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Abstract. In this paper we introduce a moving mesh method for solving PDEs in two dimen-
sions. It can be viewed as a higher-dimensional generalization of the moving mesh PDE (MMPDE)
strategy developed in our previous work for one-dimensional problems [W. Huang, Y. Ren, and R. D.
Russell, SIAM J. Numer. Anal., 31 (1994), pp. 709–730]. The MMPDE is derived from a gradient
flow equation which arises using a mesh adaptation functional in turn motivated from the theory of
harmonic maps. Geometrical interpretations are given for the gradient equation and functional, and
basic properties of this MMPDE are discussed. Numerical examples are presented where the method
is used both for mesh generation and for solving time-dependent PDEs. The results demonstrate the
potential of the mesh movement strategy to concentrate the mesh points so as to adapt to special
problem features and to also preserve a suitable level of mesh orthogonality.
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1. Introduction. During the last decade, mesh adaptation has become an indis-
pensable tool in the numerical solution of partial differential equations (PDEs). This
is especially true in areas such as fluid dynamics, hydraulics, combustion, and heat
transfer. For problems in these areas, small node separations are often required over
a portion of the physical domain to resolve large solution variations there. Numerical
solution of these problems using uniform meshes is formidable, even with the use of
supercomputers when the systems involve two or more spatial dimensions, since the
number of mesh nodes required in each dimension becomes very large. On the other
hand, it has been amply demonstrated that significant improvements in accuracy and
efficiency can be gained by adapting a smaller number of mesh nodes during the solu-
tion process so that they remain concentrated locally about regions of large solution
variations (e.g., see [6, 20, 30, 36]). Yet while mesh adaptation is now an established
area of intense research activity in many areas of science and engineering, it is also a
rapidly changing one in need of clarification of its basic principles.

Roughly speaking, there are two kinds of adaptive methods, static and dynamic.
In a static or local refinement method, mesh points are moved at fixed time levels,
where points can also be added to or removed from the mesh in order to obtain
an approximate solution with the desired level of accuracy. The local refinement
method is conceptually easy to apply and usually reliable, requiring little tuning of
parameters. It also allows an easier error analysis than a dynamic method. Many
local refinement methods have been developed, such as in [2, 5, 17]. The principal
disadvantages of the local refinement method are its complicated data structure and its
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MESH MOVEMENT BASED ON GRADIENT FLOW 999

being forced to either use a one-step time integrator or continually restart a multistep
method. Expertise is required in the programming of a local refinement method, and
considerable technical effort is necessary to treat the complicated communications
between elements in the same as well as different levels of refinement.

For a dynamic or moving mesh method, the mesh points move continuously in
the space-time domain and concentrate in regions where the solution is steep. An
explicit rule, called a moving mesh equation, is designed to do this. It is often very
difficult to formulate a moving mesh strategy which can efficiently perform the mesh
adaptation while moving the mesh in an orderly fashion. Producing an analysis of
the error is also difficult because the mesh movement is strongly coupled (in a highly
nonlinear fashion) to the physical PDE. However, when working properly, a moving
mesh method usually requires considerably fewer mesh points than a static method
to produce commensurate accuracy and allows significantly larger time steps without
causing instability. The moving mesh equation can often be easily designed to mimic
basic properties of the underlying physical PDE, and as a result, the qualitative
behavior of the solution can be efficiently captured (e.g., see [9, 10]). Moreover, a
moving mesh method which generates a structured mesh is straightforward to combine
with the existing structured CFD codes. We anticipate that its ease of programming
will allow the moving mesh strategy to find widespread acceptance in the science and
engineering communities.

Our aim is to present a new mesh movement strategy for use in two spatial
dimensions. Although a number of one-dimensional moving mesh methods have been
developed in the last 15 years, such as those in [1, 6, 15, 26, 32, 33], very few have been
applied in two spatial dimensions. The moving finite element method (MFE) of Miller
and Miller [32] can in theory be used in any dimension. One disadvantage, however,
is that certain sensitive penalty functions are necessary in order to avoid singularity
of the mass matrix. Nevertheless, this method bears further study in two and higher
dimensions, and in particular the recent works by Carlson and Miller [12] and Baines
[6] have provided a better understanding of the MFE. The method in [21] determines
the mesh speed by directly differentiating the steady variational mesh equation in [8]
with respect to time, but it is necessary to periodically enforce satisfaction of the
original mesh equation to combat a tendency of the node concentration to relax.

The space-time finite elements recently developed in [3, 28] are other methods
warranting special attention. For these, the finite element formulation corresponding
to the physical PDE is expressed over its space-time domain, allowing deformation of
the spatial domain with respect to time to be automatically taken into account. A
major issue has been how to update the mesh as the domain changes shape. Several
strategies for the mesh movement have been considered, viz., use of the equation of
linear elasticity in [28]. However, these mesh movement strategies have had difficulties
controlling the deformation of elements, and a remeshing procedure must be used when
this deformation becomes too large. More generally, it has been unclear how mesh
adaptation should be combined with these mesh movement strategies.

Recently, we have developed a so-called moving mesh PDE (MMPDE) approach
(see [22, 23, 24, 25]). In one dimension, the approach has led to a unifying framework
describing the previous methods, provided a new theoretical underpinning, and gen-
erated very reliable methods. Here we develop a new moving mesh method along the
lines of the MMPDE approach in [24] but which can be applied in two dimensions.
With this approach, a continuous moving mesh equation which explicitly involves the
mesh speed is employed to move the mesh points in such a way that they are con-
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1000 WEIZHANG HUANG AND ROBERT RUSSELL

centrated in regions where the physical solution is steep. Since the mesh movement
obeys a time-dependent partial differential equation (the MMPDE), this approach fa-
cilitates a better understanding of moving mesh methods, a comparison of their basic
properties, and ultimately the development of useful new algorithms.

The fundamental idea is to assume that the steady mesh point distribution is
determined by a steady mesh generator and then obtain an MMPDE by introducing
mesh speeds into the mesh generator. We describe how to obtain this MMPDE using
the gradient flow equation in the next section. The approach can, under suitable
conditions, be used to derive our original one-dimensional MMPDEs introduced in
[24], but it also applies readily for two dimensions. In section 3, we lay the groundwork
for the new class of moving mesh methods by introducing a functional for mesh
adaptation and orthogonality and directional control which is motivated from the
theory of harmonic maps. A geometrical interpretation of the functional is also given.
In section 4, the basic MMPDE is derived using the gradient flow equation method
and the functional developed in sections 2 and 3. Several two-dimensional numerical
examples are presented in section 5, followed by conclusions and comments in section
6. Finally, an appendix is given for the brief definition of harmonic maps between
Riemannian manifolds and a few related existence results.

2. Gradient flow equation. Consider the problem of generating a moving mesh
for a simply connected, two-dimensional physical domain Ωp. It is useful to regard Ωp
and a computational (logical) domain Ωc as images of one another under the invertible
map

x = x(ξ, η, t), y = y(ξ, η, t)(1)

and its inverse

ξ = ξ(x, y, t), η = η(x, y, t),(2)

where ~x = (x, y)T ∈ Ωp and ~ξ = (ξ, η)T ∈ Ωc are the physical and computational
coordinates, and t is time. A mesh covering Ωp is obtained by partitioning Ωc (often
uniformly) and then mapping it to the physical domain through (1). In this sense,
generating a mesh is mathematically equivalent to generating an invertible contin-
uous coordinate transformation. Hereafter, the terms mesh, map, and coordinate
transformation will be used synonymously.

With the MMPDE approach developed in [24, 25], the time-dependent coordinate
transformation is determined by solving a parabolic PDE called a moving mesh PDE
or MMPDE. It explicitly involves the mesh speed and continuously moves the mesh
in such a way that the mesh points are concentrated in regions where the physical
solution is steep. This MMPDE is obtained by introducing mesh speed into a steady
mesh generation equation. In this section, we will give a geometric illustration of the
MMPDE approach and generalize the one-dimensional case studied in [24, 25] to two
dimensions.

Suppose that there is a steady mesh generation strategy formulated as the vari-
ational problem of minimizing I[ξ, η] over a certain function space. Since the fastest
descent direction of I[ξ, η] in the function space is the opposite direction of the first-
order functional derivative δI

δξ (e.g., see [13]), the gradient flow equation

∂ξ

∂t
= −δI

δξ
,

∂η

∂t
= −δI

δη
(3)
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MESH MOVEMENT BASED ON GRADIENT FLOW 1001

defines a flow which converges to the equilibrium state as t → ∞. In practice, it
is often more suitable to use different descent directions than the fastest one and to
allow the user to adjust the time scale of the mesh equation. Hence, we define our
moving mesh equation as

∂ξ

∂t
= −P

τ

δI

δξ
,

∂η

∂t
= −P

τ

δI

δη
,(4)

where τ > 0 is a user-prescribed parameter which controls the time scale, and P is an
operator on the underlying function space which is chosen to have positive spectrum.

It is interesting to consider the one-dimensional analogue of (4). In one dimen-
sion, De Boor’s equidistribution principle, which has been a popular tool for mesh
generation and adaptation, is used to form the steady mesh generator in [24]. The
idea behind this principle is to choose the coordinate transformation by equidistribut-
ing a monitor function G(x) > 0 which provides some measure of the computational
difficulty in the solution of the physical PDE. (Although for simplicity we assume
here that the monitor is time independent, the MMPDE approach is generally used
for time-dependent monitor functions; e.g., see [25].) The equidistribution equation
can be obtained by minimizing

I[ξ] =
1

2

∫ 1

0

1

G

(
∂ξ

∂x

)2

dx,(5)

where for convenience we assume that both the physical and computational domains
are the unit interval. The Euler–Lagrange equation for (5) is

δI

δξ
≡ − ∂

∂x

(
1

G

∂ξ

∂x

)
= 0.(6)

Taking P =
(
G
ξx

)2

I, where I is the identity operator and ξx = ∂ξ
∂x , we obtain the

one-dimensional MMPDE

∂ξ

∂t
=

G2

τξ2
x

∂

∂x

(
1

G

∂ξ

∂x

)
,(7)

or after exchanging the roles of dependent and independent variables,

∂x

∂t
=

1

τ

∂

∂ξ

(
G
∂x

∂ξ

)
,(8)

which is exactly MMPDE 5 developed in [24]. Similarly, MMPDEs 3, 4, and 6 in [24]
can be obtained by defining appropriate operators for P .

Obviously, the above general procedure works in any dimension provided that a
functional for steady mesh adaptation is given. However, the extension of equidis-
tribution to two dimensions is neither straightforward nor unique. In addition to
adaptation and smoothness, control of other mesh properties such as skewness and
overlap must be incorporated into high-dimensional formulations. In fact, a number
of two-dimensional generalizations of equidistribution have been developed with vary-
ing degrees of success in the last decade by researchers using the variational approach
for mesh generation and adaptation (e.g., see [8, 30, 36]). In the following section,
we present a variational approach for obtaining a steady mesh generation differential
equation, and an MMPDE is then obtained from it using a gradient flow equation.
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1002 WEIZHANG HUANG AND ROBERT RUSSELL

3. Steady mesh generation equation. We define our mesh adaptation func-
tional in a general form as

I[ξ, η] =
1

2

∫
Ωp

dxdy
[∇ξTG−1

1 ∇ξ +∇ηTG−1
2 ∇η

]
,(9)

where G1 and G2 are given symmetric positive definite matrices (called monitor func-
tions) and ∇ = ( ∂

∂x ,
∂
∂y )T . The Euler–Lagrange equation for I[ξ, η],

∇ · (G−1
1 ∇ξ

)
= 0, ∇ · (G−1

2 ∇η
)

= 0,(10)

determines the coordinate transformation for the mesh generation and adaptation.
Choosing appropriate monitor functions is a key to the variational mesh adaptation
approach.

A major reason for defining our mesh adaptation functional in the form (9) is its
close relation to harmonic maps (defined in the appendix). In fact, it is easy to see
that (9) defines an energy functional when

G1 = G2 =
1√
g
G,(11)

where G is a symmetric positive definite matrix and g = det(G). The corresponding
Euler–Lagrange equation (10), together with appropriate boundary conditions such
as Dirichlet boundary conditions, define a harmonic map ξ = ξ(x, y), η = η(x, y):
Ωp → Ωc. The existence and uniqueness of the harmonic map is guaranteed provided
that the boundary of Ωc is convex. Further, the two-dimensional harmonic map
defined by (10) and (11) is a homotopy equivalent to a diffeomorphism [34]. It is
unclear whether or not these existence results extend to the general case where G1

and G2 differ, but in our limited experience little difficulty has been encountered in
finding a numerical solution of the equation using smooth monitor functions.

Dvinsky [16] is apparently the first to note the practical importance of the fact
that no constraints on the metric tensor G = (gij) are necessary to guarantee invert-
ibility of the harmonic map and that such a map defined from the Euler–Lagrange
equation can be used specifically for mesh adaptation. This metric tensor can thus be
chosen so that mesh points concentrate in regions of rapid variation of the physical
solution. A mesh so obtained enjoys desirable properties of harmonic maps, particu-
larly regularity, or smoothness. In our formulation (9), the monitor functions Dvinsky
uses satisfy (11) with

G = I +
f(F )

‖∇F‖2∇F · ∇F
T ,(12)

where f(F ) is a function of the distance from a given point to the given curve F (x, y) =
0 such that f(F ) increases as the distance decreases and goes to zero as the distance
increases.

Brackbill [7] is motivated by Dvinsky’s work and Winslow’s earlier work on mesh
generation [37]. He also incorporates an efficient directional control into the mesh
adaptation, thereby improving both the accuracy and efficiency of the procedure.
The monitor functions he employs can be expressed in the form

G1 = w
[
(1− γ)I + γS(~v1)

]−1
,

G2 = w
[
(1− γ)I + γS(~v2)

]−1
,(13)
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MESH MOVEMENT BASED ON GRADIENT FLOW 1003

where w is a mesh concentration function, γ is a user-defined dimensionless parameter,
and the symmetric matrix S(~v) is defined by

S(~v) =
1

‖~v‖2
[

v2
2 −v1v2

−v1v2 v2
1

]
(14)

for any nonzero vector ~v = (v1, v2)T . The corresponding mesh functional is

I[ξ, η] =
γ

2

∫
Ωp

dxdy
1

w

(‖∇ξ‖2 + ‖∇η‖2)
+

(1− γ)

2

∫
Ωp

dxdy
1

w

(‖∇ξ × ~v1‖2
‖~v1‖2 +

‖∇η × ~v2‖2
‖~v2‖2

)
.(15)

The first and second terms serve, respectively, to control mesh adaptation and the
level of alignment of the normals to mesh surfaces of constant ξ and η with corre-
sponding vector fields ~v1 and ~v2 which are chosen for their problem-dependent physical
significance.

Motivated by the work of Dvinsky and Brackbill, we define the monitor functions
as

G1 =
1√
g̃1
G̃1, G2 =

1√
g̃2
G̃2,

G̃1 =
[
(1− γ1 − γ2)G−1 +

γ1

2
‖G−1‖FS(∇ξ̃) +

γ2

2
‖G−1‖FS(~v1)

]−1

,

G̃2 =
[
(1− γ1 − γ2)G−1 +

γ1

2
‖G−1‖FS(∇η̃) +

γ2

2
‖G−1‖FS(~v2)

]−1

,(16)

where
√
g̃1 = det(G̃1),

√
g̃2 = det(G̃2), G is a symmetric positive definite matrix

used for mesh adaptation (an arclength-like monitor function G = I + ∇u ∇uT is
used in our computation), ‖G−1‖F is the Frobenius norm of G−1, ξ̃ = ξ̃(x, y) and
η̃ = η̃(x, y) define a given reference mesh used for orthogonality control, ~v1 = ~v1(x, y)
and ~v2 = ~v2(x, y) are prescribed vector fields used for flow directional control, and γ1

and γ2 (γ1 + γ2 < 1) are two user-defined dimensionless parameters. It is not difficult
to see from (13) and (15) that the functional (9) with the monitor functions (16)
provides a mechanism to control the level of alignment of the normals of the mesh
surfaces of constant ξ and η both with the prescribed vector fields ~v1 and ~v2 and
with vector fields ∇ξ̃ and ∇η̃ defined by the reference mesh. In many applications
the reference mesh can be chosen to be orthogonal or nearly so, and the control of
the level of mesh alignment with it can be interpreted as the control of the mesh
orthogonality or skewness.

It is instructive to give a different geometric interpretation of the functional I[ξ, η]
in (9). Noting that

∇ξTG−1
1 ∇ξ =

1

J2g1

(
~xTηG1~xη

)
,

∇ηTG−1
2 ∇η =

1

J2g2

(
~xTξ G2~xξ

)
,(17)

where J = xξyη−xηyξ is the Jacobian of the coordinate transformation, g1 = det(G1),
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1004 WEIZHANG HUANG AND ROBERT RUSSELL

and g2 = det(G2), the functional I[ξ, η] can be transformed into

Ĩ[x, y] =
1

2

∫
Ωc

dξdη

{
1

Jg1
~xTηG1~xη +

1

Jg2
~xTξ G2~xξ

}
.(18)

From the calculus of variations, it is known that minimizing I[ξ, η] with respect to ξ
and η as functions of x and y is equivalent to minimizing Ĩ[x, y] with respect to x and
y as functions of ξ and η provided that both coordinate transformations exist and are
invertible. For the arclength-like monitor function

G1 = G2 =
1√

1 + ‖∇u‖2
(
I +∇u∇uT ) ,(19)

where u is the physical solution, (18) becomes

Ĩ[x, y] =
1

2

∫
Ωc

dξdη

J
√

1 + ‖∇u‖2
(
x2
ξ + x2

η + y2
ξ + y2

η + u2
ξ + u2

η

)
,(20)

so the solution and the coordinate transformation are smooth with respect to the
weighted integral of the squared derivatives in the computational domain.

It is not difficult to see that the mesh equation (10) defines a harmonic map for
the monitor function (16) if γ1 = γ2 = 0. However, it is not obvious that the choice
(16) for the monitor function is in general either unique or optimal in any sense. Based
on (13) we have also chosen

G1 = w
[
(1− γ1 − γ2)I + γ1S(∇ξ̃) + γ2S(~v1)

]−1

,

G2 = w
[
(1− γ1 − γ2)I + γ1S(∇η̃) + γ2S(~v2)

]−1
(21)

with w =
√

1 + ‖∇u‖2, and preliminary experiments have shown that using either
(16) or (21) with the MMPDE presented in the next section leads to comparable
results. In this case, the map is not harmonic even when γ1 = γ2 = 0, as G1 and G2

cannot be written into the form G1 = G2 = 1√
gG for some symmetric positive definite

matrix G.

4. The moving mesh method and solution procedure. Our basic MMPDE
is developed from the gradient flow equation of functional I[ξ, η]. It is defined as

∂ξ

∂t
= − 1

τ
√
g̃1

δI

δξ
,

∂η

∂t
= − 1

τ
√
g̃2

δI

δη
(22)

or

∂ξ

∂t
=

1

τ
√
g̃1
∇ · (G−1

1 ∇ξ
)
,

∂η

∂t
=

1

τ
√
g̃2
∇ · (G−1

2 ∇η
)
,(23)

where τ > 0 is a user-defined parameter for adjusting the time scale of the mesh
equation and g̃1 and g̃2 are, respectively, the determinants of matrices G̃1 and G̃2

in (16). For actual computation, we interchange the dependent and independent
variables. From (23) we obtain

∂~x

∂t
=− ~xξ

τ
√
g̃1J

{
+
∂

∂ξ

[
1

Jg1

(
~xTηG1~xη

)]− ∂

∂η

[
1

Jg1

(
~xTξ G1~xη

)]}
− ~xη
τ
√
g̃2J

{
− ∂

∂ξ

[
1

Jg2

(
~xTηG2~xξ

)]
+

∂

∂η

[
1

Jg2

(
~xTξ G2~xξ

)]}
.(24)
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MESH MOVEMENT BASED ON GRADIENT FLOW 1005

Note that g1 = g2 = 1 for the monitor function choice (16). In general, MMPDE (24)
must be solved with appropriate boundary conditions. For simplicity, we use Dirichlet
boundary conditions (i.e., the boundary points are fixed) in our computation. It is
known (see the appendix) that the gradient flow equation for an energy functional has
a unique solution when supplemented with Dirichlet boundary conditions. However,
we emphasize that in many applications it is necessary to adapt the boundary points
themselves to the physical solution in order to obtain satisfactory results. Various
boundary condition strategies are currently under investigation.

We are now prepared to give a complete description of the full moving mesh
method. We assume that the underlying time-dependent physical PDE is of the form

ut = f(t, x, y, u, ux, uy, uxx, uxy, uyy), t > 0, (x, y) ∈ Ωp,(25)

subject to appropriate boundary and initial conditions, where u is the (possibly
vector-valued) physical solution and the underlying problem is well posed. Using the
MMPDE approach, we replace (25) with an extended problem involving a continuous
coordinate transformation equation MMPDE (24) and the physical PDE expressed
in the computational coordinate. There are three user-defined parameters for mesh
movement and quality control: the mesh orthogonality control parameter γ1, the
directional control parameter γ2, and the temporal smoothing parameter τ . The pa-
rameters γ1 and γ2 are dimensionless and hence relatively problem independent and
easy to choose. The temporal smoothing parameter τ controls the time scale of the
MMPDE and can itself be made a function of time and/or the position in the domain.
Ideally, it should be chosen such that the time scale of the MMPDE is commensurate
with that of the physical PDE, although this is a difficult task in general. Experience
in one dimension [25] indicates that for most problems the computation is relatively
insensitive to the choice of τ , and we expect this to also be the case in two dimensions.

The reference mesh (ξ̃, η̃), being used to ensure control of mesh skewness, should
have reasonable orthogonality properties but generally is not intended to adapt to
the physical solution. Such a mesh is usually fairly straightforward to generate, for
instance, by using Thompson’s boundary fitted elliptic mesh generator, an algebraic
mesh generator, or an elliptic or hyperbolic orthogonal mesh generator (see [36]). In
many cases, an analytical reference mesh is available. For example, the identity map
(ξ̃, η̃) = (x, y) can be used when the physical and computational domains coincide.

Alignment of the mesh with the vector fields associated with a certain physical
flow has long been known to be an efficient means of improving the accuracy of
calculations, e.g., see [7, 14, 18, 29, 35]. Such alignment can be very useful when there
is a natural anisotropy in the problem, e.g., for problems in magnetized plasmas, or
more generally for problems having dominant flow directions [7, 18]. There is not a
general guide for selecting the reference vector field, as it is usually problem dependent
(see [7] for more details).

The physical and mesh PDEs have to be solved simultaneously or alternately for
the physical solution and the mesh. Simultaneous computation has commonly been
used in the method of lines approach for one-dimensional moving mesh methods.
However, it is less straightforward in two dimensions, where the size of the system
consisting of the physical and mesh PDEs may become very large. Our purpose here is
to examine the feasibility of the MMPDE approach in general and also as a technique
with which to supplement the strategy for existing physical PDE solvers (for which the
moving mesh approach would be used externally from such software). Consequently,
in this paper these equations are integrated alternately in time. The procedure is
given below.
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1006 WEIZHANG HUANG AND ROBERT RUSSELL

The alternate solution procedure. Given the physical solution un, the mesh
~xn ≡ (xn, yn), and the time stepsize ∆tn at time t = tn.

(i) Compute the monitor functionsGn1 = G1(tn, ~x
n, un) andGn2 = G2(tn, ~x

n, un).
(ii) Compute the new mesh ~xn+1 by integrating the MMPDE from t = tn to

t = tn + ∆tn, using ~xn as the initial mesh and keeping the monitor functions
Gn1 and Gn2 constant in time during the integration.

(iii) Compute the physical solution un+1 by integrating the physical PDE from

t = tn to t = tn + ∆tn, using the mesh ~x(t) = ~xn + (t−tn)
∆tn

(~xn+1 − ~xn) and

mesh speed ~̇x(t) = (~xn+1 − ~xn)/∆tn.
(iv) Choose ∆tn+1 as the next time stepsize predicted during the physical PDE

integration.
It is still unclear to us how reliable this alternate solution method for the extended

system is for general problems, but it does have the advantages that two smaller
systems are solved and that the MMPDE calculation is easily combined with existing
PDE solvers (such as VODPK described below). In principle it allows for one to
efficiently utilize special properties of the physical PDE and of the MMPDE. Further,
we have not observed any instability of the method for our test examples, at least
for relatively small values of τ . Obviously, simultaneous solution methods and other
more efficient alternate solution methods deserve more investigation.

In the computations presented here the method of lines approach is employed for
the numerical solution of both the physical and moving mesh PDEs. The ODE solver
VODPK [4] and central finite differences are used for time integration and spatial
discretizations, respectively. The discretizations are standard and straightforward
(e.g., see [25, 36]), so they are only briefly described. For simplicity, it is assumed
that the computational domain Ωc is a rectangle and a uniform mesh {(ξi, ηj), i =
0, . . . , N1, j = 0, . . . , N2} is used. Denote the mesh points by (xij(t), yij(t)) and the
corresponding approximate solution by uij(t). We illustrate the spatial discretization
of MMPDE (24) for the term ∂

∂ξ [ 1
Jg1

(~xTηG1~xη)]. It is approximated at the point

(ξi, ηj) by the central finite difference

∂

∂ξ

[
1

Jg1

(
~xTηG1~xη

)]∣∣∣∣
(ξi,ηj)

≈ 1

Ji+ 1
2 ,j
g1,i+ 1

2 ,j

~xTη,i+ 1
2 ,j
G1,i+ 1

2 ,j
~xη,i+ 1

2 ,j

− 1

Ji− 1
2 ,j
g1,i− 1

2 ,j

~xTη,i− 1
2 ,j
G1,i− 1

2 ,j
~xη,i− 1

2 ,j
,(26)

where

G1,i+ 1
2 ,j

=
1

2
(G1,i+1,j +G1,i,j) ,

g1,i+ 1
2 ,j

= det
(
G1,i+ 1

2 ,j

)
,

Ji+ 1
2 ,j

=
1

4
(xi+1,j − xi,j)(yi+1,j+1 − yi+1,j−1 + yi,j+1 − yi,j−1)

− 1

4
(yi+1,j − yi,j)(xi+1,j+1 − xi+1,j−1 + xi,j+1 − xi,j−1),

~xη,i+ 1
2 ,j

=
1

4
(~xi+1,j+1 − ~xi+1,j−1 + ~xi,j+1 − ~xi,j−1).(27)

Other terms in the MMPDE (24) are similarly discretized. In the final implementa-
tion, the monitor functions are smoothed to obtain smoother meshes. The following
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MESH MOVEMENT BASED ON GRADIENT FLOW 1007

low pass filter is applied four times to each of G̃1 and G̃2:

˜̃Gjk =
4

16
G̃jk +

2

16

(
G̃j+1,k + G̃j−1,k + G̃j,k+1 + G̃j,k−1

)
+

1

16

(
G̃j−1,k−1 + G̃j−1,k+1 + G̃j+1,k−1 + G̃j+1,k+1

)
.(28)

For the discretization of the physical PDE (25), we first transform it into

u̇− uxẋ− uy ẏ = f(t, x, y, u, ux, uy, uxx, uxy, uyy),(29)

where “˙” denotes the time derivative when ξ and η are fixed, and the spatial deriva-
tives are defined in terms of the computational coordinates by

ux =
1

J

[
+ (yηu)ξ − (yξu)η

]
,

uy =
1

J

[
− (xηu)ξ + (xξu)η

]
,

uxx =
1

J

+

(
y2
ηuξ

J

)
ξ

−
(yξyηuη

J

)
ξ
−
(yξyηuξ

J

)
η

+

(
y2
ξuη

J

)
η

 ,
uxy =

1

J

[
−
(xηyηuξ

J

)
ξ

+
(xξyηuη

J

)
ξ

+
(xηyξuξ

J

)
η
−
(xξyξuη

J

)
η

]
,

uyy =
1

J

+

(
x2
ηuξ

J

)
ξ

−
(xξxηuη

J

)
ξ
−
(xξxηuξ

J

)
η

+

(
x2
ξuη

J

)
η

 .(30)

Central finite differences are then used for the physical PDE in the form (29).
Both the physical and mesh PDEs are integrated in time using the ODE solver

VODPK (without restarting on every new time interval). VODPK is an ODE solver
which incorporates the preconditioned Krylov subspace iterative method SPIGMR (a
scaled preconditioned incomplete version of GMRES) for the linear algebraic systems
that arise in the case of stiff systems. It uses backward differentiation formulas (BDF)
for stiff ODEs. For efficiency, we choose the option of providing the user-defined
preconditioner H (approximation of the Jacobian of the ODE system) and the linear
system solver for Hv = b. In all computation, the preconditioner H is defined as
the 13-point row-sum-equivalent incomplete LU decomposition (e.g., see [27]) of the
Jacobian of the ODE system arising from the discretization of the physical PDE or
the MMPDE. Other required input data are the initial mesh and the relative and
absolute local time stepping error tolerances (in a root-mean-square norm), which are
taken as rtol = atol = 10−5 when solving both the physical and mesh PDEs.

5. Numerical examples. In this section we present numerical results obtained
for the moving mesh method described in the above sections on a mesh generation
problem and two time-dependent PDEs. All computations are performed on a Silicon
Graphics Onyx2 workstation (R10000) with a single processor and double precision
algorithms.

Example 5.1 (mesh generation for NACA0012 airfoil configuration). Our first
problem is to generate a C-type mesh for the NACA0012 airfoil configuration. In
principle, many steady mesh generators can be used for this purpose. Key advantages
of the moving mesh method for mesh generation are that well-tested ODE solvers
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Fig. 1. (a) A 30× 80 C-type mesh for NACA0012 airfoil. (b) The L2 norm of the mesh speeds
as a function of time.

Table 1
Example 5.1. CPU times (in seconds).

N1 ×N2 10× 40 20× 60 30× 80 40× 100

MMPDE 4.72 16.2 38.3 69.3 ∼ (N1 ×N2)1.2

GS 14.5 130.6 530.8 1480.5 ∼ (N1 ×N2)2

are available for numerically solving the MMPDE and that the problem of obtaining
convergence in the Newton iteration for the resulting nonlinear equations is avoided.

The MMPDE (24) is used with u(x, y, t) ≡ 1, γ1 = 0, and γ2 = 0. Figure 1a shows
typical results with a 30×80 mesh obtained from an algebraic initial mesh, and Figure
1b shows the L2 norm of the mesh speeds as a function of time. The computation is
stopped when the L2 norm of the mesh speeds (more precisely, of the residuals for the
corresponding steady mesh equations) is less than 10−4. As guaranteed by Theorem
A.1 (see the appendix), the magnitude of mesh speeds for the continuous problem
decreases (in fact, monotonically) and the mesh tends to a (steady state) harmonic
mesh. The time integrator VODPK takes small steps at the beginning and much
larger steps later on. The CPU times are listed in Table 1 for four runs with different
numbers of mesh points. For comparison purposes, corresponding results are given
for the pointwise Gauss–Seidel iteration (GS) to solve the steady mesh equation (i.e.,
the equation obtained by dropping the mesh speed terms in (24)). It is interesting
to notice that the cost of GS to solve the steady mesh equation is quadratically
increasing and that with MMPDE it is roughly linearly increasing. This agrees with
others’ observations about the use of preconditioning techniques (e.g., see [11]).

Example 5.2 (Burgers’ equation). In this example our moving mesh method is
applied to the numerical solution of the initial boundary value problem for the two-
dimensional Burgers’ equation

(31)

ut = R∆u− uux − uuy, (x, y) ∈ (0, 1)× (0, 1), 0.25 < t ≤ 1.25, R = 5× 10−3,

subject to initial and Dirichlet boundary conditions chosen such that the exact solu-

tion to the problem is u(x, y, t) = (1 + e
(x+y−t)

2R )−1. With these initial and boundary
conditions, the solution is a straight-line wave (u is constant along line x + y = c)
moving in the direction θ = 45◦.
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Fig. 2. Example 5.2. 40× 40 mesh at different times obtained with the MMPDE with γ1 = 0.1
and τ = 0.1.

Figures 2 and 3 show the moving meshes at different times obtained with the
moving mesh method with τ = 0.1, γ1 = 0.1 and τ = 0.1, γ1 = 0.5, respectively. It
can be seen that the mesh remains well concentrated in the region of large solution
variation. Furthermore, the mesh obtained with orthogonality control γ1 = 0.5 (the
reference map is ξ̃ = x, η̃ = y) is much less skew than that obtained with γ1 = 0.1.
This is more apparent from Figure 4, where the solution error and the minimal mesh
angle are plotted as functions of time for different values of γ1. For instance, the
minimal mesh angle remains larger than 50◦ for γ1 = 0.5 and about 25◦ for γ1 = 0.1.
However, we can see once again from these figures that with the gain of orthogonality
the mesh loses some degree of adaptivity. As a result, the solution error may become
larger on less adaptive meshes. On the other hand, without orthogonality control (i.e.,
γ1 = 0) the mesh can become very skew. A skew mesh can in turn force the integrators
for both the physical and mesh PDE to take very small time steps and even stop the
computation. This can easily be seen from Figure 5, where the minimal mesh angle
in degrees and the time stepsize taken by VODPK (applied to the physical PDE) are
shown as functions of time for the case γ1 = 0 and τ = 0.1. When the computation
is halted around t = 0.92, the minimal mesh angle is about 0.8◦ and the stepsize
is about 10−6. Comparatively, the results appear less sensitive to the time scaling
parameter τ . In Figure 6 the solution error and the mesh minimal angle are plotted
as functions of time for τ = 10, 1, 0.1, and 0.01. It is worth noting that the smaller
τ is, the faster the mesh responds to the change in the physical solution. The results
with τ = 0.1 and 0.01 are basically the same. The solution error is also shown in
Figure 4a for the fixed uniform mesh (FM) method. It shows that the error for the
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Fig. 3. Example 5.2. 40× 40 mesh at different times obtained with the MMPDE with γ1 = 0.5
and τ = 0.1.
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Fig. 4. Example 5.2. The solution error and minimal mesh angle as functions of time for
different values of γ1 (τ = 0.1, N1 ×N2 = 40× 40).

moving mesh method with γ1 = 0 and τ = 0.1 is about 10 times smaller than that
obtained with the fixed uniform mesh. A typical run with γ1 = 0.1, τ = 0.1, and
N1 = N2 = 40 takes about 547 seconds CPU time.

Example 5.3 (model problem in combustion theory). For our final example, we
apply the moving mesh method to the combustion problem
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Fig. 5. Example 5.2. The minimal mesh angle and the time stepsize taken by the VODPK (ap-
plied to the physical PDE) are shown as functions of time for the case γ1 = 0 (without orthogonality
control) and τ = 0.1, N1 ×N2 = 40× 40.
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Fig. 6. Example 5.2. The solution error and minimal mesh angle as functions of time for
different values of τ (γ1 = 0.1, N1 ×N2 = 40× 40).

ut = ∆u− R

αδ
ueδ(1−1/T ),

LTt = ∆T +
R

δ
ueδ(1−1/T ), (x, y) ∈ Ωp ≡ (−1, 1)× (−1, 1), t > 0,

u(x, y, t) = 1, T (x, y, t) = 1, (x, y) ∈ ∂Ωp,

u(x, y, 0) = 1, T (x, y, 0) = 1, (x, y) ∈ Ωp,(32)

where L, α, δ, and R are physical parameters. The variables u and T denote the
concentration and temperature of a chemical which is undergoing a one-step reaction
in the domain Ωp. For small times the temperature gradually increases from unity
with a “hot spot” forming at the origin. At a finite time, ignition occurs, causing
the temperature at the origin to increase rapidly to 1 + α. A flame front then forms
and propagates toward the boundary of the domain at a high speed. The degree of
difficulty of the problem is determined by the value of δ. Following [31], we choose
the physical parameters L = 0.9, α = 1, δ = 20, and R = 5.

Figure 7 shows the time evolution of a 40× 40 mesh, obtained with the MMPDE
with τ = 10−2 and γ1 = 0.1. From these figures one can see that the mesh points
remain concentrated around the region of the flame front while moving toward the
boundary of the domain. Figure 8a shows the minimal angles of the meshes obtained
with different degrees of skewness control. It can be seen that without skewness control
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Fig. 7. Example 5.3. Evolution of the mesh.
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Fig. 8. Example 5.3. The minimal mesh angle as a function of time. (a) τ = 10−2 and
N1 = N2 = 40 are used. (b) γ1 = 0.1 and N1 = N2 = 40 are used.

the mesh becomes very skew (the minimal mesh angle is about 2◦ for t = 0.29) when
the flame front reaches the boundary. It is worth noting that we have used a small
value of τ (τ = 10−2) in this example because of the high propagation speed of the
flame front. Figure 8b shows the results obtained with different values of τ . We can
see that when a small value of τ is used, the mesh is more adaptive and responds
faster to the change of the physical solution. A typical run with γ1 = 0.1, τ = 10−2,
and N1 = N2 = 40 takes about 367 seconds CPU time.
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MESH MOVEMENT BASED ON GRADIENT FLOW 1013

6. Conclusions and comments. An MMPDE mesh movement strategy based
on the gradient flow equation has been introduced. This strategy can be regarded
as a higher-dimensional generalization of the one-dimensional mesh movement ap-
proach presented in [24]. The method requires choosing the monitor function, the
reference mesh, and the flow direction, and for efficient and reliable implementation
some tuning of the user-defined parameters (the time scaling parameter τ , the mesh
orthogonality control parameter γ1, and the (flow) directional control parameter γ2)
can be necessary.

We have only considered the method with mesh adaptation and orthogonality
control (i.e., γ2 = 0). No attempt has been made to optimize its implementation.
Instead, we have used a straightforward method of lines approach with a low-order
finite difference spatial discretization, the monitor function (16), and VODPK with
a crude alternate time integration scheme for the extended system consisting of the
physical PDE and mesh PDE. The moving mesh method has been applied to three
two-dimensional examples, one of them being for mesh generation and the others for
the numerical solution of time-dependent PDEs. The results have shown the ability
of the method to concentrate the mesh points around the areas of large variation in
the physical solution and to control the mesh skewness.

While preliminary results are encouraging and the feasibility of the method is
demonstrated, a number of practical issues are yet to be addressed. For instance,
a more robust and efficient solution method should be developed for the time inte-
gration of the extended system, and other monitor functions besides arclength need
investigation. Control of the mesh quality near the boundaries is another important
issue. A conservative discretization of the physical PDEs over a moving mesh should
be used in order to obtain more accuracy. Investigation of these issues and application
of the moving mesh method to more challenging engineering problems are currently
underway.

Appendix. Harmonic maps on Riemannian manifolds. Let M and N be
compact Riemannian manifolds with metric tensors gij and hαβ in local coordinates

~x = (x1, x2, x3)T and ~ξ = (ξ1, ξ2, ξ3)T , respectively. For a map ~ξ = ~ξ(~x) from M to
N , we define its energy or action integral as

E[~ξ] =

∫
M

d~x
√
g
∑
i,j,α,β

gijhαβ
∂ξα

∂xi
∂ξβ

∂xj
,(33)

where G = (gij), g = det(G), and (gij) = G−1. A map ~ξ is called harmonic if it solves

the Euler–Lagrange equation δE

δ~ξ
= 0 for the energy functional E[~ξ], viz.,

1√
g

∑
i,j

∂

∂xi

[√
ggij

∂ξα

∂xj

]
+
∑
i,j,β,γ

gijΓαβγ(N)
∂ξβ

∂xi
∂ξγ

∂xj
= 0,(34)

where Γαβγ(N) is the Christoffel symbol of the second kind, defined by

Γαβγ(N) =
1

2

∑
λ

hαλ
[
∂hλβ
∂ξγ

+
∂hλγ
∂ξβ

− ∂hβγ
∂ξλ

]
.(35)

Existence and uniqueness of the harmonic map are guaranteed when the Riemannian
curvature of N is nonpositive and its boundary ∂N is convex (see [19, 34]), and
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1014 WEIZHANG HUANG AND ROBERT RUSSELL

invertibility can be guaranteed at least when dim(M) = dim(N) = 2. For the existence
of the solution to the corresponding gradient (or heat) equation, we have the following
theorem.

Theorem A.1 (Hamilton [19]). Let M and N be compact Riemannian manifolds
with boundary and with (time-dependent) metric tensors gij and hαβ. Suppose that
N has nonpositive sectional curvature and that ∂N is convex. Let h : ∂M → N be
any smooth map and ξ0 : M → N a smooth map with ξ0|∂M = h in any given relative
homotopy class. There exists a continuous map ξ : M × [0,∞) → N that is smooth
except at the corner ∂M × 0 satisfying the nonlinear heat equation

∂ξα

∂t
=

1√
g

∑
i,j

∂

∂xi

[√
ggij

∂ξα

∂xj

]
+
∑
i,j,β,γ

gijΓαβγ(N)
∂ξβ

∂xi
∂ξγ

∂xj
on M × [0,∞),(36)

ξ = h on ∂M × [0,∞),

ξ = ξ0 on M × 0,

where the equation is satisfied in the Lp2 sense (p > dim M + 2, Lp2 = space {ξ :
D2ξ ∈ Lp}) at the corner ∂M × 0 and in the strong sense everywhere else. Moreover,

all derivatives
(
∂
∂t

)i∇jξ remain uniformly bounded as t→∞.
Let ξt(x) = ξ(x, t) and regard ξt as a map of M into N . Then ξt : M → N

converges in C∞(X) to a harmonic map ξ∞ : M → N with ∇2ξ∞ = 0 in the same
relative homotopy class as ξ0.

In the field of mesh generation and adaptation, M is often chosen as the physical
domain Ωp and N as the logical domain Ωc. In most practical cases, one can restrict
the logical domain Ωc to having the Euclidean geometry (i.e., hαβ = δαβ) being, say,
a square or a cube. When Ωc is Euclidean and ∂Ωc is convex, its curvature is zero,
and the existence [19] and invertibility [34] theorems guarantee the suitability of the
map for mesh generation and adaptation.

Acknowledgments. We are most grateful to Huaxiong Huang and Michael Lun-
ney for helpful remarks during the preparation of this paper.

REFERENCES

[1] S. Adjerid and J. E. Flaherty, A moving finite element method with error estimation and
refinement for one-dimensional time dependent partial differential equations, SIAM J.
Numer. Anal., 23 (1986), pp. 778–796.

[2] S. Adjerid, J. E. Flaherty, P. K. Moore, and Y. J. Wang, High-order adaptive methods
for parabolic systems, Phys. D, 60 (1992), pp. 94–111.

[3] S. K. Aliabadi and T. E. Tezduyar, Space-time finite element computation of compressible
flows involving moving boundaries and interfaces, Comput. Methods Appl. Mech. Engrg.,
107 (1993), pp. 209–224.

[4] P. N. Brown, G. D. Byrne, and A. C. Hindmarsh, VODE: A variable-coefficient ODE
solver, SIAM J. Sci. Stat. Comput., 10 (1989), pp. 1038–1052.

[5] I. Babuska and M. Suri, The p and h-p versions of the finite element method: An overview,
Comput. Methods Appl. Mech. Engrg., 80 (1990), pp. 5–26.

[6] M. J. Baines, Moving Finite Elements, Clarendon Press, Oxford, UK, 1994.
[7] J. U. Brackbill, An adaptive grid with directional control, J. Comput. Phys., 108 (1993),

pp. 38–50.
[8] J. U. Brackbill and J. S. Saltzman, Adaptive zoning for singular problems in two dimen-

sions, J. Comput. Phys., 46 (1982), pp. 342–368.
[9] C. J. Budd, J. Chen, W. Huang, and R. D. Russell, Moving mesh methods with applica-

tions to blow-up problems for PDEs, in Numerical Analysis 1995: Proc. of 1995 Biennial
Conference on Numerical Analysis, Pitman Res. Notes Math. Ser. 344, D. F. Griffiths and
G. A. Watson, eds., Longman Scientific and Technical, Harlow, UK, 1996, pp. 1–17.

D
ow

nl
oa

de
d 

09
/1

5/
14

 to
 1

29
.2

37
.4

6.
10

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



MESH MOVEMENT BASED ON GRADIENT FLOW 1015

[10] C. J. Budd, W. Huang, and R. D. Russell, Moving mesh methods for problems with blow-up,
SIAM J. Sci. Comput., 17 (1996), pp. 305–327.

[11] C. Canuto, M. Y. Hussani, A. Quarteroni, and T. A Zang, Spectral Methods in Fluid
Dynamics, Springer-Verlag, Berlin, New York, 1988.

[12] N. Carlson and K. Miller, Design and application of a gradient-weighted moving finite
element code II: In two dimensions, SIAM J. Sci. Comput., 19 (1998), pp. 766–798.

[13] R. Courant and D. Hilbert, Methods of Mathematical Physics, Vols. I and II, Interscience
Publishers, Inc., New York, 1953.

[14] Y. C. Chao and S. S. Liu, Streamline adaptive grid method for complex flow computation,
Numer. Heat Transfer, Part B, 20 (1991), pp. 145–168.

[15] E. A. Dorfi and L. O’C. Drury, Simple adaptive grids for 1-D initial value problems, J.
Comput. Phys., 69 (1987), pp. 175–195.

[16] A. S. Dvinsky, Adaptive grid generation from harmonic maps on Riemannian manifolds, J.
Comput. Phys., 95 (1991), pp. 450–476.

[17] K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems. IV:
Nonlinear problems, SIAM J. Numer. Anal., 32 (1995), pp. 1729–1749.

[18] A. E. Guannakopoulos and A. J. Engel, Directional control in grid generation, J. Comput.
Phys., 74 (1988), 422–439.

[19] R. Hamilton, Harmonic Maps of Manifolds with Boundary, Lecture Notes in Math. 471,
Springer-Verlag, New York, 1975.

[20] D. F. Hawken, J. J. Gottlieb, and J. S. Hansen, Review of some adaptive node-movement
techniques in finite element and finite difference solutions of PDEs, J. Comput. Phys., 95
(1991), pp. 254–302.

[21] R. G. Hindman and J. Spencer, A New Approach to Truly Adaptive Grid Generation, Paper
83-0450, AIAA Ed. Ser. 1, Washington, DC, 1983.

[22] W. Huang and R. D. Russell, Analysis of moving mesh partial differential equations with
spatial smoothing, SIAM J. Numer. Anal., 34 (1997), pp. 1106–1126.

[23] W. Huang and R. D. Russell, A moving collocation method for the numerical solution of
time dependent differential equations, Appl. Numer. Math., 20 (1996), pp. 101–116.

[24] W. Huang, Y. Ren, and R. D. Russell, Moving mesh partial differential equations (MM-
PDEs) based on the equidistribution principle, SIAM J. Numer. Anal., 31 (1994), pp. 709–
730.

[25] W. Huang, Y. Ren, and R. D. Russell, Moving mesh methods based on moving mesh partial
differential equations, J. Comput. Phys., 113 (1994), pp. 279–290.

[26] J. M. Hyman and B. Larrouturou, Dynamic rezone methods for partial differential equations
in one space dimension, Appl. Numer. Math., 5 (1989), pp. 435–450.

[27] S. A. Jordan and M. L. Spaulding, A fast algorithm for grid generation, J. Comput. Phys.,
104 (1993), pp. 118–128.

[28] A. A. Johnson and T. E. Tezduyar, Mesh update strategies in parallel finite element compu-
tations of flow problems with moving boundaries and interfaces, Comput. Methods Appl.
Mech. Engrg., 119 (1994), pp. 73–94.

[29] P. Knupp, Mesh generation using vector-fields, J. Comput. Phys., 119 (1995), pp. 142–148.
[30] P. Knupp and S. Steinberg, Fundamentals of Grid Generation, CRC Press, Boca Raton, FL,

1994.
[31] P. K. Moore and J. E. Flaherty, Adaptive local overlapping grid methods for parabolic

systems in two space dimensions, J. Comput. Phys., 98 (1992), pp. 54–63.
[32] K. Miller and R. N. Miller, Moving finite elements. I, SIAM J. Numer. Anal., 18 (1981),

pp. 1019–1032.
[33] L. R. Petzold, Observations on an adaptive moving grid method for one-dimensional systems

for partial differential equations, Appl. Numer. Math., 3 (1987), pp. 347–360.
[34] R. Schoen and S.-Y. Yau, On univalent harmonic maps between surfaces, Invent. Math., 44

(1978), pp. 265–278.
[35] G. R. Shubin and J. B. Bell, An analysis of the grid orientation effect in numerical simulation

of miscible displacement, Comput. Methods Appl. Mech. Engrg., 47 (1984), pp. 47–71.
[36] J. F. Thompson, Z. U. A. Warsi, and C. W. Mastin, Numerical Grid Generation, North–

Holland, New York, 1985.
[37] A. Winslow, Numerical solution of the quasi-linear Poisson equation in a nonuniform triangle

mesh, J. Comput. Phys., 1 (1967), pp. 149–172.

D
ow

nl
oa

de
d 

09
/1

5/
14

 to
 1

29
.2

37
.4

6.
10

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p


