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Consider the family of perturbed stochastic differential equations on R,
t € t €
X: = X5+ Js’foo(xs)odws + fob(Xs)ds,

& > 0, defined on the canonical space associated with the standard k-dimen-
sional Wiener process W. We assume that {X§, ¢ > 0} is a family of random
vectors not necessarily adapted and that the stochastic integral is a general-
ized Stratonovich integral. In this paper we prove large deviations esti-
mates for the laws of {X?, ¢ > 0}, under some hypotheses on the family of
initial conditions {X§, ¢ > 0}.

0. Introduction. Consider the Stratonovich differential equation on R¢:
k t . t
(0.1) X,=X,+ Y foi(s,Xs)odWs‘ +fb(s,w,Xs) ds
i=1"0 0

defined on the canonical Wiener space associated with the standard k-dimen-
sional Wiener process W = (W}, ..., W), ¢ € [0, 1]}. We assume that X, is a
d-dimensional random vector which may depend on the whole path of W and
that the stochastic integral is a generalized Stratonovich integral, as defined in
Nualart-Pardoux [8].

Under some regularity conditions on X, and the coefficients o and b,
Ocone-Pardoux [9] have proved the existence and uniqueness of solutions of
(0.1) when the diffusion coefficient o may depend on ¢ and the drift coefficient
b may depend on both ¢ and w.

In this paper, we assume that o and b only depend on the state x, and for
e > 0, we consider the family of perturbed equations

k :
(0.2) X; = X5+ Y Ve [0(X5)odW, + ['b(X?) ds,
i=1 0 0
with an arbitrary initial condition X§. We assume that there exists x, € R¢
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such that for any 6 > 0,
lin(l)s log P{IX§ — x4l > 8} = —oo,

and the purpose is to show that the family {P¢, & > 0} of laws of {X* & > 0}
satisfies a large deviation principle (see Theorem 4.1). We prove that a solution
{X?,t €10, 1]} of (0.2) can be expressed as the composition of the adapted flow

k
(03)  oi(x) =x+ L [ ai(pi(x))e AW + ['b(gi(x)) ds

and the initial condition X¢, that is, X7 = ¢;(X}).

Due to this fact, it turns out that the key ingredient to reach our goal is a
result ensuring the large deviation principle for the flow ¢°. Then we will
easily transfer the large deviation estimates from the flow to X°.

Recall that a family { P, ¢ > 0} of probabilities on a Polish space E satisfies
a large deviation principle with rate function I: E — [0, + ] if I is lower
semicontinuous, for every a > 0 the set {f € E: I(f) < a} is compact, and for
every open subset G and every closed subset F of E,

(0.4) lim infe log P*(G) > ~inf{I(g); & < G},
(0.5) limsupe log P*(F) < —inf{I(g);g € F}.
e—0

The paper is organized as follows. In the first section we state uniform
Ventzell-Freidlin estimates, which are obtained using Sobolev’s inequality. In
Section 2 we deduce from these estimates the large deviation principle for the
flow ¢° solution of (0.3), using the ideas of [1] (see also [4] and [10]). In Section
3 we prove that, under weak regularity assumptions on o and b, ¢{(X¢{) is a
solution of (0.2). Section 4 is devoted to prove the large deviation principle of
the family of laws of X® = ¢°(X{). Finally, the last section is an Appendix
containing an exponential estimate for a class of It6 processes.

Some remarks on the notation: We make the usual convention on summa-
tion over repeated indices. In general C denotes a generic positive constant,; its
value can change from one expression to another one.

1. Uniform Ventzell-Freidlin estimates. Let Q = £([0, 1];R*), P the
Wiener measure and % the completion of the Borel o-field on () with respect
to P. We denote by W,(w) = w, the standard Wiener process on (Q, ).

Consider the stochastic flow on R? defined by

(L) o) =%+ Ve [aei(x)dW, + [b(gi(x)) ds,

‘e >0, ¢t €[0,1]. During this section we will assume, unless otherwise
specified, that the coefficients o;, b: R > R? i=1,...,k, as well as
m(x) = $2%_ (30, /3x)x)oy(x), are €2 functions with bounded partial deriva-
tives up to order 2.
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For any integer m > 1 and x € R™, we denote by H." the set of absolutely
continuous functions f € /[0, 1]; [R’") with fy,=x and JUF P ds < +oo. If
x = 0, we will write H™ instead of HJ* and set I(f) = 1/dIf.1* ds.

Given f € H* we consider the function g(x) € HZ, which is the solution of
the differential equation

(12) g(x) ==+ [[{o(a(x)) f, + b(&(x))) ds.

If A is a compact subset of R?, then sup, ., sup, < 41g,(x)| < «. Indeed,
the restriction on the growth of the coefficients o and b entails

(=) < el +Cf ‘(1 + g, (x))(1 + 1£]) ds,

and by a generalization of Gronwall’s lemma (see Lemma 4.13 in [6]), we get

sup sup|g,(x)| <C’ exp{Cf 1 +|f I) ds} < 4o
0<t<1l x€A
for some constants C’ and C.

In the sequel we will denote by || - || the supremum norm on <%0, 1]; R™)
and by ||-ll4 the supremum norm on <([0,1] X A;R™). The aim of this
section is to prove a result which describes a kind of continuity property of the
mapping

®: £([0,1];R*) - £([0,1]; €(R%,R?))
defined by ®(/e W) = ¢°. The precise statement is given below; it is an
improvement of Theorem 2.4 in [1] (see also Théoréme 4 in [10]). This is what
we call uniform Ventzell-Freidlin estimates.

THEOREM 1.1. Let f € H* and g,(x) be the solution of the ordinary differ-
ential equation (1.2) and for € > 0, let ¢f(x) be the adapted flow defined by
(1.1). Suppose that o, b and m are of class €2 with bounded partial deriva-
tives up to order 2. Fix positive reals R, A, n and a compact subset A of R?.
Then there exist e, > 0 and a > 0 such that for any & with 0 <& <¢, and
any f such that I(f) < A,

(1.3) Ple* — glla =, [VeW - || < a} < exp(—R/¢).
We prove Theorem 1.1 by means of Sobolev’s inequality. Let p be a positive

real number such that p > (d/2) V1, A a compact subset of R? and v:
A — R a continuous mapping. There exists a constant C, such that

L(lv(x)lzp +‘§2(x) )dx .

The mappings x — ¢(x) and x - g(x) are ¢'-diffeomorphisms. Conse-
quently, Sobolev’s inequality (1.4) clear], y: shows that (1.3) can be obtained by
estimates of sup,_,.; [alef(x) — g(x)I"" dx and supy_, ., [4l(@¢;(x)/dx) —

(1.4) sup|v(x)[* < C,
' x€A ’
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(8g,(x)/3x)|?? dx. Before stating precise results, we prove some technical
lemmas.

LEMMA 1.2. Let w={0=t¢t,< - - <t, =1} be a partition of [0, 1] and let
o(s, x, 0) = L} joi(x, o)1y, ., () be a family of RN X R*-valued step pro-
cesses depending on x € Rd such that o; is BRY) ® 9; measurable and let

I(x) = [lo(s,x, w)dW, for every t € [0,1]. Fix a compact set A C R, a real
number p > 1 and for every & € (0,1], a stopping time 7° bounded by 1.
Assume that J, = [,|I(x)|*" dx is ﬁnzte for any t €1[0,1] and that M =
SUPg <, <1 SUP,, SUPg - ; < r¢(uy Jalo(t, %, ®)I 2P dx < w. Then for any 1 > 0, there
exists a > 0, depending on m, M, p and n, such that for any ¢ € (0, 1], the set

{ sup £7J, > n,[lVe W Sa}

0<t<7®

is empty.

Proor. We first majorize |I,(x)| as follows:

<2lVewl T |oj(x,0)|.

Jjit, <t

‘/‘;'It(x)' = ‘/; j(x "’)( N Wtjm)

j=0
Consequently, on the set {IVe W|l < o} N {t < 7},

ePJ, = f|\/_I(x)| dx < 2%Pg?Pp?P-1 Y f|a'(x w)] dx

jt<t

< 22Pq2Pp2PM .
It suffices to choose a < (1/2n)(n/M)'/?P to obtain the result. O

Let S: RN x R™ > R™ X R*, B®: [0,1] Xx RN X R™ - R™, ¢ (0, 1], be
measurable functions satisfying the following conditions.

(H1). There exists a constant C, > 0 such that for any x,x' € RY and
»y €R™,
IS(x, )] < Cy(1 + Iyl),
|S(x,9) = S(x,5)| < Coly — v,
|S(x,5) = S(«',5)| < Cylyl lx — .
(H2). There exists a nonnegative function v such that i(v) = [gu(s)ds < »

and a constant C; > 0 such that for any s €[0,1], £ €(0,1], x,x’ € RY and
yy €R™,

; | B*(s,2,5)| < Cau(s)(1 + lyl),
|Bs(s,x,y) - Bs(s,x’yl)l < C3v(s)|y _yll’
| B*(s,x,y) — B*(s,2",y)| < Cyu(s)lyl lx — «'l.
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Consider a family {®;(x), ¢ € [0, 1], x € R?, & € (0, 1]} of continuous adapted
R™-valued stochastic processes and let {¥f(x),¢ € [0, 1]} denote the corre-
sponding family of solutions of the stochastic differential system

Wi (x) = V§(x) + Ve [S(07(x), () AW,
(1.5) t 0
+[OBs(s,<1>;(x),qf;(x))ds.

Fixn>1,andfor0 <k <n,set¢, =(k/n).Fort €lt,, t,,),0<k<n-—1,
let
(1.6) ®/(n,x) = bek(x) and Yf(n,x) = \Ifti(x).

Finally, set
Ve(x) = Ve ['S(@f(x), ¥i(x)) AW,
0

(1.7) Vi(n,x) = Ve ['S(®;(x), ¥i(n,x)) dW,,

Ve(n, x) = \/«;fotS(CD;(n,x),‘If:(n,x))dWs.

We at first present three technical lemmas about the approximations of
V(x) by ¥*(n,x), V¥(x) by V(n,x) and V(n,x) by V*(n, x); their proofs
depend on a result which is established in the Appendix.

LeEmMA 1.3. Let A be a compact subset of R? and p > 1 a real number. For
any ¢ € (0,1], let v° be a stopping time bounded by 1 such that

M= sup sup sup f|\lff(x)|2p dx < =,
0<e<l w O0<t<r® A

Then for any R, A, 8 > 0, there exists an integer n, depending on M, R and 8,

such that for any n > n, ¢ € (0, 1] and v with i(v) < A,

2p R

(1.8) P{ sup fl‘Iff(x) ~¥f(n,x)|" dx > 8) <exp il B

cJA

O<t<rt

Proor. For t € [¢,,t,.,), set V>*(x) = \/s_ftiS(CD:(x), Vi(x)) dW,; then

W5 (x) = Wi(n,x)| =|Vior(x) + ['Be(s, ®(x), ¥ (x)) ds

<[Ver(x)] + Cq [ v(s)(L+]¥:(x)]) ds.

Holder’s inequality applied to the finite measure v(s) ds yields that
’ & ( € 2 ’
|\I’,I(x) = ¥i(n,x)[*

< C{lvf’k(x)lzp + (ftv(s)ds) ’ + ftv(‘s) ds) g ft|\lfj(x)|2pv(s) ds}.
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ThuS, fOI‘ t < ’TE, tk < t < tk+1’

[ () —w:(n,x)l”dxSc{flw’kml“"”dx+
A A

[o(s) ds)2p}.

Since v € L'([0, 1]), there exists n, such that for n > n, and for all % =
0,1,...,n—1,

: é 1/2p
[kﬂv(s)dss (%) .

ty

Therefore, if &' = (§/2C),

P{ sup f | W (x) — ¥f(n,x) | dx > 6}

L AT <E<tp  ATE
< P{ sup f |Verk(x) [ da > 6'}.
L ATE<E<t,  AT®
Apply Lemma 5.1 (in the Appendix) to the process Y,(x) = V= *(x), u = t,, and
the stopping time
7= inf{t >t,: f |Verk(x) [ dx > a'} Atyos ATE.
A

Then, using the lemma’s notation, T = 1/n, Y = §'. Furthermore, for t, <t
<7,
1/p

([ es @i, v as) < oot + [ jwscat s

< Ce(1+M)? = C's.

Hence M = C’¢ and the inequality (5.2) implies that if n, is such that
8 — (C'/ny)§"P~V/PC, > (8'/2) for n > n,,

P{ sup f lVf’k(x)|2P dx > 8’}

AT <t<tp AT VA

(5/ _ (Cr/n)al(P—l)/PC48)2
2018/(217 - 1)/1’C'4,3

< exp(—n
Thus for n > n, Vv n,,

P{ sup fl\lff(x) —W(n,x)|? dx > 6}
eJa

0<t=<rt

< Z_:IP{ sup - Ll‘lff(x) — W (n,x) [ dx > 6}

n
k=0 L ATE<E<tp 1 AT®

511/17 )

<n exp(—n 8C'Coe
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Let ng > n, V ny be such that

n08’1/p
8C'C, > sup(1l,logn, + R).
Then for n > n, and ¢ € (0, 1],
5/1/17
elogn —n8C’C4 < —-R,

which concludes the proof. O

The next lemma compares V;°(x) and V#(n, x).

LEMMA 1.4. Let A be a compact subset of R%, p > 1 a real number and
{r%,0 < & < 1} a family of stopping times bounded by 1. For any n > 0, R > 0,
there exists 8 > 0 independent of n such that for every n > 1 and every
e €(0,1],

P{ sup [ [Ve(x) = Vi(n, x) [P di > o,

O<t<7e"A

(1.9) sup [ |Wi(x) — i (n,x)[* dx < a}

O<t<r®
R
< exp(— — .

&€

Proor. Apply Lemma 5.1 to the Ité process
Y,(x) = Ve(x) - Vi(n, x)

= Ve [18(21(x), ¥(x)) = S(¥i(x), ¥e(n, x))] dW,,
u = 0, and the stopping; time

= inf{t > 0: f |VE(x) = VeE(n, x) | dx > 'n}
A

ATEA inf{t > 0: f | (x) — \Iff(n,x)|217 dx > 8}.
A

Then we may choose T = 1, Y = 7. Furthermore, the Lipschitz property of S
implies that if 0 < ¢ < 7/,

L|S(q>:(x),q};(x)) — S(®¢(x), ¥ (n,x))|” dx

< C%"fAI\P:(x) — W (n,x) | dx < Cb.
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Therefore, we may set M® = &(C8)'/P and if & is such that = —
Cyn®~V/P(C8)V/P > 7 /2, the inequality (5.2) yields that

P{ sup fA|Vf(x) - Vf(n,x)|2pdx >,

O<t<r7

sup fAI‘Iff(x) — Wi(n,x)|? dx < 6}

O0<t<7®

nl/p

<exp| —————+—1.

Pl 7 8Cy(co) s
Suppose furthermore that

n

0 ————;

(8C,R)"C

then for every & € (0, 1], the exponential inequality (1.9) is obtained. O
The following lemma provides an approximation of V(n, x) by V:(n, x).

LeEmMMA 1.5. Let A be a compact subset of R%, p > 1 a real number and
{r%,0 < & < 1} a family of stopping times bounded by 1 such that

M= sup sup sup f|‘l’;‘(x)|2p dx < .
A

0<e<l o O0<t<t®

Then for any n > 0,0 <8 < 1and R > 0, there exists y > 0 independent of n,
such that for every n > 1 and every & € (0, 1],

P{ sup_ [ |Vi(n, ) = Vi(n, )" de 2,

O<t<7®

(1.10) sup j | W (%) — ¥(n,x)|? dx < 5,
YA

O<t<r®

R
sup sup|®f(x) — ®f(n,x)| < y} < exp(—:).

O<t<7®*x€A

Proor. Apply again Lemma 5.1 to the Itd process

C Y(x) = V(n,x) - Ve(n, x)

= VEfot[S(cbs(x),qf:(n,x)) —8(®;(n,x),¥:(n,x))] dW,,
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u = 0 and the stopping time

. ~ 2p
T =7A 1nf{t = 0: f lVf(n,x) - Vf(n,x)l dx > 77}
A
A inf{t > 0: f | W (%) — ¥ (n,x) [ dx > 6}
A

A inf{t > 0: sup | P (x) — ®f(n,x)| = y}.
x€A
Then we may choose T' = 1, Y = n. Furthermore, if s < 7/,

/‘;|S(<I>j(x),‘lfj(n,x)) - S(@j(n,x),\lf:(n,x))|2p dx

<Cr fA |D(x) — ®(n, %) || ¥E(n, x)|* dx

< Cy*(M +38) = (C'y)*,

so that we may choose M® =¢g(C'y)%. Let y >0 be such that n —
n®?~V/PC(C'y)? = n/2; then (5.2) yields that

P{ sup [ |Ve(n,x) = Ve(n,x) [ dx > m,
A

0<t<rt®

sup [ [¥(x) = Wi (n,2) [ dx < 5,

O<t<rt
nl/p
sup sup|®;(x) — ®(n,x S‘y} <exp|———|.
Osts-rfxeAl H(%) i ) 8048(0'7)2
If furthermore we require that

) ,,71/17
S 5,
8C,(C)’R

the inequality (1.10) is fulfilled for any ¢ € (0, 1] and any integer n > 1. O

Y

Theorem 1.1 is a straightforward consequence of the estimates given in the
next two propositions and of Sobolev’s inequality. In the sequel, p denotes a
real number such that p > (d/2) v 1.

PROPOSITION 1.6. Assume that f € H* and o, b and m are of class €*
with bounded partial derivatives. Let ¢;(x) be the solution of (1.1) and g,(x)
the solution of (1.2). Then given any positive reals R, A, n and any compact
subset A of R%, there exist « > 0 and &, > 0 such that for every ¢ € (0, £,] and
f'e H* with I(f) < A,

(1.11) P{“fAlqof(x) — (%) dx B

217‘,||1/;W—f|| <a} sexp(—R).
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Proor. We will follow along the ideas of the proof of Theorem 4 in [10].
For any ¢ > 0, denote by P° the probability on Q defined by

dpP¢

1 1, 1 1.,
(1.12) Le— d—P- —exp(v-;-./;fdes~ 5‘;4])2] ds)

Then, by Girsanov’s theorem, the process W7 = W, — (1/ Ve ) f, is a Brownian
motion on (Q, &, P¢) and

eilx) =% + Ve [(o(pi(x)) dW:

+['[e(es(2)) + em(i(x)) + o(i(x) /] ds.

Let A° = {[|/,lof(x) — g,(x)I*" dx|| = n,IVe W — fll < a}. Then by Schwarz’s
inequality,

1/2
P(A) = [1,L;"dP* < (PS(AE)fL;?' dps) .
The factor [L_ % dP® is bounded by exp(C/¢) for some constant C. Indeed,

e . e 2 1. l 1.
JL;2dpe = EP [exp(——e—/(;fdes+ eflffds)]

10X
el ) ol 2]
Let {¢5(x), ¢ € [0, 1]} be the solution of the stochastic differential system

vi(x) = x + Ve [(o(vi(x)) AW,
(1.13) | 0
+ft[b(¢//§(x)) +em(yi(x)) + o (4(x)) f,] ds.

Then (1.13) is a particular case of (1.5) with N = m = d, ®;(x) = 0, ¥5(x) = x,
S(x,y) =a(y) and B®(s,x,y) = b(y) + em(y) + a(y)f The assumptions
(H1) and (H2) are clearly satisfied with v(s) =1+ If |. Therefore, i(v) <
1+ V2 if fe H* is such that I(f) <A. The estimate (1.11) on P(A®)
reduces to checking that for any R, A,n > 0, there exists @ > 0 and &, > 0
such that for every ¢ € (0,¢,] and f € "H* with I(f) <A,

R
(1.14) P{ fA|¢;(x) —g(x)|? dx|| = n, Ve W] < a‘} < exp(— ‘5)'

Let T° = inf{t > 0: [,|y5(x) — g{x)I*” dx > n} A 1. Notice that the left-hand
side of (1.14) is equal to

P s [ 1) — () ds 2 0, W] <o

0<t<T®
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Following the notation introduced in (1.7), we set V:(x) = Ve [(o(4(x)) AW,.
Then

e (=) = g(x)| <[ VE@)| + [elm(ve())] ds

+ [11e(2() = b(a ()] +lo (i) — (e () 1] ds.

The Lipschitz and growth conditions on b, o and m together with |lglla <
yield that

lwe(x) — g(x)| <|Vi(x)| + C /O lue(x) - go(x)|[1 + If.]] ds + Ce.

By Gronwall’s lemma we conclude that for I(F) <A,

92(e) 80| = [V ()| + Celempc (1 + 1) o5

< C|Ve(x)| + €C.

Set C° = {supg -, < 7 Jal VZ()I?P dx = 1, Ve W1 < o).

Due to the inequality (1.15), the proof of (1.14) reduces to showing that for
any R, A,n > 0 and &, € (0, 1], there exists a > 0 such that for any ¢ € (0, &,]
and fe H* with I(f) <A,

(1.15)

(1.16) P(C?) sexp(—g).

Fix n > 1 and for 0 < k < n, set ¢, = (k/n). Recall that ¢;(n, x) = §;(x) if
t € [ty, by, ) and Vi(n, x) = Ve [(o(yi(n, x)) dW,. Then we have the following
decomposition:

C°cCiuCiuCi,

where

Ci = { sup'fAIVf(n,x)lzpdxz L vewl <a},

2p ?
0<t<T* 2%r

C;={ o LIW(x)—Vﬂn,x)l“’dezl

2 b
0<t<T* 2°r

sup [ |4 (x) = wi(n, %) dx < 3},

0<t<T®

Cs = { sup [ (%) = gi(n,x) [ dx > a},
0<t<T* A

with 8 > 0 and n > 1 arbitrary.
Lemma 1.4 allows us to choose 8 independently of n and i(v) such that for
e € (0,1], P(CE) < exp(—R/e). On the other hand, if ¢ < T°¢, [,[y5(x)*” dx <
Cln + (llgll 4)?], which is bounded by a constant depending only on 7, A, p, A



LARGE DEVIATIONS FOR ANTICIPATING SDE 1913

and the Lipschitz coefficients. Thus Lemma 1.3 yields the existence of ny,
depending on §, A and R, such that for every n > n,, ¢ €(0,1] and f< H*
with I(f) <A, P(C$) < exp(—R /¢).

Finally, Lemma 1.2 yields the existence of & > 0, depending on n,, such
that Cf = & for n = n,. Thus for this choice of a, given any ¢ € (0, g0l € (0,1]
and f € H* such that I(f) < A, we have '

’

R
P(C®) < 2exp(— ——-) < exp(— —) if R" < R — log2.
€ €
This completes the proof of the proposition. O

The derivative Vo®(x) = {(8/9x)p:(x), t € [0, 1]} satisfies the stochastic dif-
ferential system on R%*<:

Vei(x) = Id + Ve ['0'(¢5(x))Ves(x) AW,
(1.17) o
+f0 [em/(es(x)) + b'(p2(x))] Vei(x) ds.

The derivative h(x) = {(8/dx)g,(x), t € [0, 1]} is also clearly a solution of the
(ordinary) differential system on R?*¢:

t .
(1.18) h(x)=1d + /;[b’(gs(x))hs(x) + a'(gs(x))hs(x)fs] ds.
Since o’ and &' are bounded, Gronwall’s lemma implies that for every compact

subset A of R?,

(1.19) sup |Alla < +oo.
f:I(Fr=<a

The next result is the analogue of Proposition 1.6 for Ve®.

PRrROPOSITION 1.7. Assume that the assumptions of Theorem 1.1 are satis-
fied. Then for any positive numbers R, A and n and any compact subset A of
RY, there exists ¢, > 0 and a > 0 such that for any ¢ € (0,¢,] and f € H*
with I(f) < A,

(120) P{|[ 196i(x) = b () | 2 m, IV W - £ <al < o~ 2

Proor. Let {{f(x),¢ € [0, 1]} denote the solution of the stochastic differen-
tial system on R¢*¢:

[(x) = 1 + Ve [(o'(4e(x))85(x) AW,
(1.21) t 0 g
+ fo [B/(v2(%))22(x) + em! (we(2))L2(x) + o' (5(x))L5(x) f.] ds.

Then (1.21) is a particular case of (1.5) with N = d, m = d?, S(x,y) = o’(x)y,
B(s,x,y) = b'(x)y + em/(x)y + o'(x)yf,, ¥F(x) = {(x) and ®(x) = yf(x).
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The conditions (H1) and (H2) are obviously satisfied with v(s) = 1 + |f,]. Let
P* denote the probability on Q defined by (1.12), and set W5 = W, — (1/ Ve ) f..
By Girsanov’s theorem the law of (W, °(x), {*(x)) under P is the same as the
law of (W¢, ¢*(x), Vo©(x)) under P¢. Therefore using the argument of the proof
of Proposition 1.6, it suffices to show that for any R, A, n > 0, there exists
g0 > 0 and & > 0 such that for any ¢ € (0, ¢,] and fer with I(f) <A,

R
22 B[ [ |2) ~ b s 2 0 oWl <} < exp( - )
A
Let S¢ = inf{t > 0: [,¢7(x) — h(x)I*” dx > m} A 1. Notice that

- {”/A|g;(x) — k(%) dx|| = 0, Ve W] < a}

={ sup_ [ 145(x) = () dz = m, ||fw||<a}

0<t<S*
and that if ¢ < S¢, using (1.19), [,I£:(x)I*? dx < 222~ [ + |Al(IR]l4)?P] < C.

Set, according to (1.7), VA(x) = \/_f(fo'(l,lfﬁ(x)){e(x)dW
By definition,

|2£(x) = hy(x)]
<[Ve@)| + [lo'(9(2))ei(x) = o' (8(x)) (@)l ds

+ LB ()2 (2) = B(g(@)h(@)] + el m (vi(2)z(x) |} ds

<|Ve@)] + [{le @ @)lIEE) ~ (@I

+]o' (W (x)) — o' (8,(x))|| 2 o(2) [Ifs)
+] b (e (x))[1£2(x) = By(x)] +]0(wi(x)) — ' (8,(x))|| hs(x)]
+e m/ (Ye(x)) || ho(2)] + el m/(9E(2)) |65 (x) = hy(2) [} ds.

Since the partial derivatives of o, & and m are bounded and Lipschitz
functions, we have that

6) ()] = O [V @)+ [1ei) = b1 + 1) ds
# [0 - g (1 + D) ds + e
Therefore, Gronwall’s lemma yields that for I(f) < A,

|65 (%) — hy(x)] < C[|W(x)| + /Otw;(x) —&(x)|(1 + If)l) ds + e].

This inequality implies that there exists ¢, € (0, 1] and ' which depends on 7,
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p and A, such that for any £ € (0,¢,] and f € H* such that I(f) < A,

P(D) <P{ sup (/]Vf(x)lz"dx+f|¢t(x) — g/(2)[*" dx )>n',

0<t<S*¢
Wewl < }

By the proof of Proposition 1.6 (see 1.14), there exists ¢ € (0,1] and a, > 0
such that for any ¢ € (0, e,] and fe H* with I(f) < A,

P{ sup f|!/ft(x) _gt(x)l2pdx> Y ”‘/_W” <a2} <eXp(_£)

0<t<S
Therefore, the proof of the estimate (1.22) on P(D?) reduces to showing the
following: Given 7', A, R > 0, there exist a3 > 0 and &; € (0, 1] such that for
every ¢ € (0,¢5]and f € H* with I(f) < 2, if

17[
Fe={ sup Vi(x x> —
{0<t<S '[l ( )I 2’

sup [ [vi(x) - g (0[P dx < L IVewl <aa}’

0<t<S*
then

(1.28) P(F~®) Sexp(—g).

Indeed (1.22) will hold for e, = &; A g5 A g5 and @ = a, A aj.

We now prove (1.23). In the sequel we write a instead of a; and 7 instead
of 7'/2. Forevery n > 1and 0 < k < n, set ¢, = k/n. Following the notations
stated in (1.6), for 0 <k <n — 1 and ¢ € [¢,,¢,,,), set §/(n,x) = ¢;(x) and

F(n,x) = {f(x). Also let Vi*(n, x) = Ve [Eo' WE(x)E(n, x) AW, and Vi(n, x) =
Ve [Ea'(Yi(n, x)){(n, x) AW,. As in the proof of Proposition 1.6, set

Te = inf{t > 0: [ |gf(x) — g(x)[* dx > n} Al
A

Then for ¢ < T¢, [4|yf(x)I?? dx < Cln + (llgll4)?"] < o.
Fix y > 0; Lemma 1.3 yields the existence of an integer N, > 1 such that
for n > N,, £ € (0,11 and f e H* with I(f) <,

P{ sup /|¢t(x)—:1f,(n o) dx>y} <exP(_§)

0<t<Te®

Furthermore, Proposition 1.6 yields the existence of &5 € (0,1] and a, > 0
’ such that for every ¢ € (0,¢5] and f € H* with I(f) <A,

R
P{Te < 1,|Ve Wl < e} < exp(—:).
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Therefore, for any n > N,, ¢ € (0, 5] and I(f) < A,

R
[ #(x) = gi(n,0) [ dx| =, Ve W < a4} < 2exp(— ‘;)'

Lemma 1.3 also yields the existence of an integer N, such that for every
n>N, I(f) <2,

(1.24) P{

2p R
(1.25)  P{ sup f]{t(x)—gt(n x)|*dx >y} <exp|——

0<t<S* &
Since 2p > d and {f — {f(n, x) = (3/9x)¢f(x) — ¢ (n, x)], Sobolev’s inequal-
ity implies the existence of a constant C, such that

sup sup|yf(x) — ¥f(n,x)| < Cp{oszlps fAI«lff(x) — y(n, x)|* dx
<t<S8°®

0<t<S¢xe€A

+ sup f]{,(x) — (n,x) [ dx

0<t<8S*®

Hence from (1.24) and (1.25), there exists a constant ¥, which only depends on
y and p, such that for n > N, V N, ¢ € (0,¢;] and f € H* with I(f) <,

}(1/2p)

R
(126) P{ sup supll/’ts(x) - ‘l/ts(n’x)l > ‘7’ ”\/;W” <C¥4} < 3exp(——8—).

0<t<S°x€A
Set F° c Ff U F; U F; U Fy U F¢, with
Ff = { sup f]Ve(x) —VE(n,x) | dx > 7,

0<t<8S*

sup_ [ [61() = ¢i(n, )" ds < o),

0<t<S*®

F2E={ sup /|Vs(n x) — Vi(n, x)l dx > 7,

0<t<S*®

sup f|{t(x) —¢8(n,x)] pdx<6

0<t<S*

sup sup |ve(x) — vi(n, x)[* dx < v},

0<t<Scx€A

F,?f:{ sup f|V (n, x)| dx > 7, ”\/_W”<a3},

0<t<S°*

F;={ sup f|{t(x)—§t(n x)|de>a}

0<t<S*¢~

Fs = { sup sup|¢ft(x) —yf(n,x)| > 7, IVew | <a3}

0<t<S®x€A
where 77 depends on n and p, and §, y are arbitrary.
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Recall that R, A and 7 are fixed. By Lemma 1.4, choose § € (0, 1] such that
for every ¢ € (0,1], f€ H* and n > 1, P(F}) < exp(—R/¢). Apply Lemma
1.5 to obtain ¥ > 0 such that for every ¢ € (0,1], f€ H* and n > 1, P(F3) <
exp(—R/e). By Lemma 1.3, choose an integer N, > 1 such that for n > N,,
e €(0,1] and fe€ H* with I(f) <A, P(Ff) < exp(—R/¢). Then by (1.26),
choose e, > 0 and &5 € (0, 1] such that for every n > N, vV Ny, ¢ € (0, &5] and
fe H* with I(f) <A, P(F¢) < 3exp(—R/¢). Choose an integer n > N, V
N; V N,, and by Lemma 1.2, choose a; € (0, a,] such that F{ = &. Then for
e €(0,e5] and f e H* with I(f) < A, P(F°) < 6exp(—R/¢) < exp(—R /¢) if
R < R — log6; this concludes the proof of (1.23) and of the proposition. O

Proor oF THEOREM 1.1. Since p > d/2 V 1, Sobolev’s inequality yields the

existence of a constant C such that
9 1/2p
2
lo* = glla < | Joi(x) - e x| +] [ 190t = mu) P e
A A

Therefore the inequalities (1.11) and (1.20) in Propositions 1.6 and 1.7 yield
the estimate (1.3) and conclude the proof. O

2. Large deviation principle for the flow. This section contains an
application of the uniform Ventzell-Freidlin estimates proved in Theorem 1.1.
Our aim is to establish a large deviation principle for the family {Q°¢, £ > 0} of
probabilities on €([0, 1] X R?; R?) corresponding to the laws of the stochastic
flows

(2.1) ei(x) =x + Ve [a(oi(x)) e dW, + [b(ei(x)) ds.

First we will assume that the initial condition x in (2.1) belongs to some
arbitrary compact subset A of R? and we will prove in this case the large
deviation principle on €([0, 1] X A;R%). This result will be obtained as an
application of a general statement concerning the transfer of Ventzell-Freidlin
estimates (see Proposition 2.1).

Large deviations estimates for the flow on £([0, 1] X A; R?) are all that we
need in order to establish the large deviation principle for the anticipating
stochastic differential equation (0.2). We will deal with this problem in Sec-
tion 4.

For any integer n > 0, set A, = {x € R |x| < n}. The space £([0,1] X
R4 R9) is the projective limit of the Polish spaces €([0,1] X A, ; R?). Then we
can finally use the results for large deviations on projective limit spaces (see [2]
and [3]) to accomplish the program of this section.

Let (E;,d;), i = 1,2, be two Polish spaces and X;/: Q > E;,, ¢ > 0,i=1,2,
be two families of random variables. Assume that { X ,& > 0} satisfies a large
" deviation pr1n01ple with rate function I: E, - [0, ].

'Let F: {I < +®} > E, be a mapping such that the restriction to the
compact sets {I < a}, a € [0, ©) is continuous. For any g € E,, we set I(g) =
inf{I(f): F(f) = g}. Then we can prove the following result.
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ProrosiTiON 2.1.  Suppose that for any a, R,n > 0, there exist a > 0 and
€9 > 0 such that if f € E, satisfies I(f) < a,

R
(2.2) P{dy(X5, F(f)) 2 n,dy( X5, f) <a} sexp(—;)
for any ¢ < €. Then, the family {X§, ¢ > 0} satisfies a large deviation princi-
ple with rate function I.

Proposition 2.1 represents a synthesis of Azencott’s results (see [1]) in a
general setting well suited to our situation. A similar approach is given in [4].
Its proof relies on the two next estimates:

(i) For any a,n, 8 > 0, there exists ¢, > 0 such that if I(g) < a, then for
any ¢ < g,

(2.3) ¢ log P{d,( X5, &) <n} = —I(g) — 6.

(i) For any real a > 0, set ®(a) = {g: I(g) < a}. Then, for any @, n,8 > 0,
there exists £, > 0 such that for any ¢ < ¢, and ¢ < @,

(2.4) elog P{dy(X5,®(a)) =1} < —a + 8.

We will not provide a proof of these estimates since it follows along the same
lines as the proofs of Propositions 3.2 and 3.3 in [4].

Proposition 2.1 can be applied in the following situation: Let E; be the
space £([0, 1]; R*) with the distance d, given by the supremum norm || - ||. Set
X; = Ve W. Fix an arbitrary compact subset A or R¢ and let E, = €(0, 1] X
A;R?) endowed with the distance d,, derived from the supremum norm || - || 5.
Set X; = ¢°, the flow defined by (2.1) with x € A.

Let I(-) be the rate function corresponding to the k-dimension Wiener
process W, that is,

%follf;lzds, if fe H*,

+ oo, otherwise.

(2.5) I(f) =

For any fe H*, define F(f)=g, where g/(x) is the solution of the
ordinary ditferential equation (1.2) with x € A. Gronwall’s lemma shows the
continuity of F: H* — £([0,1] X A; R?) on the compact sets {I < a}, a € [0, =].
Therefore Theorem 1.1 combined with Proposition 2.1 proves the following
result.

PROPOSITION 2.2. Assume that the coefficients o, b and m(-) =
1yt 30,/9xX)o(-) are of class €% with bounded partial derivatives up to
the second order. Fix an arbitrary compact subset A of R?. Then, the family
{Q5, € > 0} of probabilities on €((0,1] X A;R?) corresponding to the laws of
the solutions of (2.1) with x € A satisfies a large deviation principle with rate
function I(g) = inf{I(f): F(f) = g}.
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We finally consider the general situation. Set E, = €([0, 1]; R*) as in the
preceding case, and let E, = €((0,1] X R%;R?) endowed with the metric
dy(g1, 85) = L,-127"(llg, — &slla, A 1), which defines the topology of uniform
convergence on the compact sets of [0, 1] X R¢.

The mapping F: H* - £(0, 1] X R%, R?) defined by F(f) = g, where g is
the solution of (1.2) with x € R?, is continuous on the compact sets {I < a},
a € [0, »). Furthermore, condition (2.2) of Proposition 2.1 is satisfied. Indeed,
fix n > 0andlet N > 1 be such that X, 5,,27" < n/2. Then

P{dy(¢", F(f)) 2 n,d,(VeW, f) < a}

< P{ sup sup |¢f(x) —g(x)| =n/2, sup [VeW, - f(t)| < a},
0<t<1 |x|<N 0<t<1

and the result follows by Theorem 1.1. Therefore Proposition 2.1 yields the

large deviation principle for the flow as follows.

THEOREM 2.3. Assume the hypothesis of Proposition 2.2. Then the family
{Q°, ¢ > 0} of probabilities on €([0,1] X R%; R?) given by the laws of the flows
{¢°, € > 0} obeys a large deviation principle with rate function

I(g) = inf{I(f)},

where the infimum extends to the functions f € H* such that
t .
gdx) =x+ [{o(8.(x))f, + b(8.(x))} ds.

3. Existence theorem. Let # ={0=1¢,<¢; < -+ <t, = 1} be an arbi-
trary partition of the interval [0, 1] and » be a nonnecessarily adapted process
in L%([0, 1] X Q; R*). We define the Riemann sum

. n—1 1 ™ ; ;
o E o v

The process v is said to be Stratonovich integrable if the family {S™}
converges in probability as ‘the norm || tends to zero. The limit is called the
Stratonovich integral of v and is denoted by [4v, - dW,. We refer the reader to
[8] for conditions ensuring the existence of this integral.

Let o R® > R? i=1,...,k and b: RY - R? be sufficiently smooth.
Consider the flow on R¢ defined by the adapted equations

ou(x) =2+ [‘o(p,(x))° dW; + [b(p,(x))ds
0 0 ‘
(3.1)
—x + [to'~((p (2)) AW, + [(m + b)(p,(x)) ds,
) . 0 12 S . S 0
where m(x) = 1Tk (90, /9xXx)o(x). The following theorem shows that given

an arbitrary initial condition X, the process X, = ¢,(X,) is a solution of (0.1)
in the particular case of coefficients o and b which do not depend on ¢ and w.
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Note that a general result on existence and uniqueness of the solution of (0.1)
has been established in [9] as a consequence of a generalized It6-Ventzell
formula. The result needed here is much simpler: The coefficients o and b
only depend on the state x and we do not care about uniqueness, so that we
have fewer regularity requirements. Furthermore, the initial condition X,
need not be regular (in the sense of the calculus of variations on ).

THEOREM 3.1. Let o, b and m be of class €2 with bounded partial
derivatives up to order 2. Then, for any d-dimensional random vector X, the
process X, = o(X,) satisfies the anticipating stochastic differential equation

(3.2) X, =X, + [0,(X,)edW; + [b(%,)ds.
0 0

Proor. It suffices to check that the Proposition 7.8 in [8] can be applied to
the generalized Stratonovich integral and yields that

(3.3) A (g, Xo)) AW = [ 0i(@y(%)) oW, |e—x, -

For i €(1,...,k)}, set u,t, x,w)=0(p (x)). Then the maps (¢, x,w) €
[0,1] X R% X Q - u (¢, x, w) € R? are measurable, and for every x € R the
processes {u (¢, x), ¢ € [0, 1]} are progressively measurable with respect to the
filtration {%,t € [0,1]} generated by the Brownian motion {W,,¢ € [0,1]}.
Furthermore, there exists a version of ¢,(x), solution of (3.1) such that ¢,() is
€2 for every t, ¢ is a.s. jointly continuous in (¢, x) and such that for any open
bounded subset D of R? and any p > 2,

2

—¢(x)

P
+
dx?

P p
(3.4) Eij:{lcpt(x)rD +’£¢t(x) } dtdx <

(see, e.g. [5], Chapter II, Theorems 2.2 and 3.3). The hypotheses on the
coefficients o, b and m imply the existence of a constant C; such that

k
Y |oi(x) — ai(y)] +16(x) = b(y)| —|m(x) —m(y)| < Cilx —yl,
i=1

k
T loy(x) | +[b(x)| +[m(x)| < Cy(1 + Ixl).
i=1

Consequently, for any open bounded subset D of R? and p > d, p > 4,

32

4
+ ax—zui(t, x)

14
} dtdx < .

E[Dfol{lui(t,xﬂp +\%ui<t,x)
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Moreover, by Sobolev’s inequality,

4

ad
Eui(t,x) dt < o,

1
E| su
Jy s

Therefore, assumptions (H1) to (H4) in [8], Proposition 7.8, are satisfied.
Let K be a compact subset of R?. It6’s formula implies that, if @ = oo *,

ai(edx)) = oi(x) + [Via(e,(x))af (¢,(x)) AW,
+[{Va(e(2)m + ) (4.(2))

+ %ijai(qos(x))aﬂ(gos(x))} ds.

The global Lipschitz property of o implies the existence of a constant C such
that |a(x)] < C(1 + |x|®). For every r > 2, Burkholder’s inequality and
Gronwall’s lemma yield

1 . | a "
ftelgEfo {lcpt(x)l +’5¢t(x) }dt<°°.

Since o; is of class €2 with bounded partial derivatives of order % < 2, this
implies that for any p >d, p > 2, the maps ¢t~ o(¢,(x)) and ¢t~
(3/9x)a.(¢,(x)) are continuous from [0, 1] into L?(Q) uniformly in x € K, and
hence the validity of hypothesis (H5) of Proposition 7.8 ([8]).

Given a subdivision 7 ={t, =0<¢ < -+ <t, =1} of [0,1] and given
a €[0,1], set

tf=t;+at;,—t), O0<j<n-1,

and let

kE n-1

a0 = LT [t x) — uity )] [ W, - W],

To conclude the proof of (3.3) it suffices to prove the existence of a measurable
map B: [0,1] X Q X R? - R? such that

(3.5) Ko(%) o AL, %) dt

in L%(Q), uniformly in x € K and'a € [0, 1]. This can be shown following the
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ideas of [13], page 519. Set

kE n—-1
ORI [’ V0(0.(2))0 (0(x)) ds — [ 2m(p,(x)) ds
and
kE n—1
Ti(x)= L L [7Tioi(eu(x))ot (9.(x)) ds = ().

Then we want to check

(3.6) lim sup supE(le(x)|2)=
[m—0 4e[0,1] x€K

and

(3.7 lim sup supE(|T§(x)[) =

lm| >0 4el0,1] x€K

Foranyx € K,0<s<s+d<1,

(38 B swp lo(x) ~ e ()"} = COE[ (1 +]pu(x)[)

s<t<s+4é

For any 7, T (x) = 2[Ty(x) — T (x)], where

n—1 «
HORDW) m(ey(x)) = m(e(x))} ds,

n—1
T7(x) =a L ["{m(en(x) - m(g(x))} ds
J= J
Let mw(t) = t;, if t € [¢;,¢;,); then for every a € [0, 1], using (3.8),
E(|T7(2)[") < E([ol|m(¢s(x)) - m(qo,,(s)(x))|4ds)
1 4
< CE [ Jou(x) + ¢r(*)|" ds

< Clrlsup B[ (1 +,(x)[") du
x€K

< Clml. _
A similar argument yields that E(IT4"(x)I4) < aClw|, so that

. lim sup sup E(|T7 (x) ) =
, lml=0 gel0,1] x€K

which concludes the proof of (3.6).
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Fixi=1,...,k We have

2
(3.9) lim sup supE Z [u (t5,x) — ui(tj’x)”WziH _ Wti] - 0.
7m0 4e[0,1] x€K | j—0 ! !
Indeed, by Schwarz’s inequality and the estimate given in (3.8), it follows that

2

(t5, %) —u(t;, %)| [ Wi, - W]

R

ne1l . 1/2 172
< C( .ZOEI‘Pt;‘(x) - (Ptj(x)| ) ( X (tjs1— t7)2)
j=

< Clarl,

and therefore we obtain (3.9).
Consequently, the proof of (3.7) reduces to showing that, for every i =

1,...,k,

/ V0 (0s(2))ai (p,(%)) ds

Jj=0

sup sup E
x€K acl0,1]

(3.10)

2

n—1
- 'ZO [wi(tg, 2) = wi(t;, x)] [ Wi — W]
j=
as |7 — 0. We have

T ([t ) - ity )] [ - W)

~ B[t %) - wi(t, )] [ W5 - W)

B E{:g([“i(t}”’x) — uy(t;, )] [ Wi - W]
([u (t5,x) ui(tj’x)][W;; - W‘;]))z}

<4 Z E([u (¢5,x) ui(tj’x)]z[Wt? - Wtj]z)

< Clﬂ'l,
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therefore,
(3.11) A, -0

as |w| = 0, uniformly in x € K and «a € [0, 1].
On the other hand,

n—1 «
B~ B||'T | ["Wae0)ol(o.(2) ds
—EZ;([ui(tj‘,x) - ui(tj,x)][ = Wtj])) }
n—1 a
-E T |["Vale,(=)ai (¢,(x)) ds

2

—E%([ui(tj‘,x) - ui(tj’x)][WJi - W’;])

n—1 2
Y E
j=0

J

+ T B([n) - e [ - Wtf]z)},

<2

ft%;tvszi(qos(x))ai’((ps(x)) ds

and, by Schwarz’s inequality,

n—1 2 n—1 a
Y E <CY (¢~ tj)Eftt’(l +]o,(2)[°) ds
Jj=0 Jj=0 i

[7Wii(pi(2))o (0,(x)) ds

< ClnlE [O (1 +eu (%)) ds

< Clml.
Hence
(3.12) B,—0

as |7| = 0, uniformly in x € K and « € [0, 1]. The convergences (3.11) and
(8.12) yield (3.10). Consequently we obtain (3.7) and this concludes the proof of
(3.3). O

4. Large deviations for Ocone-Pardoux’s anticipating stochastic
differential equations. This section deals with the problem which moti-
vated the paper. We prove a large deviation principle for the family {X*, ¢ > 0}
' of processes giving the solution of the anticipating stochastic differential
equations (0.2). We will assume that the hypotheses of Theorem 3.1 are
satisfied. Therefore X; = ¢f(X¢§), where ¢° is the stochastic flow defined by
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1.1D.

Let us first quote some well-known results on small perturbations of
dynamical systems (see for instance [1]). We consider the d X k matrix o(x) of
the vector fields o;(x) and the quadratic form defined on R¢ by

Q.(v) = (v, o (x)o(x)"v).
Then the dual quadratic form is defined for v € R? by
Q*(v) = inf{lw* w € R*, o(x)w = v}.
Notice that if a(x) = o(x)o(x)* is invertible, then @*(v) = (v, a(x)~'v).
Fix x, € R?. The family {¢°(x,), ¢ > 0} of processes giving the solution of

(1.1) with x = x, satisfies a large deviation principle with rate function I )
given by

: d
+ o, ifg&H;,

(41) M=\ rarla - ve))a, tgen

(see Théoréme 2.13, Chapter III, in [1] and Théoréme 7 in [10]). An alternative
expression for I(-) is as follows:

(42) I(g) = inf{I(f): fe H* g = F,(f)},

where F, (f) denotes the solution of the ordinary differential equation 1.2)
with 1n1t1al condition x = x, and I is defined by (2.5). If I(g) is finite, the
infimum in (4.2) is attained. We now state the fundamental result of this
section.

THEOREM 4.1. Let o, b and m be of class €2 with bounded partial
derivatives up to order 2. Moreover, suppose that there exists x, € R such
that for any 6 > 0,

(4.3) lim supe log P{| X§ — xo| > 8} = —

g—>0 -
Then the family {P¢, & > 0} of laws of {X? = ¢%(X{), e > 0} satisfies a large
deviation principle with rate function I given by (4.1).

In other words, under hypothesis (4.3), the perturbed anticipating dynami-
cal system (0.2) satisfies the same large deviation principle as the adapted
family {¢*(x,), ¢ > 0}. Consequently we have the following estimates: For any
open set G and any closed set F of the space €([0, 1]; R%),

(4.4) hmlglfe log P¢(G) > —inf{I(g); g € G}
.and |
(4.5) limsupe log P*(F) < —inf{I(g); g € F},

e—>0 '

with I defined by (4.1).
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ProoFr oF THEOREM 4.1. We first prove the lower bound stated in (4.4). Let
G be an open subset of ([0, 1]; R?) and suppose that there exists g € G such
that I(g) < +«. Notice that, by the definition of I we should have 8o = Xo-
For this reason we will write g(x,) instead of g. Let > 0 be such that the
ball

B,(2) = (¢ & €([0,1L,R): llp - gll < n)

is included in G. Denote by f an element of H* such that g(x,) = F,(f)and
I(g) = I(f). For this f< H*, let g.(x) be the solution of (1.2). The L1psch1tz
property of o and & together with Gronwall’s lemma implies that

(4.6) sup sup |g(x) —g(%o)| < Bexp{Cf 1+ If) ds}
t |x—xyl<8
Given 1 > 0 we choose & > 0 such that

n
sup sup |g,(x) - &(x0)| < 5.

t |x—xol<é

Then
P(G) = Ple*(X5) € G} = P{|l¢°(X5) — g(x0)| <}
> P{o*(X5) ~ g(xo)| <, | X5 — o] < 5)

{
(a7 =P{swp sup [gi(x) - gix0)] <m|X5 - %] <5}

t |x—xyl<d

n

> P{sup sup |@f(x) — g(x)] < ——} - P{| X5 — x4| > 8}.
t Jx—xol<d

The large deviation estimates for the flow ¢ given in Proposition 2.2 yield

limiélfs log P{sup sup |ef(x) — g(x)] < —}

t lx xol<8

v

—inf{f(h): g(x) =x + f()ta(gs(x))fzs ds + fotb(gs(x))ds}

_i( f)= —I(g(xo)).

Since g(x,) := g is an arbitrary function of G verifying I(g) < «, this last
minoration, together with the inequality (4.7) and hypothesis (4.3), provides
the desired lower bound.

Let us now establish the upper bound (4.5). Fix a closed set F in €((0, 1]; R%)
and set A(F) = inf{I(g), g € F}. If A(F) = 0, then (4.5) is obvious. So, we
may assume that there exists a > 0 such that a < A(F).

Let 6 > 0 be a real number that will be fixed later and B,(x,) the ball in R¢
centered at x, with radius 6. We denote by I’ the rate function of the flow
{¢°, € > 0} on €([0, 1] X B;(x,); R?) (see Proposition 2.2).

v
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Consider the compact subsets K, = {g: I'(g) <a}, K, = {¢: I(¢) < a} of
£([0, 1] X Bs(x,); R?) and €([0, 1]; R?), respectively.
Let R denote the restriction map defined by

R:{g:I'(g) <} » {¢: I(¢) <},

(Rg), = g(t, xy). The definitions of I and I’ clearly show that I(R(g)) < I'(g),
so that R(K,) Cc K,,.
For any n > 0, ¢ € €([0,1];R%), g € €([0, 1] X B,(x,); R?), set

U,(¢) = {¢ € €([0,1];R?): Iy — oll < n}
and »
V,(g) = {h € £([0,1] X B5(xo); R%): I — gllpyxe) < M}

Since K, N F =, for any ¢ € K, there exists 7, > 0 such that Unw(ﬁ") N
F=0.

Let g € K|, and g(x,) = R(g). The sets V(1/2>ng(x0,(g)’ g € K., give an open
covering of the compact set K. Let V,, ,(g"), g' €K,,i=1,...,r, denote a
finite subcovering, where n; =, ,- Set U = U_,U, (g'(x,)). We have U N

F=0.
As in the preceding step, we can choose § > 0 such that
; ; N
(4.8) sup sup [g(x) —gi(xo)| <

b lx—xpl<d
forany i = 1,...,r. Then
P(F) = Pl¢*(X;) € F)
< P{e°(X5) € F, | X5 — x,| < 8} + P{| X5 — x,| > 6}
and
P(p(X5) € F, | X5 — x| <8} < Po*(Xg) € US| Xg - x| < )
< Ple* € V°},

where V= UJl_ 1V(m/2)(gi). Since V° is a closed subset of £/([0, 1] X B;(x,); R?),
the large deviation estimates for the flow yield
(4.9) lim supe log P{¢° € V°} < — inf I(g).

e—0 geve

But V¢ c (K)); consequently the right-hand side of (4.9) is bounded by —a.
From this property and hypothesis (4.3), we deduce that, for any a < A(F),
lim supe log P°(F) < —a.
e—0

This yields (4.5) and concludes the proof of the theorem. O

ReMaArk. Using a recent result proved by the authors on composition of
large deviation principles, hypothesis (4.3) of Theorem 4.1 can be replaced by a
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more general statement concerning the validity of a large deviation principle
for the family {X§, ¢ > 0}. More precisely we have the following result:

THEOREM 4.2 (Proposition 3.1 of [7]). Let {X§, ¢ > 0} be a family of R%val-
ued random variables verifying the following condition: (i) There exists a
mapping {: H* — R% such that its restriction to the compact sets {I < a},
a € [0, ), is continuous, and the pair (Ve W, X5) satisfies a large deviation
principle on €,((0, 1]; R*) X R with rate function

_I(F), I(f) <wandg={(f),
L(f.8) {+oo otherwise.

Then {X*® = ¢°(X§), e > 0} also satisfies a large deviation principle with rate
function

I(g) = inf{I(f): F(f)(¢(F)) = &)
for any g € €(0, 1]; R9).

APPENDIX
In this section we establish a technical result which is an application of a
well-known inequality for Itd processes (see [11]).

LEMMA 5.1, Let (W, = (W2,...,W}), t €[0,1]} be the standard k-dimen-
sional Wiener process, p > 1 a real number and A a compact subset of RY. Fix
u € [0, 1] and consider a family {Y (x),t € [u, 1]} of N-dimensional It6 pro-
cesses indexed by x € A, say

(5.1) Yy(x) = [‘o,(s,x,0) AW,
u
where o/(s, x, w) are measurable in (s, x, w) and such that Z, = L4l Y, ()% dx
< o for every t € [u,1]. Let v be a stopping time, u < v < 1 such that there
exists Y € [0, ») with
2p
sup{f |Y,(x)|[" dx; (¢, 0):u<t< T(w)} <Y<,
A

and let sup{r(w) — u: w € Q) < T < 1. Assume that there exist a finite con-
stant MV such that

Sup{(fAle(S,x,w)lzp dx)l/p;(t,w): us<ts< ‘T(w)} < M‘l).

Then there exists a constant C, which only depends on p, k and N, such that
for every n > C,TY®~ /PO

| (5.2) P{ sup Z, > n} < e)'(p

u<t<rt

[ - C4TY(P‘1>/PM(1)]2
T 2c4Ty(2p—1)/pM(1)
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ProoF. Itd’s formula applied to f(x) = |x[*” yields that

N
V()7 = T [2pl¥(x) 7V (x)oi (s, %, 0) AW

i=17u

N
[T P ()7 et (5,7, 0)
uli=1

N
+ Y 2p(p - DYi(2)Y{(x)|Yo(x) [ *a® (s, %, 0) ) ds,
i,j=1

where a = c*o. Then Fubini’s theorem clearly implies that {Z,,¢ € [u, 1]} is
an It6 process. More precisely,

z,- [‘Cy(s) aW! + ['D(s) ds,
where

N
C(s) = 2p[ [¥,(0)[" " L ¥i(x)oi(s,,0) d,
i=1

N . .
p Y ati(s,x, )
i=1

D(s) = fA{leu)lz”‘z

N
+Y,(x)[* *2p(p - 1) L mx)nf‘(x)ai’f(s,x,w)}dx'

i,j=1
Set
k
v = sup{ Y Cl(s)z(w);(s,w): u<s< T(w)},
=1
8 = sup{|D(s)(®)|; (s, w): u <s < 7(w)}.
Then Lemma 2.19 in Stroock [11] yields that for n > Té > 0,

(n — T8)*
P| sup Z, > <exp|———5|-
(ustzf ! n) p( 2T7

We have

N , 1/2
< ( Y loi(s, x, )] ) |Y,(%)],

i=1

N . .
PRACTIOED

and Hélder’s inequality yields that for u < s < 7(w),

\@p-D/p k

ky 2 2 2p
Sl 1

< C(p,k, N)YCP- /PO,

P 1/p
dx)

N 2
(0';(8, X, ))
1
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Similarly, for u < s < 7(w),

P 1/p

dx

(

)(p -1/p

N
g‘,a‘ ‘(s,%,w)

D(5)| Sp(fAm(x)dex

(p-1/p

+2p(p - D [ |70 d

N

“{[] Z (s, .00
Ali, j=1

< C(p,N)Y(p_l)/pM(l).

Therefore, the estimate (5.2) holds for C, = sup{C(p, k, N),C(p, N)}. O
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