
www.imstat.org/aihp

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
2010, Vol. 46, No. 4, 1055–1079
DOI: 10.1214/09-AIHP342
© Association des Publications de l’Institut Henri Poincaré, 2010

Central and non-central limit theorems for weighted power
variations of fractional Brownian motion

Ivan Nourdina, David Nualartb,1 and Ciprian A. Tudorc

aLaboratoire de Probabilités et Modèles Aléatoires, Université Pierre et Marie Curie, Boîte courrier 188, 4 Place Jussieu, 75252 Paris Cedex 5,
France. E-mail: ivan.nourdin@upmc.fr

bDepartment of Mathematics, University of Kansas, 405 Snow Hall, Lawrence, KS 66045-2142, USA. E-mail: nualart@math.ku.edu
cSAMOS/MATISSE, Centre d’Économie de La Sorbonne, Université de Panthéon-Sorbonne Paris 1, 90 rue de Tolbiac, 75634 Paris Cedex 13,

France. E-mail: tudor@univ-paris1.fr

Received 4 December 2008; revised 15 August 2009; accepted 18 September 2009

Abstract. In this paper, we prove some central and non-central limit theorems for renormalized weighted power variations of
order q ≥ 2 of the fractional Brownian motion with Hurst parameter H ∈ (0,1), where q is an integer. The central limit holds for
1

2q
< H ≤ 1− 1

2q
, the limit being a conditionally Gaussian distribution. If H < 1

2q
we show the convergence in L2 to a limit which

only depends on the fractional Brownian motion, and if H > 1 − 1
2q

we show the convergence in L2 to a stochastic integral with
respect to the Hermite process of order q.

Résumé. Dans ce papier, nous prouvons des théorèmes de la limite centrale et non-centrale pour les variations à poids d’ordre q

du mouvement brownien fractionnaire d’indice H ∈ (0,1), pour q un entier supérieur ou égal à 2. Il y a trois cas, suivant la position
de H par rapport à 1

2q
et 1 − 1

2q
. Si 1

2q
< H ≤ 1 − 1

2q
, nous montrons un théorème de la limite centrale vers une variable aléatoire

de loi conditionnellement gaussienne. Si H < 1
2q

, nous montrons la convergence dans L2 vers une limite qui dépend seulement

du mouvement brownien fractionnaire. Si H > 1 − 1
2q

, nous montrons la convergence dans L2 vers une intégrale stochastique par
rapport au processus d’Hermite d’ordre q.

MSC: 60F05; 60H05; 60G15; 60H07
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1. Introduction

The study of single path behavior of stochastic processes is often based on the study of their power variations, and
there exists a very extensive literature on the subject. Recall that, a real q > 0 being given, the q-power variation of
a stochastic process X, with respect to a subdivision πn = {0 = tn,0 < tn,1 < · · · < tn,κ(n) = 1} of [0,1], is defined to
be the sum

κ(n)∑
k=1

|Xtn,k
− Xtn,k−1 |q .
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For simplicity, consider from now on the case where tn,k = k2−n for n ∈ {1,2,3, . . .} and k ∈ {0, . . . ,2n}. In the
present paper we wish to point out some interesting phenomena when X = B is a fractional Brownian motion of
Hurst index H ∈ (0,1), and when q ≥ 2 is an integer. In fact, we will also drop the absolute value (when q is odd)
and we will introduce some weights. More precisely, we will consider

2n∑
k=1

f (B(k−1)2−n)(�Bk2−n)q, q ∈ {2,3,4, . . .}, (1.1)

where the function f : R → R is assumed to be smooth enough and where �Bk2−n denotes, here and in all the paper,
the increment Bk2−n − B(k−1)2−n .

The analysis of the asymptotic behavior of quantities of type (1.1) is motivated, for instance, by the study of the
exact rates of convergence of some approximation schemes of scalar stochastic differential equations driven by B

(see [7,12] and [13]) besides, of course, the traditional applications of quadratic variations to parameter estimation
problems.

Now, let us recall some known results concerning q-power variations (for q = 2,3,4, . . .), which are today more
or less classical. First, assume that the Hurst index is H = 1

2 , that is B is a standard Brownian motion. Let μq denote
the qth moment of a standard Gaussian random variable G ∼ N (0,1). By the scaling property of the Brownian
motion and using the central limit theorem, it is immediate that, as n → ∞:

2−n/2
2n∑

k=1

[(
2n/2�Bk2−n

)q − μq

] Law−→ N
(
0,μ2q − μ2

q

)
. (1.2)

When weights are introduced, an interesting phenomenon appears: instead of Gaussian random variables, we rather
obtain mixing random variables as limit in (1.2). Indeed, when q is even and f : R → R is continuous and has poly-
nomial growth, it is a very particular case of a more general result by Jacod [10] (see also Section 2 in Nourdin and
Peccati [16] for related results) that we have, as n → ∞:

2−n/2
2n∑

k=1

f (B(k−1)2−n)
[(

2n/2�Bk2−n

)q − μq

] Law−→
√

μ2q − μ2
q

∫ 1

0
f (Bs)dWs. (1.3)

Here, W denotes another standard Brownian motion, independent of B . When q is odd, still for f : R → R continuous
with polynomial growth, we have, this time, as n → ∞:

2−n/2
2n∑

k=1

f (B(k−1)2−n)
(
2n/2�Bk2−n

)q Law−→
∫ 1

0
f (Bs)

(√
μ2q − μ2

q+1 dWs + μq+1 dBs

)
, (1.4)

see for instance [16].
Secondly, assume that H �= 1

2 , that is the case where the fractional Brownian motion B has not independent in-
crements anymore. Then (1.2) has been extended by Breuer and Major [1], Dobrushin and Major [5], Giraitis and
Surgailis [6] or Taqqu [21]. Precisely, five cases are considered, according to the evenness of q and the value of H :

• if q is even and if H ∈ (0, 3
4 ), as n → ∞,

2−n/2
2n∑

k=1

[(
2nH �Bk2−n

)q − μq

] Law−→ N
(
0, σ̃ 2

H,q

)
, (1.5)

• if q is even and if H = 3
4 , as n → ∞,

1√
n

2−n/2
2n∑

k=1

[(
23n/4�Bk2−n

)q − μq

] Law−→ N (0, σ̃ 2
3/4,q ), (1.6)
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• if q is even and if H ∈ ( 3
4 ,1), as n → ∞,

2n−2nH
2n∑

k=1

[(
2nH �Bk2−n

)q − μq

] Law−→ “Hermite r.v.,” (1.7)

• if q is odd and if H ∈ (0, 1
2 ], as n → ∞,

2−n/2
2n∑

k=1

(
2nH �Bk2−n

)q Law−→ N
(
0, σ̃ 2

H,q

)
, (1.8)

• if q is odd and if H ∈ ( 1
2 ,1), as n → ∞,

2−nH

2n∑
k=1

(
2nH �Bk2−n

)q Law−→ N
(
0, σ̃ 2

H,q

)
. (1.9)

Here, σ̃H,q > 0 denotes some constant depending only on H and q . The term “Hermite r.v.” denotes a random
variable whose distribution is the same as that of Z(2) at time one, for Z(2) defined in Definition 7 below.

Now, let us proceed with the results concerning the weighted power variations in the case where H �= 1
2 . Consider

the following condition on a function f : R → R, where q ≥ 2 is an integer:

(Hq) f belongs to C 2q and, for any p ∈ (0,∞) and 0 ≤ i ≤ 2q: supt∈[0,1] E{|f (i)(Bt )|p} < ∞.

Suppose that f satisfies (Hq). If q is even and H ∈ ( 1
2 , 3

4 ), then by Theorem 2 in León and Ludeña [11] (see also
Corcuera et al. [4] for related results on the asymptotic behavior of the p-variation of stochastic integrals with respect
to B) we have, as n → ∞:

2−n/2
2n∑

k=1

f (B(k−1)2−n)
[(

2nH �Bk2−n

)q − μq

] Law−→ σ̃H,q

∫ 1

0
f (Bs)dWs, (1.10)

where, once again, W denotes a standard Brownian motion independent of B while σ̃H,q is the constant appearing
in (1.5). Thus, (1.10) shows for (1.1) a similar behavior to that observed in the standard Brownian case, compare
with (1.3). In contradistinction, the asymptotic behavior of (1.1) can be completely different of (1.3) or (1.10) for
other values of H . The first result in this direction has been observed by Gradinaru et al. [9]. Namely, if q ≥ 3 is odd
and H ∈ (0, 1

2 ), we have, as n → ∞:

2nH−n
2n∑

k=1

f (B(k−1)2−n)
(
2nH �Bk2−n

)q L2−→ −μq+1

2

∫ 1

0
f ′(Bs)ds. (1.11)

Also, when q = 2 and H ∈ (0, 1
4 ), Nourdin [14] proved that we have, as n → ∞:

22Hn−n
2n∑

k=1

f (B(k−1)2−n)
[(

2nH �Bk2−n

)2 − 1
] L2−→ 1

4

∫ 1

0
f ′′(Bs)ds. (1.12)

In view of (1.3), (1.4), (1.10), (1.11) and (1.12), we observe that the asymptotic behaviors of the power variations of
fractional Brownian motion (1.1) can be really different, depending on the values of q and H . The aim of the present
paper is to investigate what happens in the whole generality with respect to q and H . Our main tool is the Malliavin
calculus that appeared, in several recent papers, to be very useful in the study of the power variations for stochastic
processes. As we will see, the Hermite polynomials play a crucial role in this analysis. In the sequel, for an integer
q ≥ 2, we write Hq for the Hermite polynomial with degree q defined by

Hq(x) = (−1)q

q! ex2/2 dq

dxq

(
e−x2/2),
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and we consider, when f : R → R is a deterministic function, the sequence of weighted Hermite variations of order q

defined by

V
(q)
n (f ) :=

2n∑
k=1

f (B(k−1)2−n)Hq

(
2nH �Bk2−n

)
. (1.13)

The following is the main result of this paper.

Theorem 1. Fix an integer q ≥ 2, and suppose that f satisfies (Hq).

1. Assume that 0 < H < 1
2q

. Then, as n → ∞, it holds

2nqH−nV
(q)
n (f )

L2−→ (−1)q

2qq!
∫ 1

0
f (q)(Bs)ds. (1.14)

2. Assume that 1
2q

< H < 1 − 1
2q

. Then, as n → ∞, it holds

(
B,2−n/2V

(q)
n (f )

) Law−→
(

B,σH,q

∫ 1

0
f (Bs)dWs

)
, (1.15)

where W is a standard Brownian motion independent of B and

σH,q =
√

1

2qq!
∑
r∈Z

(|r + 1|2H + |r − 1|2H − 2|r|2H
)q

. (1.16)

3. Assume that H = 1 − 1
2q

. Then, as n → ∞, it holds(
B,

1√
n

2−n/2V
(q)
n (f )

)
Law−→

(
B,σ1−1/(2q),q

∫ 1

0
f (Bs)dWs

)
, (1.17)

where W is a standard Brownian motion independent of B and

σ1−1/(2q),q = 2 log 2

q!
(

1 − 1

2q

)q(
1 − 1

q

)q

. (1.18)

4. Assume that H > 1 − 1
2q

. Then, as n → ∞, it holds

2nq(1−H)−nV
(q)
n (f )

L2−→
∫ 1

0
f (Bs)dZ

(q)
s , (1.19)

where Z(q) denotes the Hermite process of order q introduced in Definition 7 below.

Remark 1. When q = 1, we have V
(1)
n (f ) = 2−nH

∑2n

k=1 f (B(k−1)2−n)�Bk2−n . For H = 1
2 , 2nH V

(1)
n (f ) converges

in L2 to the Itô stochastic integral
∫ 1

0 f (Bs)dBs . For H > 1
2 , 2nH V

(1)
n (f ) converges in L2 and almost surely to the

Young integral
∫ 1

0 f (Bs)dBs . For H < 1
2 , 23nH−nV

(1)
n (f ) converges in L2 to − 1

2

∫ 1
0 f ′(Bs)ds.

Remark 2. After the first draft of the present paper have been submitted, Burdzy and Swanson [2] and, independently,
Nourdin and Réveillac [17] have shown, in the critical case H = 1

4 , that

(
B,2−n/2V (2)

n (f )
) Law−→

(
B,σ1/4,2

∫ 1

0
f (Bs)dWs + 1

8

∫ 1

0
f ′′(Bs)ds

)
.
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(The reader is also referred to [16] for the study of the weighted variations associated with iterated Brownian motion,
which is a non-Gaussian self-similar process of order 1

4 .) Later, it has finally been shown by Nourdin and Nualart [15]
that, for any integer q ≥ 2 and in the critical case H = 1

2q
,

(
B,2−n/2V

(q)
n (f )

) Law−→
(

B,σ1/(2q),q

∫ 1

0
f (Bs)dWs + (−1)q

2qq!
∫ 1

0
f (q)(Bs)ds

)
.

Consequently, the understanding of the asymptotic behavior of the weighted Hermite variations of the fractional
Brownian motion is now complete.

When H is between 1
4 and 3

4 , one can refine point 2 of Theorem 1 as follows:

Proposition 2. Let q ≥ 2 be an integer, f : R → R be a function such that (Hq) holds and assume that H ∈ ( 1
4 , 3

4 ).
Then, as n → ∞,(

B,2−n/2V (2)
n (f ), . . . ,2−n/2V

(q)
n (f )

)
Law−→

(
B,σH,2

∫ 1

0
f (Bs)dW(2)

s , . . . , σH,q

∫ 1

0
f (Bs)dW

(q)
s

)
, (1.20)

where (W(2), . . . ,W(q)) is a (q − 1)-dimensional standard Brownian motion independent of B and the σH,p’s, 2 ≤
p ≤ q , are given by (1.16).

Theorem 1, together with Proposition 2, allows us to complete the missing cases in the understanding of the
asymptotic behavior of weighted power variations of fractional Brownian motion:

Corollary 3. Let q ≥ 2 be an integer, and f : R → R be a function such that (Hq) holds. Then, as n → ∞:

1. When H > 1
2 and q is odd,

2−nH

2n∑
k=1

f (B(k−1)2−n)
(
2nH �Bk2−n

)q L2−→ qμq−1

∫ 1

0
f (Bs)dBs = qμq−1

∫ B1

0
f (x)dx. (1.21)

2. When H < 1
4 and q is even,

22nH−n

2n∑
k=1

f (B(k−1)2−n)
[(

2nH �Bk2−n

)q − μq

] L2−→ 1

4

(q

2

)
μq−2

∫ 1

0
f ′′(Bs)ds. (1.22)

(We recover (1.12) by choosing q = 2).
3. When H = 1

4 and q is even,(
B,2−n/2

2n∑
k=1

f (B(k−1)2−n)
[(

2n/4�Bk2−n

)q − μq

])

Law−→
(

B,
1

4

(q

2

)
μq−2

∫ 1

0
f ′′(Bs)ds + σ̃1/4,q

∫ 1

0
f (Bs)dWs

)
, (1.23)

where W is a standard Brownian motion independent of B and σ̃1/4,q is the constant given by (1.25) just below.
4. When 1

4 < H < 3
4 and q is even,(

B,2−n/2
2n∑

k=1

f (B(k−1)2−n)
[(

2nH �Bk2−n

)q − μq

]) Law−→
(

B, σ̃H,q

∫ 1

0
f (Bs)dWs

)
, (1.24)
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for W a standard Brownian motion independent of B and

σ̃H,q =
√√√√ q∑

p=2

p!
(

q

p

)2

μ2
q−p2−p

∑
r∈Z

(|r + 1|2H + |r − 1|2H − 2|r|2H
)p

. (1.25)

5. When H = 3
4 and q is even,(

B,
1√
n

2−n/2
2n∑

k=1

f (B(k−1)2−n)
[(

2nH �Bk2−n

)q − μq

]) Law−→
(

B, σ̃3/4,q

∫ 1

0
f (Bs)dWs

)
, (1.26)

for W a standard Brownian motion independent of B and

σ̃3/4,q =
√√√√ q∑

p=2

2 log 2p!
(

q

p

)2

μ2
q−p

(
1 − 1

2q

)q(
1 − 1

q

)q

.

6. When H > 3
4 and q is even,

2n−2Hn

2n∑
k=1

f (B(k−1)2−n)
[(

2nH �Bk2−n

)q − μq

] L2−→ 2μq−2

(q

2

)∫ 1

0
f (Bs)dZ(2)

s , (1.27)

for Z(2) the Hermite process introduced in Definition 7.

Finally, we can also give a new proof of the following result, stated and proved by Gradinaru et al. [8] and Cheridito
and Nualart [3] in a continuous setting:

Theorem 4. Assume that H > 1
6 , and that f : R → R verifies (H6). Then the limit in probability, as n → ∞, of the

symmetric Riemann sums

1

2

2n∑
k=1

(
f ′(Bk2−n) + f ′(B(k−1)2−n)

)
�Bk2−n (1.28)

exists and is given by f (B1) − f (0).

Remark 3. When H ≤ 1
6 , quantity (1.28) does not converge in probability in general. As a counterexample, one can

consider the case where f (x) = x3, see Gradinaru et al. [8] or Cheridito and Nualart [3].

2. Preliminaries and notation

We briefly recall some basic facts about stochastic calculus with respect to a fractional Brownian motion. One refers
to [18,19] for further details. Let B = (Bt )t∈[0,1] be a fractional Brownian motion with Hurst parameter H ∈ (0,1).
That is, B is a zero mean Gaussian process, defined on a complete probability space (Ω, A,P ), with the covariance
function

RH (t, s) = E(BtBs) = 1

2

(
s2H + t2H − |t − s|2H

)
, s, t ∈ [0,1].

We suppose that A is the sigma-field generated by B . Let E be the set of step functions on [0, T ], and H be the Hilbert
space defined as the closure of E with respect to the inner product

〈1[0,t],1[0,s]〉H = RH (t, s).
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The mapping 1[0,t] 
→ Bt can be extended to an isometry between H and the Gaussian space H1 associated with B .
We will denote this isometry by ϕ 
→ B(ϕ).

Let S be the set of all smooth cylindrical random variables, i.e. of the form

F = φ(Bt1 , . . . ,Btm),

where m ≥ 1, φ : Rm → R ∈ C ∞
b and 0 ≤ t1 < · · · < tm ≤ 1. The derivative of F with respect to B is the element of

L2(Ω,H) defined by

DsF =
m∑

i=1

∂φ

∂xi

(Bt1 , . . . ,Btm)1[0,ti ](s), s ∈ [0,1].

In particular DsBt = 1[0,t](s). For any integer k ≥ 1, we denote by D
k,2 the closure of the set of smooth random

variables with respect to the norm

‖F‖2
k,2 = E

(
F 2) +

k∑
j=1

E
[∥∥DjF

∥∥2
H⊗j

]
.

The Malliavin derivative D satisfies the chain rule. If ϕ : Rn → R is C 1
b and if (Fi)i=1,...,n is a sequence of elements

of D
1,2, then ϕ(F1, . . . ,Fn) ∈ D

1,2 and we have

Dϕ(F1, . . . ,Fn) =
n∑

i=1

∂ϕ

∂xi

(F1, . . . ,Fn)DFi.

We also have the following formula, which can easily be proved by induction on q . Let ϕ,ψ ∈ C
q
b (q ≥ 1), and fix

0 ≤ u < v ≤ 1 and 0 ≤ s < t ≤ 1. Then ϕ(Bt − Bs)ψ(Bv − Bu) ∈ D
q,2 and

Dq
(
ϕ(Bt − Bs)ψ(Bv − Bu)

) =
q∑

a=0

(q

a

)
ϕ(a)(Bt − Bs)ψ

(q−a)(Bv − Bu)1
⊗a
[s,t]⊗̃1⊗(q−a)

[u,v] , (2.1)

where ⊗̃ means the symmetric tensor product.
The divergence operator I is the adjoint of the derivative operator D. If a random variable u ∈ L2(Ω,H) belongs

to the domain of the divergence operator, that is, if it satisfies∣∣E〈DF,u〉H
∣∣ ≤ cu

√
E(F 2) for any F ∈ S ,

then I (u) is defined by the duality relationship

E
(
FI (u)

) = E
(〈DF,u〉H

)
,

for every F ∈ D
1,2.

For every n ≥ 1, let Hn be the nth Wiener chaos of B, that is, the closed linear subspace of L2(Ω, A,P ) gener-
ated by the random variables {Hn(B(h)),h ∈ H,‖h‖H = 1}, where Hn is the nth Hermite polynomial. The mapping
In(h

⊗n) = n!Hn(B(h)) provides a linear isometry between the symmetric tensor product H�n (equipped with the
modified norm ‖ · ‖H�n = 1√

n! ‖ · ‖H⊗n ) and Hn. For H = 1
2 , In coincides with the multiple Wiener–Itô integral of

order n. The following duality formula holds

E
(
FIn(h)

) = E
(〈
DnF,h

〉
H⊗n

)
, (2.2)

for any element h ∈ H�n and any random variable F ∈ D
n,2.
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Let {ek, k ≥ 1} be a complete orthonormal system in H. Given f ∈ H�n and g ∈ H�m, for every r = 0, . . . , n ∧ m,
the contraction of f and g of order r is the element of H⊗(n+m−2r) defined by

f ⊗r g =
∞∑

k1,...,kr=1

〈f, ek1 ⊗ · · · ⊗ ekr 〉H⊗r ⊗ 〈g, ek1 ⊗ · · · ⊗ ekr 〉H⊗r .

Notice that f ⊗r g is not necessarily symmetric: we denote its symmetrization by f ⊗̃rg ∈ H�(n+m−2r). We have the
following product formula: if f ∈ H�n and g ∈ H�m then

In(f )Im(g) =
n∧m∑
r=0

r!
(n

r

)(m

r

)
In+m−2r (f ⊗̃rg). (2.3)

We recall the following simple formula for any s < t and u < v:

E
(
(Bt − Bs)(Bv − Bu)

) = 1

2

(|t − v|2H + |s − u|2H − |t − u|2H − |s − v|2H
)
. (2.4)

We will also need the following lemmas:

Lemma 5.

1. Let s < t belong to [0,1]. Then, if H < 1/2, one has∣∣E(
Bu(Bt − Bs)

)∣∣ ≤ (t − s)2H (2.5)

for all u ∈ [0,1].
2. For all H ∈ (0,1),

2n∑
k,l=1

∣∣E(B(k−1)2−n�Bl2−n)
∣∣ = O

(
2n

)
. (2.6)

3. For any r ≥ 1, we have, if H < 1 − 1
2r

,

2n∑
k,l=1

∣∣E(�Bk2−n�Bl2−n)
∣∣r = O

(
2n−2rHn

)
. (2.7)

4. For any r ≥ 1, we have, if H = 1 − 1
2r

,

2n∑
k,l=1

∣∣E(�Bk2−n�Bl2−n)
∣∣r = O

(
n22n−2rn

)
. (2.8)

Proof. To prove inequality (2.5), we just write

E
(
Bu(Bt − Bs)

) = 1

2

(
t2H − s2H

) + 1

2

(|s − u|2H − |t − u|2H
)
,

and observe that we have |b2H − a2H | ≤ |b − a|2H for any a, b ∈ [0,1], because H < 1
2 . To show (2.6) using (2.4),

we write

2n∑
k,l=1

∣∣E(B(k−1)2−n�Bl2−n)
∣∣ = 2−2Hn−1

2n∑
k,l=1

∣∣|l − 1|2H − l2H − |l − k + 1|2H + |l − k|2H
∣∣

≤ C2n,
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the last bound coming from a telescoping sum argument. Finally, to show (2.7) and (2.8), we write

2n∑
k,l=1

∣∣E(�Bk2−n�Bl2−n)
∣∣r = 2−2nrH−r

2n∑
k,l=1

∣∣|k − l + 1|2H + |k − l − 1|2H − 2|k − l|2H
∣∣r

≤ 2n−2nrH−r
∞∑

p=−∞

∣∣|p + 1|2H + |p − 1|2H − 2|p|2H
∣∣r ,

and observe that, since the function ||p + 1|2H + |p − 1|2H − 2|p|2H | behaves as CH p2H−2 for large p, the series in
the right-hand side is convergent because H < 1 − 1

2r
. In the critical case H = 1 − 1

2r
, this series is divergent, and

2n∑
p=−2n

∣∣|p + 1|2H + |p − 1|2H − 2|p|2H
∣∣r

behaves as a constant time n. �

Lemma 6. Assume that H > 1
2 .

1. Let s < t belong to [0,1]. Then∣∣E(
Bu(Bt − Bs)

)∣∣ ≤ 2H(t − s) (2.9)

for all u ∈ [0,1].
2. Assume that H > 1 − 1

2l
for some l ≥ 1. Let u < v and s < t belong to [0,1]. Then

∣∣E(Bu − Bv)(Bt − Bs)
∣∣ ≤ H(2H − 1)

(
2

2Hl + 1 − 2l

)1/l

(u − v)(l−1)/ l(t − s). (2.10)

3. Assume that H > 1 − 1
2l

for some l ≥ 1. Then

2n∑
i,j=1

∣∣E(�Bi2−n�Bj2−n)
∣∣l = O

(
22n−2ln

)
. (2.11)

Proof. We have

E
(
Bu(Bt − Bs)

) = 1

2

(
t2H − s2H

) + 1

2

(|s − u|2H − |t − u|2H
)
.

But, when 0 ≤ a < b ≤ 1:

b2H − a2H = 2H

∫ b−a

0
(u + a)2H−1 du ≤ 2Hb2H−1(b − a) ≤ 2H(b − a).

Thus, |b2H − a2H | ≤ 2H |b − a| and the first point follows.
Concerning the second point, using Hölder inequality, we can write∣∣E(Bu − Bv)(Bt − Bs)

∣∣ = H(2H − 1)

∫ v

u

∫ t

s

|y − x|2H−2 dy dx

≤ H(2H − 1)|u − v|(l−1)/ l

(∫ 1

0

(∫ t

s

|y − x|2H−2 dy

)l

dx

)1/l

≤ H(2H − 1)|u − v|(l−1)/ l |t − s|(l−1)/ l

(∫ 1

0

∫ t

s

|y − x|(2H−2)l dy dx

)1/l

.
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Denote by H ′ = 1 + (H − 1)l and observe that H ′ > 1
2 (because H > 1 − 1

2l
). Since 2H ′ − 2 = (2H − 2)l, we can

write

H ′(2H ′ − 1)

∫ 1

0

∫ t

s

|y − x|(2H−2)l dy dx = E
∣∣BH ′

1

(
BH ′

t − BH ′
s

)∣∣ ≤ 2H ′|t − s|

by the first point of this lemma. This gives the desired bound.
We prove now the third point. We have

2n∑
i,j=1

∣∣E(�Bi2−n�Bj2−n)
∣∣l = 2−2Hnl−l

2n∑
i,j=1

∣∣|i − j + 1|2H + |i − j − 1|2H − 2|i − j |2H
∣∣l

≤ 2n−2Hnl+1−l
2n−1∑

k=−2n+1

∣∣|k + 1|2H + |k − 1|2H − 2|k|2H
∣∣l

and the function |k + 1|2H + |k − 1|2H − 2|k|2H behaves as |k|2H−2 for large k. As a consequence, since H > 1 − 1
2l

,
the sum

2n−1∑
k=−2n+1

∣∣|k + 1|2H + |k − 1|2H − 2|k|2H
∣∣l

behaves as 2(2H−2)ln+n and the third point follows. �

Now, let us introduce the Hermite process of order q ≥ 2 appearing in (1.19). Fix H > 1/2 and t ∈ [0,1]. The
sequence (ϕn(t))n≥1, defined as

ϕn(t) = 2nq−n 1

q!
[2nt]∑
j=1

1⊗q

[(j−1)2−n,j2−n],

is a Cauchy sequence in the space H⊗q . Indeed, since H > 1/2, we have

〈1[a,b],1[u,v]〉H = E
(
(Bb − Ba)(Bv − Bu)

) = H(2H − 1)

∫ b

a

∫ v

u

∣∣s − s′∣∣2H−2
ds ds′,

so that, for any m ≥ n〈
ϕn(t), ϕm(t)

〉
H⊗q

= Hq(2H − 1)q

q!2 2nq+mq−n−m

[2mt]∑
j=1

[2nt]∑
k=1

(∫ j2−m

(j−1)2−m

∫ k2−n

(k−1)2−n

∣∣s − s′∣∣2H−2 ds ds′
)q

.

Hence

lim
m,n→∞

〈
ϕn(t), ϕm(t)

〉
H⊗q

= Hq(2H − 1)q

q!2
∫ t

0

∫ t

0

∣∣s − s′∣∣(2H−2)q
ds ds′ = cq,H t(2H−2)q+2,
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where cq,H = Hq(2H−1)q

q!2(Hq−q+1)(2Hq−2q+1)
. Let us denote by μ

(q)
t the limit in H⊗q of the sequence of functions ϕn(t). For

any f ∈ H⊗q , we have

〈
ϕn(t), f

〉
H⊗q = 2nq−n 1

q!
[2nt]∑
j=1

〈
1⊗q

[(j−1)2−n,j2−n], f
〉
H⊗q

= 2nq−n 1

q!H
q(2H − 1)q

[2nt]∑
j=1

∫ 1

0
ds1

∫ j2−n

(j−1)2−n

ds′
1

∣∣s1 − s′
1

∣∣2H−2 · · ·

×
∫ 1

0
dsq

∫ j2−n

(j−1)2−n

ds′
q |sq − s′

q |2H−2f (s1, . . . , sq)

n→∞−→ 1

q!H
q(2H − 1)q

∫ t

0
ds′

∫
[0,1]q

ds1 · · · dsq
∣∣s1 − s′∣∣2H−2 · · · |sq − s′|2H−2f (s1, . . . , sq)

= 〈
μ

(q)
t , f

〉
H⊗q .

Definition 7. Fix q ≥ 2 and H > 1/2. The Hermite process Z(q) = (Z
(q)
t )t∈[0,1] of order q is defined by Z

(q)
t =

Iq(μ
(q)
t ) for t ∈ [0,1].

Let Z
(q)
n be the process defined by Z

(q)
n (t) = Iq(ϕn(t)) for t ∈ [0,1]. By construction, it is clear that Z

(q)
n (t)

L2−→
Z(q)(t) as n → ∞, for all fixed t ∈ [0,1]. On the other hand, it follows, from Taqqu [21] and Dobrushin and Major [5],
that Z

(q)
n converges in law to the “standard” and historical qth Hermite process, defined through its moving average

representation as a multiple integral with respect to a Wiener process with time horizon R. In particular, the process
introduced in Definition 7 has the same finite dimensional distributions as the historical Hermite process.

Let us finally mention that it can be easily seen that Z(q) is q(H − 1) + 1 self-similar, has stationary increments
and admits moments of all orders. Moreover, it has Hölder continuous paths of order strictly less than q(H − 1) + 1.
For further results, we refer to Tudor [22].

3. Proof of the main results

In this section we will provide the proofs of the main results. For notational convenience, from now on, we write
ε(k−1)2−n (resp. δk2−n ) instead of 1[0,(k−1)2−n] (resp. 1[(k−1)2−n,k2−n]). The following proposition provides information

on the asymptotic behavior of E(V
(q)
n (f )2), as n tends to infinity, for H ≤ 1 − 1

2q
.

Proposition 8. Fix an integer q ≥ 2. Suppose that f satisfies (Hq ). Then, if H ≤ 1
2q

, then

E
(
V

(q)
n (f )2) = O

(
2n(−2Hq+2)

)
. (3.1)

If 1
2q

≤ H < 1 − 1
2q

, then

E
(
V

(q)
n (f )2) = O

(
2n

)
. (3.2)

Finally, if H = 1 − 1
2q

, then

E
(
V

(q)
n (f )2) = O

(
n2n

)
. (3.3)
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Proof. Using the relation between Hermite polynomials and multiple stochastic integrals, we have Hq(2nH �Bk2−n) =
1
q!2

qnH Iq(δ
⊗q

k2−n). In this way we obtain

E
(
V

(q)
n (f )2)

=
2n∑

k,l=1

E
{
f (B(k−1)2−n)f (B(l−1)2−n)Hq

(
2nH �Bk2−n

)
Hq

(
2nH �Bl2−n

)}

= 1

q!2 22Hqn
2n∑

k,l=1

E
{
f (B(k−1)2−n)f (B(l−1)2−n)Iq

(
δ
⊗q

k2−n

)
Iq

(
δ
⊗q

l2−n

)}
.

Now we apply the product formula (2.3) for multiple stochastic integrals and the duality relationship (2.2) between
the multiple stochastic integral IN and the iterated derivative operator DN , obtaining

E
(
V

(q)
n (f )2)

= 22Hqn

q!2
2n∑

k,l=1

q∑
r=0

r!
(q

r

)2

×E
{
f (B(k−1)2−n)f (B(l−1)2−n)I2q−2r

(
δ
⊗q−r

k2−n ⊗̃ δ
⊗q−r

l2−n

)}〈δk2−n , δl2−n〉rH

= 22Hqn

2n∑
k,l=1

q∑
r=0

1

r!(q − r)!2

×E
{〈

D2q−2r
(
f (B(k−1)2−n)f (B(l−1)2−n)

)
, δ

⊗q−r

k2−n ⊗̃ δ
⊗q−r

l2−n

〉
H⊗(2q−2r)

}〈δk2−n , δl2−n〉rH,

where ⊗̃ denotes the symmetrization of the tensor product. By (2.1), the derivative of the product
D2q−2r (f (B(k−1)2−n)f (B(l−1)2−n)) is equal to a sum of derivatives:

D2q−2r
(
f (B(k−1)2−n)f (B(l−1)2−n)

) =
∑

a+b=2q−2r

f (a)(B(k−1)2−n)f (b)(B(l−1)2−n)

× (2q − 2r)!
a!b!

(
ε⊗a
(k−1)2−n⊗̃ ε⊗b

(l−1)2−n

)
.

We make the decomposition

E
(
V

(q)
n (f )2) = An + Bn + Cn + Dn, (3.4)

where

An = 22Hqn

q!2
2n∑

k,l=1

E
{
f (q)(B(k−1)2−n)f (q)(B(l−1)2−n)

}〈ε(k−1)2−n , δk2−n〉q〈ε(l−1)2−n , δl2−n〉q,

Bn = 22Hqn
∑

c+d+e+f =2q

d+e≥1

2n∑
k,l=1

E
{
f (q)(B(k−1)2−n)f (q)(B(l−1)2−n)

}
α(c, d, e, f )

×〈ε(k−1)2−n , δk2−n〉cH〈ε(k−1)2−n , δl2−n〉dH〈ε(l−1)2−n , δk2−n〉eH〈ε(l−1)2−n , δl2−n〉f
H

,
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Cn = 22Hqn
∑

a+b=2q

(a,b) �=(q,q)

2n∑
k,l=1

E
{
f (a)(B(k−1)2−n)f (b)(B(l−1)2−n)

} (2q)!
q!2a!b!

× 〈
ε⊗a
(k−1)2−n⊗̃ ε⊗b

(l−1)2−n , δ
⊗q

k2−n⊗̃ δ
⊗q

l2−n

〉
H⊗(2q) ,

and

Dn = 22Hqn

q∑
r=1

∑
a+b=2q−2r

2n∑
k,l=1

E
{
f (a)(B(k−1)2−n)f (b)(B(l−1)2−n)

} (2q − 2r)!
r!(q − r)!2a!b!

× 〈
ε⊗a
(k−1)2−n⊗̃ ε⊗b

(l−1)2−n , δ
⊗q−r

k2−n ⊗̃ δ
⊗q−r

l2−n

〉
H⊗(2q−2r)〈δk2−n , δl2−n〉rH,

for some combinatorial constants α(c, d, e, f ). That is, An and Bn contain all the terms with r = 0 and (a, b) = (q, q);
Cn contains the terms with r = 0 and (a, b) �= (q, q); and Dn contains the remaining terms.

For any integer r ≥ 1, we set

αn = sup
k,l=1,...,2n

∣∣〈ε(k−1)2−n , δl2−n〉H
∣∣, (3.5)

βr,n =
2n∑

k,l=1

∣∣〈δk2−n , δl2−n〉H
∣∣r , (3.6)

γn =
2n∑

k,l=1

∣∣〈ε(k−1)2−n , δl2−n〉H
∣∣. (3.7)

Then, under assumption (Hq), we have the following estimates:

|An| ≤ C22Hqn+2n(αn)
2q,

|Bn| + |Cn| ≤ C22Hqn(αn)
2q−1γn,

|Dn| ≤ C22Hqn

q∑
r=1

(αn)
2q−2rβr,n,

where C is a constant depending only on q and the function f . Notice that the second inequality follows from the fact
that when (a, b) �= (q, q), or (a, b) = (q, q) and c + d + e + f = 2q with d ≥ 1 or e ≥ 1, there will be at least a factor
of the form 〈ε(k−1)2−n , δl2−n〉H in the expression of Bn or Cn.

In the case H < 1
2 , we have by (2.5) that αn ≤ 2−2nH , by (2.7) that βr,n ≤ C2n−2rHn, and by (2.6) that γn ≤ C2n.

As a consequence, we obtain

|An| ≤ C2n(−2Hq+2), (3.8)

|Bn| + |Cn| ≤ C2n(−2Hq+2H+1), (3.9)

|Dn| ≤ C

q∑
r=1

2n(−2(q−r)H+1), (3.10)

which implies the estimates (3.1) and (3.2).
In the case 1

2 ≤ H < 1 − 1
2q

, we have by (2.9) that αn ≤ C2−n, by (2.7) that βr,n ≤ C2n−2rHn, and by (2.6) that
γn ≤ C2n. As a consequence, we obtain

|An| + |Bn| + |Cn| ≤ C2n(2q(H−1)+2),

|Dn| ≤ C

q∑
r=1

2n((2q−2r)(H−1)+1),
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which also implies (3.2).
Finally, if H = 1 − 1

2q
, we have by (2.9) that αn ≤ C2−n, by (2.8) that βr,n ≤ Cn22n−2rn, and by (2.6) that

γn ≤ C2n. As a consequence, we obtain

|An| + |Bn| + |Cn| ≤ C2n,

|Dn| ≤ C

q∑
r=1

n2nr/q,

which implies (3.3). �

3.1. Proof of Theorem 1 in the case 0 < H < 1
2q

In this subsection we are going to prove the first point of Theorem 1. The proof will be done in three steps. Set
V

(q)

1,n (f ) = 2n(qH−1)V
(q)
n (f ). We first study the asymptotic behavior of E(V

(q)

1,n (f )2), using Proposition 8.
Step 1. The decomposition (3.4) leads to

E
(
V

(q)

1,n (f )2) = 22n(qH−1)(An + Bn + Cn + Dn).

From the estimate (3.9) we obtain 22n(qH−1)(|Bn| + |Cn|) ≤ C2n(2H−1), which converges to zero as n goes to infinity
since H < 1

2q
< 1

2 . On the other hand (3.10) yields

22n(qH−1)|Dn| ≤ C

q∑
r=1

2n(2rH−1),

which tends to zero as n goes to infinity since 2rH − 1 ≤ 2qH − 1 < 0 for all r = 1, . . . , q .
In order to handle the term An, we make use of the following estimate, which follows from (2.5) and (2.4):∣∣∣∣〈ε(k−1)2−n , δk2−n〉q

H
−

(
−2−2Hn

2

)q ∣∣∣∣
=

∣∣∣∣〈ε(k−1)2−n , δk2−n〉H + 2−2Hn

2

∣∣∣∣
∣∣∣∣∣
q−1∑
s=0

〈ε(k−1)2−n , δk2−n〉sH
(

−2−2Hn

2

)q−1−s
∣∣∣∣∣

≤ C
(
k2H − (k − 1)2H

)
2−2Hqn. (3.11)

Thus,

∣∣∣∣24Hqn−2n

q!2
2n∑

k,l=1

E
{
f (q)(B(k−1)2−n)f (q)(B(l−1)2−n)

}〈ε(k−1)2−n , δk2−n〉q
H

〈ε(l−1)2−n , δl2−n〉q
H

−2−2n−2q

q!2
2n∑

k,l=1

E
{
f (q)(B(k−1)2−n)f (q)(B(l−1)2−n)

}∣∣∣∣∣ ≤ C22Hn−n,

which implies, as n → ∞:

E
(
V

(q)

1,n (f )2) = 2−2n−2q

q!2
2n∑

k,l=1

E
{
f (q)(B(k−1)2−n)f (q)(B(l−1)2−n)

} + o(1). (3.12)
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Step 2: We need the asymptotic behavior of the double product

Jn := E

(
V

(q)

1,n (f ) × 2−n
2n∑
l=1

f (q)(B(l−1)2−n)

)
.

Using the same arguments as in Step 1 we obtain

Jn = 2Hqn−2n
2n∑

k,l=1

E
{
f (B(k−1)2−n)f (q)(B(l−1)2−n)Hq

(
2nH �Bk2−n

)}

= 1

q!22Hqn−2n
2n∑

k,l=1

E
{
f (B(k−1)2−n)f (q)(B(l−1)2−n)Iq

(
δ
⊗q

k2−n

)}

= 1

q!22Hqn−2n
2n∑

k,l=1

E
{〈

Dq
(
f (B(k−1)2−n)f (q)(B(l−1)2−n)

)
, δ

⊗q

k2−n

〉
H⊗q

}

= 22Hqn−2n
2n∑

k,l=1

q∑
a=0

1

a!(q − a)!E
{
f (a)(B(k−1)2−n)f (2q−a)(B(l−1)2−n)

}
× 〈ε(k−1)2−n , δk2−n〉aH〈ε(l−1)2−n , δk2−n〉q−a

H
.

It turns out that only the term with a = q will contribute to the limit as n tends to infinity. For this reason we make the
decomposition

Jn = 22Hqn−2n
2n∑

k,l=1

1

q!E
{
f (q)(B(k−1)2−n)f (q)(B(l−1)2−n)

}〈ε(k−1)2−n , δk2−n〉q
H

+ Sn,

where

Sn = 22Hqn−2n
2n∑

k,l=1

〈ε(l−1)2−n , δk2−n〉H
q−1∑
a=0

1

a!(q − a)!E
{
f (a)(B(k−1)2−n)f (2q−a)(B(l−1)2−n)

}
× 〈ε(k−1)2−n , δk2−n〉aH〈ε(l−1)2−n , δk2−n〉q−a−1

H
.

By (2.5) and (2.6), we have

|Sn| ≤ C22Hn−n,

which tends to zero as n goes to infinity. Moreover, by (3.11), we have∣∣∣∣∣22Hqn−2n

q!
2n∑

k,l=1

E
{
f (q)(B(k−1)2−n)f (q)(B(l−1)2−n)

}〈ε(k−1)2−n , δk2−n〉q
H

− (−1)q
2−2n−q

q!
2n∑

k,l=1

E
{
f (q)(B(k−1)2−n)f (q)(B(l−1)2−n)

}∣∣∣∣∣ ≤ C22Hn−n,

which also tends to zero as n goes to infinity. Thus, finally, as n → ∞:

Jn = (−1)q
2−2n−q

q!
2n∑

k,l=1

E
{
f (q)(B(k−1)2−n)f (q)(B(l−1)2−n)

} + o(1). (3.13)
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Step 3: By combining (3.12) and (3.13), we obtain that

E

∣∣∣∣∣V (q)

1,n (f ) − (−1)q

2qq! 2−n
2n∑

k=1

f (q)(B(k−1)2−n)

∣∣∣∣∣
2

= o(1),

as n → ∞. Thus, the proof of the first point of Theorem 1 is done using a Riemann sum argument.

3.2. Proof of Theorem 1 in the case H > 1 − 1
2q

: the weighted non-central limit theorem

We prove here that the sequence V3,n(f ), given by

V
(q)

3,n (f ) = 2n(1−H)q−nV
(q)
n (f ) = 2qn−n 1

q!
2n∑

k=1

f (B(k−1)2−n)Iq

(
δ
⊗q

k2−n

)
,

converges in L2 as n → ∞ to the pathwise integral
∫ 1

0 f (Bs)dZ
(q)
s with respect to the Hermite process of order q

introduced in Definition 7.
Observe first that, by construction of Z(q) (precisely, see the discussion before Definition 7 in Section 2), the

desired result is in order when the function f is identically one. More precisely:

Lemma 9. For each fixed t ∈ [0,1], the sequence 2qn−n 1
q!

∑[2nt]
k=1 Iq(δ

⊗q

k2−n) converges in L2 to the Hermite random

variable Z
(q)
t .

Now, consider the case of a general function f . We fix two integers m ≥ n, and decompose the sequence V
(q)

3,m(f ) as
follows:

V
(q)

3,m(f ) = A(m,n) + B(m,n),

where

A(m,n) = 1

q!2m(q−1)

2n∑
j=1

f (B(j−1)2−n)

j2m−n∑
i=(j−1)2m−n+1

Iq

(
δ
⊗q

i2−m

)
,

and

B(m,n) = 1

q!2m(q−1)
2n∑

j=1

j2m−n∑
i=(j−1)2m−n+1

�
m,n
i,j f (B)Iq

(
δ
⊗q

i2−m

)
,

with the notation �
m,n
i,j f (B) = f (B(i−1)2−m) − f (B(j−1)2−n). We shall study A(m,n) and B(m,n) separately.

Study of A(m,n). When n is fixed, Lemma 9 yields that the random vector(
1

q!2m(q−1)

j2m−n∑
i=(j−1)2m−n+1

Iq

(
δ
⊗q

i2−m

); j = 1, . . . ,2n

)

converges in L2, as m → ∞, to the vector(
Z

(q)

j2−n − Z
(q)

(j−1)2−n; j = 1, . . . ,2n
)
.
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Then, as m → ∞, A(m,n) L2→ A(∞,n), where

A(∞,n) :=
2n∑

j=1

f (B(j−1)2−n)
(
Z

(q)

j2−n − Z
(q)

(j−1)2−n

)
.

Finally, we claim that when n tends to infinity, A(∞,n) converges in L2 to
∫ 1

0 f (Bs)dZ
(q)
s . Indeed, observe that the

stochastic integral
∫ 1

0 f (Bs)dZ
(q)
s is a pathwise Young integral. So, to get the convergence in L2 it suffices to show

that the sequence A(∞,n) is bounded in Lp for some p ≥ 2. The integral
∫ 1

0 f (Bs)dZ
(q)
s has moments of all orders,

because for all p ≥ 2

E

[
sup

0≤s<t≤1

( |Z(q)
t − Z

(q)
s |

|t − s|γ
)p]

< ∞

and

E

[
sup

0≤s<t≤1

( |Bt − Bs |
|t − s|β

)p]
< ∞,

if γ < q(H − 1) + 1 and β < H . On the other hand, Young’s inequality implies∣∣∣∣A(∞,n) −
∫ 1

0
f (Bs)dZ

(q)
s

∣∣∣∣ ≤ cρ,ν Varρ
(
f (B)

)
Varν

(
Z(q)

)
,

where Varρ denotes the variation of order ρ, and with ρ, ν > 1 such that 1
ρ

+ 1
ν

> 1. Choosing ρ > 1
H

and ν >
1

q(H−1)+1 , the result follows.

This proves that, by letting m and then n go to infinity, A(m,n) converges in L2 to
∫ 1

0 f (Bs)dZ
(q)
s .

Study of the term B(m,n): We prove that

lim
n→∞ sup

m
E

∣∣B(m,n)
∣∣2 = 0. (3.14)

We have, using the product formula (2.3) for multiple stochastic integrals,

E
∣∣B(m,n)

∣∣2 = 22m(q−1)

2n∑
j=1

j2m−n∑
i=(j−1)2m−n+1

2n∑
j ′=1

j ′2m−n∑
i′=(j ′−1)2m−n+1

q∑
l=0

l!
q!2

(q

l

)2

× b
(m,n)
l 〈δi2−m, δi′2−m〉lH, (3.15)

where

b
(m,n)
l = E

(
�

m,n
i,j f (B)�

m,n
i′,j ′f (B)I2(q−l)

(
δ
⊗(q−l)

i2−m ⊗̃ δ
⊗(q−l)

i′2−m

))
. (3.16)

By (2.2) and (2.1), we obtain that b
(m,n)
l is equal to

E
〈
D2(q−l)

(
�

m,n
i,j f (B)�

m,n
i′,j ′f (B)

)
, δ

⊗(q−l)

i2−m ⊗̃ δ
⊗(q−l)

i′2−m

〉
H⊗2(q−l)

=
2q−2l∑
a=0

(
2q − 2l

a

)〈
E

((
f (a)(B(i−1)2−m)ε⊗a

(i−1)2−m − f (a)(B(j−1)2−n)ε⊗a
(j−1)2−n

)
⊗̃ (

f (2q−2l−a)(B(i′−1)2−m)ε⊗b
(i′−1)2−m − f (2q−2l−a)(B(j ′−1)2−n)ε⊗b

(j ′−1)2−m

))
, δ

⊗(q−l)

i2−m ⊗̃ δ
⊗(q−l)

i′2−m

〉
H⊗2(q−l) .
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The term in (3.15) corresponding to l = q can be estimated by

1

q!22m(q−1) sup
|x−y|≤2−n

E
∣∣f (Bx) − f (By)

∣∣2
βq,m,

where βq,m has been introduced in (3.6). So it converges to zero as n tends to infinity, uniformly in m, because,
by (2.11) and using that H > 1 − 1

2q
, we have

sup
m

22m(q−1)βq,m < ∞.

In order to handle the terms with 0 ≤ l ≤ q − 1, we make the decomposition

∣∣b(m,n)
l

∣∣ ≤
2q−2l∑
a=0

(
2q − 2l

a

) 4∑
h=1

Bh, (3.17)

where

B1 = E
∣∣�m,n

i,j f (B)�
m,n
i′,j ′f (B)

∣∣〈ε⊗a
(i−1)2−m⊗̃ ε

⊗(2q−2l−a)

(i′−1)2−m , δ
⊗(q−l)

i2−m ⊗̃ δ
⊗(q−l)

i′2−m

〉
H⊗2(q−l) ,

B2 = E
∣∣f (a)(B(j−1)2−n)�

m,n
i′,j ′f (B)

∣∣
× 〈(

ε⊗a
(i−1)2−m − ε⊗a

(j−1)2−n

)⊗̃ ε
⊗(2q−2l−a)

(i′−1)2−m , δ
⊗(q−l)

i2−m ⊗̃ δ
⊗(q−l)

i′2−m

〉
H⊗2(q−l) ,

B3 = E
∣∣�m,n

i,j f (B)f (2q−2l−a)(B(j ′−1)2−n)
∣∣

× 〈
ε⊗a
(i−1)2−m⊗̃ (

ε
⊗(2q−2l−a)

(i′−1)2−m − ε
⊗(2q−2l−a)

(j ′−1)2−n

)
, δ

⊗(q−l)

i2−m ⊗̃ δ
⊗(q−l)

i′2−m

〉
H⊗2(q−l) ,

B4 = E
∣∣f (a)(B(j−1)2−n)f (2q−2l−a)(B(j ′−1)2−n)

∣∣
× 〈(

ε⊗a
(i−1)2−m − ε⊗a

(j−1)2−n

) ⊗̃ (
ε
⊗(2q−2l−a)

(i′−1)2−m − ε
⊗(2q−2l−a)

(j ′−1)2−n

)
, δ

⊗(q−l)

i2−m ⊗̃ δ
⊗(q−l)

i′2−m

〉
H⊗2(q−l) . (3.18)

By using (2.9) and the conditions imposed on the function f , one can bound the terms B1, B2 and B3 as follows:

|B1| ≤ c(q,f,H) sup
|x−y|≤1/2n,0≤a≤2q

E
∣∣f (a)(Bx) − f (a)(By)

∣∣22−2m(q−l),

|B2| + |B3| ≤ c(q,f,H) sup
|x−y|≤1/2n,0≤a≤2q

E
∣∣f (2q−2l−a)(Bx) − f (2q−2l−a)(By)

∣∣2−2m(q−l),

and, by using (2.10), we obtain that

|B4| ≤ c(q,f,H)2−n(q−1)/q−2m(q−l).

By setting

Rn = 1

q! sup
|x−y|≤2−n

E
∣∣f (Bx) − f (By)

∣∣2 sup
m

22m(q−1)βq,m,

we can finally write, by the estimate (2.11),

E|B(m,n)|2

≤ Rn + c(H,f, q)22m(q−1)
(

sup
|x−y|≤1/2n,0≤a≤2q

∣∣f (2q−2l−a)(Bx) − f (2q−2l−a)(By)
∣∣ + (

2−n
)(q−1)/q

)
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×
2n∑

j=1

j2m−n∑
i=(j−1)2m−n+1

2n∑
j ′=1

j ′2m−n∑
i′=(j ′−1)2m−n+1

q−1∑
l=0

2−2m(q−l)〈δi2−m, δi′2−m〉lH

≤ Rn + c(H,f, q)22m(q−1)
(

sup
|x−y|≤1/2n,0≤a≤2q

∣∣f (2q−2l−a)(Bx) − f (2q−2l−a)(By)
∣∣ + (2−n)(q−1)/q

)

×
q−1∑
l=0

2−2m(q−l)

2m∑
i,j=0

〈δi2−m, δi′2−m〉lH

≤ Rn + c(H,f, q)
(

sup
|x−y|≤1/2n,0≤a≤2q

∣∣f (2q−2l−a)(Bx) − f (2q−2l−a)(By)
∣∣ + (2−n)(q−1)/q

)
and this converges to zero due to the continuity of B and since q > 1.

3.3. Proof of Theorem 1 in the case 1
2q

< H ≤ 1 − 1
2q

: the weighted central limit theorem

Suppose first that 1
2q

< H < 1 − 1
2q

. We study the convergence in law of the sequence V
(q)

2,n (f ) = 2−n/2V
(q)
n (f ). We

fix two integers m ≥ n, and decompose this sequence as follows:

V
(q)

2,m(f ) = A(m,n) + B(m,n),

where

A(m,n) = 2−m/2
2n∑

j=1

f (B(j−1)2−n)

j2m−n∑
i=(j−1)2m−n+1

Hq

(
2mH �Bi2−m

)
,

and

B(m,n) = 1

q!2m(Hq−1/2)

2n∑
j=1

j2m−n∑
i=(j−1)2m−n+1

�
m,n
i,j f (B)Iq

(
δ
⊗q

i2−m

)
,

and where as before we make use of the notation �
m,n
i,j f (B) = f (B(i−1)2−m) − f (B(j−1)2−n).

Let us first consider the term A(m,n). From Theorem 1 in Breuer and Major [1], and taking into account that
H < 1 − 1

2q
, it follows that the random vector

(
B,2−m/2

j2m−n∑
i=(j−1)2m−n+1

Hq

(
2mH �Bi2−m

); j = 1, . . . ,2n

)

converges in law, as m → ∞, to(
B,σH,q�Wj2−n; j = 1, . . . ,2n

)
,

where σH,q is the constant defined by (1.16) and W is a standard Brownian motion independent of B (the indepen-
dence is a consequence of the central limit theorem for multiple stochastic integrals proved in Peccati and Tudor [20]).
Since

2n∑
j=1

f (B(j−1)2−n)�Wj2−n
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converges in L2 as n → ∞ to the Itô integral
∫ 1

0 f (Bs)dWs we conclude that, by letting m → ∞ and then n → ∞,
we have

(
B,A(m,n)

) Law−→
(

B,σH,q

∫ 1

0
f (Bs)dWs

)
.

Then it suffices to show that

lim
n→∞ sup

m→∞
E

∣∣B(m,n)
∣∣2 = 0. (3.19)

We have, as in (3.15),

E
∣∣B(m,n)

∣∣2 = 2m(2Hq−1)

2n∑
j=1

j2m−n∑
i=(j−1)2m−n+1

2n∑
j ′=1

j ′2m−n∑
i′=(j ′−1)2m−n+1

q∑
l=0

l!
q!2

(q

l

)2

× b
(m,n)
l 〈δi2−m, δi′2−m〉lH, (3.20)

where b
(m,n)
l has been defined in (3.16). The term in (3.20) corresponding to l = q can be estimated by

1

q!2m(2Hq−1) sup
|x−y|≤2−n

E
∣∣f (Bx) − f (By)

∣∣2
βq,m,

which converges to zero as n tends to infinity, uniformly in m, because by (2.7) and using that H < 1 − 1
2q

, we have

sup
m

2m(2Hq−1)βq,m < ∞.

In order to handle the terms with 0 ≤ l ≤ q − 1, we will distinguish two different cases, depending on the value of H .
Case H < 1/2. Suppose 0 ≤ l ≤ q − 1. By (2.6), we can majorize b

(m,n)
l as follows:∣∣b(m,n)

l

∣∣ ≤ C2−4Hm(q−l).

As a consequence, applying again (2.7), the corresponding term in (3.20) is bounded by

C2m(2Hq−1)2−4Hm(q−l)βl,m ≤ C22mH(l−q),

which converges to zero as m tends to infinity because l < q .
Case H > 1/2. Suppose 0 ≤ l ≤ q − 1. By (2.9), we get the estimate∣∣b(m,n)

l

∣∣ ≤ C2−2m(q−l).

As a consequence, applying again (2.7), the corresponding term in (3.20) is bounded by

C2m(2Hq−1)2−2m(q−l)βl,m.

If H < 1 − 1
2l

, applying (2.7), this is bounded by C2m(2H(q−l)−2(q−l)), which converges to zero as m tends to infinity
because H < 1 and l < q . In the case H = 1 − 1

2l
, applying (2.8), we get the estimate Cm2m(2H(q−l)−2(q−l)), which

converges to zero as m tends to infinity because H < 1 and l < q . In the case H > 1 − 1
2l

, we apply (2.9) and we get
the estimate C2m(2H2+1−2q), which converges to zero as m tends to infinity because H < 1 − 1

2q
.

The proof in the case H = 1− 1
2q

is similar. The convergence of the term A(m,n) is obtained by applying Theorem 1

in Breuer and Major (1983), and the convergence to zero in L2 of the term B(m,n) follows the same lines as before.
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3.4. Proof of Proposition 2

We proceed as in Section 3.3. For p = 2, . . . , q , we set V
(p)

2,n (f ) = 2−n/2V
(p)
n (f ). We fix two integers m ≥ n, and

decompose this sequence as follows:

V
(p)

2,m(f ) = A(m,n)
p + B(m,n)

p ,

where

A(m,n)
p = 2−m/2

2n∑
j=1

f (B(j−1)2−n)

j2m−n∑
i=(j−1)2m−n+1

Hp

(
2mH �Bi2−m

)
,

and

B(m,n)
p = 1

p!2m(Hp−1/2)

2n∑
j=1

j2m−n∑
i=(j−1)2m−n+1

�
m,n
i,j f (B)Ip

(
δ
⊗p

i2−m

)
,

and where as before we make use of the notation �
m,n
i,j f (B) = f (B(i−1)2−m) − f (B(j−1)2−n).

Let us first consider the term A
(m,n)
p . We claim that the random vector(

B,

{
2−m/2

j2m−n∑
i=(j−1)2m−n+1

Hp

(
2mH �Bi2−m

); j = 1, . . . ,2n

}
2≤p≤q

)

converges in law, as m → ∞, to(
B,

{
σH,p�W

(p)

j2−n; j = 1, . . . ,2n
}

2≤p≤q

)
,

where (W(2), . . . ,W(q)) is a (q − 1)-dimensional standard Brownian motion independent of B and the σH,p’s are
given by (1.16). Indeed, the convergence in law of each component follows from Theorem 1 in Breuer and Major [1],
taking into account that H < 3

4 ≤ 1 − 1
2q

. The joint convergence and the fact that the processes W(p) for p = 2, . . . , q

are independent (and also independent of B) is a direct application of the central limit theorem for multiple stochastic
integrals proved in Peccati and Tudor [20].

Since, for any p = 2, . . . , q , the quantity

2n∑
j=1

f (B(j−1)2−n)�W
(p)

j2−n

converges in L2 as n → ∞ to the Itô integral
∫ 1

0 f (Bs)dW
(p)
s , we conclude that, by letting m → ∞ and then n → ∞,

we have

(
B,A

(m,n)
2 , . . . ,A(m,n)

q

) Law−→
(

B,σH,2

∫ 1

0
f (Bs)dW(2)

s , . . . , σH,q

∫ 1

0
f (Bs)dW

(q)
s

)
.

On the other hand, and because H ∈ ( 1
4 , 3

4 ) (implying that H ∈ ( 1
2p

,1 − 1
2p

)), we have shown in Section 3.3 that

lim
n→∞ sup

m→∞
E

∣∣B(m,n)
p

∣∣2 = 0

for all p = 2, . . . , q . This finishes the proof of Proposition 2.
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3.5. Proof of Corollary 3

For any integer q ≥ 2, we have

(
2nH �Bk2−n

)q − μq =
q∑

p=1

(
q

p

)
μq−p2HnpIp

(
δ
⊗p

k2−n

) =
q∑

p=1

p!
(

q

p

)
μq−pHp

(
2nH �Bk2−n

)
.

Indeed, the pth kernel in the chaos representation of (2nH �Bk2−n)q is

1

p!E
(
Dp

(
2nH �Bk2−n

)q) =
(

q

p

)
2nHpμq−pδ

⊗p

k2−n .

Suppose first that q is odd and H > 1
2 . In this case, we have

2−nH

2n∑
k=1

f (B(k−1)2−n)
(
2nH �Bk2−n

)q =
q∑

p=1

p!
(

q

p

)
μq−p2−nH V

(p)
n (f ).

The term with p = 1 converges in L2 to qμq−1
∫ 1

0 f (Bs)dBs . For p ≥ 2, the limit in L2 is zero. Indeed, if H ≤ 1− 1
2p

,

then E(V
(p)
n (f )2) is bounded by a constant times n2n by Proposition 8. If H > 1 − 1

2p
, then E(V

(p)
n (f )2) is bounded

by a constant times 2−n2(1−H)p+2n by (1.19), with −2(1 − H)p + 2 − 2H = (1 − H)(2 − 2p) < 0.
Suppose now that q is even. Then

22nH−n

2n∑
k=1

f (B(k−1)2−n)
[(

2nH �Bk2−n

)q − μq

] = 22nH−n

q∑
p=2

p!
(

q

p

)
μq−pV

(p)
n (f ).

If H < 1
4 , by (1.14), one has that 22nH−n × 2

(
q
2

)
μq−2V

(2)
n (f ) converges in L2, as n → ∞, to 1

4

(
q
2

)
μq−2 ×∫ 1

0 f ′′(Bs)ds. On the other hand, for p ≥ 4, 22nH−nV
(p)
n (f ) converges to zero in L2. Indeed, if H < 1

2p
, then

E(V
(p)
n (f )2) = O(2n(−2Hp+2)) by (3.1) with −2Hp + 2 + 4H − 2 < 0. If H ≥ 1

2p
, then E(V

(p)
n (f )2) = O(2n)

by (3.2) with 4H − 1 < 0. Therefore (1.22) holds.
In the case 1

4 < H < 3
4 , Proposition 2 implies that the vector

(
B,2−n/2V (2)

n (f ), . . . ,2−n/2V
(q)
n (f )

)
converges in law to

(
B,σH,2

∫ 1

0
f (Bs)dW(2)

s , . . . , σH,q

∫ 1

0
f (Bs)dW

(q)
s

)
,

where (W(2), . . . ,W(q)) is a (q − 1)-dimensional standard Brownian motion independent of B and the σH,p’s, 2 ≤
p ≤ q , are given by (1.16). This implies the convergence (1.24). The proofs of (1.23) and (1.26) are analogous (with
an adequate version of Proposition 2).

Finally, consider the case H > 3
4 . For p = 2, 2n−2HnV

(2)
n (f ) converges in L2 to

∫ 1
0 f (Bs)dZ

(2)
s by (1.19).

If p ≥ 4, then 2n−2HnV
(p)
n (f ) converges in L2 to zero because, again by (1.19), one has E(V

(p)
n (f )2) =

O(2n(2−2(1−H)p)).
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3.6. Proof of Theorem 4

We can assume H < 1
2 , the case where H ≥ 1

2 being straightforward. By Taylor’s formula, we have

f (B1) = f (0) + 1

2

2n∑
k=1

(
f ′(Bk2−n) + f ′(B(k−1)2−n)

)
�Bk2−n

− 1

12

2n∑
k=1

f (3)(B(k−1)2−n)(�Bk2−n)3 − 1

24

2n∑
k=1

f (4)(B(k−1)2−n)(�Bk2−n)4

− 1

80

2n∑
k=1

f (5)(B(k−1)2−n)(�Bk2−n)5 + Rn, (3.21)

with Rn converging towards 0 in probability as n → ∞, because H > 1/6. We can expand the monomials xm,
m = 2,3,4,5, in terms of the Hermite polynomials:

x2 = 2H2(x) + 1,

x3 = 6H3(x) + 3H1(x),

x4 = 24H4(x) + 12H2(x) + 3,

x5 = 120H5(x) + 60H3(x) + 15H1(x).

In this way we obtain

2n∑
k=1

f (3)(B(k−1)2−n)(�Bk2−n)3 = 6 × 2−3HnV (3)
n

(
f (3)

) + 3 × 2−2HnV (1)
n

(
f (3)

)
, (3.22)

2n∑
k=1

f (4)(B(k−1)2−n)(�Bk2−n)4 = 24 × 2−4HnV (4)
n

(
f (4)

)

+ 12 × 2−4HnV (2)
n

(
f (4)

) + 3 × 2−4Hn

2n∑
k=1

f (4)(B(k−1)2−n), (3.23)

2n∑
k=1

f (5)(B(k−1)2−n)(�Bk2−n)5 = 120 × 2−5HnV (5)
n

(
f (5)

)
+ 60 × 2−5HnV (3)

n

(
f (5)

) + 15 × 2−4HnV (1)
n

(
f (5)

)
. (3.24)

By (3.2) and using that H > 1
6 , we have E(V

(3)
n (f (3))2) ≤ C2n and E(V

(3)
n (f (5))2) ≤ C2n. As a consequence, the

first summand in (3.22) and the second one in (3.24) converge to zero in L2 as n tends to infinity. Also, by (3.2),
E(V

(4)
n (f (4))2) ≤ C2n and E(V

(5)
n (f (5))2) ≤ C2n. Hence, the first summand in (3.23) and the first summand in (3.24)

converge to zero in L2 as n tends to infinity. If 1
6 < H < 1

4 , (3.1) implies E(V
(2)
n (f (4))2) ≤ C2n(−4H+2)), so that

2−4HnV
(2)
n (f (4)) converges to zero in L2 as n tends to infinity. If 1

4 ≤ H < 1
2 , (3.2) implies E(V

(2)
n (f )2) ≤ C2n so

that 2−4HnV
(2)
n (f (4)) converges to zero in L2 as n tends to infinity.

Moreover, using the following identity, valid for regular functions h : R → R:

2n∑
k=1

h′(B(k−1)2−n)�Bk2−n = h(B1) − h(0) − 1

2

2n∑
k=1

h′′(Bθk2−n )(�Bk2−n)2
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for some θk2−n lying between (k − 1)2−n and k2−n, we deduce that 2−4HnV
(1)
n (f (5)) tends to zero, because H > 1

6 .
In the same way, we have

2−2HnV (1)
n

(
f (3)

) = −1

2
2−2Hn

2n∑
k=1

f (4)(B(k−1)2−n)(�Bk2−n)2

−1

6
2−2Hn

2n∑
k=1

f (5)(B(k−1)2−n)(�Bk2−n)3 + o(1).

We have obtained

f (B1) = f (0) + 1

2

2n∑
k=1

(
f ′(Bk2−n) + f ′(B(k−1)2−n)

)
�Bk2−n

+ 1

4
× 2−4Hn

2n∑
k=1

f (4)(B(k−1)2−n)H2
(
2nH �Bk2−n

)

− 1

24
× 2−2Hn

2n∑
k=1

f (5)(B(k−1)2−n)(�Bk2−n)3 + o(1).

As before 2−4HnV
(2)
n (f (4)) converges to zero in L2. Finally, by (1.11),

2−2Hn
2n∑

k=1

f (5)(B(k−1)2−n)(�Bk2−n)3

also converges to zero. This completes the proof.
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