diopside, forsterire and 
enstatite in dolomitic marble indicate amphibolite facies 
metamorphism in the metasedimentary sequence [Winkler, 
1979]. In the micaceous quartzite, fibrolite occurs in small 
mats intergrown with, and possibly forming from, 1 to 2 mm 
long packets of muscovite in a rock otherwise dominated by 
quartz and 2 to 5 mm thick layers of biotite. The equilibrium 
assemblage in the micaceous quartzite is quartz + biotite + 
muscovite + sillimanite. 

Biotite-muscovite schist contains rare large (up to 1 cm), 
subhedral garnet crystals and both euhedral-prismatic and 
anhedral-fibrolitic sillimanite at six different localities in the 
northern area. The equilibrium assemblage garnet + 
sillimanite + quartz + plagioclase + biotite + muscovite occurs 
in at least two 5 m 2 areas of weathered biotite-muscovite 
schist that are separated by several kilometers. Sillimanite and 
biotite are locally kinked and folded. 

Calc-silicate gneiss is a distinctly banded rock with 
alternating 1 to 20 mm thick, light plagioclase-quartz-rich and 
dark hornblende-rich layers, interrupted by pelitic layers rich 
in biotite and sillimanite. The equilibrium assemblage 
hornblende + plagioclase + diopside + quartz is commonly 
retrograded to epidote + albite + sphene + diopside + quartz. 

In three thin sections of dolomitic marble, forsterite and 
enstatite occur in equal proportions as anhedral crystals that 
are round in thin section. Diopside occurs in greater 
proportions and is subhedral to anhedral. The marble is highly 
recrystallized, with dolomite crystals commonly as large as 1 
cm. The equilibrium assemblages in the marble are dolomite 
+ diopside + forsterite + enstatite + phlogopite + calcite + 
quartz. 

The presence of chlorite, serpentine, epidote and albite in 
rocks containing amphibolite facies assemblages indicates the 
instability of the higher grade assemblage. Secondary 
alteration of forsterite to serpentine is common. In addition, 
local 5 to 15 m 2 pods of very coarse-grained gamet-quartz- 
epidote homfels and black-weathering calc-silicate rock occur 
in areas where granitic rocks and marble are cornmingled. 
These rocks lack the high-temperature assemblage of the 
metasedimentary sequence and represent skam mineralization 
or metasomatism associated with igneous events that postdate 
the amphibolite facies metamorphism of the metasedimentary 
sequence. 

Miller [1944] included the metasedimentary sequence with 
the Hinkley Valley complex, which he proposed is middle 



374 Boettcher and Walker: Geologic Evolution of Iron Mountain 

117o15 ' 

El Paso Mountains 

.-g$O Tiefort 
',!•untain•ii!• • 

v..,',:x x .c',?,•_ x • • '- Cronese 

•?.'."%...• '•(?."-• Buttes i• •] Hills "•'•'••e •.'a,,,,,• 4• Alvord 
(• •...o c•\ • , Mountain 

x 30 k m 
- W • • X•'arstow % 

ountinZ , 
hadow .,.• SM ,, • 
• .•::•... • .. , ,,;, 

t. 

;,';[• Tertiary to Jurassic granitoids I Paleozoic eugeoclinal rocks 

Late Jurassic gabbro '"•, :• Mesozoic strata 
• Precambrian to Paleozoic ,,,, ,, miogeoclinal and cratonal rocks 

Cenozoic right-lateral •• strike slip fault 
• Precambrian (?) to Tertiary schist and gneiss 

• Waterman Hills detachment fault 

Fig. 2. Simplified geologic map of the central 
Mojave Desert showing the distribution of pre- 
Tertiary rocks and major Cenozoic faults. The 

Cronese Hills, Shadow Mountains, Sidewinder 
Mountain (SM), and Iron Mountain are the regional 
focus of this study [after Jennings, 1977]. 

Paleozoic or older based on regional lithologic and cross- 
cutting relationships. Bowen [ 1954] correlated the 
metasedimentary sequence with the Oro Grande series of the 
Victorville area and assigned it a Carboniferous age based on 
two poorly preserved brachiopods in the Shadow Mountains. 
Dibblee [1967] stated that the metasedimentary sequence is 
unlike rocks of the Oro Grande series and grouped the 
sequence at Iron Mountain with the Waterman Gneiss and 
inferred a Precambrian age. 

The large proportion of marble and quartzite relative to calc- 
silicate rocks and pelitic schists at Iron Mountain suggests that 
the metasedimentary sequence was deposited in a 
miogeoclinal or craton margin setting [Boettcher, 1990b]. On 
the basis of comparison with rocks described by Hazzard 
[1937], Stewart [1970], and Stewart and Poole [1975], we 
correlate the metasedimentary sequence with the Cordilleran 
miogeoclinal rocks of the Late Proterozoic Noonday Dolomite 
and lower part of the Johnnie Formation. The Noonday 
Dolomite-Johnnie Formation interval contains massive 
dolomite, interlayered thin clean quartzites, laminated 

dolomite, and calc-silicate rocks overlain by finely laminated 
thick quartzite [Stewart, 1970]. 

Kiser [ 1981] correlated a metasedimentary sequence in the 
Hinkley Hills, located 15 km northeast of Iron Mountain, with 
the Lower Cambrian Wood Canyon Formation. The Wood 
Canyon Formation is a predominantly clastic unit with lesser 
amounts of dolomite and limestone that is grouped in the 
Death Valley facies of the Cordilleran miogeocline [Stewart, 
1970]. The large proportion of carbonate in the Iron Mountain 
sequence makes correlation with the Wood Canyon Formation 
unlikely. Miller [1981a, b] identified a pre-Wood Canyon 
Formation sequence of dolomite with thin layers of calc- 
silicate and quartzite at Quartzite Mountain, north of 
Victorville (Figure 2). She had difficulty finding a 
stratigraphic match for this sequence but suggested a late 
Precambrian age based on gross lithologic comparison with 
units in the San Bernardino Mountains. The Iron Mountain 
sequence exhibits some similarities to the upper part of the 
Green Spot Formation and the Delamar Mountain Formation 
of the Big Bear Group in the San Bernardino Mountains 
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Fig. 3. Simplified geologic map showing the subdivision of 
Iron Mountain into a northern area of metasedimentary and 
plutonic rocks, a central area of mainly hornblende diorite, and 
a southern area consisting of the Hodge volcanic series. Cross 
section lines A-A' and B-B' shown for Figure 9 (compiled 
from Dibblee, [1967] and Boettcher, [1990b]). 

[Cameron, 1982], but the quartzites at Iron Mountain do not 
contain abundant feldspar grains that are characteristic of the 
quartzite units in the Green Spot-Delamar Mountain interval. 
There are few similarities between the metasedimentary 
sequence at kon Mountain and younger sections of the 
Cordilleran miogeocline or eugeocline. In particular, the 
Middle Cambrian Bonanza King Formation and the Upper 
Cambrian Nopah Formation, exposed in Death Valley, 
California, are both predominantly dolomite [Stewart, 1970], 
but lack the distinctive, thin layers of orthoquartzite and 
thicker layer of micaceous quartzite found at Iron Mountain. 

Hodge Volcanic Series 

The Hodge volcanic series is exposed approximately 3 km 
to the south of the metasedimentary sequence in low, variably 
colored hills that are dissected by numerous gullies. The 
dominant rock type is a dark weathering, porphyritic quartz- 
plagioclase-biotite metavolcanic rock with a foliation that 
weakens to the southeast. The foliation is generally parallel to 
the contacts between compositional layers but locally crosses 
the layering at low angles. The compositional layering is most 
obvious in the hills just north of the Mojave River where 3 to 
10 m thick subvertical light tan, pink, and dark brown to black 
layers produce a striped pattern on the low hills. The quartz- 
plagioclase-biotite metavolcanic rock is interlayered with a 
fine-grained, white to light tan, strongly foliated (0.1 to 1 cm 
spacing of foliation planes) muscovite-sericite schist with both 
quartz- and chlorite-rich layers and, locally abundant elongate 
quartz pebbles. Additionally, distinct, resistant, desert- 
varnished quartzite boudins occur within the muscovite- 
sericite schist unit. The quartzite is thick-bedded (up to 1 m), 
contains greater than 95% quartz and is commonly broken into 

angular fragments cemented by hematite or limonite at the 
ends of the boudins. 

No minerals indicative of temperatures higher than 
greenschist facies were observed in the Hodge volcanic series. 
The assemblage biotite + quartz + muscovite + clinozoisite + 
plagioclase is typical of the metavolcanic rocks of the Hodge 
volcanic series. Plagioclase crystals commonly show 
alteration to sericite and, less commonly, calcite. 
Additionally, the muscovite-sericite schist unit of the Hodge 
volcanic series appears to have undergone an episode of 
alteration that produced fine-grained mica, characteristic light 
tan color, and friable nature. 

The proximity of the Hodge volcanic series to the 
Sidewinder volcanic series and similarities in lithologies (J. D. 
Walker and E. Schermer, personal communication, 1990) 
between these units suggest that these series are correlative. 
The Sidewinder volcanic series (U-Pb age on zircon from 
basal unit ~ 171 Ma, Graubard et al. [ 1988]) is a dominantly 
pyroclastic unit with interbedded quartz-rich volcanogenic 
•...a ...... Compositions are mainly rhyo!ific *•' 4•;,,. with 
less abundant exposures of andesite [Bowen, 1954]. The 
Sidewinder volcanic series and the Hodge volcanic series are 
separated by granitic plutons that intrude both series. The 
closest outcrops of the two series are approximately 10 km 
apart. 

A zircon age from foliated quartz-plagioclase-biotite 
metavolcanic rock (sample QBmv) strongly supports 
correlation of the Hodge and Sidewinder volcanic series. 
Three bulk fractions from this sample yield a lower intercept 
age of 160 Ma. Two air-abraded fractions give an older age of 
164 Ma indicating that the zircons have suffered some Pb loss 
(Figure 4). Results from other volcanic rocks in the region 
[e.g., Busby-Spera et al., 1990] and similar volcanic rocks 
from the southern Inyo Mountains [Dunne and Walker, 1991; 
and unpublished data, 1991] indicate that minor Pb loss is 
typical of zircons in these sequences. Given the degree of Pb 
loss exhibited by these other volcanic sequences, we interpret 
164 Ma to be a minimum age and consider it probable that the 
true age may be 170 Ma or very slightly older. 

Granite of Wild Crossing 

At the extreme southern end of the area, just north of the 
Mojave River, an isotropic, pink-stained, equigranular granite 
locally contains xenoliths of foliated quartz-plagioclase-biotite 
metavolcanic rock. Zircons from this post-kinematic granite 
(sample WCG) show the combined affects of Pb-loss and 
inherited xenocrystic zircon. We have air abraded a fraction 
of the more magnetic zircon. The abraded fraction gives older 
U-Pb and Pb/Pb ages than the corresponding unabraded 
fraction (Figure 4). This fraction and two nonmagnetic 
fractions lie on a chord giving a lower intercept age of 151 +_ 
11 Ma (Figure 4). We interpret this as a minimum 
crystallization age, but consider this not to be significantly 
younger than the true age of the rock. 

Gneissic Tonalite 

The metasedimentary sequence in the northern part of the 
area is intruded by several igneous bodies. The oldest igneous 
phase was pervasively deformed along with the host sediments 
to a schistose to gneissic tonalite. The equilibrium mineral 
assemblage in the gneissic tonalite is plagioclase + quartz + 
biotite + muscovite. Plagioclase crystals are locally 
retrograded to epidote and calcite. Mineral assemblages 
characteristic of a particular metamorphic facies were not 
observed in the gneissic tonalite. Analyses of zircon fractions 
from the gneissic tonalite (sample IM-101) did not yield easily 
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Fig. 4. Concordia diagrams for U-Pb analyses. (a) 
Air-abraded fraction from sample QBmv yields a 
lower intercept age of 164 + 2 Ma. Results from 
other volcanic rocks in the region [e.g., Busby- 
Spera et al., 1990] and similar volcanic rocks from 
the southern Inyo Mountains [Dunne and Walker, 
1991; also unpublished data, 1991] typically exhibit 
Pb-loss. Given the degree of Pb-loss exhibited by 
these other volcanic sequences, we interpret 164 
Ma to be a minimum age and consider it likely that 
the true age is 165 to 170 Ma, (b) For sample 
WCG, four fractions are plotted but only three are 
used in the regression: data for nm(0) and nm(1)AA 

fractions. Air abrasion of the nm(1) fraction drove 
the point towrod the regression line of the nm(0) 
data. From this we interpret the sample to have 
undergone Pb loss and to contain an inherited 
xenocrystic zircon component. The age of 151 + 
11 Ma therefore represents a minimum age for this 
sample, (c) Bulk fractions from sample IM- 101 
cluster at about 148 to 150 Ma. Air-abraded 

fractions plot at older U-Pb ages, thus indicating Pb 
loss. Our preferred interpretation is that the sample 
is 170 Ma, the age of similar granitic rocks in the 
region (see discussion) and has an inherited 
component and has suffered Pb loss. 
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TABLE 2. Summary of Age Constraints for Rocks Present at Iron Mountain 

Iron Mountain Regional Occurrence Age Constraints 

Peraluminous granite 

Gneissic tonalite 

Metasedimentary 
sequence 

Granodiorite porphyry 

Hornblende diorite 

Northern Area 

Fremont Peak and The Buttes iLS. 
Miller et al., 1992], 
Old Woman Mountains and Piute 

Mountains [C.F. Miller et al., 1982] 

Western San Bernardino Mountains 

[Dibblee, 1967], 
Lane Mountain [McCulloh, 1952] 

Miogeoclinal facies; Similar facies at 
Quartzite Mountain and Sidewinder 

Mountain, [Miller, 1981], Hinkley 
Hills [Kiser, 1981], Newberry 
Mountains, [Glazner et al., 1988] and 
San Bernardino Mountains [Cameron, 
1982] 

Central Area 
Alvord Mountain 

Shadow Mountains, Goldstone, 
Coolgardie Camp, and Snow Lake 
pendant [Sierra Nevada] 

Granite Cronese Hills 

Hodge volcanic series 

Southern Area 

Sidewinder volcanic series 

Younger than Mesozoic 148 Ma(?) 
gabbro/diorite and older than 83+ 1 Ma 
uncleformed dikes at Iron Mountain; 
Late Cretaceous in eastern Mojave Desert; 
Late Cretaceous biotite monzogranite in 
Fry and Oral Mountains [Karish et al., 
1987] 

Probably Jurassic, U/Pb 152-190 Ma; 
older than 148 Ma(?) gabbro/diorite and 
younger than metsedimentary sequence at 
Iron Mountain 

Similar in lithology to Late Precambrian 
Noonday Dolomite and Johnnie 
Formation in Death Valley area and Late 
Precambrian to early Paleozoic 
metasedimentary rocks present in the 
Victorville area [Miller, 1981a, b] 

82 Ma at Alvord Mountain [Walker et al., 
1990c]; 

148 Ma U/Pb zircon age from Shadow 
Mountains [Martin et al., 1990], Snow 
Lake pendant [Lahren, et al., 1990]; 
148 Ma Ar/Ar age from Goldstone 
[Miller and Sutter, 1982] 

151+11 Ma U/Pb zircon at Iron 
Mountain; 
154+1 Ma U/Pb zircon in the Cronese 

Hills [Walker et al., 1990a] 

Jurassic, U/Pb minimum age ~ 164 Ma; 
U/Pb zircon age of 171 Ma for 
Sidewinder volcanic series [Graubard, 
1988] 

interpretable results (Figure 4). Bulk fractions cluster at about 
148 to 150 Ma. Air-abraded fractions plot at older U-Pb ages, 
thus indicating Pb loss. Unfortunately, air abrasion did not 
create any sort of discordia array, and we interpret this sample 
to have undergone extensive Pb loss (possibly combined with 
inherited xenocrystic zircon). This is not unexpected. First, 
the sample collected, although as fresh as could be found, was 
somewhat weathered and friable (a pervasive feature of this 
unit). Second, the extreme deformation and metamorphism 
suffered by this unit probably opened the zircons to Pb loss. 
We offer two interpretations for these data. First, if we 
assume that the sample contains an inherited component, then 
the minimum age of this sample is 152 Ma. This is the 
approximate age of a chord between the oldest fraction and an 
assumed 1800 Ma upper intercept (typical inheritance age for 
granites in this region). Alternatively, if only Pb loss has 

occurred, then the sample is probably about 190 Ma. This is 
the average of the Pb/Pb ages of three older fractions. Our 
preferred interpretation is that the sample is about 170 Ma, the 
age of similar granitic rocks in the region (see discussion 
below) and has both suffered Pb loss and contains an inherited 
component. 

Hornblende Diorite 

A stock-sized body of hornblende diorite is present in the 
central part of Iron Mountain and commonly has a color index 
close to 65. It is composed mainly of hornblende and 
plagioclase with lesser amounts of sphene, augite, and opaque 
minerals, has a poikilitic texture, and contains four mappable 
(at 1:12,000) 0.1 m to 10m wide shear zones. Gabbro, witha 
color index of 80 or higher, occurs as small bodies within the 
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diorite. Medium- to very coarse-grained gabbro dikes and 
xenoliths are locally present. Greenschist facies 
metamorphism associated with mylonitic shear zones in the 
hornblende diorite is characterized by the instability of 
hornblende and the presence of actinolite, clinozoisite/zoisite, 
chlorite, and albite. 

The age of the hornblende diorite complex is inferred by 
correlations of intrusive relations to adjacent areas. Bowen 
[ 1954] stated that small intrusions of hornblende diorite cut the 
Sidewinder volcanic series across the Mojave River, 30 km 
southeast of Iron Mountain. No intrusions of gabbro or diorite 
were observed in the southern metavolcanic rocks at Iron 

Mountain, however. Both U-Pb zircon ages of similar gabbros 
in the Shadow Mountains [Martin and Walker, 1989] and 
40Ar-39Ar ages of similar gabbros from the Goldstone area 
[Miller and Sutter, 1982] 40 km northeast of Iron Mountain 
are ~ 148 Ma. These data currently provide the best correlation 
for the age of the gabbro/diorite complex in the central part of 
Iron Mountain. 

Peraluminous Granite 

Two phases of variably deformed peraluminous granite are 
present in the northern and central areas of Iron Mountain. 
Dikes of sheared biotite granite with local occurrences of 
muscovite and a leucocratic (color index <5) biotite granite 
that contains pods of abundant garnet and muscovite intrude 
the hornblende diorite body, gneissic tonalite, and 
metasedimentary sequence. Metamorphism of these phases in 
shear zones is characterized by the breakdown of plagioclase 
to form albite, calcite and epidote. 

The apparent lack of plutonism during the interval 147-125 
Ma [Chen and Moore, 1982] followed by Early to Late 
Cretaceous granitic plutonism in the central Mojave Desert 
and Sierra Nevada suggests that sheared biotite granite dikes 
in the diorite body and sheared peraluminous granite in the 
northern area may be significantly younger than 150 Ma. In 
particular, ~98 Ma synkinematic peraluminous granite is 
present at Fremont Peak in the NW Mojave Desert (U-Pb 
zircon, J.S. Miller et al., [1992]) and Late Cretaceous biotite 
monzogranite is present east of Victorville [Karish et al., 
1987]. 

Muscovite-Garnet Granite 

Undeformed, 2 to 20 m thick, northwest trending dikes of 
coarse-grained muscovite-garnet granite crosscut mylonitic 
fabrics in the gneissic tonalite. U-Pb results on monazite from 
these dikes consist of two reversely discordant fractions that 
yielded nearly identical analyses (Table 1). Following the 
reasoning outlined by Parrish [1990], we interpret the age of 
this sample to correspond to the average of the 207pb/235U 
ages. Thus, this sample is dated at 83 _+ 1 Ma. 

Granodiorite Porphyry 

An undeformed granodiorite porphyry separates the Hodge 
volcanic series from the hornblende diorite body. This unit is 
characterized by large (2 to 4 cm long), randomly oriented K- 
feldspar megacrysts in a matrix of medium-grained 
plagioclase, biotite, and quartz. Granodiorite porphyry 
exposed to the north of the Hodge volcanic series is not 
mylonitic, nor is the southern margin of the hornblende diorite 
complex of the central area, suggesting that the granodiorite 
porphyry was intruded along a now obliterated contact 
between the Hodge volcanic series and the hornblende diorite 
body. Granodiorite porphyry dikes at Alvord Mountain (82 
Ma U-Pb zircon; Walker et al., [1990c]), located 30 km east of 

Barstow, are similar in mineralogy and texture to the 
granodiorite porphyry body at Iron Mountain. 

Felsite Dikes 

Light gray, 1 to 3 m wide, fine-grained dikes crosscut all 
deformation fabrics and previously mentioned rock types. 
These dikes locally contain complex refolded fold patterns that 
likely formed during emplacement. Similar felsite dikes are 
present to the north and east at Fremont Peak, Hinkley Hills, 
and Mitchel Range. Dikes in these areas are Early Miocene 
(~23 Ma; Walker et al. [1990b] and Walker and Martin, 
unpublished data, [1991]), which we interpret to be the age of 
dikes at Iron Mountain. 

STRUCTURE 

Four major structural elements are present at Iron Mountain: 
(1) gneissic fabric in the tonalite and schistose fabric in the 
Hodge volcanic series; (2) close- to isoclinal-type folds 
involving the metasedimentary sequence and the gneissic 
tonalite, and close- to tight-type folds of the schistosity and 
mylonitic foliation in the Hodge volcanic series; (3) northeast 
striking, subvertical mylonitic shear zones with low-plunging 
stretching lineation; and (4) and open folds with subvertical 
axes of both the gneissic and mylonitic fabric. The structures 
can be divided based on style and cross-cutting relations into 
an older gneissic to schistose foliation and tight to isoclinal 
folds, and younger mylonitic shear zones and open folds. 

Planar Fabrics 

Well-defined, northeast trending, subvertical planar fabrics 
are present in all three areas at Iron Mountain. The fabric 
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Fig. 5. Poles to foliation in the northern, central and southern 
areas of Iron Mountain. 
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appears as gneissic banding in the tonalite and 
metasedimentary rocks of the northern area, occurs within L-S 
tectonites in 0.1 to 10 m wide mylonitic shear zones in the 
central plutonic complex and northern intrusive and 
metasedimentary rocks, and is a pervasive schistosity which 
becomes mylonitic in the most intensely deformed S tectonites 
of the Hodge volcanic se,'ies. Poles to foliation planes in the 
three areas show a fairly wide scatter about a point maximum 
(Figure 5). Mineral stretching lineations in the ductile shear 
zones also show a fairly wide scatter and plunge both to the 
northeast and southwest, typically at low angles (Figure 6). 
No marked discordance in foliation or lineation orientation 

occurs between the areas, although the northern area contains 
a kilometer-scale open fold of the foliation with a continuous 
change from northeast- to northwest-striking units at the 
northeastern extreme of the area. 

Gneissic and schistose fabric. The tonalite that intrudes the 
metasedimentary sequence contains two distinct deformation 
fabrics in outcrop and thin section scale: a crystalloblastic 
gneissic banding/schistosity and a mylonitic foliation and 
associated stretching lineation. The gneissic fabric in the 
tonalite occurs as 1 mm to 5 cm thick bands of biotite- 

dominated melanocratic layers and plagioclase- and quartz- 
dominated leucocratic layers. Locally, where coarse-grained 
biotite is abundant, the fabric is better termed a schistosity. 
Quartz crystals in the gneissic rocks do not show evidence of 
grain size reduction and exhibit only weak undulatory 
extinction. The compositional layering in the 
metasedimentary sequence defines a gneissic banding that is 
likely a product of transposed original bedding, as discussed 
earlier. 

The Hodge volcanic series possesses a penetrative 
schistosity defined by the planar orientation of biotite, white 

A. Poles to foliation in all units B. Poles to foliat•on in igneous units 

C. Poles to mylonitic foliation D. Poles to compositional layering 
unit BG m metased•mentary rocks 

Fig. 7. Poles to foliation in selected units of the northern area. 
(a) Poles to foliation in all units in the northern area. (b) Poles 
to foliation in igneous rocks in the northern area; concentration 
of poles with more northeasterly trend and shallower dip is 
from mylonitic foliation in sheared peraluminous granite (map 
unit bg) and sheared biotite tonalite (map unit bt). (c) Poles to 
mylonitic foliation in unit bg in the northern and central areas. 
(d) Poles to compositional layering in the metasedimentary 
sequence in the northern area. 

A. Lineations B. F-1N Hingelines 

C. F-1S Hingelines D. Poles to foliation from limbs 
of F-2 fold in northern area 

Fig. 6. (a) Trend and plunge of stretching lineation in the 
northern, central, and southern areas of Iron Mountain. (b) 
Trend and plunge of hingelines of F1N folds (folds of the 
compositional layering in the metasedimentary sequence and 
gneissic tonali•e in the northern area). (c) Trend and plunge of 
hingelines of F1S folds (folds of the schistosity and mylonitic 
fabric in the southern area). (d) Poles to foliation from un'•ts 
on limbs of kilometer-scale, open, upright F 2 fold in extreme 
northern part of northern area. Measurements on northwest 
trending limb are sparse due to poor exposure. 

mica, and elongate quartz ribbons that becomes mylonitic in 
the most intense zones of deformation. The fabric is most 
mylonitic near the contact with the central plutonic complex 
and weakens considerably to the southeast. The decrease in 
intensity of fabric is characterized by the gradual change from 
highly strained quartz in elongate ribbons to large phenocrysts 
of quartz in a fine-grained matrix in the quartz-plagioclase- 
biotite metavolcanic rock. Also, plagioclase is deformed in a 
brittle manner in the mylonitic areas but appears as 
unreformed phenocrysts toward the southeast. The 
penetrative nature of the fabric in the Hodge volcanic series 
reveals that strain was distributed broadly across the southern 
area. 

Mylonitic shear zones. The deformation characteristics 
associated with the gneissic banding contrast sharply with 
those of the mylonitic tonalite, biotite granite and hornblende 
diorite. The most obvious distinction between the mylonitic 
fabric and the gneissic fabric is the amount of strain in quartz 
crystals. In the mylonitic rocks, elongate quartz ribbons show 
both dynamic recovery and dynamic recrystallization. The 
quartz grains are typically small, show uniform extinction, and 
have sharp polygonal boundaries but can also show well- 
developed subgrains separated by low-angle boundaries. 
Furthermore, plagioclase feldspar porphyroclasts are 
commonly broken and boudinaged in the shear zones, but not 
in the areas showing a crystalloblastic fabric. 

Lower hemisphere projections of poles to foliation show 
that foliation in the gneissic rocks is subparallel to the 
mylonitic foliation, except for a small concentration of poles 
to the mylonitic foliation that show a more northeasterly trend 
and a shallower dip (Figure 7). 

The degree of mylonitization in the shear zones in the 
northern and central areas varies considerably. Ultmmylonites 
and mylonites are common along the contact between the 
northern and central areas and in several discrete bands within 
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a large area of protomylonite north of the northern/central 
contact [Boettcher, 1990b]. A general trend of decreasing 
intensity of mylonitic fabric from south to north can be 
distinguished. Shear zones are less common, do not show as 
strong of a grain size reduction, and are not as continuous in 
the northernmost igneous body as compared to shear zones 
farther south in the northern area. 

Shear-sense indicators are scarce in all three areas and 
provide conflicting senses of motion. In total, shear-sense 
indicators were observed at 16 different localities, with dextral 
indicators observed 10 times and sinistral indicators 6 times. 
Only in the central area, where s-c fabric is well developed, 
are the shear-sense indicators consistent: dextral indicators 
occur at four localities, whereas no unequivocal sinistral 
indicators were located. In the northem area, sigma-type 
porphyroclasts show dextral shear sense at four localities and 
sinistral shear sense at three localities. Most often, 

porphyroclasts are equivocal in their sense of shear, possibly 
due to grain-to-grain interference. In the southern area, s-c 
fabric observed at two localities shows sinistral shear. 

However, fold asymmetry indicates dextral shear sense at two 
other localities. 

Folds 

FiN folds (here defined as first generation folds in the 
northern area) of the compositional layering in the 
metasedimentary sequence and gneissic tonalite generally 
have steeply dipping, northeast trending axial surfaces and 
moderately plunging hinge lines that trend either northeast or 
southwest (Figure 6). These folds are commonly symmetric, 
close- to isoclinal-type [Fleuty, 1964] and occur on a meter 
scale. No FiN folds of the mylonitic foliation were identified. 
Hinge lines of close- to isoclinal-type folds of the gneissic 
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Fig. 8. Geologic map of part of the northern area of 
Iron Mountain. Note the repetition of the map unit 
mq. Facing indicators have not been identified in 
these units, but the dip directions of the units and 

presence of numerous smaller scale folds with 
northeast trending, steeply inclined axial planes 
suggest that a synformal fold is present (mapping 
by S.S. Boettcher, [1990b]). 
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Explanation for geologic map (Fig. 8) and cross sections (Fig. 9) 

• undifferentiatedQuatemary alluvium 
granodiorite porphyry, tan-to gray-weathering, C1=15-35, contains 3-6cm 

gl•'l K-feldspar phenocrysts, undeformed 
I-• biotite granite, light tan-weathering, coarse-grained, garnet and muscovite locally present, mylonitic shear zones intruded by 83ñ1 Ma dikes 

[-• hornblende diorite, dark brown- to black-weathering, coarse-grained, Cl- 30-90, contains thin mylonitic shear zones 

• granite, light tan- to red/pink-weathering, C1-15-25, undeformed, U/Pb 151ñ11 Ma 

• muscovite-sedcte schist, light tan-weathering, highly foliated, locally contains rounded quartz pebbles, shaded line indicates quartzite boudine 

•,\. fault, dashed where inferred --•j'('- inferred fold axis 
• geologic contact i d• subvertical mylonitic shear zone 
• strike of vertical foliation ,•r12 trend and plunge of lineation in the 

plane of foliation 
/•75 strike and dip of foliation 

I qbmv I quartz-biotite metavolcanic rock, dark gray-weathering, highly schistose to myionitic, fabdc weakens to SE, U/Pb minimum age ~164 Ma 

ql•'--•J quartz feldspar orthogneiss, distinctly banded, injected into quartzite layers, isoclinal folds, local myionitic overprint 

• biotite tonalits, dark gray-, spheroidal-weathering, C1=15-25, contains gneissic fabric with local mylonitic overprint, U/Pb 152-190 Ma 

i;• micaceous quartzite, thinly layered, greater than 80% quartz, local occurrences of sillimanite 

• muscovite biotite schist, light tan- to dark brown weathering, coarse-grained, local occurrences of garnet and sillimanite 

marble, light tan-weathering, coarse-grained, dolomitic, common occurrences • of diopside, isoclinal folds 

Fig. 9. Geologic cross sections of northern, central 
and southern areas of Iron Mountain; section lines 
shown in Figure 3. The contact between the 
northern area and central area occurs between map 
units bt and hd and is highly sheared. Cross-cutting 
relationships show that map unit bg is not involved 

in the inferred fold; this unit does contain mylonitic 
shear zones. The contact between the central and 

southern areas occurs between map units grip and 
qbmv and is inferred to be faulted. The dip of units 
is highly variable but is typically subvertical. 

banding in the northern area (F1N) are subparallel to mineral 
stretching lineations (Figure 6). A large (wavelength of 
hundreds of meters), tight fold (F1N) parallel to the trend of 
the outcrop scale folds has been inferred for the northern area 
based on the repetition of distinctive quartzite units and broad 
bands of marble (Figures 3 and 8). The metasedimentary 
units, gneissic tonalite, and inferred fold in the northern area 
are now incompletely preserved as a pendant surrounded by 
intrusions of crosscutting peraluminous granite (Figures 8 and 
9). 

The southern area contains local folds of the schistosity and 
mylonitic foliation (here defined as F1S), showing "Z" 
asymmetry and spaced axial planar cleavage. These folds 
appear as centimeter-scale, close, angular kink folds in 
chlorite-rich layers of the muscovite-sericite schist and small, 

close folds with rounded hinges in the quartz-rich layers. F1S 
folds have steeply inclined, north striking axial surfaces and 
moderately plunging, north trending hinge lines (Figure 6). 

F1S folds of the schistosity and mylonitic foliation in the 
southern area of Iron Mountain are sparse, except for two 
distinct chlorite-rich and quartz-rich layers within the 
muscovite-sericite schist unit. Only 20 lineations were 
measured in the predominantly S tectonites of the Hodge 
volcanic series, compared with almost 100 in the northern and 
central areas combined. Additionally, hinge lines of F1S folds 
are poorly exposed, making comparison between hinge line 
and lineation orientation difficult. On the basis of the few 
measurements of these structural elements (Figure 6), hinge 
lines and lineations are oblique to one another in the southern 
area. Furthermore, axial planes, locally well represented by 
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axial planar cleavage, are oblique to the schistose/mylonific 
foliation. This differs from axial planes of FiN folds, which 
are typically parallel to regional fabric. 

All three areas contain gentle to open folds of the foliation 
(F 2) about subvertical axes that change the strike of the 
foliation up to 90 ø. Both mylonific and gneissic fabrics are 
affected by the F 2 folds. This style of folding is most evident 
in the eastern end of the northern area where the foliafion in all 
units changes strike from about N40øE to N 10øW (Figures 3 
and 6). Dibblee [1968] mapped geometrically similar folds 
with subvertical axes in two gneissic complexes west of 
Harper Lake, approximately 15 km northwest of Iron 
Mountain. 

Brittle Faults 

North to northwest trending strike-slip faults, presumably 
related to Cenozoic right-lateral faults in the central Mojave 
Desert (Figure 2), are sparse in all three areas of Iron 
Mountain. Four map-scale (1:12,000) faults were observed, 
with separations limited to tens of meters, commonly in an 
apparent right-lateral sense. Additionally, modification of the 
contact between the granodiorite porphyry and the Hodge 
volcanic series along a high-angle reverse fault with minor 
offset is suggested by the presence of steeply raking striations 

on quartzite boudins south of the contact. Steep striations on 
steeply inclined, north dipping planar surfaces also occur in a 
few outcrops of felsite dikes and in muscovite-garnet granite 
dikes in the northern area. These faults involve the youngest 
igneous phases and may be related to N-S directed Neogene 
contractile deformation in the central and western Mojave 
Desert [Bartley et al., 1990]. 

DEFORMATION HISTORY AND REGIONAL 
.IMPLICATIONS 

Comparison of metamorphic facies, structure, and lithology 
with other areas in the Mojave Desert, combined with U-Pb 
geochronology of four igneous units at Iron Mountain, form 
the basis for assessment of the timing of structures at Iron 
Mountain. The relative timing of these structures is crucial to 
the establishment of a regional tectonic setting. Figure 10 is a 
summary of Permian to Paleocene deformation, plutonism, 
volcanism, and sedimentation across the central Mojave 
Desert. 

Early Mesozoic Extension 

No structural evidence for early Mesozoic extension was 
found at Iron Mountain. However, the Hodge volcanic series 
contains layers of orthoquartzite and muscovite-sericite schist 
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Fig. 10. Comparison of deformation histories 
across the central Mojave Desert. Cronese Hills 
data from Walker et al. [1990]; Shadow Mountains 
data from Martin et al. [1990]; Sidewinder 
Mountain data from Karish et al. [ 1987] and E. 
Miller [1981]; 1983 DNAG time scale from Palmer 
[1983]. Designation of shear zones in the northern 
and central areas as Cretaceous is dependent on the 
age of the sheared peraluminous granite in the 
northern area. The shear zones are younger than 
the sheared hornblende diorite, which is probably 
148 Ma, and older than undeformed, northwest 

trending dikes of 83 + 1 Ma muscovite-garnet 
granite (U-Pb on monazite, Boettcher and Walker, 
[1990]). Gneissic fabric, F1N folds, and 
amphibolite facies metamorphism in the northem 
area are considered coeval with highly schistose 
and locally mylonitic fabric and greenschist facies 
metamorphism in the southern area on the basis that 
this deformation occurred before the intrusion of 
148 Ma? homblende diorite and 151 Ma granite, 
but after the intrusion of Jurassic gneissic tonalite 
and extrusion of Jurassic Hodge volcanic series. 
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with quartz pebbles that elsewhere have been interpreted as 
accumulating in extensional basins along the early Mesozoic 
volcano-plutonic arc [Busby-Spera, 1988]. Late Triassic(?) to 
Middle Jurassic volcanic and sedimentary rocks in the central 
Mojave Desert occur in a roughly E-W trending band from 
Quartzite Mountain to the Rodman Mountains. Volcanic 
rocks of this age are also common in the northeastern Mojave 
Desert [Burchfiel and Davis, 1981]. An alternative hypothesis 
to extension along the arc involves cycles of intermittent 
volcanism followed by erosion and redeposition of the 
volcanic sequence with periodic burial by eolian[?] quartz 
sand. 

Jurassic Contractional Deformation 

Walker et al. [1990a] have proposed that the east Sierran 
contractile belt [Dunne, 1986, Figure 1] is expressed as 
southeast to west vergent structures that occur in a belt from 
the Cronese Hills (50 km northeast of Barstow, California) to 
the Shadow Mountains (30 km southwest of Barstow, 
California) (Figure 2). In the Cronese Hills, a ductile shear 
zone with several kilometers of offset, greenschist facies 
metamorphism, and macroscopic isoclinal folds formed 
between 169-154 Ma, based on dates on pretectonic and 
posttectonic plutons [Walker et al., 1990a]. In the Shadow 
Mountains, a macroscopic, west vergent, recumbent anticline, 
schistose fabric and transposed compositional layering formed 
prior to the intrusion of an undeformed 148 Ma gabbro 
complex [Martin and Walker, 1990, 1991]. 

Penetrative deformation in the southern area of Iron 
Mountain occurred between ~164 Ma and 151 + 11 Ma. 

Roughly equivalent deformation in the northern area of Iron 
Mountain occurred before the intrusion of Late Jurassic 

hornblende diorite and after the intrusion of Jurassic gneissic 
tonalite (probably between 170 and 148 Ma). Direct evidence 
for ductile thrust faults at Iron Mountain is absent, but F1N 
folds are probably similar in age to deformation in the Cronese 
Hills and Shadow Mountains. The decrease in grain size 
reduction toward the southeast in the Hodge volcanic series 
and the decrease in metamorphic grade from north to south 
leaves open the possibility that the metasedimentary sequence 
was thrust over the Hodge volcanic series before the intrusion 
and sheafing of the central plutonic complex. 

Kiser [1981] reported sillimanite + K-feldspar assemblages 
and quartz + hornblende + garnet + plagioclase assemblages in 
metasedimentary rocks of the Hinkley Hills. This suggests 
that regional metamorphism affected both the Hinkley Hills 
and the northern area of Iron Mountain prior to the intrusion of 
the Mesozoic gabbro complex, which is distinctly 
metamorphosed only in the mylonitic shear zones. The 
presence of K-feldspar in metasedimentary rocks of the 
Hinkley Hills suggests that temperatures were higher there 
than at Iron Mountain, where muscovite appears as a stable 
phase in the amphibolite facies assemblage. The presence of 
kinked and folded biotite and sillimanite at Iron Mountain 

suggests that Jurassic deformation may have outlasted peak 
metamorphic conditions. 

Cretaceous Deformation 

Field evidence reveals that the mylonitic shear zones in the 
northern and central areas originated after the intrusion of Late 
Cretaceous(?) peraluminous granite, but before the intrusion of 
83 + 1 Ma, northwest trending, peraluminous granite dikes. 
Ultramylonite along the contact between the central and 
northern areas and the linear nature of this contact are of 

tectonic origin. Both hornblende diorite and tonalite show a 
high degree of grain size reduction and thinly spaced planar 

layers on either side of the contact. D•es of biotite granite 
that intrude the hornblende diorite in the central area are also 

mylonitic, with subparallel orientations to other mylonites in 
the area, indicating that tectonic modification of the contact 
between the northern and central areas occurred after the 

intrusion of the biotite granite dikes into the diorite complex. 
The gabbro dikes, biotite granite dikes, and the leucocratic 
biotite granite cross-cut the transposed compositional layering 
in the metasedimentary sequence and do not contain tight to 
isoclinal folds. The absence of distributed amphibolite or 
greenschist facies mineral assemblages outside of the 
mylonitic shear zones in the biotite granite and hornblende 
diorite indicates that the intrusion of these units occurred after 

regional metamorphism of the northern and southern areas. 
Therefore we conclude that they were intruded and deformed 
following the initial deformation of the gneissic tonalite, 
injection gneiss, and metasedimentary units. 

Cretaceous regional deformation is not documented in the 
central Mojave Desert but is well documented in the Old 
Woman and Piute Mountains [C.F. Miller et al., 1982; Fletcher 
and Karlstrom, 1990] in the eastern Mojave Desert, in the 
Mafia fold and thrust belt in western Arizona [Laubach et al., 
1989], in the Rand Mountains [Jacobson, 1990] and at 
Fremont Peak [J.S. Miller et al., 1992] in the northeastern 
Mojave Desert, and at Cajon Pass north of the San Andreas 
Fault [Ehlig, 1988; Silver et al., 1988]. 

Eugeoclinal/Miogeoclinal Boundary 

Investigation of metasedimentary rocks at Iron Mountain 
provides new data on the location of the 
eugeoclinal/miogeoclinal boundary in the central Mojave 
Desert. Allochthonous eugeoclinal rocks in the northwestern 
Mojave Desert are thought to have been transported south 
from the Antler flysch belt along the truncated margin of the 
Cordilleran miogeocline during the late Paleozoic [Burchfiel 
and Davis, 1975, 1981; Davis et al., 1978; Walker, 1988]. 
Alternatively, Snow [1992] has proposed that eugeoclinal 
rocks are carded in the hanging wall of the Permian Last 
Chance thrust system. Eugeoclinal rocks have been identified 
in the Goldstone area [Miller and Sutter, 1982], in the Paradise 
Range [Wust, 1981] and at Lane Mountain [McCulloh, 1952]. 
Miogeoclinal rocks have been identified in the Victorville area 
[Stewart and Poole, 1975; Miller, 1977, 1981a, b], in the 
Hinkley Hills [Kiser, 1981], and in the Shadow Mountains 
[Martin and Walker, 1990, 1991] (Figure 2). The large 
proportion of marble and quartzite relative to calc-silicate 
rocks and pelitic schists at Iron Mountain suggests that the 
metasedimentary sequence there was deposited in a 
miogeoclinal or craton margin setting [Boettcher, 1990b]. The 
tectonic boundary between eugeoclinal and miogeoclinal rocks 
thus lies to the north and west of Iron Mountain. 

Central Mojave Metamorphic Core Complex 

Finally, Walker et al. [ 1990b] have described Iron Mountain 
as possibly lying in the footwall of the central Mojave 
metamorphic core complex. Mylonitic fabrics at Iron 
Mountain are no younger than 83 + 1 Ma, northwest trending, 
muscovite-garnet granite dikes and, therefore, are unrelated to 
Early Miocene extension in the central Mojave Desert. High- 
angle normal faults and Tertiary strata, common to hanging 
wall blocks elsewhere in the central Mojave Desert, are absent 
at Iron Mountain. The lack of Tertiary extensional features at 
Iron Mountain, and elsewhere in the western Mojave Desert 
[Bartley et al., 1990], suggests that Iron Mountain is located 
west of the area of Tertiary extension in the central Mojave 
Desert. If so, the breakaway zone for Tertiary detachment 
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faults in the central Mojave Desert, prior to late Cenozoic 
erosion, is located east of Iron Mountain and west of the 
westernmost known exposures of Tertiary mylonitic rocks in 
the Hinkley Hills and Harper Dry Lake. 

Results from reconnaissance thermochronologic studies at 
Iron Mountain are compatible with the interpretation that Iron 
Mountain lies west of the main zone of Tertiary extension in 
the central Mojave Desert. Specifically, biotite 40Ar-39Ar 
and sphene, zircon, and apatite fission track analyses suggest 
that Iron Mountain cooled slowly from greater than ~300øC at 
~65 Ma to less than ~100øC by ~30 Ma [Dokka et al., 1991; 
Jones et al., 1990]. Thus, no significant tectonic unroofing 
occurred at Iron Mountain during the period of maximum 
extension (22-20 Ma) in the central Mojave Desert. 

CONCLUSIONS 

Metasedimentary rocks in the northem area of Iron 
Mountain are probably miogeoclinal in character and are 
related to passive margin sedimentation along the continental 
margin of western North America during Late Precambrian to 
early Paleozoic time. The metasedimentary sequence in the 
northern area likely predates the Wood Canyon Formation and 
is similar to a sequence of dominantly dolmnitic marble with 
lesser amounts of calc-silicate and quartzite at Quartzite 
Mountain, near Victorville. The presence of miogeoclinal 
rocks at Iron Mountain indicates that the eugeoclinal/ 
miogeoclinal boundary in the central Mojave Desert and the 
proposed Cretaceous Mojave-Snow Lake fault must pass north 
and west of Iron Mountain. 

Penetrative deformation in the northern and southern areas 

of Iron Mountain produced greenschist to amphibolite facies 
metamorphism, transposition of compositional layering, 
centimeter- to meter-scale close- to isoclinal-type folds, and an 
inferred kilometer-scale isoclinal fold. U-Pb geochronology 
on posttectonic granite and the Hodge volcanic series along 
with regional correlation of the Hodge volcanic series with the 
Sidewinder volcanic series constrains deformation in the 

southern area to the interval 151-164 Ma. Deformation in the 
northern area of Iron Mountain occurred before the intrusion 
of Late Jurassic hornblende diorite (148 Ma?) and after the 
intrusion of Middle (?) Jurassic gneissic tonalite (170 Ma?). 
This deformation is interpreted to lie in a belt of Middle to 
Late Jurassic contractile deformation that runs northeastward 

across the Mojave Desert and forms the continuation of the 
east Sierran contractile belt. 

A second episode of deformation at Iron Mountain produced 
0.1 to 10 m wide, subvertical mylonitic shear zones and 
greenschist facies metamorphism in the northern and central 
areas. U-Pb geochronology on posttectonic dikes and 
assignment of deformed peraluminous granite to the 80-110 
Ma period of Sierran magmatism constrains this deformation 
to the interval 83-110 Ma. 

Finally, evidence for Tertiary extension is absent at Iron 
Mountain, possibly indicating that Iron Mountain lies 
southwest of the breakaway zone for the central Mojave 
metamorphic core complex. 
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