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Asymptotically simple space-time manifolds 
D. Lerner and J. R. Porter 

Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15213 
(Received 12 February 1973) 

Asymptotic simplicity is shown to be k-stable (k,? 3) at any Minkowski metric on 1R4 in both the 
Whitney fine Ck topology and a coarser topology (in which the Ck twice-convariant symmetric 
tensors form a Banach manifold whose connected components consist of tensor field asymptotic 
to one another at null infinity). This result, together with a sequential method for solving the field 
equations previously proposed by the authors, allows a fairly straightforward proof that a well-known 
result in the linearized theory holds in the full nonlinear theory as well: There are no nontrivial (i.e., 
non-Minkowskian) asymptotically simple vacuum metrics on 1R4 whose conformal curvature tensors 
result from prescribing zero initial data on past null infinity. 

L INTRODUCTION 

The concept of asymptotically simple space-time mani­
folds, introduced by Penrose,1,2 is a fruitful one in the 
study of asymptotic conditions in general relativity and 
one which Penrose has used to good advantage. 3 One 
would like to have more examples of asymptotically 
simple space-times than the single example now known, 
namely Minkowski space-time. In this paper it is shown 
that there are many asymptotically simple space-times; 
in fact, there is an open neighborhood of any Minkowski 
metric on ]R4 in the Whitney fine e k topology (k ~ 3) on 
the set of Lorentz metrics on ]R4 all of whose elements 
are asymptotically simple metrics. Using this result and 
a formulation for weak gravitational fields developed by 
the authors,4 we show that a certain linearized solution 
to the vacuum field equations has an exact counterpart 
in the full nonlinear theory. Section II deals with de­
finitions and preliminaries; Sec. ITr gives a proof of the 
asserted result for asymptotically simple space-times; 
Sec. IV extends the known linear result to the full theory; 
and Sec. V gives some concluding remarks and conjec­
tures. 

II. MATHEMATICAL PRELIMINARIES 

A space-time manifold is a pair (M,g) where M is a 
four-dimensional e 00 differentiable manifold and g is a 
e3 pseudo-Riemanian metric on M of signature -2 which 
is time-oriented and possesses no closed timelike C1 
curves. A space-time manifold (M,g) is said to be 
asymptotically simple if there exists a space-time mani­
fold (M,l) with boundary whose interior is conformal 
to (M, g) with i = n2g, n > 0, which satisfies: 

(1) M is a e4 differentiable manifold with boundary 5 
and i is a e3 pseudo-Riemannian metric on m, 

(2) n is e 3 on M, n = 0 on 5, and dn ;>! 0 on 9, 

(3) Every maximally extended null geodesic in the in-
terior of M2 intersects 5 in precisely two pOints. 1 

Minkowski space-time (]R4, TJ) is an example of an asymp­
totically simple space-time. The manifold (M, ii) whose 
interior is conformal to (]RI!, TJ) is obtained by construct­
ing the conformally-compactified Minkowski space­
time5 ,6 and then slicing this manifold apart along the 
light cone at infinity. The result is represented pic­
torially in Fig.!. The points 1+, jD, and 1- are not points 
of 5. 

An exposition on the Whitney topologies applied to pro­
blems in general relativity is given by Lerner,7 and 
only a brief summary will be given here. Given an ar­
bitrary Riemannian metric fJ. on a differentiable mani­
fold M, a Wo (Whitney fine CO) neighborhood base of a 
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FIG.! 

interior 
conformal to 

(IR4 ,7] ) 

CO tensor field t E rO(T~(M» is given by sets of the 
form 

WI'(t,E:(X»={S!SE rO(T~(M» 

and II s - t III' (x) < e:(x), \f x EM}. 

Here E:(x) is any positive continuous function on M and 
11'111' (x) is the J.1. norm in T~Mx' A W k (Whitney fine ek ) 

neighborhood base (k ~ 0) of a tensors field t E r k 
(T~(M» is given by sets of the form 

W:(t, e(x» :::: {s Is E r k( T~(M» and II s - till' (x) < e(x), 

II V(s - 0111' (x) < e(x), ••• , II v:(s - t)111' (x) < E(x), \f x EM}. 

where V~ denotes the totally symmetrized ith covariant 
derivative with respect to the Riemannian metric fJ.. 
This gives a convenient description of the Wk topologies 
(the Whitney fine e k topologies); an altogether equivalent 
formulation, which is manifestly independent of fJ. and 
perhaps more physically intuitive as well, is given in 
Ref. 7. 

The set of all C k Lorentz metrics (pseudo- Riemannian 
metric tensor fields of signature -2) on M will be de­
noted by Lk(M). A property P on rk(T~(M» is said to 
be k-stable at a tensor t E r k(T;(M» if there exists an 
open Wk neighborhood of t all the elements of which 
possess property P. For example, geodesiC complete­
ness is k-stable,k ~ 2, on Lk(M) as is time orientability. 
The purpose of Sec. III is to prove that asymptotic sim­
plicity is k-stable,k ~ 3, at TJ in Lk. 

Another topology is used on L k(]R4) in Sec. IV which 
was introduced by Lerner and Porter.4 Given TJ and a 
Minkowski coordinate systems {Xi} on ]R4 in which TJ = 
ds 2 = (dxO)2 - (dX1)2 - (dX2)2 - (dX3)2, for any t E 

rk( T~ (]R4» set 

Ilt(x)lI k = max {It .. ·(x)!, 
components ••• 

It:::,' (x) I , ... , It:::, . .". (x) I} 

Copyright © 1974 American Institute of Physics 1416 
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where t ... (x) stands for the components of t in {x i} and 
, ... denotes coordinate derivatives with respect to {xi}. 
Let 

I tl k = sup{llt(x)lIkl x E R,4}. 

Define 

B~T.S) = {t E rk(T~)1 It Ik< co}. 

Then < B~ T. S ), I . I;; is a Banach space; the topology is 
equivalent to that of uniform ek convergence. 

Given a particular Minkowski metric 1/ on R4 and the 
conformal factor n mentioned in the definition of 
asymptotic simplicity, one can define the set of tensor 
fields of type (r, s) asymptotic to zero at null infinity: 

A~T.s) == {t E BlT.S): 02t extends to a ek tensor 

field on &1 with 02t = ° on 9}. 

[The conformal factor (0 2) used in the definition of 
AlT.s) for certain applications may be changed to another 
power of O. The factor 0 2 is the correct one to use for 
metrics asymptotic to 1/ in B (0.2).] AlT, S) is a closed 
subspace of BiT,S) and thus a Banach space in its own 
right. The setTk(T~(R4) is made into a Banach mani­
fold by taking the sets 

{u" == a + AlT,s): a E rk(T~(R4»} 

for an (analytic) atlas. Two tensor fields a, (3 E 

rk(T~(R4» lie in the same connected component in this 
topology iff a - f3 is asymptotic to zero at null infinity. 
The fields a and {3 are then said to be asymptotic at 
infinity. This topology is called the A k topology on 
tensor fields. It is clear that the Wk topology is finer 
than the A k topology (any open set in the A II topology is 
open in the Wk topology as well). 

III. STABILITY AND ASYMPTOTIC SIMPLICITY 

Theorem 1: Asymptotic simplicity is a k- stable 
property,k? 3, in Lk(R4) at any Minkowski metric 7) on 
R4. 

Proof: It is necessary to exhibit an open Wk neigh­
borhood, k ? 3, of 7) in Lk(R4), the Lorentz metrics in 
which are all asymptotically simple. First, there 
exists an open Wk neighborhood U 1 in fV1 - 5 of ii, all the 
Lorentz metrics in which are equal to ii on 5. Since 
fV1 - 5 is differomorphic to R4 by virtue of the conformal 
relatedness, an open Wk neighborhood U 1 of 1/ in R4 is 
obtained. All the Lorentz metrics in U1 are asymptotic 
to the Minkowski metric 1/. The Lorentz metrics in U 1 
satisfy the first two defining properties of asymptotic 
simplicity (using the same &1 and 0 as for (R4, 1/) and 
defining i = 02g for g E U 1)' 

The third defining property of asymptotic simplicity 
states that null geodesics are complete and that, intui­
tively, they reach" infinity". This is certainly true for 
Minkowski space and an open Wk neighborhood of 1/ must 
be exhibited, all the Lorentz metrics in which exhibit 
this feature. To this end, it is noted that the spray of 1/ 
is certainly complete and that the completeness of a 
vector field is a stable property.7 [The spray of a me­
tric g on M is the map sp: T M ~ TT M defined locally 
as sending (p, v p) ~ (p, v P' v p' - r(p)(v P' v p» where 
rep) is the connection of gat p. The spray of a metric 
is a second-order differential equation on M and its 
curves give the geodesics of g. Geodesic completeness 
of g means that the vector field sp(g) is complete.] Thus 
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there exists a WI!-l neighborhood of the spray of tj in 
r k-1( TTM) all the vector fields in which are complete. 
As the map sending a Lorentz metric to its spray is 
continuous, there exists an open neighborhood U 2 of 1/, 
all the metrics in which are geodesically complete. 
Let U 3 = U 1 n U 2' 

If a Minkowski coordinate system {t = xO, xl, X2, x3} is 
chosen for 1/, so that ds2 = dt2 - (dX1)2 - (dX2)2 -
(dx3)2, then any null geodesic in (R4,1/) has the property 
that it crosses each of the t = const hypersurfaces. 
Thus the null spray of 1/ [in these coordinates (Xi, Vi) --) 
(Xi,Vi,Vi,O) where 1/i·Vivj = 0] is transverse to the hy­
persurfaces t 0 7f == cbnst, where 7f is the projection 
associated with the tangent bundle, TR4. This trans­
versal property is stable and so there exists a Wk open 
neighborhood U 4 of 1/ containing only metrics whose 
null sprays are transverse to the hyper surfaces t 0 7f = 
const. Let U = U 3 n U 4' The metric s in U satisfy the 
properties (1) and (2) of asymptotically simplicity, and 
have complete null sprays transverse to each t 0 7f = 
constant hypersurface. The claim is that the metrics 
will also satisfy property (3). Null geodesics (maxi­
mally extended) for a metric g in U cross each t = 
const hypersurface. Since null geodesics are confor­
mally invariant, the image of a null geodesic of (R4,g) 
under the conformal map is a null geodesic of (M,i'!. 
Thus a null geodesic (maximally extended) of (M, g) 
can only fail to have two points on 5 if it contains [+, 

[0, or [-. See Fig. 2. But this is impossible as the past 
light cone of [+ is 5+, the light cone of [0 is 5, and the 
future light cone of [- is 5-. Thus, for example, the only 
null geodesics in (M,i'! containing [+ are those that 
lie on 5+ and no null geodesic from M - 11 can contain 
[+. Thus, we have an open Wk neighborhood U of 1/ in 
L(R4) containing only asymptotically simple space­
times. 

So there are many asymptotically simple space-times 
based in R4; in particular, ones which are not confor­
mally flat. 

A slightly stronger version of Theorem 1 can be proved. 

Theorem 1': Asymptotic simplicity is stable at 1/ in 
the A k topology on the set B I! of C k Lorentz metric s 
which are asymptotic to tj. 

The All tq>ology is coarser than the Wk topology and the 
additional asymptotic condition is essential. The proof 
proceeds Similarly to that above, with one making cer­
tain that at each step the WI! open sets can be replaced 
with All open sets all the elements in which are asymp­
totic to 1/. 

IV. CURVES OF LORENTZ METRICS 

Given a curve in LII(R4), k? 2, of Lorentz metrics at 
1/,g: t --) get) such that g(O) == 1/, the induced curve of 
Riemann tensors is denoted by 0: t ~ Riem(g(t» E 

rk-2( T~R4), the induced curve of Ricci tensors is de­
noted by Ric: t ~ Ricci(g(t» E r k- 2 ( T~R4), and the in-

IR4 ___ ~/_t = constant 

----n ~----'JIO 

FIG. 2 
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duced curve of conformal tensors is denoted by Co: 
t-4 conf.(g(t)) EO: rk-2(T~(H4)). Ifg is inBlo,2) for 7) 

and Minkowski coordinate system {Xi}, then the three 
induced curves n, Ric, and Co have images in BL~4), 
BL9z 2) , and BL02,4) , respectively.4 If, in addition,g is 
analytic at 7), then the induced curves are all analytic 
at zero in the respective spaces. 

On the other hand; if an analytic curve is given at 0 in 
BL~,2), the question arises as to whether there exists 
an analytic curve in Blo,2) of Lorentz metrics at 7) 

which induces the given curve in B 1!l2,2) as its curve of 
Ricci tensors. This, in general, will not be the case; 
when it is true one can solve the field equations in ge­
neral relativity by solving sequentially a set of linear 
partial differential equations. The difficulties are with 
respect to boundedness of the terms and convergence of 
the resulting sequence. An additional freedom in the 
resulting curve is fixed by appropriate initial conditions 
for g. This additional freedom is a useful adjunct in 
trying to find such an analytic curve of Lorentz metrics. 

Theorem 2: Let t -4 g(t) E Blo,2) (k ?: 3) be an 
analytic curve of vacuum metrics (Ric(g(t)) = 0, all 
t) on R4 with g(O) = 7). Suppose that 

(a) for all t,g(t) is asymptotic to 7), 

(b) for each t, the conformal curvature tensor of g(t) 
results from zero initial data on 5- in the confor­
mally related (M, ii). 

Then g(t) is a curve of Minkowski metrics. 

Proof: Given a curve of Lorentz metrics analytiC 
at T/,g: t -4 g(t), the analyticity at 7) requires that 

00 t i 
g(t) == 7) + 6 h-:-. 

i=1 (i) z! 

The requirement that the curve be asymptotic to 7) is 
that the curve 

00 ti 
~ h­
i=1 (j) i! 

by asymptotic to zero. Tensor fields of any given type 
in Bk (,) asymptotic to zero form a Banach space. 
There is an open interval about zero for which the 
curve g has its image in the set of asymptotically 
simple metrics on R4 as guaranteed by Theorem I'; 
let t be restricted to such an interval. The solution of 
the equations for the Ricci tensor and conformal tensor 
for this curve then proceeds sequentially. Since the 
corresponding maps Ric and Co are analytic at 7), the 
corresponding curves are completely determined by 
their derivatives for t == O. The zeroth derivative gives 
conditions automatically satisfied since Minkowski 
space-time has zero Ricci tensor and zero conformal 
tensor. The first derivative of the curve of Ricci tensors 
at t == 0 simply gives the vanishing of the linearized 
Ricci tensor for 7) + h (1), 

7)aa h ae ba _7)aa h be aa - 7)aa h aa be 
(1) , (1) . (l)' 

+ 7)aa h ba ae == O. 
(1) , 

The first derivative of the curve of conformal tensors at 
t = 0 yields the linearized conformal tensor C(1)abed 

of 7) + ~ (11 which must in the conformally related pic­
ture (M, 7)) be obtained from zero initial data on the 
null Cauchy hypersurface 5-. The linearized conformal 

J. Math. Phys., Vol. 15, No.9, September 1974 

tensor, C(l)abcd' satisfies the linearized Bianchi iden­
tities 7)deC (1) abc d ,e = 0, whose spin or equivalent is 
VAA'I/I ABCD == 0 if 1/1 ABCD represents C(1)abcd' By using 
the techniques developed by Penrose1 for handling such 
zero rest-mass field equations in a conformally in­
variant manner, a spinor field CPABCD = n- 11/1 ABCD is 
obtained on (M, ii) satisfying VAA' cP ABCD == O. Initial data 
for cP ABCD is given on the null Cauchy hypersurface 5-, 
namely zero data, and the solution at a point p EO: M of 
the initial value problem for the equation VAA'cp ABCD == 0 
can be obtained as a generalized Kirchoff integral over 
the intersection of the past light cone of p and the initial 
data surface 5-. 3 For zero initial data, the resulting 
field cP ABCD is zero and thus 1/1 ABCD = 0 or equivalently 
CO) abed = O. 

The fact that the linearized Ricci tensor and the linear­
ized conformal tensor of 7) + h(1)h are both zero is 
equivalent to the vanishing of the linearized Riemann 
tensor. This fact is best exploited by using the Cart an 
structure equations in their linearized forms for the 
determination of h( 1)' The structure equations are 

de a + wa b /\ eb = 0, 

where ea is a basis for cotangent vector fields, w a b is 
the connection form whose Riemann curvature form is 
R a b' In the frame e a == dxa the metric 'Y/ + h (1) yields 
the linearized structure equations with linearized con­
nection w a

b 

wa b /\ eb :::: 0, (1) 

dw a
b :::: O. (2) 

Equation (2) says that the I-form w a
b = wa bedxc 

is closed and since the manifold is Simply connected, 
w a b is exact, 

Equation (1) then gives J1 a b,cdxb A dxC = 0 or that the 
I-form J1 a = J1 a bdxb is closed. Again, Simple connec­
tivity says that J1 a is exact, 

and thus 

w a
bC = aa bc' 

(1) , 

(3) 

(4) 

The tensor h(1) ab is obtained from the linearized equa­
tion for the vanishing of the covariant derivative of 
the metric, i.e., Dg ab ;e (t) I t=O (h(1) ab)' resulting in 

(5) 

whose solution (absorbing constants of integration into 
a (1) a) is 

(6) 

where 

(J a = 7) ad (J d. 
(1) (1) 

The four functions (J (1) a are required to be C4 and to be 
appropriately bounded in B 4(O,O). 
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A coordinate transformation x' a = xa + t I] (1) a yields the 
same curve of metrics which, when expressed in the new 
coordinate system, has zero linear term: 

00 I t i 
1)+O·t+:B h""'l. 

i =2 (i) t. 

The next step in the sequential solution is to determine 
h' (:0 from the conditions imposed on the curve of Ricci 
terms (namely that it be the constant curve 0) and the 
curve of conformal tensors. The resulting equations for 
h' (2) are exactly those previously solved for h(1) and 
the same technique that resulted in Eq. (7) yields a 
curve of the form 

1) + O· t + 0 .t2 
+ i3 h II ~. 

2! i=3(;)i! 
(8) 

Continuing, it is seen that the resulting curve is a curve 
of Minkowski metrics as required. For each t, the 
transformation 

00 ti 
i a = x a +:B I] a -

i=1 (;) i! 

exhibits g(t) in a Minkowski coordinate system. 

V. CONCLUSION 

The following questions arise: 

(1) Is asymptotic simplicity Wk stable? Theorem 1 
is the proof that this is the case at any Minkowski 
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metric on R4, (R4, 1/). The proof utilizes some special 
properties of Minkowski space and no obvious generali­
zations of the techniques involved exist. Also note that 
Theorem 1 gives the stability of weakly asymptotically 
simple spaces 1 at any weakly asymptotically simple 
space whose corresponding asymptotically simple space 
is in the open Wk neighborhood of (R4, 1) exhibited in 
the theorem. 

(2) Is it possible to use the techniques in Sec. IV to 
generate nontrivial analytic curves of solutions to pre­
scribed field equations? Considerations of this nature 
are to appear in a forthcoming paper by the authors. 

(3) Is it possible to obtain conditions under which the 
linearized solutions to the field equations actually deter­
mine the behavior of solutions in the full theory? In­
cluded in this might be a formulation of stable properties 
in terms of Lyapunov functionals. 
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