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FINITE DIFFERENCE PRECONDITIONING FOR SOLVING ORTHOGONAL
COLLOCATION EQUATIONS FOR BOUNDARY VALUE PROBLEMS*

WEIWEI SUNt, WEIZHANG HUANGt, AND ROBERT D. RUSSELL

Abstract. A technique to construct a low-order finite difference preconditioner for solving orthogonal collocation
equations for boundary value problems is presented. It is shown numerically and theoretically that the spectral
condition numbers of the preconditioned collocation matrices are bounded by constants independent of the number
of mesh nodes when certain exact low-order finite difference preconditionings are used. Preconditioners based on
incomplete LU factorization are also discussed. Numerical experiments show the efficiency and robustness of the
preconditioning.
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1. Introduction. In this paper, we shall consider orthogonal collocation methods for
solving elliptic differential equations. These methods have been extensively investigated in
the last 20 years due to their ease of implementation and high-order accuracy (see [RS72],
[DS73], and [PR76]). An apparent disadvantage of orthogonal collocation lies in the fact that
a collocation matrix is generally nonsymmetric, even for a Poisson equation with a uniform
mesh. Gauss elimination has often been used for solving the collocation equations, and its
cost has restricted the applicability of the methods.

In recent years, some efforts in solving the collocation equations by alternative methods
have been made. A so-called alternating direction collocation (ADC) or generalized implant
(ADI) method was introduced by Hayes [Hay80] and Hayes, Pinder, and Celia [HPC81] for
solving a parabolic problem. A full theory for convergence ofADC on a uniform mesh is given
for the model problem Au f in a rectangular domain by Dyksen [Dyk87]. Significantly,
a closed form for the eigenvalues and their associated eigenfunctions is also given. Cooper
and Prenter [CP91 give a complete theory for convergence ofADC applied to a large class of
linear separable elliptic partial differential equations (PDEs) on a rectangular domain. Bialecki
[Bia91] considers the problem of determining optimal acceleration parameters for ADC by
using the Jordan acceleration technique. Besides ADC, a fast direct method (FFT) has been
developed for solving Au f on a uniform mesh in [SZ89] and [BFB92]. In [Sun94a],
a class of block stationary (standard) methods are applied to second-order separable elliptic
PDEs and their convergence is proven. However, all of the above methods are only applicable
for linear separable and self-adjoint elliptic PDEs.

It has been well demonstrated that when solving PDEs a significant improvement in
convergence of conventional iterative methods can be gained by using preconditioning tech-
niques. They have been investigated extensively for finite difference, finite element, and
spectral methods; e.g., see [Ors80], [Eva83], [Won87], [CE88], and [CHQZ88]. For spectral
methods, a low-order finite difference approximation or its incomplete LU factorization can
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PRECONDITIONING FOR COLLOCATION SYSTEMS 2269

often be proven to be an efficient preconditioning technique [Ors80]. Recently, for finite el-
ement and finite difference methods, some theoretical analysis applicable to a large class of
elliptic PDEs has been carried out in [MP90] and [JMPW92]. However, to our knowledge
preconditioning has not been applied in the orthogonal collocation context. The objective of
this paper is to present a technique to construct such a finite difference preconditioning. A
major difficulty lies in the fact that the unknowns in the Hermite collocation approximation
involve both the variable u and its derivatives, while those in the standard finite difference
approximation contain only the variable u.

An outline of the paper is as follows. In 2, we introduce some notation and give a
brief description of the orthogonal Hermite cubic collocation method. In 3, a technique to
construct a finite difference preconditioning is presented for one- and two-dimensional (1D
and 2D) model problems. Several versions of the preconditioning are discussed. In 4, we
show that for the model problems with periodic boundary conditions and a uniform mesh, the
condition number of a preconditioned system is bounded by a constant independent of the
number of mesh nodes. Numerical results supporting this theory and showing the efficacy of
the preconditioning methods are presented in 5. Section 6 contains conclusions and additional
comments.

2. Orthogonal collocation methods. Consider the problem

(2.1) Lu:=-u"+otu=f(x), x 6 (0,1)

with the Dirichlet boundary conditions u (0) u (1) 0 or the periodic boundary conditions
u(0) u(1) and u’(0) u’(1). Given a partition rIN {Xi}Y=0 on [0,1] such that

O---Xo < Xl < <XN-- I,

the Hermite cubic collocation approximation v is defined as follows:

(2.2) v(x) 1 (S)Ui + hi2(s)u’ + 1 (1 S)L/i+ hi2(1 s)ui+ 1, s [0, 1]

on each element [Xi, Xi+I] (i 0 N 1), where s (x xi)/hi, hi Xi-t-1 Xi, bli
and u denote approximations to u(xi) and u’(xi), respectively, and l(S) and 2(s) are the
so-called shape functions for 1D Hermite cubic interpolation defined by

1 (S) (1 "- 2s)(1 s)2,

2(s) s(1 s)2.

/X,12N+I whereDenoting the collocation points by FlcoL j j=0

X0 X0 O’(Xl X0),

x2i+1 xi + o’(xi+l xi), 0 N 1,
(2.3)

X2i+2 X + (1 o’)(xi+ xi) 0 N 1,

XZN+I XN -at- O’(XN XN_I)

with cr (1 33 and cr (the Gaussian points on (0,1)), the orthogonal Hermite cubic

collocation approximation v(x) of (2.1) is defined by the collocation equations

(2.4) Lv It(X2i+l) + Ol l)1) IX2i+l (X2i+l) f(x2i+l), 1, 2; 0 N 1,
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2270 W. SUN, W. HUANG, AND R. D. RUSSELL

and boundary conditions v(xo) v(X2N+I) 0. This can be rewritten in the matrix form

(2.5)

where

Acoiv := Acv + otBcv f,

[’ ’]T1) b/O, b/l, b/1,...,b/N-l,b/N_ ,//N
(2.6)

f-- [f(x) f(xN)] T.

The matrices Ac and Bc can be regarded as collocation approximations to the second derivative
and identity operators, respectively, and are neither symmetric nor diagonally dominant. This
is why, although some iterative and fast FFT-like methods have been developed recently for
solving many PDE systems, Gauss elimination has predominated in the general collocation
matrix context.

3. Finite difference preconditioning. In this section, we present a technique to construct
a finite difference preconditioning for the orthogonal collocation system. For simplicity, the
technique is illustrated for orthogonal Hermite cubic collocation applied to Dirichlet and
periodic problems for 1D and 2D Poisson equations. However, as will be evident, the technique
may be applied for more general collocation methods and boundary value problems.

3.1. 1D case. We consider the 1D Dirichlet model problem (2.1). The collocation ap-
proximation contains 2(N / 1) unknowns, and we consider a finite difference approximation
which involves the same number of unknowns. A natural way to construct such an approxi-
mation is to use centered differenCes based on the collocation points {x, j 0 2N/ 1 }.
That is, use

2 F L0j+l L0j L0j
(3.1) +otwj= f(x), j= l,2 2N

xj+ xj_ xj+ xj xj xj_

supplemented with the boundary conditions w0 L0ZN+I 0, where wj denotes the finite
difference approximation of u(x). In matrix form this is

(3.2) AFW f,

where f is defined by (2.6) and

(3.3) //3 [tO UO2N] T

Since w and v approximate different quantities, AF cannot be expected to be a suitable
preconditioner for Acoz. However, a relation between these two sets of unknowns is easily
found using (2.2), viz., we have

(3.4)

u(x2i+l)* 1 (if)u// hi2(o)blti / 1 (1 o)ui+l hi2(1 ff)ui+1’
v(x2*/+2) 1 (1 ff)ui / hi2(1 ff)u / 1 (o)ui+l hi2(o)u+1,

i=0,1 N-1.

Both v(x) and wj are approximations to u(x), and if v(x) is replaced by wj we obtain

(3.5) w Bcv.

Substituting (3.5) into (2.5) gives

(3.6) AcoIBlto f.
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PRECONDITIONING FOR COLLOCATION SYSTEMS 2271

TABLE
Condition numbers ofthe collocation and preconditioned matricesfor the 1D model problem.

MESH NO.

uniform

/3-- 100

K1 (AcoL) K1 (T1) 81 (AcoL)
Dirichlet (or 0) Periodic
0.265E2 3.168

16 0.983E2 3.168
32 0.366E3 3.168
8 0.159E4 3.123
16 0.223E5 3.144
32 0.326E6 3.156
8 0.753E7 3.743
i6 0.164E10 3.816
32 0.367E12 3.854

0.239E3
0.883E3
0.335E4
01743E4 0.903E1
0.i 16E6 0.182E2
0.186E7 0.364E2
013 l’0E8 0.205E4’
0.772E10 0.188E5
0.171E13 0.162E6

K1 (T1) h
(or= 1)
2.196 1.0 1.0
2.196 1.0 1.0
21196 1.0 1.0

4.0 49.0
410 225.0
4.0 9610
’16.0 2401.0
16.0 50625.0
’16.0 9’2352.0

8 0.i19E4 3.743 0.156E5 3.1"62 8.0 10.0
16 0.595E4"
32 0265E5
8 0.104E6
16 0.600E6
32 01265E7
8 01118E8
16 0.599E8
32

3.176 0.451E5 3.161 8.0 10.0
3.168 0.179E6 3.16i 8.0 10.0
25.08 0.1 i4E7 25.11 80.0 100.0
25.02 0.447E7 25.11 80.0
25.09 01i79E8 25’11 80.0 i00.0

244.7 0.115E9 245.8 800.0 1000.0
244.9 0.452E9 245.8 800,0 100010

0.264E9 24419 0.179Ei0 245.8 800.0 i00010

FIG. 1. 1D Mesh 4for N 8.

Now (3.6) has the same unknowns as (3.2), which motivates using AF as our preconditioner
for AcoLB The periodic problem can be considered similarly.

The accuracy of this preconditioner has been examined for several examples. Throughout,
the numerical experiments are performed on a Sun SPARC+I in double precision, using
standard IMSL routines for solving the linear systems and eigenvalue problems.

In Table 1, the condition numbers of AcoL and T1 AI(AcoLB1) for Dirichlet
boundary conditions with ot 0 and periodic boundary conditions with ot 1 are listed. The
condition number used here is defined as

tel (T)
max/I)i (T)I

mini I)i (T)I’

and the meshes are the following:
1D Mesh 1" uniform mesh, xi -, --O, N;

1D Mesh 2: xi - ,i--O, N;

(;)41DMesh3: xi - ,i --0, 1 N;
1D Mesh 4: a uniform mesh consisting of N 3 nodes, with four additional local
uniform nodes close to x 0.5 (see Figure 1). The ratio of these two spacings is
denoted by/.

The two quantities

(3.7)
h* {max{ h-7+,max/ hi hi+l

h. maxh/
minhi

the so-called local mesh ratio, and global mesh ratio are used to measure the smoothness of
a given mesh. In Figures 2 and 3, we plot the distributions of eigenvalues of AcoL and T1
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2272 W. SUN, W. HUANG, AND R. D. RUSSELL

**(1/5)

larnbda(A__COL)

-FIG. 2. Eigenvaluesfor the 1D model problem with Dirichlet boundary conditions (N 8, ot 0).

REAl

larnbda(A_COL)

FIG. 3. Eigenvaluesfor the 1D model problem with periodic boundary conditions (N 8, c 1).

for 1D Meshes 1 and 3 and N 8 with Dirichlet and periodic boundary conditions. Several
observations can be made.
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PRECONDITIONING FOR COLLOCATION SYSTEMS 2273

Many of the eigenvalues of Acoi are complex. AcoI is indefinite, as its eigenvalues
have both positive and negative real parts. This illustrates why conventional iterative methods,
such as Jacobi, Gauss-Seidel and SOR, are divergent when they are applied to the collocation
equations (2.5). The condition number of AcoL is quite sensitive to the smoothness of the
mesh used.

Since both AcoLB and AF are symmetric for 1D Mesh [Bia91], the eigenvalues of T1
are real and positive. In the case of Dirichlet boundary conditions, the condition numbers of
T are less sensitive than Aco to the smoothness of the mesh. For a smooth or a moderately
nonsmooth mesh (h is not large and the spacing does not have a steep change, such as 1D
Meshes 1, 2, 3, and 4 with/3 10), /1 (T) is small. Even for a fairly nonsmooth mesh
(such as 1D Mesh 4 with/ 100 or 1000, whose spacing has a steep jump near x 0.5),
K1 (T1) is much smaller than tcl (Acoz). For all meshes, the norms of the eigenvalues of the
preconditioned matrix are bounded below by one and above by a constant which is independent
of N. For example, the upper bound is about 3.17 for 1D Mesh 1, 3.16 for 1D Mesh 2, and
3.86 for 1D Mesh 3 with Dirichlet boundary conditions. A similar observation can be made
for the periodic boundary value problem except for Mesh 2 and Mesh 3 which are not suitable
to this case.

Thus AF is a good preconditioner for AcoIB.. The preconditioned matrix has a de-
sirable distribution of eigenvalues for smooth and moderately nonsmooth meshes. Some of
these numerical observations will be confirmed theoretically in 4. In 5 it is demonstrated
that fast convergence can be gained when a conventional iterative method, such as Richardson
and conjugate gradient iteration, is applied to the preconditioned system.

3.2. 2D ease. Now we illustrate the preconditioning technique for the more interesting
case of a 2D Helrnholtz equation

(3.8) --Au + otu f(x, y), (x, y)

with Dirichlet or periodic boundary conditions on 0 f2 where f2 (0, 1) x (0, 1). Four meshes
are used:

(3.9) 2D Mesh "= 1D Mesh 1D Mesh i, 1, 2, 3,. 4.

On Flcoz lIcoL, the orthogonal Hermite bicubic collocation and five-point centered finite
difference approximations to (3.8) are obtained in the same way as in the 1D case. They are
also denoted (using the natural ordering) by Acor v f and AFW f. A relation between
the collocation and finite difference approximations can be obtained and expressed by

(3.10) w (Bc (R) Bc)v,

where Bc is defined in (2.5) and (R) denotes the Kronecker tensor product. Using AF as a
preconditioner, the resulting preconditioned collocation system is

(3.11) Tzw f,

where

(3.12) T2 := A (Acoi(Bc (R) Bc)-l).
The condition numbers of Acoi and T2 are shown in Table 2 for both Dirichlet boundary
conditions with c 0 and periodic boundary conditions with ot 1. These results confirm
the observations made in the 1D case. It is interesting to notice that for Mesh 4 the condition
number again increases linearly with the measure/3 of its smoothness for both Dirichlet and
periodic boundary conditions.
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2274 W. SUN, W. HUANG, AND R. D. RUSSELL

TABLE 2
Condition numbers ofthe collocation andpreconditioned matricesfor the 2D model problems.

IMESHNO. N -(I(AcoL) /(I(T2)
Dirichlet ( 0)

uniform

4
/3=10

16 0.563E6 3,135
4 0.566E6 3.557
8 0.145E9 3.622
16 0.371E11 3’761
8 0.554E5 31743

16 0.221E6 3.193

KI(AcoL) K1 (2) h
Periodic (c 1)

4 0.139E3 3.125 0.920E2 2.194
8 0.583E3 3.128 0.399E3 2.196
16 0.239E4 3.128 0.165E4 2.196
4 0.215E4 3.045 0.494E3 4.531
8 0.35iE5 3,082 0.697E4 9.059

0.132E6 18.17
0.111E6 0.201E3
0.258E8 0,206E4
0.804E10 0.189E5
0.224E5 3.238
0.709E5 3.234

4 8 0.552E7 25.08
/ 100 16 0.221E8 25.71

4 8 0.552E9 245.4
/3 1000 16 0.221E10 251.5

1.0

1.0
4.0
4.0

16.0
16.0
8.0
8.0

0.237E7 25.85 80.0
0.740E7 25.80 80.0
0.242E9 253.0 800.0
0.761E9 252.5 800.0

1.0
1.0
1.0
9.0
49.0
225.0
81.0

2461.0
50625.0
10.0
10.0
100.0
100.0
1000.0
1000.0

3.3. Incomplete LU factorization preconditioning. For 1D problems, finite difference
preconditioning is a quite inexpensive part of the iterative scheme. In higher dimensions,
however, inversion of these finite difference matrices can become relatively expensive and/or

complicated. This disadvantage is overcome by using a multigrid method or an incomplete
LU factorization technique. Here, for simplicity we restrict our attention to the latter and the
approach for a Dirichlet problem.

If a five-point finite difference approximation to a 2D second-order elliptic differential
equations is given by

(3.13) (A FU)i,j Si,jui,j_l Af_ mi,jUi_l,j

__
Ci,jbli, j Ar. Ni,jHi,j+l -[- Ei,jUi+l,j,

then a five-diagonal incomplete LU factorization can be expressed by

(3.14)

where

(Lu)i,j ci,jui,j .qt_ Si,jbli,j_ .qt_ tOi,jHi_l,j,

(Ubl)i,j ui,j + ni,jbli,j+l @ ei,jUi+l,j,

si,j Si,j,

wi,j mi,j,

(3.15) Ci,j Ci,j toi,jei-l,j si,jni,j-1 ’(si,jei,j-1 @ toi,jni-l,j),

ni.j-- Ni,j/ci,j,

ei.j Ei,j/ci.j

(see [CHQZ88] and [Won87]). The choice y 0 gives the standard incomplete LU factor-
ization HLu5 (ILU) and y gives the row sum equivalence version HRS5 (MILU [CE88]).
Using these preconditionings for the AF factor, we have the two new preconditioned matrices

T3 :-- H5 (AcoL(Bc (R) Bc) -1) and T4 :-- H- (AcoL(Bc (R) Bc)-l)
Note that the LU factorizations of Bc and Bc (R) Bc are inexpensive because of their sparse
and banded structure.
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PRECONDITIONING FOR COLLOCATION SYSTEMS 2275

TABLE 3
Extreme eigenvalues of the HRS5 and HLu5 preconditioned matrices for the 2D Laplacian operator with

Dirichlet boundary conditions and ot O.

MESH NO. N

4
uniform 8

16
2 4

8
16

3 4
8
16

Im (.i) Im (Zi)min [il max I.il maxI1 min I/,i max I.il max]l
1.197 3.728 0.0 0.389 3.040 0.0
1.089 5.014 0.0 0.119 3.037 0.0
1.044 9.814 0.0 0.032 3.037 0.0
1.133 3.365 0.121 0.590 3.047 0.106
1.054 4.217 0.132 0.202 3.045 0.123
1.025 5.894 0.163 0.054 3.073 0.141
1.178 3.717 0.426 0.949 3.686 0.623
1.075 3.717 0.429 0.426 3.686 0.434
1.032 5.031 0.429 0.126 3.686 0.434

Table 3 summarizes how the extreme eigenvalues of T3 and T4 depend on N and the
smoothness of the mesh. There are some differences from using an exact factorization of
the original finite difference matrix. Roughly speaking, the incomplete LU case is somewhat
better for the high-frequency components and the row sum equivalence alternative is more
accurate for the low-frequency components, as can be seen from Table 3. In fact, the minimal
eigenvalue of T3 is nearly one, which implies that HRs5 and AcoL (Bc (R) Bc)-1 have similar
low-frequency components. On the other hand, the maximal eigenvalue of T4 is bounded above
by a constant independent of N,and HLv and Aco(Bc (R) Bc) -1 have similar high-frequency
components. Unlike the exact finite difference preconditioning, the condition numbers ofboth
T3 and T4 can increase slowly with N. Since convergence rates for most conventional iterative
methods are strongly related to the condition number, the row sum equivalence version on
this basis appears to be more suitable as a preconditioning. Other important indicators for the
convergence of iterative methods are ratios of real parts and imaginary parts of eigenvalues,
which are listed in the table. It is obvious that the maximal ratio is strongly dependent upon
the smoothness of meshes.

A more accurate factorization can be achieved by including one extra nonzero diagonal
in each of L and U. The seven-diagonal LU factorization is given by (see [Won87] and
[CHQZ88])

(3.16)
(Lu)i,j ci,jui,j .. si,jui,j_l .qt_ u)i,jUi_l,j .qt_ i,jUi+l,j_l

(Uu)i,j ui,j .. ni,jui,j+l .. ei,jUi+l,j .qt_ l)i,jUi_l,j+l

where the coefficients can be calculated from

Si,j Si,j,

Loi,j mi,j- si,jl)i,j-1,

ei,j --si,jei,j-1,

(3.17) Ci,j Ci,j 113i,jei-l,j si,jni,j-1 i,jlTOi+l,j-1 ’(ei+l,j-li,j ’ uoi,jlTOi-l,j),

ni,j Ni,j/ci,j,

ei,j (Ei,j ni+l,j-l.i,j)/ci,j,
17ui, j -113i, jn j/ci, j

Now V 0 gives the Hzt:7 version and y 1 the Hls7 version. Table 4 shows the extreme
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2276 W. SUN, W. HUANG, AND R. D. RUSSELL

TABLE 4
Extreme eigenvalues of the HRS7 and HLU7 preconditioned matrices for the 2D Laplacian operator with

Dirichlet boundary conditions and ot O.

MESH NO. N

4

uniform 8
16

2 4
8
16

3 4
8
16

Im )imin I)il max I)il maxIl
1.168 3.102 0.0

1.082 3.280
1.043 5.458 0.0
1.103 3.102 0.135
1.049 3.215 0.142

Im ()imin Iil max I)il maxI1
0.714 3.037 0.0

0.278 3.020 0.0
0.081 3.018 0.0
0.901 3.047 0.113
0.433 3.031 0.130

1.010 3.570 0.144 0.134 3.016 0.144
1.170 3.672 0.574 1.140 3.671 0.543

0.743 3.671 0.425
0.287 3.671 0.425

1.070 3.672 0.425
1.026 3.672 0.425

eigenvalues of T5 H7AcoL (B (R) B)-1 and T6 Hlu7AcoL (B (R) B)-. Results are
consistent with the observation concerning T3 and T4, but the condition numbers are smaller.

4. Condition number estimates. The numerical results in the previous sections illustrate
that the eigenvalues of the preconditioned collocation systems are bounded below by one and
above by a constant which is independent of the number of mesh points, except in the case of
Mesh 2 and Mesh 3 with periodic boundary conditions. Here, we shall present a theoretical
analysis ofthe preconditioned system. The discussion is restricted to the simple model problem
(2.1) with periodic boundary conditions and a uniform collocation mesh (Mesh 1).

For a uniform collocation mesh {Xi}2iNo.= a corresponding finite difference approxima-
tion for (2.1) with periodic boundary conditions is produced on the mesh {X14N+l de-Ji=0
fined in (2.3). Arranging the variables and equations to correspond to the node ordering
{x), x2 X4N, x X4N+} and using the periodic boundary conditions u(x) u(X,N)
and u(XN+I) u(x’), the global finite difference matrix is given by

(4.1)
(b + et)I

AF
-CT (b+)I

where I is the 2N 2N identity matrix,

(4.2) C

is a circulant matrix,

C 0 a

a c 0

a c

2 2 2
(4.3) a b c

h2(hl + h2)’ hlh2’ hi(hi + h2)’

(4.4) hi (1 2r)h, h2 2crh,

and h is the collocation mesh stepsize. The corresponding Hermite cubic collocation system
is given by

Acu + cBcu f
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PRECONDITIONING FOR COLLOCATION SYSTEMS 2277

or

(4.5) (AcBS + otI)Ft f

where Bcu. The objective of this section is to establish bounds on condition numbers of
the matrix

(4.6) T AI(AcB + otI).

Our approach is an algebraic one.

4.1. Eigensystem of collocation matrix. The eigenvalues and eigenvectors for the finite
difference matrix are well known, and the corresponding eigensystem for the Hermite collo-
cation matrix has been analyzed by Dyksen [Dyk87]. He considers the generalized eigenvalue
problem -U 0 and the corresponding matrix eigenvalue problem

(4.7) AcB v Xv

with Dirichlet boundary conditions and gives an analytic expression of the eigenvalues. The
problem with periodic boundary conditions also has been analyzed in [Sun94b], and these
results can be summarized as follows:

LEMMA 4.1. Let (Ac, Bc) denote a Hermite cubic collocation discretization for (2.1)
with periodic boundary conditions. The eigenvalue problem AcBlv Xu with ot 0 has a
complete set ofeigenvectorsfor which the eigenvalues are nonnegative and are given by

(4.8) )t l= 2N-l, N, #-N

and

24 12 9
(4.9) Xc_0

(1- 4r2)h2 )- 0, )-N- -, )N -,
where

/z h4[(16r4 16r2 + 3)p 8r2 q- 2],

v h2[(-128r2 + 48)p + 48],

oo 192p,
Otp tan2(-), 0l lrc/N,

(r or)for Gaussian collocation points. The corresponding eigenvectorsand r. -are given by

(4.10)
(-sinkt rhcosk4 2N-1

1)1 =dl )(- sin kO + rh cos kO)=o2N-1
/=-0, II/IN-1,

(4.11)
cosk0 vh sin I.,2N-1rtTl)k=0

Vl dl )z kl + h sin kO 2N-( cos =0

N + 1 Ill 2N- 1,
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2278 W. SUN, W. HUANG, AND R. D. RUSSELL

VN and(4.12) vo--
e e*

where

(4.13) Zl
)t 6 - -- tan -,

Oz 10zl, 0_o 0o,

e (1, 1) r, e* (1, -1, 1, -1,..., 1, -1)r 6 It{2N and dt is a constant.
It is not difficult to obtain from Lemma 4.1 that

9 12 36
(4.14) 7/-2 < ;k < -2 and -2 < )v-t < )-0 -, 1,2 2N- 1.

The following Lemma is a result of the fact AcB is symmetric when Gaussian points are
chosen as the collocation points [Ben91 ].

/+/-(2N-1) defined in (4.10)-(4.12)form an orthogonalLEMMA 4.2. The eigenvectors {v j=+/-o

set under the inner product

(U, U) Z ui yi’ U, V R2N.

Close scrutiny reveals a natural bound for the ratios of eigenvalues of AcB and the
five-point finite difference matrix.

LEMMA 4.3. The eigenvalues )v7 L1(AcBI), 4-0, 4-1 4-(2N 1) defined in
(4.8) and (4.9) satisfy

h2)
(4.15) 4 < < 9, 1 2, 2N- 1

sin2 2

Proof. It follows from Lemma 4.1 that for 1 _< < 2N 1,

(4.16)
h2) (7p / 9) V/p2 + 90p + 81

sin2 0_ 2
2 P + 1/2) sin2 2

Letting

Or) (7p + 9) V/p2 + 90p + 81
G sin2

2
5P + g) sin2 f

sin L for 0 < x < we havewhere p
l_sinZ ,

G’(x)
/81 72x 8x2(x2 6x 9) + (-x 36x2 + 18x + 81)

2(x2 + 1/2x)2/81 72x 8x2

Thus,

h2)
max < lim G (x) 9

l</<2N-1 sin2 x-+l
2
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PRECONDITIONING FOR COLLOCATION SYSTEMS 2279

and

min h2’_ >_ lim G(x) 4.
l<l<2N-1 sin2 ot x--+o

2

From the above proof, we can see that the bounds in (4.15) are asymptotically optimal.
Let

(4.17) w] (sin l_,q 2N-1
vl)k=0 and w (cos kO 2N-1tk=0 1----0,1,2 2N-l,

be 2N-dimensional vectors. If A is a circulant matrix defined by

ao al ap
ap ao al ap-1

al a2 ap ao

then it is well known [Dav79] that its eigenvalues are given by

(4.18) )u(A) f(j), j O, 1 p,

where

f(x) := ao + ax +... + apXp, j :-- e p+l

Furthermore, A can be decomposed into

(4.19) A = FA(A) F*,

where

F := (e p)j,=0 and A(A) "= diag(1, f(l) f(ep)).

LEMMA 4.4. a) If the 2N x 2N circulant matrix A is symmetric then

(4.20)
)u(A cAwj Wj

=)j(A) s.Awj tOj

b) IfA is skew symmetric then

(4.21)

where gj Im(f(ej)).
Proof. Lemma 4.4a) is a straightforward calculation, noting the fact that

CFj Wj "Jr- iwj,

where Fj is the jth column vector of F. By (4.19)

A(w + iw.) f(ej)(w +
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2280 W. SUN, W. HUANG, AND R. D. RUSSELL

Since each eigenvalue of a skew-symmetric circulant matrix is imaginary, f(ej) iFj, so
(4.21) follows.

Let

Ul U-N-I
0 W*N+

(4.22) u-I
W

UN+l
0

uo and U-N
0 e*

/=1,2 N-l,

It follows directly that the eigenvectors of AcB defined in (4.10)-(4.12) can be expressed

(vl, v-I) [(ul, u-l) DI,

I 2rhdt
-z-td-t ], 2N- 1, # N,
2rhd_l

by

(4.23)

where

1(I(4.24) I
I

(4.25)

with

dl 4r2h2(zl Z-l)’
(4.26)

d-I 4r2h2(zl z-l)’
1,2, (2N- 1),/ N.

LEMMA 4.5. Each Dr, 0, 2N 1, is an orthogonal matrix.

Proof It is obvious that DoD DND 12. For 1, 2 (2N 1), # N, by
(4.24) we obtain

dld-l(ZlZ-I + 4vZh2)

It follows from (4.8) and (4.13) that

so

dld-l(ZlZ-I + 4r2h2)

4z’2h2(d/2 + d21)

(4.27) ztz_l + 4z’2h2 0.

Using (4.26) and (4.27), we obtain

zd + z2,d2_l 4r2h2(d + d2,) 1.

Thus,

D,D I2.

D
ow

nl
oa

de
d 

09
/1

5/
14

 to
 1

29
.2

37
.4

6.
10

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



PRECONDITIONING FOR COLLOCATION SYSTEMS 2281

4.2. Bounds for condition numbers of preconditioned systems. The key to proving
uniform boundedness of condition numbers of the preconditioned matrices T in (4.6) is to
show that ‘4cB and the preconditioner ,4 F share 2D invariant subspaces.

THEOREM 4.1. Let (‘4c, Be) define a Herrnite cubic collocation discretization of (2.1)
and (2.3) and {vt,t=:ol:k(2N-1), defined in (4.10)-(4.12), be the eigenvectors ofAcB. Then each
St span {vt, v-t }, O, 2N 1, is an invariant subspace ofA F.

Proof By (4.1) and (4.24), we have

(4.28)
CT(b + c)I- (C +ITAF[ - (C1 CT)

I(cT2 -C) )T)(b + ot)I + (C + C

where

C+Cr=

2c a a 0 -a a

a 2c a
C Cr a 0 -a

a a 2c -a a 0

Thus,

AF(Vl, V-l)
(b + ot)I- (C + CT)

T)(c-c
I(cT2 -C) )Cv

(ut, u-t) Dr.
(b +) + (C +

It follows from Lemma 4.4 that

g(C + Cr)w] (c + a cOSOl)w]
(4.29)

1/2(C + Cr)w (c + a cosOt)w,

g(C Cr)w] -a sin Otw
CTg(C- )w =asinOtw],

and therefore,

(4.30) AF(vt, v-t) (ut, u-t) ( b + c a cos 0t
-a sin Ol

\

-a sin Ol
Dl

b + ot + c + a cos Ot

=0, 2N- 1.

Letting

(4.31) Dl := ( (b + t) (c + a cs Ol) -a sin Ol )-a sin Ol (b + a) + (c + a cos 0t)

and using Lemma 4.5 and equation (4.23), (4.30) can be rewritten as

(4.32) AF(vt, v-t) (Vl, V-l)Drl DiDt.
Thus, St, = 0, 1 2N 1, are invariant subspaces of A F.

It remains to estimate the spectrum in each subspace St. The basic result is given in the
theorem below; its detailed proof is in [SHR93].

THEOREM 4.2. Given (Ac, Bc) and AF as in Theorem 4.1 with ot > O, there existpositive
constants C1 and C2 independent ofh such that T defined in (4.6) satisfies

0 < C < 1(TrT) _< C2,(4.33) 0, 2N 1.
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2282 W. SUN, W. HUANG, AND R. D. RUSSELL

Let K2 (T) denote the condition number of T for the L2 norm, i.e.,

to2 (T)
max/i (Tr T)

mini ,ki (T r T)

The two corollaries below follow immediately.
COROLLARY 4.1. There exists a constant C independent ofh such that

(4.34) x2(T) < C.
COROLLARY 4.2. Them exist constants C and C independent ofh such that

(4.35) =0, 2N- 1,

and

C /--0, 1,...,2N- 1.(4.36) K’l (T) <
c’

Remarks. (i) Since each eigenvalue of T AI(AcB +otI) is a continuous function
of ot in (0, oo) with

lim )t(T) 1 and lim l(T) < constant, 0, 1 2N 1,

C1 and C2 can be assumed to be independent of
(ii) Theorem 4.2, while showing that the eigenvalues of the preconditioned matrix T are

bounded by constants, does not give an explicit bound. Numerical observation has shown that
each i (T) decreases as ot increases, with min )i (T) lim )i (T) 1. Furthermore, for
a given c > 0, the eigenvectors corresponding to both maximum and minimum eigenvalues
of T occur in the subspace So. A straightforward calculation gives [SHR93]

min)i(T) 1 and maxLi(T) 18r 3 + o(h) 2.19615 + o(h),

which implies tq (T) is approximately bounded by 2.196. This agrees with the numerical
results in 2 (see Table 2). The same relationships also hold in the case x2 (T).

When ot 0, AF is singular, so T is undefined. We can then consider a generalized
eigenvalue problem AcB-v LAFV. The eigenvalues corresponding to the subspace S
(l > 0) lie in [1,18r 3].

(iii) One can use central differences with a uniform mesh on [0, 1] instead of the nonuni-
form mesh {x[} in (2.3) and obtain a matrix having the same form as (4.5) with

2
b= and a =c=

(2N + 1)2 (2N + 1)2"

The above arguments hold with minor modification, and the boundedness of the eigenvalues
of T and TrT is still valid.

(iv) It is easy to find examples of some discretizations of PDEs for which the spectral
condition numbers are bounded but the condition numbers in the Lz-norm are not. Neverthe-
less, some iterative methods can still be very effective and converge quickly when applied to
such preconditioned systems if the eigenvalues are properly distributed.

It should be noted that the collocation system preconditioned by a simple finite difference
scheme is a very special case. Since AF and AcB have 2N common invariant subspaces
for a uniform mesh and periodic boundary conditions, both spectral condition numbers and
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PRECONDITIONING FOR COLLOCATION SYSTEMS 2283

condition numbers in the L2-norm are bounded by constants independent of h. Our numerical
results indicate that in the case of a nonuniform mesh and/or Dirichlet boundary conditions,
the spectral condition numbers are bounded, although we have as yet been unable to provide
a theoretical proof. Numerical results indicate that the corresponding condition numbers in
the L2-norm are unbounded [SHR93], however.

(v) Although the discussion is based on a 1D model problem, these theoretical results are
straightforward to generalize for the corresponding 2D model problem.

5. Numerical solution of PDEs. The collocation matrices Ac and Bc are generally
nonsymmetric, as are the resulting preconditioned matrices. A number of iterative methods
have been developed in recent years for the solution of nonsymmetric preconditioned systems.
They would be expected to be efficient in our context because of the relatively small condition
numbers and the close concentration of eigenvalues for the preconditioned matrices. To
illustrate that this is indeed the case, we consider two examples of 2D second-order elliptic
PDEs defined on f2 [0, 2] [0, 2] with Dirichlet boundary conditions. The orthogonal
Hermite bicubic collocation method is used for the discretization of the PDEs. In order
to avoid the effect of discretization errors in our tests, the right-hand sides and boundary
conditions in the two examples are chosen such that

(5.1) u(x, y) xy(2 x)(2- y)

is both the PDE solution and the collocation solution. The five-diagonal row sum equivalence
incomplete LU factorization (HRss) is a preconditioner and a generalized conjugate residual
(GCR) method lEES83] is employed to solve the preconditioned collocation equations. The
error is measured by

(k)(5.2) e(k) ma.xluij uij l,
tJ

where uij denotes the exact solution and its first and mixed derivative values at mesh points,
(k) denotes the corresponding numerical solution at the kth iteration. For both examples,and uij

the initial guess is taken as zero. The iterative procedure is stopped when ek) is smaller than
a prescribed tolerance 8.

Example 5.1 Poisson Equation.

(5.3) Au f(x, y).

In Table 5, we list the number of iterations required for preconditioned GCR (PGCR)
with four tolerances and using the 2D Meshes 1-3. Since this example is separable, other
iterative methods such as block Gauss-Seidel (BGS), block SOR (BSOR) [Sun94a], and ADC
[Dyk87] are also applicable when a uniform mesh is used. The results with BGS and BSOR
are also given in Table 5. ADC is not considered since it is actually a direct method for this
simple problem [Dyk87]. Although the number of iterations for PGCR to achieve a prescribed
tolerance increases with N, the growth rate is acceptable and is smaller than that of BGS or
BSOR. For given N, PGCR requires nearly the same number of iterations for 2D Mesh 2 and
3 as for a uniform mesh.

Example 5.2 A Nonseparable Elliptic PDE (Prob. 18 in [RB85]).

2u 2u Ou e- Ou
(5.4) 0x----- + (1 + xy)-y + cos(X)x 0-- + 3u f(x, y).

None of other iterative methods are applicable for this nonseparable problem. Numbers
of iterations for PGCR using various meshes and tolerances are summarized in Table 6. The
same basic conclusions about PGCR can be made as in the previous example.
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2284 W. SUN, W. HUANG, AND R. D. RUSSELL

TABLE 5
Example 5.1 Iteration numbers of(HRs5) preconditioned GCR and (nonpreconditioned) BGS, BSOR methods.

METHOD

PGCR

BGS

BSOR

MESH NO. N

8
16
8
16
8
16
8
16
8
16

= 10-3 10-4 = 10-5 6 10-6

10 12 15 18
16 19 22 24
10 13 15 17
17 19 22 24
11 13 15 17
22 26 29 31
22 29 37 44
65 94 125 154
9 13 15 16
17 22 28 32

TABLE 6
Example 5.2 Iteration numbers of HRss preconditioned GCR method.

MESH NO. N

4
8
16

2 4
8
16

3 4
8
16

10.3 10.4 10.5 10.6

9 11 12 14
12 14 16 17
16 19 21 24
8 10 12 13
10 12 14 16
16 19 23 25
7 10 11 13
8 11 13 16
23 27 30 32

6. Conclusions and comments. A technique has been presented to construct a finite
difference preconditioning for orthogonal collocation matrices. Only cubic Hermite basis
functions have been considered, although the preconditioning principles are straightforward
to generalize for higher order collocation methods. It is shown numerically that the norms
of eigenvalues of the preconditioned collocation matrices can be bounded below by one and
above by a constant independent of the number of mesh nodes using the exact low-order finite
difference preconditioner. For both smooth and moderately nonsmooth meshes, the precondi-
tioned matrix has a small spectral condition number, with its eigenvalues located in a narrow
interval on the positive real axis. As a consequence, conventional iterative methods such as
Richardson and conjugate gradient iterations give fast convergence for the preconditioned
collocation equations.

We have also investigated much cheaper alternatives involving incomplete LU factoriza-
tions based on a low-order finite difference approximation. The row sum equivalence version
is particularly efficient although condition numbers may grow slowly with the number ofmesh
points. Moreover, the generalized conjugate residual method with this preconditioning has
been seen to converge fast for both separable and nonseparable problems with uniform or
nonuniform meshes.

While only limited experiments and comparisons have been performed, the results are
quite encouraging. It is our intention to perform a theoretical analysis of these precondi-
tioning schemes (possibly developing a general theoretical framework for the collocation
methods analogous to what is done in [MP90] for the finite element method) and do a more
careful comparison with the currently popular direct schemes for solving the collocation linear
systems.
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