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Abstract

Practical fit indices have been widely used for model fit evaluation in Structural Equa-

tion Modeling. This dissertation discusses the properties of the fit indices including

their influencing factors. These properties prevent researchers from deriving one-size-

fit-all cutoffs for the fit indices. In addition, the past simulation studies on model fit

evaluation have several limitations. The major limitation is that most studies have fo-

cused on test of exact fit rather than approximate fit which is not consistent with the

goal of practical fit indices. This dissertation reviews alternative approaches to account

for the limitations and proposes a unified method for model fit evaluation combining

the advantages of the alternative approaches. The unified approach allows researchers

to test approximate fit and take into account sampling error in model evaluation.

Two simulation studies are conducted to investigate the performance of the unified

approach comparing to the other model fit evaluation methods. Two types of mod-

els are included in this study: confirmatory factor analysis and growth curve models.

The results show that the unified approach appropriately rejects severely misspecified

models and retains trivially misspecified models across all types of misspecification.

Furthermore, the rejection rates are negligibly influenced by model characteristics and

sample size. The other model evaluation methods do not have all of the desired prop-

erties described above. The unified approach, however, does not always provide model

decision when sample size is low or when the level of maximal trivial misspecification

specified by users is close to the actual degree of misspecification. If sample size is

high and the level of specified maximal trivial misspecification is either lower or higher

than the actual degree of misspecification, the unified approach is able to decide be-
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tween model retention and model rejection. The extensions of the unified approach

for nonnormal distribution, missing data, or nested model comparison are provided.

Keywords: structural equation modeling, model parsimony, model fit, practical fit in-

dices
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Chapter 1

Introduction

Structural equation modeling (SEM) has been one of the most popular frameworks to represent

theoretical relations among observed and unobserved variables, such as factor structures underly-

ing multiple items, predicting relationships among variables or factors, or growth trajectories. The

models are then evaluated regarding whether they provide a plausible explanation of the relation-

ships among the variables, which is referred to as model fit evaluation. The accuracy of model fit

evaluation would highly influence the decision of retaining a hypothesized model. Unfortunately,

since SEM was developed, no consensus has been reached in terms of the best way to evaluate

model fit (Lance et al., 2006). The current practice of model fit evaluation also has many prob-

lems. This dissertation aims to discuss these problems and propose ways to improve the current

practices of model evaluation.

The organization of the proposal as follows. In this chapter, I start with a brief discussion

of the history of model evaluation in SEM. I then review the properties of practical fit indices

that are currently used in model evaluation and the limitations of the fit indices including the

problems of using cutoffs. In Chapter 2, I review alternative methods that account for most of

the limitations discussed in Chapter 1. In Chapter 3, a unified approach for model evaluation

is proposed. I also discuss how approximate fit and severe fit are defined. The definitions of the

degrees of model fit are required by the alternative methods and the unified approach. An empirical
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example of applying the unified approach is provided. In Chapter 4, I propose two simulation

studies for investigating the performance of the unified approach and comparing it with the other

model evaluation approaches. In Chapter 5, the simulation results are provided. In Chapter 6, I

discuss whether the unified approach solve the problems of the use of fit indices and the alternative

methods. I also discuss the limitations of the unified approach and the simulation studies in this

dissertation. The extensions of the unified approach for missing data, nonnormal data, and nested

model comparison are also provided.

1.1 A Short History

The history of model fit evaluation in SEM is provided in order to understand why the current

method of model evaluation is used and needs to be improved. The initial test statistic for model

fit evaluation of SEMs is a chi-square test statistic. The chi-square statistic is a function of the

discrepancy between model-implied sufficient statistics (mean vector and covariance matrix com-

puted from parameter estimates) and sample sufficient statistics (sample mean vector and covari-

ance matrix). When a hypothesized model is the same as a population model, the chi-square

statistic follows a central chi-square distribution. In this case, the difference in chi-square statistic

is purely due to sampling error. If the chi-square statistic is not significant, a hypothesized model

is preferred.

When a hypothesized model is a population model, the chi-square statistic leads to accurate

statistical inference regardless of sample size (Bollen, 1989; Maydeu-Olivares & Cai, 2006; McIn-

tosh, 2007). That is, the type I error rate (i.e., the proportion of rejecting a hypothesized model if

the model is in fact a population model) is close to nominal level (e.g., .05). However, if the hy-

pothesized model is trivially misspecified (e.g., a population having a small cross loading but not

specified in a hypothesized model), the chi-square statistic will result in rejection of the hypoth-

esized model when sample size is large enough (Bentler, 2007; Maydeu-Olivares & Cai, 2006).

This characteristic is not desirable because researchers wish to retain a hypothesized model that
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approximates a population well even if it is not exactly equal to the population model (MacCallum,

2003; MacCallum & Austin, 2000). Thus, alternative measures for model fit evaluation have been

developed, such as the ratio of chi-square statistic to degree of freedom (Wheaton et al., 1977),

goodness-of-fit index (GFI; Jöreskog & Sörbom, 1981), normed fit index (NFI; Bentler & Bonett,

1980), and so on. These alternative measures are often referred to as practical fit indices.

More than 30 practical fit indices have been developed in the past decades (Marsh et al., 1988).

The primary goal of the practical fit indices is to quantify the amount of misfit between model-

impled and sample sufficient statistics that is not sensitive to sample size. In fact, many of the

practical fit indices, including root mean square error of approximation (RMSEA; Browne & Cud-

eck, 1992; Steiger & Lind, 1980), comparative fit index (CFI; Bentler, 1990), and Tucker-Lewis

index (TLI; Tucker & Lewis, 1973), are not sensitive to sample size, except for small sample size

(Hu & Bentler, 1998). Although the fit indices were developed to represent the degree of misfit in a

continuous scale, cutoff criteria are proposed for the fit indices to facilitate the decision of whether

a hypothesized model sufficiently fits the data based on which researchers will know whether to

retain or revise the hypothesized model (Barrett, 2007).

Although many guidelines are available for the cutoffs of the fit indices, they were mostly

established based on personal experience (Bentler & Bonett, 1980; Browne & Cudeck, 1992). The

suggested cutoffs from these guidelines have been frequently used in practice (Lance et al., 2006)

even though researchers do not really know what Type I error rates and Type II error rates are from

using the cutoffs. Type I error rate is the proportion of falsely rejecting correct models. Type II

error rate is the proportion of falsely accepting severely misspecified models. Thus, Hu & Bentler

(1999) conducted a large scale simulation study to search for the optimal cutoffs for some of the fit

indices that would minimize both Type I and II errors. The examples of the proposed cutoffs are

RMSEA of .06 and CFI of .95. They also proposed a two-index strategy to combine information

from different fit indices together.

Hu and Bentler’s simulation was not perfect. The proposed cutoffs were not applicable to

other models beside the models used in Hu and Bentler’s simulation, such as confirmatory factor

3



analysis (CFA) models with a large indicators to factors ratio (Heene et al., 2011), latent growth

model (Wu & West, 2010), and CFA models with categorical variables (Nye & Drasgow, 2011).

The proposed cutoffs may lead to inflated Type I error or inflated Type II error. Because of this

problem, Barrett (2007) recommended that researchers abandon all practical fit indices and use

only the chi-square test statistic for model fit evaluation (with care). Although researchers agreed

that the use of practical fit indices cutoffs is not legitimate, they criticized Barrett’s ideas and

argued that fit indices are still useful in many aspects (Bentler, 2007; McIntosh, 2007; Millsap,

2007; Mulaik, 2007; Steiger, 2007). In this chapter, I will provide a thorough overview of the

benefits and the limitations of fit indices.

In sum, no clear cutoff has been established for the practical fit indices. There is no way for

researchers to know the Type I or II errors associated with the cutoffs. On the other hand, although

the chi-square statistic has a clear cutoff, it is sensitive to trivial misspecification with large sample

size. Thus practical fit indices are still very useful in compensating the problem associated with

the chi-square test statistic. This paper will propose a unified approach that borrows strengths from

both chi-square and practical fit indices to improve the use of practical fit indices.

1.2 Properties of Practical Fit Indices

In this section, the definition of practical fit indices and their properties are reviewed. Some prop-

erties are desirable so practical fit indices should continue to be used. Other properties are undesir-

able so users need to be careful in using them. Moreover, the discussion of the properties is crucial

to design an appropriate use of fit indices in model evaluation.

1.2.1 Effect Size Measures

One of the most important characteristics of fit indices is that they are effect size measures. Fit

indices are the quantitative measures of the amount of misfit between a hypothesized model and

sample data (sample fit indices) or the population model underlying the sample data (population
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fit indices). Similar to other effect size statistics (e.g., effect size measures for two-group mean

differences), there are multiple ways to quantify the degrees of misfit. In this section, I will use

the population definition of all practical fit indices because the population formula provides direct

interpretation of the meanings behind each fit indices (excluding the correction of biased estima-

tors).

Let µµµ and ΣΣΣ be the population mean vector and covariance matrix and µµµM and ΣΣΣM be the

model-implied means and covariance matrix after fitting µµµ and ΣΣΣ to a hypothesized model M. The

discrepancy (FM) between the two means and covariance matrices can be computed using Equation

1.1 (Kenny & McCoach, 2003):

FM = tr
{

ΣΣΣ [ΣΣΣM]−1
}
− log

∣∣∣ΣΣΣ [ΣΣΣM]−1
∣∣∣−N +[µµµ−µµµM]′ [ΣΣΣM]−1 [µµµ−µµµM] , (1.1)

where N is sample size. FM can be calculated by any SEM packages by using population mean

vector and covariance matrix as data to fit a SEM model. The resulting chi-square value is the

noncentrality parameter (λM). The relationship between the noncentrality parameter and the dis-

crepancy function is defined by Equation 1.2 (Browne & Cudeck, 1992; Satorra & Saris, 1985;

Saris & Satorra, 1993):

λM = (N−1)FM. (1.2)

That is, the discrepancy value can be calculated by dividing the chi-square value by sample size

minus 1.

Most fit indices are defined as a function of the discrepancy value. Fit indices are classified

into two groups: absolute fit and relative (incremental) fit. Absolute fit is a class of fit indices that

is defined by only statistics from fitting a hypothesized model. Two popular absolute fit indices are

RMSEA and standardized root mean square residual (SRMR). RMSEA is defined as the amount

of population misfit per degree of freedom. The population value of RMSEA for Model M (εM)

can be computed as follows:
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εM =

√
FM

d fM
, (1.3)

where d fM is the degree of freedom of Model M. SRMR is computed as follows:

SRMR =

√√√√√
∑

j
∑
k≤ j

(
σM jk√

σM j j
√

σMkk
− σ jk√

σ j j
√

σkk

)2

p(p+1)
2

, (1.4)

where σM jk and σ jk are the jth-row and kth-column element of ΣΣΣM and ΣΣΣ, respectively, and p is

the number of variables. SRMR can be interpreted as the average difference between the popula-

tion correlation matrix and model-implied correlation matrix. As shown in Browne et al. (2002),

RMSEA is a weighted average of correlation residuals for models without mean structure. In com-

parison, SRMR is an unweighted average across the correlation elements. Both indices are effect

size measures that provide different information about the misfits of a hypothesized model.

Relative fit indices quantify misfit of a hypothesized model by comparing it to a worst-fit model

(or a baseline model). Most relative fit indices are the estimates of two population values (Mahler,

2011). The first population value, often referred to as population CFI, is the ratio of two differences

in discrepancy values:

CFI =
F0−FM

F0−FS
= 1− FM

F0
, (1.5)

where F0, FM, and FS are the discrepancy values of a baseline model, a hypothesized model, and a

saturated model, respectively. The discrepancy value of the saturated model is 0 because µµµ = µµµM

and ΣΣΣ = ΣΣΣM. Thus, the formula can be expressed as the latter term in Equation 1.5. CFI is then

interpreted as the degree of close fit from a hypothesized model relative to a baseline model. The

sample values of CFI (Bentler, 1990), NFI (Bentler & Bonett, 1980), Relative Noncentrality Index

(RNI; McDonald & Marsh, 1990), and Incremental Fit Index (IFI; Bollen, 1989) are all estimates

of this population value.

The second population value is the population TLI, which is CFI corrected for model complex-
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ity. Here model complexity is usually indicated by model degrees of freedom:

T LI =
F0/d f0−FM/d fM

F0/d f0
= 1− FM

F0
· d f0

d fM
, (1.6)

where d fM and d f0 are degrees of freedom of a hypothesized model and a baseline model, re-

spectively. The term d fM/d f0 is referred to as a parsimony ratio (Mulaik et al., 1989). A model

with more constraints will have a larger parsimony ratio. Population TLI will indicate better fit

for models with higher parsimony ratio holding discrepancy value constant. Population TLI is

then interpreted as the degree of close fit from a hypothesized model relative to a baseline model

accounting for model parsimony. The sample values of TLI (Tucker & Lewis, 1973) and Relative

Fit Index (RFI; Bollen, 1986) are both estimates of this population value.

Both types of population relative fit indices require the definition of a baseline model. The

baseline model is usually the model that estimates only means and variances (covariances are fixed

as 0). Note that there are alternative baseline models (see Rigdon, 1996; Widaman & Thompson,

2003; Williams & O’Boyle, 2011), as well as alternative saturated models (Williams & O’Boyle,

2011).

Although the guidelines for interpreting the magnitude of effect sizes are available (e.g., RM-

SEA by Browne & Cudeck, 1992), the guidelines are dependent on research context (Cohen, 1988,

1992). For example, if the outcome is death or serious issues, a trivial effect size (e.g., R2 of .01)

can be considered as nontrivial (Ferguson, 2009). Similar to any effect size measures, a certain

value of a fit index can be considered as an indication of severe misfit in some contexts but trivial

in the others. For example, the model predicting the death outcome is needed to be more accurate

than others. Thus, researchers should not use any guidelines for the interpretation of any effect

size measures unless they find those guidelines appropriate for their research contexts.
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1.2.2 Influencing Factors

In this section, the factors influencing practical fit indices are reviewed. Three types of model char-

acteristics (i.e., model size, type of models, and incidental parameters) can influence the population

values of a fit index. These factors will influence practical fit indices regardless of the estimation

method. On the other hand, sample size, estimation method, and data distribution would influence

practical fit indices through estimation. These factors may influence the expected value of the fit

indices or the shape of their sampling distributions (e.g., variances).

1.2.2.1 Model Size

In the previous studies, model size has been represented by degree of freedom, the number of

observed variables, the number of elements in covariance matrix, or the number of indicators per

factor. As degree of freedom increases, RMSEA, CFI, and TLI tend to decrease. Holding the other

model characteristics constant, the number of observed variables also tend to decrease RMSEA

(better fit), CFI, and TLI (poorer fit; Ding et al., 1995; Heene et al., 2011; Kenny & McCoach,

2003; Savalei, 2012). The reason is that most of the past simulation studies used independent-

clustered CFA models in which each variable is loaded on only one factor. Thus, when the number

of observed variables increases, the number of constrained cross-loadings and correlated errors

also increases, leading to an increase in degree of freedom. Model size has a positive relationship

with the number of free parameters in general so fit indices may be influenced by the number of

free parameters. Moshagen (2012), however, showed that the size of a covariance matrix (model

size), instead of the number of free parameters, was related to the change in fit indices .

1.2.2.2 Model Type

Most simulation studies used confirmatory factor analysis (CFA) to derive fit indices cutoffs. CFA

is only one of the simplest models in SEM. In practice, SEM can be much more complicated.

For example, growth curve models involved mean structure in addition to covariance structure.

Wu (2008) and Wu & West (2010) showed that different fit indices had differential performance in
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detecting different types of misspecification in growth curve models. This problem applies to other

longitudinal models, such as autoregressive model (Liu et al., 2012; Raykov, 2000). As another

example, multilevel SEMs involve misfits at different levels of data structure (Ryu & West, 2009).

The distributions of fit indices were narrower and closer to the point of perfect fit at the macro level

than those at the micro level. As a result, the same criteria for model evaluation from the micro

level are not applicable for the macro level. Otherwise, misspecified models at the macro level are

retained at a higher rate than misspecified models at the micro level (Boulton, 2011; Ryu & West,

2009).

1.2.2.3 Incidental Parameters

Given the same model type, the parameter values in the model, referred to as incidental parame-

ters, affect the amount of misfit due to fixed parameters. That is, the same amount of misspecified

parameter values (e.g., a measurement error correlation of .10) leads to different values of practi-

cal fit indices when the incidental parameter values change. For example, it is well known that fit

indices tend to indicate worse fit given the same amount of misspecified measurement error corre-

lations when the measurement reliability on the indicators is high (Browne et al., 2002; Beauducel

& Wittmann, 2005; Hancock & Mueller, 2011; Heene et al., 2011; Mahler, 2011; Savalei, 2012;

Sharma et al., 2005). As a result, the one-size-fit-all cutoffs will reject the same misspecification

in a CFA model (e.g., defined by a standardized cross loading of .2) with more reliable measures

more often than in a CFA model with less reliable measures. This problem applies to not only

misspecification in a measurement model but also misspecification in a structural model (Savalei,

2012). Saris et al. (2009) also showed that practical fit indices depend on the values of regres-

sion coefficients in multivariate regression model when the same amount of residual correlation is

omitted.
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1.2.2.4 Sample Size and Missing Data

The expected values of practical fit indices are not directly related to sample size although the shape

of the sampling distribution of a fit index (e.g., variability) can vary across sample sizes. This is

in fact a desirable property for effect size measures (Kelley & Preacher, 2012) because researchers

can expect the same fit indices regardless of sample size. Previous studies (Beauducel & Wittmann,

2005; Davey, 2005; Hu & Bentler, 1999; La Du & Tanaka, 1989; Meade et al., 2008; Sharma et al.,

2005) found that, using the same model with the same set of parameter values, sample size would

not affect popular fit indices including RMSEA, CFI, and TLI (except for sample size less than

200). However, sample size will affect some of the fit indices that are not currently popular, such as

GFI, AGFI (Adjusted Goodness-of-Fit Index), and RMR (Root Mean Squared Residual; Anderson

& Gerbing, 1988; La Du & Tanaka, 1989). The expected values of the popular fit indices, however,

are related to proportion of missing data, as well as the missing data patterns (Davey, 2005). I argue

that a good effect size measure should not be sensitive to missing data. Future research is needed

to develop practical fit indices that are not related to the presence of missing data.

1.2.2.5 Estimation Methods

Most fit indices are usually calculated from the chi-square values, which is the weighted combina-

tion of residuals. The chi-square values are influenced by the estimation method (Fan et al., 1999).

Maximum likelihood (ML; and its modification), generalized least square (GLS), and asymptotic

distribution free (ADF) methods are popular estimators for continuous data. Fit indices obtained

from ML are different from GLS (Fan et al., 1999) and ADF (Schermelleh-Engel et al., 2003). Hu

& Bentler (1999) limited their simulation to only ML so the derived cutoffs from Hu & Bentler

(1999) cannot be applied to other estimators. In addition, the cutoffs cannot be used in data sets

with different types of indicators (such as categorical data) that use different methods of estimation

(Nye & Drasgow, 2011).
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1.2.2.6 Sensitive to Data Distribution

ML, which is the most popular estimator, has an assumption that data must be multivariate nor-

mally distributed (Yuan & Bentler, 2004). If data are not normally distributed, the estimate of

chi-square test statistic is inflated. Thus, Type I error is inflated and fit indices indicated worse fit.

The transformation for reducing the impact of nonnormality on the central chi-square statistics is

available (Bentler & Satorra, 2010; Satorra & Bentler, 2001). The scaled chi-square test statistic

could control Type I error approximately equal to an alpha level.

When a hypothesized model is not a population model, the population fit indices are not perfect.

Then, when data are normally distributed, the chi-square value is noncentral chi-square distributed

with the noncentrality parameter defined in Equation 1.2. Note that when the noncentrality pa-

rameter is 0, the noncentral chi-square distribution will be a central chi-square distribution. In

power analysis, the sampling distribution of the misspecified model is needed. When data are

not normally distributed, however, the transformation for noncentral chi-square distribution is not

available so the Type II error (1 - power) may be not valid (Yuan, 2005). In addition, the discrep-

ancy value or noncentrality parameter estimate (see Equations 1.1 and 1.2) will be biased under

nonnormal distribution. Consequently, the sample estimates of practical fit indices that are based

on the discrepancy value are biased as well (Brosseau-Liard et al., 2012).

In conclusion, the primary benefit of fit indices is that they are effect size measures for model

misfit. Fit indices, however, are sensitive to many factors, including model characteristics. Thus

researchers should be aware of the influence of model characteristics in interpreting a fit index.

For example, model size (or the number of indicators) should be considered when interpreting

RMSEA. In the next section, I will describe additional problems when fit indices cutoffs are used.

1.3 The Problems of the Current Uses of Cutoffs on Fit Indices

Fit indices are not only used to quantify the degree of misfit of a hypothesized model. Cutoffs of

fit indices are also developed to help researchers decide whether a hypothesized model sufficiently
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fits the data. Currently, a one-size-fit-all cutoff has been frequently used for this decision regardless

of model characteristics. I will illustrate three main problems of the current uses of fit indices.

1.3.1 The Problem of One-Size-Fit-All Cutoffs

As shown in the previous section, practical fit indices depend on multiple factors. Thus it is im-

possible to find an one-size-fit-all cutoff for any given fit index that is applicable to any models.

For example, the cutoff provided by Hu & Bentler (1999) is based on a three-factor CFA model

with 15 indicators. The standardized factor loadings in the CFA model ranged from .7 to .8. Their

suggested cutoffs are limited to this specific model and this set of parameter values. In fact, Hu

& Bentler (1999) provided the caution of using their suggested cutoffs in situations different from

their testing models.

Although sample size, data distribution, or estimators are usually used as design factors in the

simulation studies that derived the fit indices cutoffs, the same cutoffs do not provide the same Type

I and II errors across sample size, data distribution, or estimators (Marsh et al., 2004). If researchers

would like to control Type I or II errors to be equal across sample sizes, data distribution, or

estimators, it is impossible to find the one-size-fit-all cutoff. Thus, model evaluation should not be

based on the one-size-fit-all cutoff. Rather, the cutoffs should be adjusted based on the influencing

factors described above.

1.3.2 The Problems of the Derivation of the Cutoffs

Many simulation studies tried to derive the practical fit indices cutoffs or examine the performance

of the derived cutoffs. These simulation studies used different principles to derive cutoffs. They

also specified misspecified models by using different values of population fit indices. In addition,

those simulation studies derived cutoffs by not considering the fact that the hypothesized models

should be retained if they are only trivially misspecified.
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1.3.2.1 Different Criteria Used for Deriving Cutoffs

Although the cutoffs facilitate decisions regarding whether to retain or reject hypothesized models,

researchers do not know the Type I error rates resulted from the cutoffs. In fact, the same cutoffs

can lead to different Type I error rates if model type or sample size changes. Marsh et al. (2004)

suggested that Type I error should be controlled to a given alpha level and the statistical power (1-

Type II error rate) to detect model misspecifications should increase as sample size increases like

regular statistical testing. However, the fit indices cutoffs from Hu & Bentler (1999) were derived

by minimizing both Type I and II errors. The derived cutoffs will not be the optimal cutoffs for

all sample size conditions. Marsh et al. (2004) showed that the cutoffs suggested by Hu & Bentler

(1999) increased Type II error rate (i.e., decreased power) as sample size increased. This result

occurs when the population misfit (assuming that the misfit is nontrivial) is less than the suggested

cutoffs. For example, the population RMSEA is .05 and the suggested cutoff of RMSEA is .06. As

shown in Figure 1.1, the sampling error of RMSEA decreases when sample size increases. Then,

the proportion of the areas below the cutoff (Type II error) is higher when sample size increases.
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Figure 1.1: The problem of the increased Type II error when sample size increases. The population
RMSEA underlying the sampling distributions is .05 assuming that this RMSEA value is based on
a severely misspecified model. The RMSEA cutoff is .06. The rejection rate (statistical power) is
lower when sample size increases. That is, the Type II error increases when sample size increases.
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1.3.2.2 Different Population Practical Fit Indices for Misspecified Models across Simulation

Studies

The past simulation studies used different types of models. The different types of models are

needed to check whether suggested cutoffs are applicable to multiple types of models. The dif-

ferent types of models, however, resulted in different population fit indices. As a result, different
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Table 1.1: Population Practical Fit Indices of Misspecified Models from Previous Simulation
Studies that Tested the Sensitivity of Fit Indices or Fit Indices Cutoffs for Detecting Model
Misspecification.

Studies
Count of
Designs

Average
of d f

Average
of ncp

Average
of power

Average
of RMSEA

Average
of SRMR

Average
of CFI

Average
of TLI

Beauducel & Wittmann (2005) 16 438 25.787 .258 .026 .028 .919 .909
Curran et al. (2003) 9 55 16.262 .372 .051 .036 .964 .953
Davey (2005) 8 25 20.263 .462 .076 .083 .909 .867
Fan & Sivo (2007) 10 46 33.200 .671 .091 .086 .953 .928
Fan et al. (1999) 2 47 61.990 .884 .110 .036 .955 .937
Hancock & Mueller (2011) 12 129 51.388 .611 .057 .087 .930 .917
Heene et al. (2011) 12 515 81.798 .577 .049 .114 .845 .825
Heene et al. (2012) 8 251 164.511 .896 .083 .003 .992 .991
Hu & Bentler (1999) 4 80 38.473 .691 .065 .100 .945 .933
Jackson (2007) 36 165 21.971 .229 .026 .022 .981 .978
La Du & Tanaka (1989) 1 29 7.010 .230 .050 .025 .980 .967
Nye & Drasgow (2011) 2 90 19.710 .403 .046 .083 .946 .937
Schermelleh-Engel et al. (2003) 2 16 13.687 .550 .089 .087 .963 .935
Taylor (2008) 24 51 32.023 .447 .065 .043 .935 .916
Wu (2008) 51 9 6.415 .351 .077 .035 .987 .986

Note. Fit indices are based on the sample size of 100. d f = degree of freedom, ncp = non-
centrality parameter, RMSEA = root mean square error of approximation, SRMR = stan-
dardized mean square residuals, CFI = comparative fit index, TLI = Tucker-Lewis Index.

simulation studies suggested different cutoffs. Table 1.1 shows the average degree of misspecifi-

cation in misspecified models used in 15 simulation studies. The Appendix A shows the degree of

misspecification from all designs of each simulation study. I selected the simulation studies that

defined misspecified models unless the studies explicitly said that the misspecification is trivial. To

simplify this presentation, the simulation studies that have the same or similar designs as previous

studies are combined in the table. For example, Fan & Sivo (2005) and Hu & Bentler (1998) are

similar to Hu & Bentler (1999), and Chen et al. (2008) is similar to Curran et al. (2003). I real-

ize that the list of simulation studies is not exhaustive but it is enough to show the heterogeneity

of population fit indices. The degree of misspecification is defined in many ways: noncentrality

parameter (Saris et al., 2009), statistical power to reject a model by chi-square test of absolute fit

at sample size of 100 (Fan & Sivo, 2007), population RMSEA (Equation 1.3), SRMR (Equation

1.4), CFI (Equation 1.5), and TLI (Equation 1.6). Table 1.2 provides the descriptive statistics of

the degrees of misspecifications across the 197 designs from the 15 studies.

As can be seen in Table 1.2, the population fit indices values substantially varied across studies.

Some are lower and others are higher than the suggested cutoffs. For example, population RMSEA
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Table 1.2: The Average Population Practical Fit Indices of 197 Misspecified
Models from 15 Simulation Studies and the Average Values across All of the
Studies.

Statistics d f ncp Power RMSEA SRMR CFI TLI
Across Designs

Average 132.65 31.50 .421 .058 .047 .955 .944
Standard deviation 202.34 57.11 .343 .041 .050 .056 .068
Minimum 1.00 .00 .050 .000 .000 .635 .574
Maximum 945.00 462.17 1.000 .189 .312 1.000 1.000

Across Studies
Average 129.54 39.63 .509 .064 .058 .947 .932
Standard deviation 155.30 40.33 .215 .024 .034 .037 .044
Minimum 8.71 6.42 .229 .026 .003 .845 .825
Maximum 514.50 164.51 .896 .110 .114 .992 .991

Note. Fit indices are based on the sample size of 100. d f = degree of freedom,
ncp = noncentrality parameter, RMSEA = root mean square error of approxima-
tion, SRMR = standardized mean square residuals, CFI = comparative fit index,
TLI = Tucker-Lewis Index.

ranges from .025 to .110 at the study level. Sixty-three percent of the studies have RMSEA less

than the suggested cutoff of .06 (Hu & Bentler, 1999). As a result, most designs in these studies

will have decreased power to detect model misspecifications using the cutoff when sample size

increases, as shown in Figure 1.1. If the rule of minimizing both Type I and II errors is used for all

studies, this heterogeneity of population fit indices will surely lead to different suggested cutoffs

for any fit indices.

1.3.2.3 The Derivation Excluding Trivial Misspecification

One reason why practical fit indices are preferred to chi-square test statistic is that researchers

wish to retain models with only trivial misspecifications. That is, if misspecification in a model

is negligible, researchers would like to claim that their hypothesized model approximately fits

data well. The negligible misspecified parameters are sometimes referred to as parsimony error.

Almost all past simulations, however, calculated Type I error based on models with perfect fit.

That is, they created population models without imposing any parsimony error (except Cheung &

Rensvold, 2002) in spite of the fact that researchers allow trivial misspecification in practice. As
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a result, the cutoffs are derived by minimizing the rejection rate of a perfect-fitting model. Rather,

the cutoffs should account both parsimony and sampling errors (Cheung & Rensvold, 2001). The

cutoffs should be based on Type I error that is defined as the proportion of falsely rejecting model

with approximate fit.

1.3.3 The Problem of the Divergent Results from Different Indices

Marsh et al. (1988) showed that more than 30 fit indices were available at the time of study. Mul-

tiple fit indices provide information on different aspects of model fit. For example, SRMR is

sensitive when nonzero factor correlations are misspecified as 0 but RMSEA is sensitive to the

misspecification on cross loadings (Hu & Bentler, 1998). Thus, researchers could get inconsistent

information from multiple fit indices. In the worst scenario, researchers may intentionally use the

fit indices indicating good fit and ignore the fit indices providing bad fit to support their hypothe-

ses. Thus, a method to combine the information from different indices is needed. As the first

attempt, Hu and Bentler (1998; 1999) proposed a two-index strategy which combines SRMR with

a chi-square based fit index (e.g., RMSEA or CFI) for model fit evaluation. However, this strategy

is criticized by Fan & Sivo (2005) which showed that it was only valid in limited circumstances.

Thus, to date there is no good way to combine the different fit indices. This article provides a

unified approach that combines information from different fit indices together.

In conclusion, it is unrealistic to find a fixed one-size-fit-all cutoff for a fit index that would

apply to any models or sample sizes is unrealistic (Chen, 2007; Chen et al., 2008) given that there

are multiple influencing factors on practical fit indices. Those influencing factors are the main

reasons why there is no consensus on the suggested cutoffs. Therefore, rather than spending the

effort on finding a one-size-fit-all cutoff, the methods of model evaluation accounting for those

influencing factors are needed.
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Chapter 2

Alternative Approaches

Many alternative approaches for model evaluation have been developed to solve the problems of

the use of one-size-fit-all cutoffs to evaluate model fit. A common advantage of the alternative

approaches is that they systematically account for both model parsimony and sampling errors,

although model parsimony is defined in different ways.

2.1 Test of Close Fit and Not Close Fit

The chi-square test statistic is used to test the null hypothesis that the hypothesized model per-

fectly represents relationship in the data. This null hypothesis is not consistent with the goal of

using fit indices to identify models with approximate fit to a population model. Browne & Cudeck

(1992), MacCallum et al. (1996), and MacCallum et al. (2006) argued that users may define a new

null hypothesis that focuses on the approximate fit of a hypothesized model. The approximate fit

can be defined by a small population RMSEA value (e.g., .05) which indicates a trivial difference

between the hypothesized and population models. The population RMSEA value can be used to

estimate a noncentrality parameter which defines a noncentral chi-square distribution. The sam-

pling distribution of the sample RMSEA can be then derived based on the noncentral chi-square

distribution. With the sampling distribution derived, researchers have two options in testing model

fit: test of close fit and test of not close fit.
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The test of close fit is to test whether a hypothesized model provides a worse fit to the popula-

tion underlying the data than the specified approximate fit. For example, the null hypothesis to be

tested may be that the population RMSEA is less than or equal to .05 (H0 : ε ≤ .05). When the null

hypothesis is rejected, researchers would conclude that population RMSEA is larger than .05, in-

dicating that the hypothesized model does not provide an approximate fit to the population model.

Note that failure to reject the null hypothesis does not necessarily indicate that the hypothesized

model is trivially misspecified. It could be the case that users do not have enough statistical power

to reject the null hypothesis of close fit due to small sample size. Alternatively, test of not close fit

is to test whether the hypothesized model provides a better fit to the population underlying the data

than the approximate fit. For example, researchers may test the null hypothesis that the population

RMSEA is larger than or equal to .05 (H0 : ε ≥ .05). Rejecting the null hypothesis would indicate

that the hypothesized model provides an approximate fit to the population model.

Conceptually, the test of not close fit is equivalent to equivalence testing (Seaman & Serlin,

1998; Steiger, 2004). Equivalence testing is used to test whether two target statistics (e.g., group

means) are approximately equivalent (i.e., trivially different). Equivalence testing is popular in

biostatistics research in which researchers wish to test whether two treatments are equally efficient.

For example, in comparing sample means, researchers will test two null hypotheses: H0 : µ1−µ2≥

δ and H0 : µ1−µ2 ≤−δ , where δ is the maximum level of trivial difference (Schuirmann, 1987).

If both null hypotheses are rejected, researchers can claim that two population means are trivially

different (or equivalence). The same idea is used by SEM users to test whether the population

model underlying the data and the hypothesized model are approximately equivalent.

Test of close fit or not close fit might also be done simultaneously using the confidence interval

of RMSEA (Westlake, 1976; Kirkwood & Westlake, 1981). If both lower and upper bounds of

the confidence interval are lower than the maximal trivial misfit value of RMSEA (e.g., .05), the

null hypothesis in the test of not close fit is rejected. In other words, the amount of misfit is

trivial. If both lower and upper bounds of the confidence interval are higher than the RMSEA,

the null hypothesis in the test of close fit is rejected. That is, the amount of misfit is not trivial.
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If the confidence interval brackets the RMSEA, the result is inconclusive. Note that the tests of

close fit and not close fit are both one-tailed tests. Let α represent the alpha level of a one-tailed

test. 100(1− 2α)% confidence interval should be used (Steiger, 2004). Note that this procedure

is similar to the significant testing proposed by Jones & Tukey (2000) resulting in three options:

model misfit greater than the maximal trivial misfit, model misfit less than the maximal trivial

misfit, or inconclusive.

In this approach, model parsimony is accounted for by population RMSEA value of maximal

trivial misfit and sampling error is accounted for by the sampling distribution of RMSEA. However,

there are several limitations of this approach. First, the chi-square test statistic is assumed to follow

a noncentral chi-square distribution. This assumption is only plausible when data are multivariate

normal distributed and the amount of misfit is not large (Yuan & Bentler, 2004; Yuan, 2005). Sec-

ond, this approach is limited to fit indices whose sampling distributions can be analytically derived,

such as RMSEA. Furthermore, the definition of parsimony error is based on population value of fit

indices. As described before, the population fit indices are sensitive to model characteristics, such

as model size, type of models, and incidental parameters.

2.2 Modification Indices and Power Approach

Saris et al. (2009) proposed to use modification indices (MI) and the power of MI to test potential

nontrivial misspecifications for a hypothesized model. This method involves several steps. First,

researchers need to specify a maximally acceptable degree of misspecification for all fixed pa-

rameters of a hypothesized model. For example, Saris et al. (2009) proposed that omitted cross

loadings (which are constrained to be 0 in a hypothesized model) should not be greater than .4 in

a standardized metric and omitted regression paths should not be greater than .1 in a standardized

metric to be deemed as trivial. The power of detecting the maximally acceptable misspecification

is then computed for each parameter.

Second, for each fixed parameter, significance of MI (no vs. yes) is obtained, which is ex-
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amined along with the power of detecting maximally acceptable misspecifications (low vs. high),

resulting in four combinations. (a) If the power is low and the MI is significant, the misspecifi-

cation is not trivial. (b) If the power is high and the MI is not significant, the misspecification

is trivial. (c) If the power is high and the MI is significant, then the expected parameter change

(EPC) when the parameter is freed should be examined. If EPC exceeds the range of maximally

acceptable degree, the misspecification is not trivial. Otherwise, the misspecification is trivial. (d)

If the power is low and the MI is not significant, the decision is inconclusive because of low power

in detecting nontrivial misspecification.

The advantage of the approach is that it provides information besides the significance of MI.

The fixed parameter with a significant MI is usually viewed as severely misspecified even though

the EPC does not exceed the level of maximal trivial misfit. This approach requires researchers

to define maximally acceptable misspecification (i.e., parsimony error) in fixed parameters of a

hypothesized model and to investigate whether EPCs exceed the defined parsimony errors. The

definition is limited to fixed parameters, however. Some types of misspecification are not allowed

by this approach, such as an omitted factor explaining additional relationship among indicators.

As another limitation, combining the significance testing of MI and the power to detect maximal

trivial misspecification does not accurately account for the sampling error of EPC. I will show two

example scenarios that this framework provides inconsistent results.

In both scenarios, the misspecified parameter is a cross loading for which -.4 and .4 are maximal

trivial misspecified value. Suppose the EPC of a cross loading is .35. In Scenario 1, let the standard

error of the EPC of the cross loading be .153, which will lead to a significant MI. The power to

detect maximal trivial misspecification in this scenario is 74%, which is not high enough regarding

the criterion of .8. Because the observed EPC is .35 with a significant MI and low power, the

parameter is misspecified according to Saris et al. (2009) (see combination a).

In Scenario 2, let the standard error of the EPC be 0.10, which will lead to a significant MI. The

power in detecting maximal trivial misspecification is 98% indicating high power. According to

Saris et al. (2009) (see combination c), the parameter is trivially misspecified because the observed
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EPC is less than the maximal trivial misspecified value of .4. Note that the estimated EPC in both

scenarios are equal and less than the maximal trivial misspecified values. According to Saris et

al’s guidelines, one scenario indicates trivial misspecification but another scenario indicates severe

misspecification.

Rather than using the combination of the significance of MI and the power in detecting maximal

trivial misspecified values, the confidence interval for the EPC provides the magnitude of EPC

accounting for sampling error. Researchers can examine whether the confidence interval brackets

the maximal trivial misspecified values. The Wald confidence interval of EPC (θ ) can be calculated

by Equation 2.1:

CI1−2α(θ) = {θ |EPC− zαSEθ < θ < EPC− z1−αSEθ} , (2.1)

where zα is the α quantile of the standard normal distribution and

SEθ = EPC/
√

MI. (2.2)

The equivalent testing framework is also applicable for EPC. A 90% confidence interval is used

for the alpha level of .05. For Scenario 1, the 90% confidence interval is 0.10 to 0.60. The EPC is

not zero but it ranges from a trivial (0.05) to a large value (0.65). Thus the decision here should

be inconclusive. For Scenario 2, the 90% confidence interval ranges from a trivial (0.19) to a large

value (0.51) so the decision should be inconclusive as well. Thus, both examples show that the use

of CI for EPC is more informative than the combination of significance test of MI and the power

and lead to more consistent results.

2.3 Bayesian Analysis

The Bayesian estimation approach allows users to simultaneously estimate target parameters and

fixed parameters such as cross loadings. I will use "nontarget parameters" instead of "fixed param-
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eters" in the Bayesian analysis because these "fixed parameters" (usually fixed as 0) in maximum

likelihood estimation (MLE) are estimated in the Bayesian analysis. Nontarget parameters are

usually fixed as 0 in MLE for the model identification purpose although they may actually have

small values in the population. The Bayesian analysis will allow these nontarget parameters to be

estimated by imposing informative prior distributions (Muthén & Asparouhov, 2012). For exam-

ple, cross loadings may be given normal priors with the means of 0 and the standard deviations of

0.1. This normal priors will result in 95% CIs for the cross loadings between -.2 and .2. Note that

the prior distributions of target parameters (e.g., hypothesized factor loadings) will also need to be

specified. The prior distributions can be noninformative (e.g., normal distribution with very wide

standard deviation) or informative.

After specifying the priors, the Bayesian approach will combine the information from the spec-

ified priors and the likelihood of parameters given the observed data, which will result in posterior

distributions for both target and nontarget parameters. Posterior distributions show the plausible

ragnes of prameters given the observed data. The nontarget parameters will be highly influenced

by informative priors so the posterior distributions will be close to the range of values specified in

prior distributions.

To evaluate model fit, analysts need to investigate global and local fits simultaneously. Global

fit can be evaluated by Posterior Predictive P-value (PPP; Gelman et al., 1996; Levy, 2011). Mul-

tiple sets of parameter values are drawn from the posterior distribution. PPP is computed by com-

paring the likelihood of observed data and the likelihood of data simulated from each drawn set

of the posterior parameter values. PPP is the proportion of the likelihood of observed data that is

less than the likelihood of simulated data across all drawn sets of the posterior parameter values.

If a model fits well, PPP is close to .5. A low PPP value implies model misfit. PPP does not have

the same interpretation as the traditional p-value in inferential statistics and PPP is viewed as a

practical fit index. Muthén & Asparouhov (2012) indicated that .05 cutoff similar to traditional

p-value appeared reasonable.

Muthén & Asparouhov (2012) also suggested researchers investigate the posterior distributions
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of nontarget parameters to evaluate local fit. If the span of a posterior distribution (referred to as

credible interval in the Bayesian framework, e.g., middle 95%) does not cover 0, the nontarget

parameter is misspecified. In fact, the maximal misspecified parameter values proposed by Saris

et al. (2009) and the equivalence testing can be applied here. Researchers can also investigate

whether the upper and lower bounds of the credible intervalis are over the maximum acceptable

values of parameters. If so, nontarget parameters are severely misspecified.

The Bayesian approach is able to not only take into account trivial model misspecification at

the parameter level, but also estimate the trivial model misspecification. However, not all possible

trivial model misspecifications can be accounted for at once in a hypothesized model; otherwise,

the Bayesian estimator is not able to converge. For example, either cross loadings or residual

covariances are used as trivial model misspecification (except putting informative priors to target

parameters in hypothesized model).

Moreover, the results of local fits depend on sample sizes and specified priors (Jorgensen et al.,

tion). A misspecified nontarget parameter will be more likely to cover 0 when a sample size is

smaller and specified priors are narrower. Smaller sample sizes will provide wider credible interval

so the coverage rate of 0 is higher. Narrower priors make the estimated nontarget parameters closer

to 0 so the coverage rate of 0 is higher.

The expected values of PPP depend on sample size and specified priors controlling the magni-

tude of misspecified parameters (Jorgensen et al., tion). In a severely misspecified model with the

narrow priors (normal priors with SD of 0.005), PPP is slightly smaller than .50 with small sample

sizes and approaches 0 with larger sample sizes. In severely misspecified model with the wide

priors (normal priors with SD of 0.1), PPP is slightly smaller than .50 with smaller sample sizes

and approaches .50 with larger sample sizes. With the medium priors (e.g., normal priors with SD

of 0.05), PPP approaches any values between 0 and .50 with larger sample sizes. Because PPP

depends on sample size and priors, the one-size-fit-all cutoff of PPP is problematic. Jorgensen and

colleagues showed that Type I and II errors based on the suggested cutoffs (Muthén & Asparouhov,

2012) were different across sample sizes.
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Thus, model fit evaluation with the Bayesian approach is highly sensitive to data and specified

priors. This sensitivity to priors can be viewed as both a strength (accounting for analysts beliefs)

and a weakness (no consensus on specifying priors) of Bayesian estimation.

2.4 Simulation Approach

Millsap (2007; 2010; 2013) and Millsap & Lee (2008) proposed a simulation approach to establish

a sampling distribution of a fit index if trivial misspecification presents. This method is an im-

provement from parametric bootstrap (Efron & Tibshirani, 1993) by adding parsimony error into

the sampling distribution. In this approach, the parameter estimates from fitting a hypothesized

model to observed data are used to simulate a large number of data sets. The simulated data sets

are then fitted by the hypothesized model to obtain the empirical sampling distributions of fit in-

dices. Millsap suggested adding user-defined parsimony error at the parameter level so that the

hypothesized model is not equal to but still a good approximation of the population model. For

example, the values of two fixed cross loadings are changed from 0 to .3 in standardized scale.

Then, the modified parameter estimates are used in data generation. By generating data from the

population model with parsimony error, the sampling distributions would reflect both parsimony

and sampling errors. Then, a plug-in p value is computed as the proportion of fit indices from

the empirical sampling distribution that indicates worse fit than the fit index value obtained from

the observed data (Robins et al., 2000). The plug-in p value is compared with a priori alpha level

(e.g., .05). If the plug-in p value is greater than the alpha level, the hypothesized model is a

good approximation of the population underlying the data. Otherwise, one can then conclude that

the hypothesized model cannot approximate the population behind the original data with a priori

definition of trivial misspecification.

The rationale of this method is similar to the chi-square test and the test of close fit mentioned

above. But the difference is that the sampling distribution will be established empirically instead

of analytically. Furthermore, this method can account for nonnormal data distribution by the data
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generation using Bollen-Stine bootstrap (Bollen & Stine, 1992; Millsap, 2013).

The main problem of the simulation approach is that it assumes that failing to reject the null

hypothesis of approximate fit indicates approximate fit. This is the same problem of accepting

a null hypothesis when researchers fail to reject the null hypothesis. Researchers may have low

power to detect severe misspecification. Rather, the test of not close fit (i.e., equivalence testing)

should be used for the evidence of approximate fit. Furthermore, the simulation approach allows

users to specify only one set (or a limited number of sets) of parsimony error. There are infinite

ways to specify parsimony error, such as having cross loadings in a different set of indicators.

All possible user-defined sets of parsimony error should be covered in the model evaluation as

much as possible. Later, the unified approach will provide a method to account for multiple sets of

parsimony error.

The four alternative methods presented above account for parsimony error which require users

to define model parsimony, either as misspecified parameter values or population practical fit in-

dices. No method is perfect. They all have their own advantages and limitations. However, they

can complement each other so that more accurate inference for model fit evaluation can be made. In

the next chapter, I will propose a unified approach which tends to combine all alternative methods

(except Bayesian framework) into a single framework to utilize all of their advantages.
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Chapter 3

The Unified Approach

In this section, the test of close fit / not close fit, the modification indices approach, and the sim-

ulation approach are integrated into a single framework referred to as the unified approach. This

unified approach still utilizes fit indices because they are useful effect size measures. However,

the unified approach does not use one-size-fit-all cutoffs of the fit indices, but it derives fit indices

cutoffs corresponding to a specified Type I error and specific model and data characteristics.

As mentioned in Chapter 1, there are three primary problems of the use of fit indices cutoffs.

The unified approach is designed by integrating three alternative approaches mentioned above so

that it can address most of the problems. The unified approach takes model characteristics and

sample size into account so the results of the unified approach should not depend on model char-

acteristics or sample size. In addition, the unified approach provides rules to combine information

from different fit indices together so it prevents the problem that different fit indices provide differ-

ent conclusions. However, it does not completely solve the subjectivity problem in the derivation

of the fit indices cutoffs. Researchers need to define trivially and severely misspecified models for

which the definition could be subjective. However, the benefit of the unified approach is that it

encourages researchers to explicitly clarify trivially and severely misspecified models in the scale

that most researchers can understand, such as the magnitudes of factor loadings or error correla-

tions, instead of the scale of a fit index. Researchers rarely know the meaning behind a cutoff value
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of a fit index. For example, researchers do not know the magnitude of misspecified cross loadings

when RMSEA is .05. This problem will be discussed further in Sections 3.3 and 6.3.3.

The unified approach consists of two parts: global fit evaluation and local fit evaluation. The

global fit evaluation focuses on finding the range of values for each of fit index when a model is

trivially or severely misspecified. The local fit evaluation focuses on all fixed parameters in the

model by using confidence intervals of EPCs. The conclusion from both global and local fit evalu-

ation can be trivial misspecification, severe misspecification, or inconclusive. The results from the

two parts are combined together to provide a single result, which is trivial misspecification, severe

misspecification, or inconclusive.

3.1 Global Fit Evaluation

For global fit evaluation, the process of the unified approach is similar to the test of close fit / not

close fit or the simulation approach. The global fit evaluation method is divided into multiple steps.

3.1.1 Step 1: Specify a Hypothesized Model and its Parameter Values

Researchers need to specify the parameter values in a hypothesized model which are used to simu-

late data and quantify trivial misspecifications. The parameter values may come from theory (e.g.,

high factor loadings from highly reliable measures), previous studies, or parameter estimates from

observed data (similar to parametric bootstrap). The parameters in the hypothesized model are

referred to as target parameters. The parameter values are referred to as target population values.

3.1.2 Step 2: Specify Parsimony Errors

Parsimony error can be defined at the parameter level (e.g., omitting an error correlation of .1)

or at the global fit level (e.g., population RMSEA of .05). Parsimony errors are imposed to the

hypothesized model from Step 1 so that data are generated from a model with approximate fit to
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the hypothesized model. The hypothesized model with target parameters and parsimony errors is

referred to as an alternative model (Millsap, 2013).

If parsimony error is specified at the parameter level, users may (a) pick a set of fixed pa-

rameters (e.g., two cross loadings), (b) change the fixed parameters to a value that represents the

maximal trivial misspecification (e.g., .2 for standardized cross loadings). This method is used in

the simulation approach (Millsap, 2013). I will refer this method to as a fixed parameter method.

Suppose the hypothesized model is a CFA model without correlated unique factors. Two covari-

ances among unique factors are included so that the values are equivalent to the measurement error

correlations of .1. The limitation of the fixed parameter method is that users can only specify one

or a few types of maximal trivial misspecification even though there are countless types of triv-

ial misspecifications for a hypothesized model. The results of the model evaluation would highly

depend on the selection of the modified fixed parameters.

Users may specify parsimony error at the population-fit level, which is referred to as the popu-

lation misfit method. The population misfit method does not bind with any specific parameters or

any types of misspecification. Infinite sets of misspecification at the parameter level can provide

the same value of population fit index. Users simply specify a value of population fit index to

account for all possible misspecifications that lead to the same amount of misfit. Population fit in-

dices, however, depend on model characteristics. The maximal trivial misspecification defined by

population fit indices need to be redefined once the hypothesized model changes. Unfortunately,

researchers rarely know what population fit index values would be appropriate to their hypothe-

sized models. Furthermore, different sources of misspecification resulting in the same amount of

misfit may be resulted from different degrees of misfits at the parameter level. For instance, Fan &

Sivo (2005) showed that constraining a factor loading of .455 as 0 (standardized loading of .376)

would result in an equal population misfit as fixing a factor correlation of .50 as 0. However, a stan-

dardized factor loading of .376 is considered trivial in Saris et al. (2009) but a factor correlation of

.50 is considered as medium effect in Cohen (1988).

Therefore, I recommend to specify parsimony error at the parameter level and account for mul-
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tiple forms of maximal trivial misspecifications. I propose a new method to accommodate multiple

sets of trivial parameters instead of one set of trivial parameters. This method is referred to as a

repeated sampling method which defines trivial parameters as a range of misspecified fixed param-

eters. For example, the magnitude of standardized cross loadings less than .2 is deemed trivial.

The repeated sampling method tends to find a combination of trivial parameters that maximizes

misfit. For this example, cross loadings can be randomly drawn from uniform distributions of -.2

to .2 resulting in a combination of cross loading values. The random process is repeated for many

times (e.g., 1,000). Population fit indices are calculated for each combination. The combination

providing the maximum misfit (referred to as maximal trivial misspecification) is used for data

generation. The obtained global misfit is a maximum value of misfit that could be considered as

trivial misfit. The limitation of this approach is that the combination with the real maximal mis-

fit is unlikely to be picked. The real maximal misfit combination may be not drawn. The more

combinations being compared, the closer the level of misfits to the real maximal misfit.

Different population fit indices, however, are sensitive to different types of trivial parameters.

For example, RMSEA is sensitive to an omitted cross loading but SRMR is sensitive to an omitted

factor correlation (Hu & Bentler, 1999). Therefore, different fit indices may lead to different

maximal trivial misspecification. For example, if RMSEA, CFI, TLI, and SRMR (calculated by

Equations 1.1-1.6) are used to define population misfits, there will be up to 4 combinations of

maximal trivial misspecifications to be used in data generation in the next step.

In conclusion, target parameter values with parsimony error are specified during this step. The

parsimony error can be defined by (a) the population misfit method, (b) the fixed parameter method,

or (c) the repeated sampling method. Because the repeated sampling method solves the problems

of the population misfit method and the fixed parameter method, I will focus only on the repeated

sampling method in the following steps.
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3.1.3 Step 3: Account for Sampling Error

As illustrated above, different sets of maximal trivial misspecification may be identified by using

different fit indices. In this step, each set of maximal trivial misspecification is used to generate

data and establish the sampling distribution of the corresponding fit index. For example, if a set of

maximal trivial misspecification is identified using RMSEA, this set is then used to establish the

sampling distribution of RMSEA. This sampling distribution accounts for both maximal parsimony

error and sampling error. Researchers may generate data by multivariate normal distribution or

the Bollen-Stine bootstrap (Millsap, 2013). The Bollen-Stine bootstrap is used to account for

nonnormal data distribution. The Bollen-Stine bootstrap transform the observed data so that the

transformed data represent the hypothesized model with specified parsimony error. The data are

transformed by the following formula (Bollen & Stine, 1992; Yung & Schumacker, 1996):

ZZZ =
[
Y −1µ̂Y −1µ̂Y −1µ̂

′]
Σ̂̂Σ̂Σ
−1/2

ΣΣΣ
1/2
MT M +111µµµ

′
MT M, (3.1)

where ZZZ is the transformed data, YYY is the observed data, 111 is a unit vector with a length equal to

sample size, µ̂̂µ̂µ and Σ̂̂Σ̂Σ are sample estimates of mean vector and covariance matrix, and µµµMT M and

ΣΣΣMT M are model-implied mean vector and covariance matrix from a hypothesized model with a

maximal trivial misspecification. The transformed data are then resampled with replacement. The

hypothesized model is fitted to the resampled data to obtain the empirical sampling distribution of

a fit index given a specified parsimony error.

3.1.4 Step 4: Examine whether hypothesized model are Severely Misspeci-

fied

Observed values for the fit indices are obtained from fitting the hypothesized model to observed

data. The observed fit indices are compared with the corresponding sampling distributions estab-

lished in Step 3. Similar to hypothesis testing, critical region or plugin p-value can be used to

decide whether the observed fit indices are likely from the population behind the sampling distri-
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butions. The critical region is the area spanning 100α% on the poor-fit side (e.g., higher values for

RMSEA). If an observed fit index falls in the critical region, the hypothesized model is deemed

severely misspecified. Otherwise, the hypothesized model could be trivially or severely misspec-

ified. Steps 5-7 will show the reasons why the model can be severely misspecified when the

observed fit indices are better than the critical values. Note that this decision is different from the

simulation approach that the model is deemed trivially misspecified when researchers fail to reject

the null hypothesis. The plugin p-value is the proportion of the generated data sets showing poorer

fit than the observed fit index obtained from the observed data. If the plugin p-value is less than the

alpha level, the model is rejected. Otherwise, the model could be trivially or severely misspecified.

This procedure is similar to the test of close fit. The test is used to investigate whether the misfit

of the hypothesized model to the observed data are worse than the misfit due to maximal trivial

misspecifications. This step is repeated for all fit indices of interest.

Sometimes, the hypothesized model is rejected by some practical fit indices but not the others.

If one fit index suggests that the model should be rejected, then the model should be rejected

regardless of the results of the other fit indices. The reason is that each fit index capture different

types of misfit. Then, a severely misspecified model can indicate model misfit in one fit index

whereas the other fit indices do not indicate model misfit. If all fit indices do not suggest model

rejection, then the hypothesized model could be trivially or severely misspecified.

3.1.5 Step 2a-4a: Shortcut to Examine whether Hypothesized Models are

Trivial

Testing whether observed fit indices are significantly worse than maximal trivial misspecifications

can be time consuming because it involves finding the sets of maximal trivial misspecifications

(by the repeated sampling method) and fitting a hypothesized model to the generated data sets.

These steps can be shorten by the following inequalities. Let δ be a population fit index that a

lower value indicates better fit. Let δ1,δ2, . . . ,δk be the population fit indices calculated from the

draws from the repeated sampling method where k is the number of draws. If δMT M is the maximal
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trivial misspecification defined by δ , then δMT M ≥ δ1,δ2, . . . ,δk. Let δC be the critical value from

empirically deriving sampling distribution from δMT M. Assume that the sampling distribution of

δ is not extremely negatively skewed. Then, δC ≥ δMT M. If the sample estimate of δ , δ̂ , is less

than any of δ1,δ2, . . . ,δk, then δC ≥ δ̂ . Hence, when an observed fit index has a better fit than the

fit index from any draws in the repeated sampling method, a model is failed to reject.

3.1.6 Step 5: Find Minimal Severe Misspecification

A good hypothesized model should have the amount of misfit that does not exceed both maximum

trivial misspecification and minimum severe misspecification levels. In specifying misfit in one

dimension, the thresholds for maximum trivial misspecification and minimum severe misspecifi-

cation are identical. For example, suppose a difference of 0.2 in two-group latent factor means

(says that the standard deviations of latent factors are 1) is deemed a trivial difference. The dif-

ference greater than 0.2 is then nontrivial. So 0.2 serves as a threshold for both maximum trivial

misspecification and minimum severe misspecification. However, when there is more than one

dimension, researchers need to aggregate the misfit from multiple dimensions into a single index

(i.e., fit index measure). The thresholds would no longer be the same. The minimum severe mis-

specification may indicate less amount of misfit than the maximum trivial misspecification. For

example, let the latent mean difference of 0.2 be the threshold for maximum trivial misspecifi-

cation for each comparison. Researchers would like to investigate the difference in two factors.

The trivially-misspecified model could be that both factors have the difference of 0.19 across two

groups. The severely-misspecified model could be either of two factors has the difference of 0.21

across two groups. The latter situation usually has a less population misfit less that the former

situation.

Therefore, instead of considering only maximum trivial misspecification, researchers should

consider both maximum trivial misspecification and minimum severe misspecification if the di-

mension of misfits is greater than 1. Researchers can use the repeated sampling method to pick the

point of maximum trivial misspecification described above. Researchers should be careful of using
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the repeated sampling approach with minimum severe misspecification. Some sets of misspecifi-

cation can be reparameterized into the estimated parameters and the amount of misfit can be zero.

For example, if all target factor loadings are equal and all misspecified cross loadings are speci-

fied with the same value, the misfit could be 0 because this model can be reparameterized as the

hypothesized model with different values of target loadings and factor correlations (i.e., factor in-

determinacy, see Savalei, 2012). Therefore, I recommend users to randomly pick one dimension of

misfit and specified at the threshold of maximal trivial misspecification. For example, the minimal

severe misspecified model can be attained by randomly picking one cross loading from all cross

loadings and put the thresholds, such as .4 or -.4. The set that provides the minimum value of misfit

is then used as the minimal severe misspecification. Researchers may find the minimal severe mis-

specification by listing all possible combinations with one dimension of misfit and comparing the

level of misfit. For example, one factor model with ten indicators has 45 (10×9/2 = 45) possible

omitted measurement error correlation. Researchers may set the omitted error correlations as .1 or

-.1. Then, researchers can compare the level of misfits from all 90 combinations (45×2 = 90) and

pick the combination with the minimum level of misfit. Note that, if multiple fit indices are used to

quantify different dimensions of population misfits, different fit indices may provide different sets

of minimum severe misspecification.

3.1.7 Step 6: Account for Sampling Error in Severe Misspecification

Different sets of minimal severe misspecification are defined by different fit indices. In this step,

each set of minimal severe misspecification is used to generate data and find the sampling dis-

tribution of the corresponding fit index. Data generation can be based on multivariate normal

distribution or the Bollen-Stine bootstrap approach provided in Equation 3.1.
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3.1.8 Step 7: Examine whether Observed Fit Indices are Trivially Misspec-

ified

Observed fit indices are compared with the sampling distributions of each fit index given minimal

severe misspecifications. The observed fit indices are tested whether they have significantly better

fit than minimal severe misspecification (which will be better maximal trivial misspecificaiton).

The critical region would be the area spanning α% on the better-fit side (e.g., lower values for

RMSEA). The plugin p-value is the proportion of the generated data sets having better fit that the

fit index obtained from the observed data. If the test is significant, the model has a trivial (or no)

misspecification. If the test is not significant, the model could be trivially or severely misspecified.

Again, the results across different fit indices may be inconsistent. To claim that the model is

trivially misspecified, all fit indices should suggest trivial misspecification. The reason is that all

fit indices provide different information of misfit. The trivial misspecification can be claimed if

severely misspecified model are unlikely to be true in all aspects of misfit.

Based on the tests with maximal trivial misspecifications and minimal severe misspecifica-

tion, there are three possible outcomes: severe misspecification, trivial (or no) misspecification,

and inconclusive. If the result is inconclusive, more information can be acquired from local fit

evaluations described later.

3.1.9 Step 5a-7a: Shortcut to Examine whether Observed Fit Indices are

Trivial

Similar to testing with maximal trivial misspecification, testing with minimal severe misspecifica-

tion can be shorten. Using the same logic as Step 2a-4a, when an observed fit index has a worse fit

than the fit index from any draws in the repeated sampling method, a model cannot be claimed as

trivially misspecified.
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3.2 Local Fit Evaluation

Local fit evaluation is the investigation whether each constraint in a model is tenable. When a hy-

pothesized model does not fit observed data well, researchers usually search for any potential local

misfits. Also, when the global fit evaluation provides inconclusive results, researchers may evaluate

local fit to gain additional information. The local misfits can be searched by using EPC. Currently,

researchers check whether the EPCs (i.e., modification indices) are significantly different from 0.

This approach does not acknowledge that a fixed parameter can be trivially misspecified. Saris

et al. (2009) proposed how to account for trivial misspecification in using MI but their approach

is problematic as described above. This section propose a way to evaluate EPC using confidence

intervals.

The same paradigm for global fit is applicable for local fit. That is, researchers specify a level

of maximal trivial misspecification. Because local misfit is based on only one dimension of misfit,

the minimal severe misspecification will be the same point as the maximal trivial misspecification.

Researchers may derive the sampling distributions of EPC to see whether the null hypotheses based

on test of close fit or not close fit are rejected. The test of close fit and not close fit can be indi-

rectly tested using confidence intervals. The 100(1−2α)% confidence interval (Equation 2.1 for

EPC) should be used because it is a one-tailed test (e.g., use 90% confidence interval for α = .05).

Then, if both lower and upper bounds of the confidence interval are in the range of maximal trivial

misspecification (e.g., a value between -.2 to .2 for a standardized cross loading), the model is triv-

ially misspecified. If the confidence interval brackets the maximal trivial misspecification values,

the decision is inconclusive. If the confidence interval does not overlap with the range of trivial

misspecification, the fixed parameter is severely misspecified. If the width of confidence interval

is wider than the range of trivial misspecification (e.g., the width of .4 for the trivial misspecifi-

cation ranged from -.2 to .2), lower and upper bounds cannot be both inside the range of trivial

misspecification so one cannot decide whether the misspecification is trivial. This is probably due

to the fact that the test is underpowered. See Figure 3.1 for a graphical illustrations. In sum, one

can obtain four outcomes for each fixed parameter: severely misspecified, trivially misspecified,
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inconclusive, and underpowered. Note that users may define their trivial misspecification in stan-

dardized scales but the EPC is in the unstandardized scale. Analysts must transform either value

to make them comparable.

Figure 3.1: The decisions for the confidence interval of an expected parameter change. The green
bands represent the range of trivial misspecification. The blue lines represent the 90% confidence
interval of an expected parameter change.
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If the global fit evaluation is inconclusive, the information from the local fit evaluation may

be used to infer global fit. EPC tests on multiple fixed parameters can provide different results

but only a single decision of global fit should be made. I propose to combine the multiple EPC

tests as follows. First, if any test suggests that the test is underpowered, the test of global fit will

be also underpowered due to insufficient sample size. Second, if any test suggests a parameter is

severely misspecified, then the model is severely misspecified. If all tests suggest that fixed param-

eters are trivially misspecified, then the model is trivially misspecified. Otherwise, the decision is

inconclusive and reserachers need a larger sample size to get a conclusive result.
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3.3 Guidelines for Specifying Parsimony Error

The major problem of the alternative methods and the unified method is that specifying parsimony

error is subjective. I think that the subjectivity is necessary as different substantive areas have

different views regarding the magnitude of misfit (Steiger, 2004). A misspecified cross loading of

.20 may be considered as trivial in one area but meaningful in the other.

Thus, the criterion for acceptable degrees of parsimony error should be developed for each

substantive area. To gain an idea of how trivial or severe misspecification are defined by experts in

the past research, I reviewed the parameter values used in misspecified models in past simulation

studies as well as guidelines in interpreting the values of misspecified parameters. I focused on

four types of parameters in the review: standardized cross loadings, factor correlation, residual

correlation, and standardized regression coefficients. Because some simulation studies only pro-

vided raw parameter values, these values are standardized to facilitate comparison among different

studies.

Table 3.1 shows the values of standardized cross loadings for misspecified models across simu-

lation studies. The cross loadings in some studies were below .20 in standardized scale. This value

contradicts the guideline used in interpreting standardized loadings (especially in exploratory fac-

tor analysis). A higher value, such as .30 (Hair et al., 2006) or .40 (Saris et al., 2009), is considered

as the cutoffs between nontrivial and trivial cross loadings. Furthermore, in some studies, the

evaluation of standardized cross loadings depends on the size of standardized loadings of target

parameters. For example, Beauducel & Wittmann (2005) argued that, if a cross loading was as

high as the half of the values of target loadings, then the cross loading was nontrivial. Beauducel

& Wittmann (2005) used .4 as the lowest standardized loadings for target parameters so a cross

loading of .20 or higher was deemed nontrivial for their designs. Based on their criterion, the stan-

dardized loadings of .10 or lower could be considered trivial and the values of .40 or higher could

be considered nontrivial.

The values of factor correlations from misspecified models across simulation studies are shown
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Table 3.1: The Magnitude of Misspecified Standardized Factor Loadings Re-
ported in Past Simulation Studies on Model Evaluation in SEM.

Studies
Number of Loadings

1 2 3 More than 3a

Hu & Bentler (1999) .510 .510, .489
Beauducel & Wittmann (2005) (4) .180s
Curran et al. (2003) .210 .210s .210s
Fan et al. (1999) .422, .429
Jackson (2007) (6) .100s
Nye & Drasgow (2011) (6) .043-.179
Taylor (2008) .186 .186s .186s
Wu (2008) .389 .389, .404

Note. The boldface values represent the lowest value in each column. Each
cell represents a design in a study (represented by rows). If multiple cells
in a row are specified, they represent different values of misspecified param-
eters in a design. If different designs in a study have the same number of
factor loadings with different values of misspecified parameters, the lowest
magnitude is provided. aThe value in a parenthesis represents the number of
misspecified factor loadings.

in Table 3.2. The lowest value of misspecified factor correlations is .3. Note that the values

in Table 3.2 are examples of severe misspecification which do not indicate the minimal severe

misspecification. This lowest value is still much higher than the low level of correlation (.1) from

Cohen’s (1988; 1992) guideline. Saris et al. (2009) also considered the level of .1 as a minimal

severe misspecification. Ferguson (2009), however, suggested a threshold of .2 or .3 for small

effects and showed that the Cohen’s guideline for small effects in standardized mean differences

(.2) and correlations (.1) were inconsistent. From this review, the factor correlation of .1 or lower

may be considered trivial and the values of .3 or higher may be considered severe.

Residual correlations can be the correlations among residuals of regression effects or among

measurement errors. The summary of misspecifications on residual correlations is shown in Table

3.3. The lowest residual correlations is .08. All other residual correlations are .10. The recom-

mendations from Cohen (1988), Ferguson (2009), and Saris et al (2009) described in the previous

paragraph are also applicable here because they provide the guidelines for any types of correla-

tions. From this review, the residual correlation of .1 or lower may be considered trivial and the
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Table 3.2: The Magnitude of Misspecified Factor Correlation Values from
Different Designs across Simulation Studies on Model Evaluation in SEM.

Studies
Number of Factor Correlations

1 2 3 More than 3a

Davey (2005) .400
Fan & Sivo (2007) .854 .854, .859
Heene et al. (2011) .300, .400, .500
Hu & Bentler (1999) .500 .400, .500

Note. The boldface values represent the lowest value in each column. Each
cell represents each design in a study (represented by rows). If multiple cells
in a row are specified, they represent different values of misspecified parame-
ters in a design. If different designs in a study have the same number of factor
correlation with different values of misspecified parameters, the lowest mag-
nitude is provided. aaThe value in a parenthesis represents the number of
misspecified factor correlations.

values of .3 or higher may be considered severe.

Finally, ignoring standardized regression coefficients can be another source of model misspec-

ification. Table 3.4 showed the misspecified values of standardized regression coefficients. All

values are higher than or equal to .22. Saris et al. (2009) proposed that the value of .10 or higher is

nontrivial. Cohen (1988) did not provide guideline for standardized regression but the thresholds

for standardized regression coefficients can be deduced from those for correlation coefficients.

For a simple regression analysis, the standardized regression coefficient of Y on X is equal to

the correlation between X and Y . Thus the thresholds for correlation coefficiens apply to stan-

dardized regression coefficients. Unfortunately, this guideline may be not applicable for partial

standardized regression coefficients in multiple regression analysis. Furthermore, Ferguson (2009)

indicated that standardized regression coefficients of .2 or .3 are deemed small effects. From this

review, the standardized regression of .1 or lower can be considered trivial and the values of .3 or

higher are considered severe.

Here I provided a general guideline for researchers in different areas to start thinking about the

meaning of trivial misspecifications in their own fields. The maximal trivial parameter values for
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Table 3.3: The Magnitude of Misspecified Residual Correlation Values
from Different Designs across Simulation Studies on Model Evaluation in
SEM.

Studies
Number of Residual Correlations

1 2 3 More than 3a

Hancock & Mueller (2011) .405
Heene et al. (2012) .101, .251, .236 (6) .080-.236
Saris et al. (2009) .219

Note. The boldface values represent the lowest value in each column. Each
cell represents each design in a study (represented by rows). If multiple
cells in a row are specified, they represent different values of misspecified
parameters in a design. If different designs in a study have the same num-
ber of residual correlation with different values of misspecified parameters,
the lowest magnitude is provided. aThe value in a parenthesis represents
the number of misspecified residual correlations.

Table 3.4: The Magnitude of Misspecified Standardized Regression Values from Dif-
ferent Designs across Simulation Studies on Model Evaluation in SEM.

Studies
Number of Standardized Regression Coefficients

1 2 3 More than 3a

Curran et al. (2003) (4) .350-.450
Fan & Sivo (2007) .360
Heene et al. (2012) .220
Schermelleh-Engel et al. (2003) .311 .311, .570

Note. The boldface values represent the lowest value in each column. Each cell
represents each design in a study (represented by rows). If multiple cells in a row are
specified, they represent different conditions in a study. If different designs in a study
have the same number of standardized regression with different values of misspecified
parameters, the lowest magnitude is provided. aThe value in a parenthesis represents
the number of misspecified regression coefficients.
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each parameter need to be identified for each area of study. For example, researchers may use the

guidelines above to pick a value between the trivial and severe misspecification to represent the

meaning of trivial misspecification in their fields of study. Furthermore, in setting trivial misspeci-

fication, the change in parameter values of target parameters should be investigated. If parameters

that are deemed trivial significantly change the parameter values of target parameters (Marsh &

Hau, 1996), the parameters are probably not really trivial. The significant change in parameter

values may be deduced from the magnitude of the change. If the magnitude of the change alter the

qualitative meaning of the parameter, the change is significant. For example, a factor correlation

changes from .1 (small effect size) to .3 (medium effect size). For an independent clustered two-

factor CFA model, if researchers specify all possible cross loadings equal to .3, the model might fit

the data perfectlly well. However, the standardized loadings of target parameters and factor corre-

lations will be highly overestimated (Savalei, 2012). In the random sampling method, researchers

can check the estimated target parameter values at each draw and investigate whether their values

are highly influenced by the trivial misspecifications.

3.4 Numerical Illustration

I use the Holzinger and Swineford’s (1939) data to illustrate the unified approach of model fit. I

choose this example because readers may compare the result from Muthén & Asparouhov (2012)

on the Bayesian approach, which accounts for trivial misspecification as well. I use the data from

the Pasteur school (N = 156). A four-factor CFA model suggested by Muthén & Asparouhov

(2012) is used as the target model. Initially, the data were analyzed by MLE. Table 3.5 shows the

estimated standardized loadings and factor correlations. The fit indices were as follows: χ2 (146)

= 259.75, p < .001, RMSEA = .071 (90% confidence interval: .056 to.085), SRMR = .084, CFI =

.884, and TLI = .864.
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Table 3.5: Holzinger and Swineford’s 1939 Results from Four-Factor Confirmatory Factor Analy-
sis based on Maximum Likelihood Estimation.

Test Spatial Verbal Speed Memory
Standardized Factor Loadings

Visual perception .814 .000 .000 .000
Cubes .392 .000 .000 .000
Paper from board .441 .000 .000 .000
Flags .578 .000 .000 .000
General information .000 .836 .000 .000
Paragraph comprehension .000 .806 .000 .000
Sentence completion .000 .870 .000 .000
Word classification .000 .724 .000 .000
Word meaning .000 .838 .000 .000
Addition .000 .000 .557 .000
Code .000 .000 .800 .000
Counting groups of dots .000 .000 .517 .000
Straight and curved capitals .000 .000 .537 .000
Word recognition .000 .000 .000 .628
Number recognition .000 .000 .000 .526
Figure recognition .000 .000 .000 .596
Object-number .000 .000 .000 .561
Number-figure .000 .000 .000 .472
Figure-word .000 .000 .000 .467

Factor Correlations
Spatial –
Verbal .456 –
Speed .362 .485 –
Memory .365 .180 .471 –
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Based on the results of fit indices, some researchers may reject the model because some fit

indices indicated bad fit based on suggested cutoffs (i.e., RMSEA, CFI and TLI based on the Hu

and Bentler’s guidelines). As mentioned above, the suggested cutoffs should not be used because

fit indices are sensitive to many factors, especially model characteristics. I will illustrate the uni-

fied approach accounting for trivial misspecification. In this model, some factor loadings and all

measurement error correlations are fixed as 0 so these parameters are the potential sources of mis-

specification. There may be the fifth factor that researchers do not include in a model so I use the

ignored factor as another potential source of misspecification. The maximal trivial misspecifica-

tion levels for all fixed parameters were then defined as (a) standardized cross loadings of .2, (b)

measurement error correlation of .2, and (c) ignoring one trivial factor (intentionally for the sake

of model parsimony). The magnitude of standardized loadings of the ignored factor was below .2.

The factor variance was 1. This factor was not correlated with other target factors in the model.

Maximal trivial misspecification and minimal severe misspecification were searched based on the

defined parsimony error.

The repeated sampling method was used to find the maximal trivial misspecifications for each

fit index. There are 57 cross loadings for homogeneous factor structure with 19 variables and 4

factors. The maximal trivial misspecification was searched by randomly drawing values for the 57

cross loadings from a uniform distribution from -.2 to .2. For 171 measurement error correlations,

the uniform distributions from -.2 to .2 were used to draw values. For the ignored factor, three

out of 19 loadings were randomly selected to be the nonzero loadings of the factor. Then these

three values of loadings were drawn from the uniform distributions of -.2 to .2. One-thousand

combinations were drawn and the combinations with the highest values of RMSEA, SRMR, CFI,

and TLI were picked as the maximal trivial misspecifications for each fit index. The population

misfit of the maximal trivial misspecifications defined by each fit index are shown in Table 3.6. The

same combination of misfit was picked as the maximal trivial misspecification defined by RMSEA,

CFI, and TLI while SRMR picked a different combination. The misspecified parameter values of

both combinations are shown in Appendix B.
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Table 3.6: Population Fit Indices of Each Type of Misspecifications based on Sample Size of
156.

Fit Indices Observed Maximal Trivial Misspecification Minimal Severe Misspecification DecisionPop. Fit Crit. Value p-value Pop. Fit Crit. Value p-value
RMSEA .071 .184 .193 1.000 .002 .000 1.000 Inconclusive
SRMR .084 .117 .141 1.000 .003 .049 1.000 Inconclusive
CFI .884 .556 .509 1.000 1.000 1.000 1.000 Inconclusive
TLI .864 .480 .427 1.000 1.000 1.026 1.000 Inconclusive

Note. RMSEA = Root mean square error of approximation. SRMR = Standardized root mean
squared residuals. CFI = Comparative fit index. TLI = Tucker-Lewis index.

The minimal severe misspecification was searched based on the following procedures. First,

each combination allowed only either one cross loading, one error correlation, or one omitted fac-

tor. The combination with one cross loading had the value of either -.2 or .2. Thus, there were 57

(possible cross loadings)× 2 (negative or positive) = 104 possible combinations. The combination

with one error correlation had the value either -.2 or .2 so there were 171 (possible error correla-

tions) × 2 (negative or positive) = 342 possible combinations. For the third misspecification, one

omitted factor was included. All possible combinations of three omitted loadings from 19 possi-

ble loadings were C19
3 = 969 possible combinations. The loadings of three omitted loadings were

(.2, .2, .2), (-.2, .2, .2), (.2, -.2, .2), and (.2, .2, -.2). Thus, there were 969 × 4 = 3876 possible

combinations. Therefore, there were 104 + 171 + 3876 = 4322 combinations to be searched for

minimal severe misspecifications. Second, the combinations with the lowest population RMSEA,

SRMR, CFI, and TLI were picked as the minimal severe misspecification. For all four fit indices,

the minimal severe misspecification was the same combination with an omitted factor with which

the factor loadings on Items 1, 3, and 4 are .2. The population misfit values are provided in Table

3.6.

Regarding to the global fit evaluation, the shortcuts (Steps 2a-4a and 5a-7a) can be used. The

observed fit indices did not have better fit than the minimal severe misspecifications and worse fit

than maximal trivial misspecifications. Therefore, the global fit evaluation result was inconclusive.

The direct method based on finding the sampling distributions of fit indices from all maximal trivial

misspecifications and minimal severe misspecifications can be used. The critical values from those
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sampling distributions are shown in Table 3.6. The observed fit indices did not fall in any critical

regions of the tests with maximal trivial misspecifications and minimal severe misspecifications.

Therefore, the result was still inconclusive. The plugin p-values from those combinations are also

shown in Table 3.6, resulting in nonsignificant results. Because all fit indices in global fit evaluation

suggested the inconclusive results, the overall global fit evaluation was inconclusive. On the other

hand, the Bayesian analysis with the cross-loading normal priors (mean = 0 and variance = 0.01)

provided the PPP value of .16. One cross-loading credible interval did not cover 0. The model

can be considered as approximate fit with the suggestion for model-fit improvement by freeing the

significant cross loading (Muthén & Asparouhov, 2012).

Local fit was evaluated by the confidence intervals of EPC, shown in Appendix C. The confi-

dence intervals were transformed to standardized values to check whether they bracket the maximal

trivial misspecification level. The widths of confidence intervals of standardized EPCs were also

calculated to check whether the tests were underpowered. The trivial misspecifications of all fixed

parameters were from -.2 to .2 in standardized scales. Therefore, if any confidence intervals of stan-

dardized EPCs had higher widths than .4, this test would be underpowered. Thirteen confidence

intervals of standardized EPCs had the widths greater than .4 so the overall fit was inconclusive.

Therefore, the model fit evaluated by the unified approach was inconclusive. A larger sample size

should be collected to get a conclusive result.
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Chapter 4

Simulation Designs

This dissertation proposes the unified approach for model evaluation. Theoretically, the unified

approach should be able to retain trivially misspecified models but reject severely misspecified

models. Two simulation studies are used to investigate the performance of the unified approach.

The performance of the unified approach is good if the following characteristics are satisfied:

1. The underpowered or inconclusive results should decrease when sample size increases.

2. Among conclusive results, the rejection rate for trivially misspecified models is close to 0.

3. Among conclusive results, the rejection rate for severely misspecified models is close to 1.

4. The performance of the unified approach does not depend on model characteristic such as

model size, model type, and incidental parameters.

5. The performance of the unified approach does not depend on sample size.

6. The performance of the unified approach should be consistent across different types of mis-

specification.

The first simulation aims to compare the performance of the unified approach with other model

evaluation methods described in Chapters 1 and 2. The second simulation study evaluates the

performance of the unified approach for a different type of models: growth curve models.
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4.1 Study 1

The aim of this study is to investigate the performance of the unified approach and to compare

the performance of the unified approach with other global fit evaluation methods, including one-

size-fit-all fit indices cutoffs, tests of close fit and not close fit, the modification indices and power

approach, the Bayesian approach, and the simulation approach. The target model is a CFA model

with two uncorrelated factors, as shown in Figure 4.1. The magnitudes of factor loadings are

varied across conditions. The measurement error variances are specified in such a way that the

total variances of the indicators are equal to 1.

Figure 4.1: The target model for Study 1.
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4.1.1 Design Conditions

Data are generated from a model with four degrees of misspecifications varying from perfect fit to

very severe misspecification. I refer to these four levels of misspecifications as Levels 0, 1, 2, and 3.

Three types of misspecification are considered in this study: (a) omitting the factor correlation, (b)

omitting cross loadings, and (c) omitting measurement error correlations (see Figure 4.2). There

are 10 combinations of misspecifications as follows:

1. No Misspecification (Level 0): The target model fit the data-generating model perfectly.
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Figure 4.2: Types of misspecification for the target model in Study 1. The blue line represents
the Type A misspecification. The red lines represent the Type B misspecification. The green lines
represent the Type C misspecification.
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2. Type A Misspecification, Level 1: The target model omits a factor correlation of .1.

3. Type A Misspecification, Level 2: The target model omits a factor correlation of .3.

4. Type A Misspecification, Level 3: The target model omits a factor correlation of .9.

5. Type B Misspecification, Level 1: The target model omits the following standardized factor

loadings: λ5,1 = .1 and λ6,1 = .1. Note that the measurement error variances of all indica-

tors in the data-generating models are calculated such a way that the total variances of the

indicators are 1 and the target and misspecified factor loadings are standardized.

6. Type B Misspecification, Level 2: The target model omits the following standardized factor

loadings: λ5,1 = .3 and λ6,1 = .3.

7. Type B Misspecification, Level 3: The target model omits the following unstandardized

factor loadings: λ5,1 = 0.9 and λ6,1 = 0.9. The unstandardized values of target factor load-
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ings and measurement error variances remain the same.1

8. Type C Misspecification, Level 1: The target model omits the following measurement error

correlations: θ1,5 = .1 and θ2,6 =−.1.

9. Type C Misspecification, Level 2: The target model omits the following measurement error

correlations: θ1,5 = .3 and θ2,6 =−.3.

10. Type C Misspecification, Level 3: The target model omits the following measurement error

correlations: θ1,5 = .9 and θ2,6 =−.9.

These ten data generating models are analyzed by the hypothesized model shown in Figure

4.1. The next design condition is the two levels of trivial misspecification. The first level of

trivial misspecification is to use the cutoffs of .1 (Level 1) as the maximal trivial misspecification

for the factor correlation, the standardized loadings, and the measurement error correlations. In

this case, Level 0 degree of misspecification is considered trivial and Levels 2 and 3 degrees of

misspecification are considered severe. Level 1 degree of misspecification is equal to the level

of maximal trivial misspecification. This condition is referred to as the cutoff conditions. It is

unclear to consider the cutoff condition as trivial or severe misspecification.2 The second level

of trivial misspecification is the cutoffs of .3 (Level 2). In this case, Levels 0 and 1 degrees of

misspecification are considered trivial, Level 2 degree of misspecification is the cutoff condition,

and Level 3 degree of misspecification is considered severe. The same value of .1 or .3 is used for

the factor correlation, the standardized loadings, and the measurement error correlation as the level

of trivial misspecificaiton for the sake of simplicity. The values of .1 and .3 are the minimum and

maximum values that are deemed trivial according to some of the guidelines that I have reviewed

in Chapter 3.
1The unstandardized loadings are used because the specification of standardized values as .9 would provide nega-

tive error variances when the total indicator variances are fixed as 1. For example, if the target factor loadings are .5
and the total variance is fixed as 1, the measurement error variance would be 1− .92− .52 =−.06.
If the target unstandardized factor loadings are 0.5, the standardized loadings would be as follows: λ5,1 = .497,
λ5,2 = .276, λ6,1 = .497, and λ6,2 = .276. If the target unstandardized factor loadings are 0.7, the standardized load-
ings would be as follows: λ5,1 = .497, λ5,2 = .387, λ6,1 = .497, and λ6,2 = .387.

2If the degree of misspecification is slightly lower than .1, it is classified as trivial misspecification. On the other
hand, if the degree of misspecification is slightly higher than .1, it is classified as severe misspecification.
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Regarding the other design conditions, the standardized target factor loadings are .5 or .7. The

numbers of indicators are 8 or 16. The details of how the misspecifications are imposed in the

model with 16 items are provided in Appendix D. Sample size are 125, 250, 500, 1000, 2000, or

4000. Thus, there are 10 (data generating models) × 2 (the levels of trivial misspecification) × 2

(factor loadings) × 2 (the numbers of items) × 6 (sample size) = 480 conditions in this simulation

study.

4.1.2 Procedures for the Unified Approach

Below I describe the steps to implement the unified approach for the model considered in this

study. For global fit evaluation, the unified approach is implemented as follows:

1. The CFA model is fitted on observed data. Parameter estimates and four fit indices (RMSEA,

SRMR, CFI, and TLI) are saved.

2. Find the maximal trivial misspecification by the repeated sampling method from the follow-

ing parameter spaces:

(a) One factor correlation ranges from -.1 to .1 (or -.3 to .3).

(b) Standardized cross loadings range from -.1 to .1 (or -.3 to .3). The numbers of cross

loadings for 8- and 16-indicator models are 8 and 16, respectively.

(c) Measurement error correlations range from -.1 to .1 (or -.3 to .3). The numbers of

measurement error correlations for 8- and 16-indicator models are 28 (8× 7/2 = 28)

and 120 (16×15/2 = 120), respectively.

I use 1,000 draws from the uniform distributions across the ranges of all misspecifications.

Population RMSEA, SRMR, CFI, and TLI are computed for each of the 1,000 draws.

3. Each fit index value from observed data is compared with the values from all combinations.

If the former indicates a better fit than the latter, the test with maximal trivial misspecification

is not significant for the fit index (Step 2a-4a).
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4. If the observed fit index indicates a worse fit than all combinations, the combination provid-

ing the maximal misfit is used to generate 1,000 data sets. Then, the target model (two-factor

CFA model) is fit to all generated data. If the observed fit index falls in the critical region,

which is the area covering 5% of the poor-fit extreme, the target model is severely misspeci-

fied regarding to the tested fit index (reject the null hypothesis). Otherwise, the target model

is either trivially misspecified or severely misspecified (fail to reject the null hypothesis).

5. Find the minimal severe misspecification by listing all possible severe misspecifications in

one fixed parameter. All fixed parameters and their changing point are defined as follows:

(a) One factor correlation is set as either -.1 or .1 (or either -.3 or .3). There are 2 sets for

this misspecification.

(b) Each standardized cross loading is set as either -.1 or .1 (or either -.3 or .3). There are

16 and 32 sets of misspecifications for the 8- and 16-indicator models, respectively.

(c) Each measurement error correlation is set as either -.1 or .1 (or either -.3 or .3). There

are 56 and 240 sets of misspecifications for the 8- and 16-indicator models, respectively.

The total numbers of misspecification sets are 74 (2+ 16+ 56) and 274 (2+ 32+ 240) for

8- and 16-indicator models, respectively. Population RMSEA, SRMR, CFI, and TLI are

calculated for each combination.

6. Each fit index value from observed data is compared with the values from all listed combina-

tions. If the observed fit index indicates a worse fit than the values from any combinations,

the test with minimal severe misspecification is failed to reject (Step 5a-7a).

7. If the observed fit index indicates a better fit than all combinations, the combination pro-

viding the minimal misfit is used to generate 1,000 data sets. Then, the hypothesized model

(two-factor CFA model) is fit to all generated data. The critical region is the area covering 5%

of the good-fit extreme. If the observed fit index falls in the critical region, the hypothesized

model is trivially misspecified regarding to the tested fit index (reject the null hypothesis).
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Otherwise, the hypothesized model is trivially misspecified or severely misspecified (fail to

reject the null hypothesis).

8. If any fit indices (RMSEA, SRMR, TLI, or CFI) are significantly worse fit than the maximal

trivial misspecification, the hypothesized model is severely misspecified. If each fit index

indicates a significantly better fit than the minimal severe misspecification, the hypothesized

model is trivially misspecified. Otherwise, the decision is inconclusive.

9. It is possible that the decisions from the four fit indices are inconsistent. If any fit indices

indicate a severe misspecification, the hypothesized model is deemed severely misspecified.

If all fit indices indicate a trivial misspecification, the hypothesized model is then deemed

trivially misspecified. Otherwise, the overall decision is inconclusive.

The local fit evaluation is implemented regardless of the results from global fit evaluation. The

procedure of the local fit evaluation is described as follows:

1. Confidence intervals of EPCs is calculated by Equation 2.1 for each fixed parameter.

2. All fixed parameters have the range of trivial misspecifications as follows:

(a) The range between -.1 and .1 (or -.3 and .3) is deemed trivial for the factor correlation.

(b) The range between -.1 and .1 (or -.3 and .3) is deemed trivial for the standardized factor

loadings.

(c) The range between -.1 and .1 (or -.3 and .3) is deemed trivial for the measurement error

correlations.

3. The widths of the confidence intervals of EPCs are calculated. The confidence intervals that

their widths are larger than the range of trivial misspecifications (.2 or .6 in this study) are

underpowered.

4. If both lower and upper bounds of the confidence intervals fall within the range of trivial

misspecifications, the fixed parameters are trivially misspecified.
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5. If both lower and upper bounds of the confidence intervals fall outside the range of trivial

misspecifications, the fixed parameters are severely misspecified.

6. If the confidence intervals are partially overlapped with the range of trivial misspecification,

the decisions are inconclusive such that the fixed parameters can be either severely or trivially

misspecified.

7. The decisions from all fixed parameters are combined to make the inference about global fit.

If any of the confidence intervals is underpowered, the model fit evaluation is underpowered.

If any of the confidence intervals is severely misspecified, the target model is severely mis-

specified. If all confidence intervals are trivially misspecified, the target model is trivially

misspecified. Otherwise, the decision is inconclusive.

The unified approach is implemented by the lavaan package (Rosseel, 2012) in the R environ-

ment (R Development Core Team, 2013).

4.1.3 Procedures for Other Methods

Five alternative model evaluation methods are compared with the unified approach in the study.

The methods are implemented by the lavaan package (Rosseel, 2012) in the R environment (R De-

velopment Core Team, 2013) except that the Bayesian approach is implemented by Mplus (Muthén

& Muthén, 2013).

4.1.3.1 One-size-fit-all Cutoffs

I use the cutoffs suggested by Hu & Bentler (1999) for the four fit indices: RMSEA < .06, CFI >

.95, TLI > .95, and SRMR < .09. If observed fit indices satisfy these inequalities, the hypothesized

model is retained. Otherwise, the hypothesized model is rejected. The results from RMSEA, CFI,

TLI, and SRMR are individually reported. Furthermore, the information from all four cutoffs is

combined such that a model is retained if all cutoffs are satisfied. I acknowledge that Hu and
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Bentler’s cutoffs were not designed for the model considered in the study. I use them considering

the cutoffs are widely used in practice.

4.1.3.2 Test of close fit and not close fit

I use the population RMSEA of .05 as the maximal trivial misspecification (Browne & Cudeck,

1992). If the test of not close fit (H0 : ε ≥ .05) is rejected, the hypothesized model is deemed

trivially misspecified. If the test of close fit (H0 : ε ≤ .05) is rejected, the hypothesized model is

deemed severely misspecified. If neither hypotheses is rejected, the decision is inconclusive. Note

that only RMSEA is used in the study because theoretical sampling distribution cannot be derived

for the other fit indices.

4.1.3.3 Modification indices and power approach

I follow the original Saris and colleague’s (2009) guideline for model evaluation (see Chapter 2).

For each fixed parameter, the result can be either a severe misspecification, a trivial misspecifica-

tion, or inconclusive. Saris and colleague’s (2009), originally, provided a method to search for the

sources of misspecification in a model but they did not provide a method to combine sources of

misspecification for global fit evaluation. Thus, I use the method similar to the local fit evaluation

in the unified approach to combine information from different sources of misspecification. The

hypothesized model is rejected if at least one fixed parameter indicates a severe misspecification.

If the results from all fixed parameters indicate a trivial misspecification, the hypothesized model

is deemed trivially misspecified. Otherwise, the decision is inconclusive.

4.1.3.4 Bayesian approach

Two methods of model evaluation are used in Bayesian approach. First, PPP is only used in model

evaluation. The hypothesized model will be rejected if PPP is less than .05 (Muthén & Asparouhov,

2012). Second, PPP is combined with the zero coverage of the credible intervals of nontarget

parameters. If PPP is less than .05 or any credible intervals of nontarget parameters do not include
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0, the hypothesized model is deemed severely misspecified. Otherwise, the hypothesized model

will be retained.

Noninformative priors are used for all target parameters. Two sets of informative priors are used

for nontarget parameters. In the first set, the nontarget factor correlation and all cross loadings

have normal priors with the mean of 0 and the variance of (0.1/2)2 = 0.0025 (95% confidence

limit = ±0.1) or (0.3/2)2 = 0.0225 (95% confidence limit = ±0.3), depending on the level of

trivial misspecification. In the second set, the nontarget factor correlation remains the same as

the first set. The error covariances have normal priors with the mean of 0. The variance of the

priors were calculated by (m× (1− l2)/2)2, where m is the level of trivial misspecification in

error correlation (0.01 or 0.03, which create 95% confidence limit of ±0.1 or ±0.3) and l is the

standardized value of target factor loading (0.5 or 0.7). Multiple sets of priors will be used because

the Bayesian approach is likely to be influenced by different choices of priors. In sum, there are

four results from the Bayesian analysis based on two methods of model evaluation and two sets

of informative priors. I use 90,000 burn-in iterations and collecting the next 10,000 iterations for

estimating posterior distributions and PPP. The sample is thinned by using every 10 iterations. The

Bayesian analysis is considered convergent if the potential reduction scale factor at the 90,000-th

iteration is less than 1.1.

4.1.3.5 Simulation approach

Three alternative models are used to represent maximal trivial misspecifications:

1. The fixed factor correlation is set as 0.1 (or 0.3).

2. Two standardized cross factor loadings are set as follows: λ5,1 = .1 (or .3) and λ6,1 = .1 (or

.3) for the 8-indicator model (see Appendix D for the details for the 16-indicator model).

3. Two measurement error correlations are changed: θ1,5 = .1 (or .3) and θ2,6 = −.1 (or -.3)

for the 8-indicator model (see Appendix D for the details for the 16-indicator model).
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A plugin p-value is derived from the sampling distribution of a fit index established by fitting the

hypothesized model to the simulated data sets from trivially misspecified models. If p ≤ .05, the

hypothesized model is rejected. If p > .05, the hypothesized model is retained. The results from

three maximal trivial misspecifications are also combined. The hypothesized model is rejected if

at least one result indicates a severe misspecification. If all results indicate trivial misspecification,

the hypothesized model is deemed trivially misspecified.

4.1.4 Simulation Analysis

The one-size-fit-all cutoffs, the Bayesian approach, and the simulation approach provide only two

possible outcomes: trivial or severe misspecifications. I refer to these methods as two-outcome

methods. The unified approach, the tests of close and not close fit approach and the modification

indices and power approach provide three outcomes: trivial misspecifications, severe misspecifica-

tions, or inconclusive. I refer to these methods as three-outcome methods. For the three-outcome

methods, two outcome variables are obtained: the proportion of inconclusive (or underpowered)

results and the proportion of model rejection among conclusive results. If the proportion of incon-

clusive results is greater than .90, the rejection rate would be computed based on a small proportion

of conclusive results so I code the rejection rate as missing in this case. On the other hand, two-

outcome methods will provide only the proportion of model rejection.

I mainly use two tables to evaluate the influence of the design conditions on the performance

of the model evaluation methods. These tables present results from factorial analysis of variance

(ANOVA). The design factors in this analysis include the size of target loadings, the number of in-

dicators, sample size, the degree of misspecifications, the level of maximal trivial misspecification,

and the type of misspecifications. However, all factors are not fully crossed. Type of misspecifica-

tion is only applicable when the level of misspecification is not Level 0. Therefore, in the factorial

ANOVA, I did not include the results with Level 0 degree of misspecification. The dependent vari-

ables for the first and the second tables are the rejection rates and the proportions of inconclusive

results, respectively. The proportions of inconclusive results are only applicable for the three-
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outcome methods. Note that each combination of the design factors has only one observation of

the dependent variables. Therefore, the highest-order factor cannot be separated from the error

variance. The factors with eta-squares (η2s) of .03 or higher are deemed non-negligible factors.

The past research has used .01 (Lüdtke et al., 2008) or .05 (Geldhof et al., in press) as threshold

for meaningful η2s. I found that, in the current study, .01 included factors with negligible effects

whereas .05 ignored important effects. Thus, I chose .03 as the cutoff.

When any main or interaction effect has a non-negligible effect, I describe the pattern of the

effect. In addition, the averages of the dependent variable across each level of the non-negligible

conditions are tabulated to further explain the effect. If an effect is related to the degree of mis-

specification, the results associated with Level 0 degree of misspecification are included. Given

that the interaction between the degree of misspecification and the level of trivial misspecification

is the primary research question of the study. The tables of the averages of the rejction rates and

the proportion of inconclusive results across the degree of misspecification and the level of trivial

misspecification are provided even if the effects are negligible. If the interaction is dependent on

other factors (i.e., three-way or higher interaction), the table describing the higher order interaction

is shown instead. All tables mentioned above are used to answer the research questions as follows.

4.1.4.1 The Comparisons between Model Evaluation Methods

All model evaluation methods are evaluated in terms of to what extent they have satisfied the

desired properties. The desired properties are as follows:

Appropriate Rejection Rates for Varying Degrees of Misspecification and Levels of Trivial

Misspecification. The hypothesized model should be rejected if the model misspecification is

higher than the maximal level of trivial misspecification. In contrast, the hypothesized model

should be retained if the misspecification is lower than the maximal level of trivial misspecification.

From the tables described above, four results are used to indicate whether this desired charac-

teristic is satisfied. First, the degree of misspecification and the level of maximal trivial misspeci-

fication should interactively influence the rejection rate. That is, a good model evaluation method
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should have high η2 on the interaction between the degree of misspecification and the level of

maximal trivial misspecification. Second, the rejection rates of trivial misspecification conditions

should be close to 0. I consider the rejection rates lower than .10 as desirable. Third, the rejec-

tion rates of severe misspecification conditions should be close to 1. I consider the rejection rates

higher than .90 as desirable. Fourth, the rejection rates of the cutoff conditions (the model misspec-

ification is at the same level as the maximal trivial misspecification) should be in between 0 and 1

because it is unclear to be considered the cutoff conditions as trivial or severe misspecification. I

consider the rejection rates between .10 and .90 as desirable.

Rejection Rates Are Not Influenced by Types of Misspecification. There are three types of

misspecification in this simulation: the misspecification in factor correlation, the misspecification

in cross loadings, and the misspecification in error correlations. A good model evaluation method

should be able to detect all types of severe misspecifications. Thus, a good model evaluation

method should have low η2s (< .03) on the main and interaction effects involving the type of

misspecification.

Rejection Rates Are Not Influenced by Model Characteristics. This simulation investigates

two model characteristics: the number of items (8 and 16) and the magnitude of target factor

loadings (0.5 and 0.7). The rejection rates should be consistent across the numbers of items and

the magnitudes of target factor loadings. Thus, a good model evaluation method should have low

η2s (< .03) for the main and interaction effects involving the number of items or target factor

loadings.

Rejection Rates Are Not Influenced by Sample Sizes. A good model evaluation method

should consistently retain trivially misspecified models and reject severely misspecified models

across all sample sizes (125, 250, 500, 1000, 2000, and 4000). The effect of sample sizes on

the proportion of inconsistent results is investigated in the next section. A good model evaluation

method should have low η2s (< .03) for the main and interaction effects involving sample sizes.

59



4.1.4.2 The Properties of the Unified Approach

Because the unified approach provides three possible outcomes and consists of both global and

local fit evaluations, studying the pattern of the proportion of inconclusive results and the congru-

ency between the global and local model evaluations would provide a better understanding of the

performance of the approach.

Pattern of the Proportions of Inconclusive Results. The main benefit of the unified approach

is that it does not provide the decision of model rejection (reject vs. retain a model) if it does not

have enough information. There are two situations indicating low information:

1. Sample size is low.

2. The degree of misspecification is close to the level of maximal trivial misspecification (es-

pecially in the cutoff conditions).

Therefore, the η2s on the proportion of inconclusive results should be high for the main effect

of sample size and the interaction effect between the degree of misspecification and the level of

maximal trivial misspecification. Furthermore, the table of the average proportion of inconclusive

results classified by the degree of misspecification and the level of maximal trivial misspecification

will be shown. The proportion of inconclusive results is expected to be the highest when the sample

size is smallest holding the other factors constant and at the cutoff condition holding sample size

constant.

The Congruency between Global and Local Model Evaluation. The global model evalua-

tion can provide three possible outcomes: trivial, severe, or inconclusive. The local model evalu-

ation can provide four possible outcomes: trivial, severe, inconclusive, or underpowered. I use a

contingency table to see the interaction between the results from both methods. The contingency

table is used to see whether global or local fit evaluation is unnecessary to be used. One method

is unnecessary if all information from the method is already provided by the other method. For

example, global fit evaluation would be unnecessary if the following conditions are satisfied. (a)

When the global evaluation provides trivial or severe outcomes, the local evaluation provides the
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same outcomes. (b) When the global evaluation provides inconclusive outcomes, the local eval-

uation provides trivial, severe, or inconclusive outcomes. In this case, the information from the

global fit evaluation is covered by the information provided by the local fit evaluation; thus, it is

not necessary to be used. If both methods are necessary, I will investigate the conditions under

which global or local evaluations have a higher power to detect trivial or severe misspecifications.

The contingency table is also used to examine the mismatches between both methods. I check

the situation where one method indicates severe misspecification while the other indicates trivial

misspecification. This situation should not occur.

4.2 Study 2

The primary purpose of this study is to investigate the performance of the unified approach for

growth curve models. Growth curve models have two sources of model misspecifications: mean

and covariance structures. Population practical fit indices, such as RMSEA, SRMR, or CFI, were

designed to primarily detect the misfits in the covariance structure so they are not sensitive to

the misspecification in the mean structure (Wu & West, 2010). Wu & West (2013) showed that

four correlation-based fit indices were able to detect the misfit at the mean structure. The cutoffs,

however, were not established so analysts cannot decide when to reject or retain their models based

on these correlation-based fit indices. This study examines whether the unified approach is able to

correctly classify between trivial and severe misspecifications in mean and covariance structures.

The growth curve model in this study is shown in Figure 4.3. A variable is measured at five

time points with linear trajectory. The error variances are constant across time. The intercept

variance is 2. The linear slope variance is 0.3. The covariance between intercept and linear factors

is 0.3. The means of the intercept and linear slope are 1 and 0.3, respectively.

The matrix presentation of the model is shown here because these notations will be used for

specifying trivial misspecifications and calculating correlation-based fit indices described later. Let

yyyi be the observed score vector of Participant i with the length of 5 (the number of time points).
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Figure 4.3: The target model for Study 3.
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The growth curve model described in Figure 4.3 expresses the observed score vector as follows:

yyyi =ΛΛΛηηη i +εεε i, (4.1)

where ηηη i is the latent variable vector of Participant i with the length of 2. The first and second

elements of the vector represents the latent variable scores of intercept (i.e., the expected value of

marginal mean at Time 3) and linear change. ηηη i∼MV N(ααα,ΨΨΨ) where MV N represents a multivari-

ate normal distribution, ααα is the latent variable means across participants, and ΨΨΨ represents a 2×2

covariance matrix among latent variables. εεε i represents errors of Participant i. εεε i ∼MV N(0005,ΘΘΘ)

where 0005 is the zero vector with the length of 5 and ΘΘΘ represents a 5×5 covariance matrix among

residuals.

ΛΛΛ =



1 −2

1 −1

1 0

1 1

1 2


. (4.2)
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The model-implied means (µ̂̂µ̂µ) and covariance matrix (Σ̂̂Σ̂Σ) can be calculated as follows:

µ̂̂µ̂µ =ΛΛΛα̂̂α̂α, (4.3)

and

Σ̂̂Σ̂Σ =ΛΛΛΨ̂̂Ψ̂ΨΛΛΛ
′+ Θ̂̂Θ̂Θ. (4.4)

The estimated individual-specific growth parameters (η̂̂η̂η i) represents the estimated intercept and

linear change of Participant i combining information from the observed scores (yyyi) and the average

of latent variable scores (ααα):

η̂̂η̂η i = Ψ̂̂Ψ̂ΨΛΛΛ
′
Σ̂̂Σ̂Σ
−1 (yyyi−ΛΛΛα̂̂α̂α)+ α̂̂α̂α. (4.5)

The predicted values of individual responses or conditional means of Participant i (ŷ̂ŷyi) can be

calculated:

ŷ̂ŷyi =ΛΛΛη̂̂η̂η i. (4.6)

4.2.1 Design Conditions

The design conditions are similar to Study 1. Data are generated from the model with four degrees

of misspecification ranged from perfit fit to very severe misspecification. I refer these four levels

of misspecifications as Levels 0, 1, 2, and 3. Four types of misspecification are considered in this

study: (a) omitting first-order autoregressive regression among residuals, (b) omitting quadratic

factor, (c) nonlinear change, and (d) unequal residual variances (see Figure 4.4). There are 13

combinations of misspecifications as follows:

1. No Misspecification or Level 0: The target model fits the data-generating model perfectly.
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Figure 4.4: Types of misspecification for the target model in Study 3. The orange lines represent
the Type A misspecification. The red lines represent the Type B misspecification. The green lines
represent the Type C misspecification. The blue texts represent the Type D misspecification.

2. Type A Misspecification, Level 1: The target model omits the first-order autoregressive

regression among residuals. The standardized regression coefficient is .1.

3. Type A Misspecification, Level 2: The target model omits the first-order autoregressive

regression among residuals. The standardized regression coefficient is .3.

4. Type A Misspecification, Level 3: The target model omits the first-order autoregressive

regression among residuals. The standardized regression coefficient is .7.

5. Type B Misspecification, Level 1: The target model omits the quadratic factor. The mean

and variance of the quadratic factor are 0 and 0.003364, respectively.

6. Type B Misspecification, Level 2: The target model omits the quadratic factor. The mean

and variance of the quadratic factor are 0 and 0.016384, respectively.
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7. Type B Misspecification, Level 3: The target model omits the quadratic factor. The mean

and variance of the quadratic factor are 0 and 0.065025, respectively.

8. Type C Misspecification, Level 1: The change of the population model is not linear. Rather,

the factor loadings of the so-called linear factor on all indicators are -2, -0.67, 0.37, 1.98,

and 2 (see the blue solid line in Figure 4.5).

9. Type C Misspecification, Level 2: The change of the population model is not linear. Rather,

the factor loadings of the so-called linear factor on all indicators are -2, -0.22, 0.88, 3.31,

and 2 (see the green dashed line in Figure 4.5).

10. Type C Misspecification, Level 3: The change of the population model is not linear. Rather,

the factor loadings of the so-called linear factor on all indicators are -2, 0.83, 2.08, 6.45, and

2 (see the red dotted line in Figure 4.5).

11. Type D Misspecification, Level 1: The residual variances linearly increase over time. The

residual variance of the fifth time points is 1.376 times of the residual variance of the first

time point.

12. Type D Misspecification, Level 2: The residual variances linearly increase over time. The

residual variance of the fifth time points is 2.78 times of the residual variance of the first time

point.

13. Type D Misspecification, Level 3: The residual variances linearly increase over time. The

residual variance of the fifth time points is 23.84 times of the residual variance of the first

time point.
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Figure 4.5: The expected means at each time point with the Type C misspecification imposed.
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These thirteen data generating models are analyzed by the hypothesized model shown in Figure

4.3. The degree of misspecification is designed such that Levels 0, 1, 2, and 3 are no, trivial, severe,

and very severe misspecification, respectively. The level of maximal trivial misspecification is

in between Levels 2 and 3, which will be described in the next section. Note that standardized

regression coefficients (Type A misspecification) of .1, .3, and .7 are considered as trivial, severe,

and very severe misspecification based on the review in Chapter 3. For Type C misspecification, I

assume that two trends (i.e., the change in means over time) are trivially different if the proportion

of variance of one trend explained by the other trend is .90. This value is based on the suggestion
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of the multicollinearity problem in multiple regression (Tabachnick & Fidell, 2012). The trivial,

severe, and very severe Type C misspecifications have a proportion of variance explained by the

perfect linear trend of .95, .80, and .50, respectively.

Regarding to Type B misspecification, I will calculate the model-implied means (µ̂̂µ̂µ) when the

latent variable mean of the quadratic trend is specified as one standard deviation below the mean

and the means of the intercept and the linear slope are specified as 0.3 These model-implied means

for trivial, severe, and very severe misspecification are shown in Figure 4.6. Then, the model-

implied means are then predicted by the linear trend and the proportion of variance explained by

the linear treand is calculated. For trivial, severe, and very severe Type B misspecifications, the

proportions of variance explained are .95, .80, and .50, respectively.

Regarding to Type D misspecification, the ratios of the maximum and minimum error variances

will be used to quantify the levels of misspecifications. To my knowledge, there is no guideline

of the effect sizes of the ratios of variances. Hence I quantify the effect sizes of the ratios of

variances by finding the values of the ratios such that they provide the same power as in detecting

standardized regression coefficient in a simple regression. As mentioned above, the standardized

coefficients of .1, .3, and .7 are deemed trivial, severe, and very severe, respectively. First, I

calculate the sample sizes needed to detect these levels of standardized regression coefficients

given the statistical power of .80. Then, those sample sizes are used to find the ratio of variances

in F test providing statistical power of .80. The ratios of variances of 1.376, 2.78, and 23.84 are

equivalent to the standardized regression coefficients of .1, .3, and .7.

3The factor loadings of the quadratic factor are (4, 1, 0, 1, 4).

67



Figure 4.6: The expected means at each time point when the misspecified quadratic factor (Type B
misspecification) has the value at one standard deviation below the mean.
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Regarding to the other design conditions, the residual error variances of the first time point are

0.5, 2, or 3.5. Sample size will be 125, 250, 500, or 1000. Thus, there will be 13× 3× 4 = 156

conditions in this simulation study.

4.2.2 Procedures for the Unified Approach

The process of the unified approach is similar to Study 1 except some model-specific steps. First,

the maximal trivial misspecifications are based on the following parameter spaces:
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1. Ten residual correlations between observed variables between five time points (5×4/2= 10)

range from -.2 to .2

2. Residual variances are different across time points so that the ratio between the maximum

and minimum variances is not over 1.926 (equivalent to the standardized regression coeffi-

cient of .2). To get the residual variances, initially, five numbers are drawn from the uniform

distributions between 1 and 1.926, denoted as c1, c2, c3, c4, and c5. Next, the residual vari-

ance of the first time point is the estimated common residual variance from data analysis. The

residual variances of the second, third, fourth, and fifth time points will be the the residual

variance of the first time point multiplied by c2/c1, c3/c1, c4/c1, and c5/c1, respectively.

3. The factor loadings of the linear trend (λλλ 2) are deviated (denoted as λ̃̃λ̃λ 2) such that the pro-

portion of variance of the deviated marginal means (µ̃̃µ̃µ) explained by the original marginal

means (µµµ) is .90 or higher. This proportion of variance is denoted as ρ2. ρ2 is randomly

drawn from the uniform distribution between 0.9 and 1. λ̃̃λ̃λ 2 is produced by the following

procedure:

(a) Let eee be a vector with five elements created from N(0,
√

1−ρ2). The values are then

transformed to make sure that the observed mean and standard deviation of five obser-

vations are 0 and
√

1−ρ2.

(b) The vector of linear trend, λλλ 2 = (−2,−1,0,1,2) is standardized so that the mean is 0

and the standard deviation is 1. The standardized linear trend is denoted as λλλ 2S.

(c) eee is regressed on λλλ 2S. The residuals of the regression are saved and denoted as eeeI . This

step is used to make sure that the residuals are independent from λλλ 2S.

(d) The standardized deviated linear trend, λ̃̃λ̃λ 2S, is calculated by λ̃̃λ̃λ 2S =
√

ρ2 ·λλλ 2S+
√

1−ρ2 ·

eeeI .

(e) The deviated linear trend is transformed such that the first and the last point are -2 and 2.

This transformation is implemented by the following formula:
(

4× (λ̃t2− λ̃12)/(λ̃52− λ̃12)
)
−

2.
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4. A quadratic trend is omitted. This quadratic trend has the mean of 0. The variance of this

quadratic trend is randomly drawn from a uniform distribution from 0 to 0.083 (the expected

value of the change when the value of quadratic trend equals one standard deviation has the

variance explained by the linear trend of .90 to 1.00). The factor loadings of the quadratic

coefficient will be (4, 1, 0, 1, 4). This quadratic factor is independent of other latent variables.

The minimal severe misspecification is searched among all possible minimal severe misspeci-

fications for each dimension of fixed parameters. All fixed parameters and their changing point are

defined as follows:

1. Each of the 10 residual correlations among the 5 repeated measures is set as either -.2 or .2.

There are 20 sets from this misspecification.

2. Residual variances are specified so that the ratio between the maximum and minimum vari-

ances is equal to 1.926 (equivalent to the standardized regression coefficient of .2). To get the

residual variances, first, three numbers are drawn from the uniform distribution between 1

and 1.926. Then, the order of 1, 1.926, and the three randomly drawn three values is shuffled.

This step ensures that the ratio between maximum and minimum variances is still 1.926 and

these maximum and minimum variances can be the residual variances of any time points.

The five shuffled values are denoted as c1, c2, c3, c4, and c5. Next, the residual variance at

the first time point is the common residual variance estimated from the data analysis. The

residual variances of the second, third, fourth, and fifth time points are the residual variance

at the first time point multiplied by c2/c1, c3/c1, c4/c1, and c5/c1, respectively. I draw 100

sets to search for the minimal severe misspecification.

3. The factor loadings of the linear trend are deviated such that the proportion of variance of

the deviated trend explained by the linear trend is exactly equal to .90. The procedure for

creating the deviated trend is explained above (setting ρ2 = .9). I draw 100 sets to search for

the minimal severe misspecification.
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4. A quadratic trend is omitted. This quadratic trend has the mean of 0 and the variance of 0.083

(the expected value of the change when the value of quadratic trend equals one standard

deviation has 90% of its variance explained by the linear trend). This quadratic factor is

indepenent to the other latent variables.

Thus, the total number of misspecification sets will be 221 (20+100+100+1) for this growth

curve model. Different global fit indices are calculated from these sets of misspecification and

the set with the maximum value of each fit index are picked. Eight fit indices are used for global

fit evaluation: population RMSEA, SRMR, CFI, TLI, and four correlation-based fit indices. The

correlation-based fit indices detect the misspecification at the mean structure (Type B and C mis-

specifications). More details on the correlation-based fit indices are provided in the next section.

Regarding to the local fit evaluation, EPCs for each fixed parameters are investigated. The

fixed parameters that are used for scale identification are not considered in the local fit evaluation:

all measurement intercepts and the factor loadings at the first and last time points. All other fixed

parameters have the ranges of trivial misspecifications as follows:

1. The range between -.2 and .2 is deemed trivial for measurement error correlations among

repeated measures.

2. The ratios of the expected changed variance and the estimated variance between 0.519

(1/1.926) and 1.926 are deemed trivial.

3. The ranges of trivial misspecifications for the factor loadings at the second, third, and fourth

time points are computed by the ranges of deviated expected means, µ̃̃µ̃µ . As mention above,

the misspecification will be deemed trivial if the proportion of variance of µ̃̃µ̃µ explained by

µµµ (ρ2) of .90. The ranges of µ̃̃µ̃µ can be calculated by the method described above. This

step will be repeated for 100 times. The minimum and maximum values of the expected

means at each time point are the range of trivial misspecification of the expected means. The

minimum and maximum values of the expected means at each time point (µ̃t) are used to

calculate the minimum and maximum values of the EPCs for the factor loadings as follows:
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µ̃t = λ̃t1α̂1 + λ̃t2α̂2 (4.7)

4.2.3 Additional Fit Indices for Growth Curve Models

The fit indices used in the CFA model in Study 1 detect the misspecification at the covariance

matrix. In growth curve model, however, the misspecification at the mean structure needs to be

detected by fit indices as well. Wu & West (2013) showed that four correlation-based fit indices can

be used to detect the misspecification at the marginal means and the misspecification in predicting

individual responses (or misspecification at the conditional means). Marginal Pseudo R2 represents

the squared correlation between estimated marginal means and the observed individual responses:

Marginal PseudoR2 =
(
rY µ̂

)2
=

[
∑

n
i=1 (yyyi− ȳ111i)

′ (µ̂̂µ̂µ i− ŷ111i)
][

∑
n
i=1 (yyyi− ȳ111i)

′ (yyyi− ȳ111i)
]
·
[
∑

n
i=1 (µ̂̂µ̂µ i− ŷ111i)

′ (µ̂̂µ̂µ i− ŷ111i)
] . (4.8)

where Y represents the observed individual responses and µ̂ represents the predicted marginal

means. n is the number of participants. ȳ represents the grand mean of the observed responses

across participants and across time points. ŷ represents the grand mean of the estimate responses

(ŷ̂ŷyi) across participants and across time points. Conditional Pseudo R2 represents the squared cor-

relation between estimated conditional means and the observed individual responses.

Conditional PseudoR2 =
(
rYŶ
)2

=

[
∑

n
i=1 (yyyi− ȳ111i)

′ (ŷ̂ŷyi− ŷ111i)
][

∑
n
i=1 (yyyi− ȳ111i)

′ (yyyi− ȳ111i)
]
·
[
∑

n
i=1 (ŷ̂ŷyi− ŷ111i)

′ (ŷ̂ŷyi− ŷ111i)
] .
(4.9)

where Ŷ represents the predicted conditional means.

In a perfect correlation, two variables measuring the same thing would produce a scatterplot

that individual points follow a 45-degree straight line. Concordance Correlation (CCC) represents

the degree of deviations of individual points from a 45-degree straight line. Conditional CCC
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assesses the degree to which the predicted individual responses reproduce the observed individual

responses:

ConditionalCCC = 1− ∑
n
i=1 (yyyi− ŷ̂ŷyi)

′ (yyyi− ŷ̂ŷyi)

∑
n
i=1 (yyyi− ȳ111i)

′ (yyyi− ȳ111i)+∑
n
i=1 (ŷ̂ŷyi− ŷ111i)

′ (ŷ̂ŷyi− ŷ111i)+N(ȳ− ŷ)2
. (4.10)

where n is the number of individuals and N is the total number of observations (n×5 in this growth

curve model). Average CCC assesses the extent to which the predicted marginal means reproduce

the observed individual responses:

AverageCCC = 1− ∑
n
i=1 (yyyi− µ̂̂µ̂µ i)

′ (yyyi− µ̂̂µ̂µ i)

∑
n
i=1 (yyyi− ȳ111i)

′ (yyyi− ȳ111i)+∑
n
i=1 (µ̂̂µ̂µ i− ŷ111i)

′ (µ̂̂µ̂µ i− ŷ111i)+N(ȳ− ŷ)2
. (4.11)

Type B and C misspecifications represent the misspecification on the mean structure. Type

C misspecification would alter the marginal means so all four fit indices could detect this mis-

specification. Type B misspecification, however, does not alter the marginal means because the

mean of the quadratic factor is 0. Thus, the marginal pseudo R2 and average CCC cannot detect

this misspecification. Conditional pseudo R2 and conditional CCC should be able to detect this

misspecification because they detect the discrepancy between the observed and the predicted indi-

vidual responses. The global fit evaluation from the unified approach provides the expected range

of these four correlation-based fit indices under trivial or severe misspecifications.

4.2.4 Simulation Analysis

Because the unified approach is the three-outcome method, two outcome variables are used: the

proportion of inconclusive (or underpowered) results and the proportion of model rejection among

conclusive results. Similar to Study 1, the rejection rate is coded as missing if the proportion of

inconclusive results is greater than .90.

Similar to Study 1, the tables of η2s for rejection rate and the proportion of inconclusive results
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are provided. Four design factors include the size of error variances, sample size, the degree of

misspecifications, and the type of misspecifications. Similar to Study 1, I did not include the results

from Level 0 degree of misspecification. The factors with an η2 of .03 or higher are deemed non-

negligible factors. The patterns of the non-negligible effects are described in texts or by tables.

If the desired effects are related to the degree of misspecification, the results with Level 0 degree

of misspecification are included. Given that the main effect of the degree of misspecification is

the primary research question of the study. The tables of the averages of the rejection rates and

the proportion of inconclusive results across the degree of misspecification are provided even if

the effects were negligible. If the effect of the degree of misspecification depends on other factors

(i.e., a two-way or higher interaction), the table describing the higher order interaction is shown

instead. The tables mentioned above are used to answer the research questions as follows.

4.2.4.1 Rejection Rates when the Unified Approach Provides Conclusive Results

Appropriate Rejection Rates for Varying Degrees of Misspecification. The rejection rate for

trivial misspecification should be 0 and the rejection rate for severe misspecification should be 1.

Three results are used to indicate whether this desired characteristic is satisfied. First, the degree

of model misspecification should influence the rejection rate so the η2 of the main effect of the

degree of model misspecification should be greater than .03. Second, the rejection rates of trivial

misspecification conditions should be low. Third, the rejection rates of severe misspecification

conditions should be high.

Rejection Rates Are Not Influenced by Types of Misspecification, Model Characteristic,

and Sample Size The unified approach should have low η2s (< .03) on the main and interaction

effects involving the type of misspecification, the amount of error variance, or sample size.

4.2.4.2 The Properties of the Unified Approach

The Pattern of the Proportions of Inconclusive Results. The proportion of inconclusive results

should be higher when (a) sample size is low and (b) when the degree of misspecification is close
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to the level of maximal trivial misspecification (i.e., the degree of model misspecification is Level

1 or 2) holding sample size constant.

The Congruency between Global and Local Model Evaluation. I use a contingency table to

examine the interaction between the results from both methods. The contingency table will be used

to check whether global or local fit evaluation is unnecessary to be used. Furthermore, I investigate

the situation where one method indicates trivial misspecification while the other indicates severe

misspecification. This situation should not occur.
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Chapter 5

Results

5.1 Study 1

The first simulation study compares the performance of all model evaluation methods and evalu-

ates the characteristics of the unified approach. The model evaluation methods examined and the

abbreviations used in the tables in this chapter are as follows:

1. A one-size-fit-all cutoff for RMSEA (RMSEA)

2. A one-size-fit-all cutoff for CFI (CFI)

3. A one-size-fit-all cutoff for TLI (TLI)

4. A one-size-fit-all cutoff for SRMR (SRMR)

5. The combination of all one-size-fit-all fit indices cutoffs. A model is rejected if any of (1) -

(4) indicates model rejection (OVCUT)

6. Test of close fit and not close fit (CLOSE)

7. The modification indices and power approach (MIPOW)

8. The PPP cutoff for the Bayesian analysis with informative priors on cross loadings (LOAD,

PPP)

76



9. The combination of the PPP cutoff and the zero coverage of the credible intervals from cross

loadings informative priors (LOAD, ZERO)

10. The PPP cutoff for the Bayesian analysis with informative priors on error covariances (ERR,

PPP)

11. The combination of the PPP cutoff and the zero coverage of the credible intervals from error

covariances informative priors (ERR, ZERO)

12. The simulation approach combining all three types of trivial misspecification. A model is

rejected if any of the three types of misspecification provide model rejection (SIM)

13. The unified approach (UNIFIED)

I do not report the results from different types of maximal trivial misspecification in the simula-

tion approach because they follow the same pattern. The only result from the simulation approach

reported here is the combination of the results from all types of maximal trivial misspecification.

I do not combine the results from Bayesian analysis because different priors and different model

evaluation methods led to different results.
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Table 5.2: The Rejection Rates and the Proportions of Inconclusive Results for Each
Model Evaluation Method Classified by the Level of Maximal Trivial Misspecifica-
tion and the Degree of Misspecification for Study 1

Level of Trivial Misspecification Level 1 Level 2
Degree of Model Misspecification Level 0 Level 1 Level 2 Level 3 Level 0 Level 1 Level 2 Level 3
Classification Trivial Cutoff Severe Severe Trivial Trivial Cutoff Severe

Rejection Rates
RMSEA .011 .018 .371 .999 .011 .018 .371 .999
CFI .037 .055 .533 1.000 .037 .055 .533 1.000
TLI .049 .080 .672 1.000 .049 .080 .672 1.000
SRMR .016 .032 .420 .981 .016 .032 .420 .981
OVCUT .058 .098 .844 1.000 .058 .098 .844 1.000
CLOSE .003 .009 .662 1.000 .003 .009 .662 1.000

MIPOW .751 .892 1.000 1.000 .253 .253 .662 1.000
(.157) (.073) (.004) (.000) (.137) (.130) (.046) (.000)

Bayesian, LOAD, PPP .004 .109 .302 .904 .005 .112 .282 .339
Bayesian, LOAD, ZERO .031 .307 .730 .985 .020 .151 .609 .846
Bayesian, ERR, PPP .384 .402 .599 .972 .079 .080 .098 .343
Bayesian, ERR, ZERO .681 .846 .956 1.000 .354 .556 .779 .803
SIM .017 .273 .833 1.000 .002 .005 .572 .999

UNIFIED .000 .740 1.000 1.000 .000 .000 .661 1.000
(.840) (.953) (.462) (.001) (.343) (.356) (.874) (.102)

Note. The abbrevations for the model evaluation methods are provided at the be-
ginning of this chapter. The numbers in the parentheses represent the proportion of
inconclusive results.

5.1.1 Convergence Rates

All model evaluation methods except Bayesian analysis are based on maximum likelihood esti-

mation. Almost all conditions using maximum likelihood had convergence rate greater than 98%,

except that for the conditions with sample size of 125, the size of target loadings of .5, 8 items, and

Level 3 misspecification in factor loadings, the convergence rate was 88%.

The convergence rates of Bayesian analysis were lower than ones in maximum likelihood. The

convergence rates were lower when the degree of misspecification increased, especially for Level

3 misspecification. Within the conditions for Level 3 misspecification, the Bayesian analysis with

informative priors on cross loadings had low convergence rates when the misspecification was in

measurement error correlations and the size of the target factor loadings was .5 (12%). On the

contrary, the Bayesian analysis with informative priors on error covariances had low convergence

rates when the misspecification was in factor correlation and the size of the target factor loadings

was .7 (29%).
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5.1.2 The Comparison between Model Evaluation Methods

5.1.2.1 Rejection Rate for Model Misspecification and Level of Trivial Misspecification

This section investigates the performance of all model evaluation methods in detecting trivial and

severe misspecifications. The ANOVA was used to investigate the η2s of the interaction effect be-

tween the degree of misspecification (in data-generating models) and the level of trivial misspec-

ification (used in the unified approach). As shown in Table 5.1, three methods had nonnegligible

η2s of the interaction: the modification indices and power approach, the PPP method in Bayesian

analysis with informative priors on cross loadings, and the unified approach. All of the other meth-

ods had rejection rates sensitive to the main effect of the degree of model misspecification or the

level of trivial misspecification but they were not sensitive to the interaction effect.

Table 5.2 provides the rejection rates classified by the degree of model misspecification and the

level of trivial misspecification. The rejection rates for the trivial misspecification conditions are

expected to be close to 0. As mentioned in Chapter 4, model evaluation methods with rejection

rates less than .1 are to be labelled as correctly retaining models. The Bayesian approach with

informative priors on error covariances (both ERR, PPP and ERR, ZERO) and the modification

indices and power approach had the rejection rates over .1, especially when the level of maxi-

mal trivial misspecification was 0.1. Other methods had rejection rates less than .1 for all trivial

misspecification conditions.

Ideal rejection rates for the severe misspecification conditions are close to 1. The model eval-

uation methods with rejection rates of .9 or higher are deemed correctly rejected models. Only the

unified approach provided the rejection rate of 1 in all severe misspecification conditions. Other

methods had a rejection rate lower than .9 for at least one severe misspecification condition. Fi-

nally, the rejection rates for the cutoff conditions are expected to range between .1 and .9. All

methods provided the desired results.
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5.1.2.2 The Effect of Types of Misspecification

As shown in Table 5.1, All methods except the TLI cutoff, the test of close fit and not close fit, the

PPP method from the Bayesian analysis with informative priors on cross loadings (LOAD, PPP),

and the PPP method with the zero coverage of the credible intervals from informative priors on

error covariances (ERR, ZERO) had negligible η2s for all main and interaction effects involving

types of misspecification. The TLI cutoff had lower rejection rates when the misspecification

was in factor correlations (.44) but higher rejection rates when the misspecification was in cross

loadings or error correlations (.65). The test of close fit and not close fit approach provided the

rejection rates of .41, .59, and .66 for the misspecifications in factor correlation, cross loadings,

and error correlations, respectively.

The PPP method with cross loadings priors had nonnegligible η2 for the interaction effect be-

tween types of misspecification and sample size. If the misspecification was in factor correlations,

the rejection rates slightly decreased when sample size increased (.14 and .02 in sample size of 125

and 4000, respectively). If the misspecification was in cross loadings, the rejection rates were in

between .15 and .19 in all sample sizes. However, If the misspecification was in error correlations,

the rejection rates from the PPP approach increased when sample size increased. The rejection

rates were .44, .60, .68, .74, .89, and .99 in sample sizes of 125, 250, 500, 1000, 2000, and 4000,

respectively.

The PPP method with the zero coverage of the credible intervals from error covariances in-

formative priors had nonnegligible interaction effect of the type of misspecification and the level

of trivial misspecification. In general, it had lower rejection rates when the misspecification was

in factor correlations (.40 - .86) but higher rejection rates when the misspecification was in cross

loadings or error correlations (.85 - .97). The level of trivial misspecification influenced the rejec-

tion rates of the model with the misspecification in factor correlation. The rejection rate was .40 in

the trivial misspecification at Level 1 but .86 in the trivial misspecification at Level 2.
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5.1.2.3 The Effect of Model Characteristics

As shown in Table 5.1, the number of items had no effect on any of the evaluation methods ex-

cept the RMSEA cutoff approach and the Bayesian approach using informative priors on error

covariances (both ERR, PPP and ERR, ZERO). For the RMSEA cutoff approach, the rejection

rate was lower when the number of items increased (rejection rates were .56 and .36 for 8 and 16

items, respectively). In contrast, for the Bayesian analysis with error correlations, the rejection

rates were higher when the number of items increased. The rejection rates for the PPP method

were .27 and .55 for 8 and 16 items repectively. When the PPP method and the zero coverage

of nontarget credible intervals are combined, the effect of the number of items on rejection rates

depended on the degree of misspecification. When the degree of misspecification was low (Level

1), the rejection rates were .49 and .91 for 8 and 16 items, respectively. However, when the degree

of misspecification was high (Level 3), the rejection rates were .90 and .90 for 8 and 16 items,

respectively.

As shown in Table 5.1, the size of factor loadings had a negligible effect on all model evaluation

methods except the CFI cutoff approach and all model evaluation methods using the Bayesian

analysis with informative priors on error covariances (both ERR, PPP and ERR, ZERO). For the

CFI cutoff, the rejection rate was lower when the size of loadings increased. The rejection rates

were .61 and .45 for the loadings of .5 and .7, respectively. For the Bayesian analysis with error

covariances informative priors, the effect of the size of loadings was influenced by the degree of

misspecification. When the degree of misspecification was low (Level 1), the rejection rates were

.46 and .03 for the size of factor loadings of .5 and .7, respectively. However, when the degree

of misspecification was high (Level 3), the rejection rates were .65 and .64 for the size of factor

loadings of .5 and .7, respectively. The rejection rates using the combination of the PPP method

and the zero coverage were .88 and .76, respectively.
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5.1.2.4 The Effect of Sample Size

Only the modification indices and power approach and all model evaluation methods using Bayesian

analysis had non-negligible η2s for either main or interaction effects involving sample size. Sam-

ple size and the degree of misspecification interacted with each other to affect the performance

of the modification indices and power approach. As shown in Table 5.3, the rejection rates were

close to 1.0 regardless of sample size for Level 3 degree of misspecification. However, for Level

1 degree of misspecification, the rejection rates were close to 1 for small sample sizes and close

to 0 for larger sample sizes. The influence of sample size was inconsistent across the methods

using Bayesian analysis. Increase in sample size increased the rejection rates for the methods us-

ing cross loadings informative priors whereas reduced rejection rates for the methods using error

covariances informative priors.

In sum, the unified approach satisfied all of the desired properties. As shown in Table 5.1,

the effect size of the interaction between the degree of misspecification and the level of trivial

misspecification was non-neglibible for the unified approach. As shown in Table 5.2, when the

level of trivial misspecification was 0.1, the rejection rates were 0 for the degree of misspecification

lower than 0.1 and the rejection rates were 1 for the degree of misspecification higher than 0.1.

When the level of trivial misspecification was 0.3, the rejection rates were 0 for the degree of

misspecification lower than 0.3 and the rejection rates were 1 for the degree of misspecification

higher than 0.3. Sample size, type of misspecification, number of items, and size of factor loadings

did not influence the rejection rates from the unified approach. Because of these properties, the

unified approach outperformed the other model evaluation methods. However, the unified approach

tended to provide inconclusive results in some conditions (e.g., under small sample size). The
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Table 5.3: The Rejection Rates of the Modification Indices and Power
Approach Classified by the Degree of Misspecification and Sample
Size for Study 1

Degree of Model Misspecification Sample Size Rejection Rate

0

125 1.000
250 .752
500 .508
1000 .500
2000 .253
4000 .001

1

125 1.000
250 .753
500 .507
1000 .500
2000 .403
4000 .274

2

125 1.000
250 .900
500 .795
1000 .768
2000 .762
4000 .760

3

125 1.000
250 1.000
500 1.000
1000 1.000
2000 1.000
4000 1.000
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performance of the unified approach is examined in more detailds in the next section.1

5.1.3 The Properties of the Unified Approach

5.1.3.1 The Pattern of the Proportions of Inconclusive Results

The η2s investigating the influence of all design conditions on the proportion of inconclusive re-

sults are shown in Table 5.4. The proportion of inconclusive results was influenced by sample size

and the interaction between the degree of misspecification and the level of trivial misspecification.

Table 5.5 provides the more detailed version of Table 5.4 that the results of the unified approach are

further classified by sample size. The proportion of inconclusive results was lower when sample

size increased. The bottom part of Table 5.2 shows the proportions of inconclusive results clas-

sified by the degree of misspecification and the level of trivial misspecification. The proportion

of inconclusive results was the highest for the cutoff conditions. In addition, the proportion of

inconclusive results for severe misspecification was lower than that for trivial misspecification.

5.1.3.2 Congruency between Global and Local Model Evaluation

Table 5.6 shows the contingency table between the results from the global and local fit evaluations.

Each cell represents the proportion of each outcome from all replications. The global fit evaluation

yielded 81% of inconclusive results and 19% of severe misspecification, as well as less than 1% of

trivial misspecification. The local fit evaluation yielded 15% of trivial misspecification, 30% of se-

vere misspecification, as well as 55% of inconclusive results (including underpowered). These two

methods complemented each other. Some inconclusive results from global fit evaluation approach

1The unified approach calculated rejection rates differently from the other model evaluation methods because the
rejection rates were calculated from conclusive replications only. Appendix E provides the results of the other model
evaluation methods when their rejection rates were calculated based on the conclusive replications from the unified
approach. The results from the appendix indicated that the modification indices and power approach and the simulation
approach had desirable properties similar to the unified approach. Thus, if the unified approach provided conclusive
results, the results from the modication indices and power approach were reliable. However, the results from both
approaches should be interpreted carefully if the unified approach provided inconclusive results.
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Table 5.4: The η2s of the Effects of the Design
Conditions on the Proportions of Inconclusive Re-
sults for Study 1

Factors MIPOW UNIFIED
TYPEMIS .002 .000
N .054 .085
LOAD .000 .002
SEVERE .120 .284
LEVELMIS .019 .001
ITEMS .078 .014
TYPEMIS : N .001 .000
TYPEMIS : LOAD .000 .000
TYPEMIS : SEVERE .001 .000
TYPEMIS : LEVELMIS .000 .000
TYPEMIS : ITEMS .001 .000
N : LOAD .000 .000
N : SEVERE .047 .011
N : LEVELMIS .025 .001
N : ITEMS .028 .003
LOAD : SEVERE .000 .000
LOAD : LEVELMIS .001 .000
LOAD : ITEMS .001 .000
SEVERE : LEVELMIS .009 .095
SEVERE : ITEMS .076 .000
LEVELMIS : ITEMS .005 .000

Note. The boldface numbers represent the η2s ≥
.03. All interactions higher than two ways are not
presented here because their η2s < .03. MIPOW
= The modification indices and power approach,
UNIFIED = The unified approach, TYPEMIS =
Type of misspecifications, N = Sample size, LOAD
= The size of target factor loadings, SEVERE = The
degree of misspecification, LEVELMIS = The level
of trivial misspecification, ITEMS = The number of
items.
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Table 5.5: The Rejection Rates and The Proportions of Inconclusive Results Classified by Sam-
ple Size, Degree of Model Misspecification, and Level of Trivial Misspecification for the unified
approach in Study 1

Level of Trivial Misspecification Level 1 Level 2 Marginal
AverageDegree of Model Misspecification Level 0 Level 1 Level 2 Level 3 Level 0 Level 1 Level 2 Level 3

Classification Trivial Cutoff Severe Severe Trivial Trivial Cutoff Severe
Rejection Rates

Sample Size
125 NA NA NA 1.000 NA NA NA 1.000 1.000
250 NA NA NA 1.000 NA NA NA 1.000 1.000
500 NA NA 1.000 1.000 .000 .000 .662 1.000 .610
1000 NA NA 1.000 1.000 .000 .000 .589 1.000 .598
2000 NA NA 1.000 1.000 .000 .000 .567 1.000 .595
4000 .000 .661 1.000 1.000 .000 .000 .584 1.000 .531
Marginal Average .000 .661 1.000 1.000 .000 .000 .601 1.000

The Proportions of Inconclusive Results
125 1.000 .999 .942 .005 .999 1.000 .971 .496 .801
250 1.000 1.000 .930 .000 .879 .912 .950 .115 .723
500 .988 .952 .540 .000 .174 .214 .894 .003 .471
1000 .999 .950 .354 .000 .004 .009 .853 .000 .396
2000 .947 .933 .008 .000 .000 .000 .811 .000 .337
4000 .104 .885 .000 .000 .000 .000 .766 .000 .219
Marginal Average .840 .953 .462 .001 .343 .356 .874 .102

Note. The abbrevations for the model evaluation methods are provided at the beginning of this
chapter. NA = The proportion of inconclusive results were greater than .90.

Table 5.6: The Contingency Table of the Proportions of the Results from Global and Local Fit
Evaluation in the Unified Approach

Global \Local Trivial Underpowered Inconclusive Severe Marginal Proportion
Trivial .003 .000 .000 .000 .004
Inconclusive .145 .220 .251 .188 .805
Severe .000 .082 .000 .109 .191
Marginal Proportion .149 .302 .252 .297

Note. The boldface numbers represent the matched results between both global and local fit
evaluations. The italicized numbers represent the marginal proportions of the results from each
method.
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were classified as trivial or severe misspecification by local fit evaluation. Some underpowered re-

sults from local fit evaluation were classified as severe misspecification in the global fit evaluation.

Across all replications, the proportions of inconclusive results from local or global fit evaluation

alone (55% or 81%, respectively) were higher than the proportions of inconclusive results from the

two approaches combined (47%).

The proportion of inconclusive results from local fit evaluation was highly dependent on the

level of maximal trivial misspecification and sample size. If the level of maximal trivial misspec-

ification was low, the range of trivial misspecification would be narrow. The confidence interval

of EPC had to be narrow as well to get a conclusive result so a large sample size was needed. In

this case, global fit evaluation could complement the local fit evaluation. Lower level of maximal

trivial misspecification increased the chance of rejecting a model in global fit evaluation rather than

providing the higher chance of inconclusive results in local fit evaluation.

On the other hand, to reject a model, global fit evaluation required the model to have a very

severe misspecification. If the degree of misspecification was not extremely severe, local fit evalu-

ation had a higher power than the global fit evaluation in detecting the misspecification, especially

with large sample sizes. Local fit evaluation was also able to correctly classify a trivially misspeci-

fied model whereas global fit evaluation had extremely low power to detect trivial misspecification.

5.2 Study 2

The second study evaluates the performance of the unified approach for growth curve models. Sim-

ilar to Study 1, I examine whether the unified approach can correctly classify trivially or severely

misspecified models. The properties of the unified approach are also investigated in this study.

5.2.1 Convergence Rates

Most conditions had convergence rates higher than 99%. However, the convergence rates were

highly dependent on the degree of misspecification and the type of misspecification, as shown in
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Table 5.7: The average convergence rates classified by the degree of misspecification and the type
of misspecification.

Degree of Misspecification Type of Misspecification Convergence Rate
Level 0 1.00

Level 1

Type A: Omitted Autoregressive Regression 1.00
Type B: Omitted Quadratic Factor 1.00

Type C: Nonlinear Change 1.00
Type D: Unequal Error Variances 1.00

Level 2

Type A: Omitted Autoregressive Regression 1.00
Type B: Omitted Quadratic Factor 1.00

Type C: Nonlinear Change 1.000
Type D: Unequal Error Variances .96

Level 3

Type A: Omitted Autoregressive Regression 1.00
Type B: Omitted Quadratic Factor 1.00

Type C: Nonlinear Change .09
Type D: Unequal Error Variances .03

Table 5.7. Specifically, when the degree of misspecification was Level 3 and the misspecification

was in nonlinear change (type C misspecification) or unequal error variances (type D misspecifi-

cation), the convergence rates were lower than 10%.

5.2.2 Rejection Rates when the Unified Approach Provides Conclusive Re-

sults

When the unified approach yielded conclusive results, the accuracy of model rejection or retention

is investigated. The first way to investigate the accuracy is to examine the η2 associated with

the main effect of the degree of misspecification. As shown in Table 5.8, the interaction effect

between the degree of misspecification and sample size was substantial. Table 5.9 provides the

average rejection rates across these conditions. When sample size was small and the degree of

misspecification was low, the unified method provided high proportions of inconclusive results

so these cells were empty. If sample size was higher (> 500) and the degree of misspecification

was low, the rejection rates were close to 0. However, when sample size was 500 and the degree
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Table 5.8: The η2s of the Effects of the Design Factors on the Rejection Rates
and the Proportion of Inconclusive Results for Study 2

Factors Rejection Rates Proportions of Inconclusive Results
TYPEMIS .010 .009
N .149 .237
ERRVAR .028 .032
SEVERE .347 .284
TYPEMIS : N .000 .002
TYPEMIS : ERRVAR .004 .001
TYPEMIS : SEVERE .011 .011
N : ERRVAR .004 .000
N : SEVERE .067 .008
ERRVAR : SEVERE .023 .011

Note. The boldface numbers represent the η2s ≥ .03. All interactions higher
than two ways are not shown here because their η2s < .03. TYPEMIS = Type of
misspecifications, N = Sample size, ERRVAR = The amount of error variances,
SEVERE = The degree of misspecification.

of misspecification was Level 1, the rejection rates were .33, which was higher than the desired

rejection rate (< .10). For severe misspecification conditions, the rejection rates were close to 1.

However, the rejection rates tended to decrease in a small amount when sample size increased.

As shown in Table 5.8, the amount of error variances and type of misspecification did not

have a significant effect on the rejection rates from the unified approach. Increase in sample size,

however, slightly decreased rejection rates as described above.

5.2.3 The Properties of the Unified Approach

5.2.3.1 The Pattern of the Proportions of Inconclusive Results

The η2s associated with all design factors on the proportion of inconclusive results are shown in

Table 5.8. The proportion of inconclusive results was influenced by sample size, the amount of

error variances, and the degree of misspecification. As expected, when sample size increased, the

proportion of inconclusive results decreased (.85, .63, .48, and .28 for the sample sizes of 125,

250, 500, and 1000, respectively). When the amount of error variances increased, the proportion
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Table 5.9: The Rejection Rates of the Unified Approach Classified by
the Degree of Misspecification and Sample Size for Study 2

Degree of Misspecification Sample Size Rejection Rates Proportions of Inconclusive Results

0

125 NA 1.000
250 NA .998
500 .001 .689

1000 .000 .091

1

125 NA 1.000
250 NA .978
500 .333 .770

1000 .091 .391

2

125 NA .908
250 1.000 .660
500 .909 .487

1000 .834 .305

3

125 1.000 .599
250 1.000 .181
500 1.000 .108

1000 .998 .088

Note. NA = The proportion of inconclusive results were greater than
.90.

of inconclusive results increased (.46, .60, and .63 for the error variances of 0.5, 2, and 3.5, respec-

tively). Finally, across the degree of misspecification, the order of the proportion of inconclusive

results from the highest to the lowest values was Levels 1 (.78), 0 (.69), 2 (.59), and 3 (.25). There-

fore, the proportion of inconclusive results was the highest when the degree of misspecification

was close to the level of maximal misspecification.

5.2.3.2 Congruency between Global and Local Model Evaluation

Table 5.10 shows the contingency table between the results from the global and local fit evalu-

ations. Each cell represents the proportion of each outcome among all replications. Global fit

evaluation yielded 95% of inconclusive results and 5% of severe misspecification results. The lo-

cal fit evaluation yielded 10% of trivial misspecification, 26% of severe misspecification, as well

as 64% of all inconclusive results (including underpowered). Similar to Study 1, these two meth-

ods complemented each other. Across all replications, the proportions of inconclusive results from

local and global fit evaluation alone (95% and 64%, respectively) were higher than the proportions

of inconclusive results from the two methods combined (62%).
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Table 5.10: The Contingency Table of the Results from Global and Local Fit Evaluation in the
Unified Approach

Global \Local Trivial Underpowered Inconclusive Severe Marginal Proportion
Inconclusive .100 .294 .335 .224 .953
Severe .000 .013 .000 .033 .047
Marginal Proportion .100 .307 .335 .257

Note. The boldface numbers represent the matched results between both global and local fit
evaluations. The italicized numbers represent the marginal proportions of the results from each
method.

The proportion of inconclusive results in local fit evaluation was highly dependent on the level

of trivial misspecification, sample size, and type of misspecification. For highly severe misspec-

ification (Level 3), if the sample size was low (125) and the misspecifications were the deviated

trend or different error variances, global fit evaluation indicated severe misspecification but local

fit evaluation yielded inconclusive results. On the other hand, if sample size was large and the

misspecifications were the misspecified autoregressive regression or unspecified quadratic factors,

the local fit evaluation indicated severe misspecification but the global fit evaluation provided in-

conclusive results. If the degree of misspecification was lower and sample size was large (>= 250),

global fit evaluation yielded inconclusive results more often than the local fit evaluation. The gap

was wider if sample size increased.
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Chapter 6

Discussion and Conclusion

The goal of this dissertation is to develop a unified approach for model evaluation in structural

equation modeling. In the result chapter, I found that the unified approach outperformed other

model evaluation methods in evaluating model fit in confirmatory factor analysis. The unified

approach performed well in evaluating model fit in growth curve models also. In this chapter, I

summarize the desirable properties of the unified approach. I further discuss how the problems of

the current practices of model evaluation discussed in Chapter 1 are solved by the unified approach.

Next, the limitations of the unified approach are discussed, such as large sample size requirement,

subjectivity, and the possibility of inconclusive results. The suggestions for dealing with the lim-

itations are provided. Then, I discuss the possible extensions of the unified approach, including

sample size estimation (or power analysis) and nested model comparison. Finally, the limitations

of the simulation studies are discussed.

6.1 The Performance of the Unified Approach

From the simulation studies in the previous chapter, the unified approach appropriately rejected

severely misspecified models and retained trivially misspecified models when it provided conclu-

sive results. The accuracy of the unified approach was better than the other model evaluation

methods. That is, the rejection rates for severely misspecified models were close to 1 and those for
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trivially misspecified models were close to 0. In addition, the rejection rates were appropriately

adjusted for the level of maximal trivial misspecification. Furthermore, its performance was not

influenced by model characteristics or sample size.

There were three main reasons why the unified approach provided appropriate rejection rates.

First, when there is not enough information, the unified approach leads to inconclusive results.

According to the simulation studies, it tends to provide inconclusive results in three situations: (a)

low sample size, (b) when the degree of misspecification is close to the level of maximal trivial

misspecification, and (c) high error variances (in growth curve models). Low sample size increases

the width of the confidence intervals in local fit evaluation. Hence, the width of the confidence

intervals could be larger than the range of trivial misspecification, leading to underpowered results.

Thus, researchers should ensure that the resulting confidence intervals should be narrow enough

(e.g., by collecting larger sample) so that the underpowered results are unlikely to occur. When the

degree of misspecification is close to the level of the maximal trivial misspecification, the chance

that the resulting confidence intervals and the ranges of trivial misspecification are overlapped

is high, leading to inconclusive results. Finally, larger error variances led to more inconclusive

results. A possible explanation is that, when error variances are larger, the means of measurement

errors (i.e., the standard errors of the measurement error means) have a larger variance as well.

Thus, the standard errors of the means of each time point are higher and the uncertainty of the

factor loadings for the linear slope is larger (see Equation 4.3). Therefore, the confidence intervals

of the EPCs of factor loadings are wider leading to higher chance of underpowered results.

The second reason is that the unified approach takes all model characteristics and sample size

into account. When data are generated in the global fit evaluation, the target model and their

parameter values are used to generate data with the same sample size as the original data. In the

local fit evaluation, the statistics from model estimation are used so all model characteristics and

sample size are also taken into account. Because of this fact, the unified approach is less sensitive

to model characteristics and sample size. Although sample size influences the rejection rates in the

second simulation study, the amount of effect is negligible.
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The third reason is that the unified approach allows users to define their own maximal trivial

misspecification. Different types of trivial misspecification can be also specified simultaneously.

The defined maximal trival misspecifications are added to the data-generating models in the global

fit evaluation. Then, the expected ranges of fit indices from the model with trivial or severe mis-

specification are calculated. Thus, the cutoffs for fit indices are derived based on researchers’

definition of maximal trivial misspecification. The global fit evaluation provides two cutoffs–one

for retaining and one for rejecting a model–as well as the range of the values for each fit index

for which the model could be trivially or severely misspecified, which contradicts to the tradi-

tional use of one-size-fit-all cutoffs. Local fit evaluation also allows users to define maximal trivial

misspecification for each fixed parameter. This feature allows researchers to detect all types of

misspecification according to the researchers’ definitions of maximal trivial misspecification.

6.2 Does the Unified Approach Fix the Problems of the Current

Practices of Model Evaluation?

In the first chapter, I discussed three problems of the current practices in model evaluation, which

are mainly related to the use of one-size-fit-all cutoffs. In this section, I discuss whether the unified

approach can solve the problems. The first problem is that the performance of fit indices cutoffs

depends on model characteristics, sample size, model type, and data distribution. According to

the simulation studies, the unified approach is not subject to the problem. When the unified ap-

proach provides conclusive results, its performance is good, regardless of model characteristics

or sample size (except negligibly influenced by sample size in growth curve modeling). Sample

size, however, may still influence the possibility that the unified approach generates inconclusive

results. The second problem is that the derivation of the one-size-fit-all cutoffs is arbitrary. The

unified approach does not provide a fixed cutoff for a fit index. Rather, it provides a method to

tailor the cutoff to user-defined maximal trivial misspecification and alpha level. It is possible that

users’ choices on the alpha level or the level of maximal trivial misspecification is wrong. I will
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discuss this issue further in the next section. The third problem is that many fit indices may lead to

inconsistent results. To solve the problem, the unified approach provides a mechanism to combine

these information together.

Furthermore, the unified approach outperforms the other model evaluation methods mentioned

in Chapter 2. The test of close and not close fit method is not able to take the user-defined maximal

trivial misspecification at the parameter level. The modification indices and power approach failed

to provide appropriate rejection rates. As shown in Study 1, it led to high rejection rates for trivially

misspecified models if sample size was low. The model evaluation methods using Bayesian anal-

ysis are sensitive to the choices of informative priors. Furthermore, the rejection rates from these

methods were influenced by size of factor loadings, sample size, and numbers of items, which is

not a desirable property. The performance of the simulation approach was very close to that of the

unified approach. The simulation approach, however, erroneously assumes that failure to reject a

model implies a well-fitting model.

In conclusion, the unified approach can solve most of the issues existing in the current practices

of model evaluation. However, the unified approach is not limitless.

6.3 Limitations of the Unified Approach

6.3.1 Require Large Sample Size

The unified approach provides inconclusive results unless there is enough information. Therefore,

large sample size is required unless a model is extremely severely misspecified. In Study 1, the

proportion of inconclusive results was less than 50% when the sample size was higher than or equal

to 500. In contrast, with the sample size of 500, the test of close fit (the null RMSEA = .05 and the

alternative RMSEA = .08) and the test of not close fit (the null RMSEA = .05 and the alternative

RMSEA = .01) had sufficient power to detect misspecified model examined in Study 1 (d f = 20;

MacCallum et al., 1996). Thus, the sample size required for the unified approach is larger than the
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test of close fit and not close fit.1 On the other hand, although the unified approach requires large

sample, it provides more accurate results comparing to the other model evaluation approaches.

Thus, researchers need to make sure that they have a large enough sample size to obtain conclusive

results from the unified approach. A priori sample size estimation is highly recommended for

the unified approach. The sample size estimation will be discussed in the extensions section. If

researchers cannot obtain a sufficient sample size for the unified approach, the simulation approach

is recommended. However, researchers must be aware of the problem of erroneously assuming

failure to reject a model as a well-fitting model.

6.3.2 Long Computation Time

On average, the unified approach used 15 and 28 minutes to complete a single analysis on average

in Studies 1 and 2, respectively. The global fit evaluation used most of the time. More specifically,

the repeated sampling method and the analyses on generated data sets (with maximal trivial or

minimal severe misspecifications) are two major sources for the time cost. The data analyses took

much longer than the repeated sampling method. The time cost was computed with the shortcut

illustrated in Steps 2a-4a and Steps 5a-7a in Chapter 3 taken into account.

To reduce the time cost, users may apply the local fit evaluation before the global fit evaluation.

Based on Tables 5.6 and 5.10 in Chapter 5, the results from global and local fit evaluations did

not contradict each other. Thus, rather than starting with global fit evaluation, users may start with

local fit evaluation, which runs faster. If the results from the local fit evaluation were underpowered,

researchers can further investigate the global fit evaluation. In other words, researchers do not need

to waste their time on global fit evaluation if local fit evaluation has provided conclusive results.

Another way to save time in the global fit evaluation is to reduce the number of fit indices to

be examined. For example, RMSEA, CFI, and TLI led to similar conclusions as they are highly

correlated (Beauducel & Wittmann, 2005). Thus, users may drop some of them. The easy way

1To my knowledge, I cannot find the methods of sample size estimations for the other model evaluation methods,
except using a Monte Carlo simulation.
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to reduce the number of fit indices is to use collinearity analysis (Hair et al., 2006). Collinearity

analysis can be applied to the resulting fit indices from the repeated sampling method in searching

the maximal trivial misspecification (or minimal severe misspecification). For example, suppose

100 draws are used to find the maximal trivial misspecification, RMSEA, CFI, TLI, and SRMR

from the 100 draws can be then used to calculate the tolerance for each fit index. If any fit index

has a tolerance less than .10, the fit index might be dropped. Note that the fit indices should be

dropped one at a time.

6.3.3 Subjectivity of the Uses of the Unified Approach

Users need to make many decisions during the procedure of the unified approach. First, they need

to pick specific types of misspecification and corresponding level of maximal trivial misspecifi-

cation. Second, they need to pick the alpha level, which subsequently determines the confidence

level of the confidence intervals. Users also need to select the fit indices to be included in global

fit evaluation. The standards for the last two decisions can be easily made. Selecting the standards

for the type of misspecification and the level of maximal trivial misspecification, however, is not

an easy task.

The types of misspecification may vary models. Although I have reviewed several types of

misspecification (factor loadings, measurement error correlation, factor correlation, or regression

coefficients), they are applicable to relatively simple models (e.g., confirmatory factor analysis).

These types of misspecification are also by no mean exhaustive. For example, the differences be-

tween factor loadings within a construct is a potential source of misspecification in a tau-equivalent

model, which are not included in the past research. To make the result more generalizable, it is

recommended to account for sources of misspecification as many as possible. To do so, researchers

may start with the list of modification indices by treating all fixed parameters as sources of mis-

specification. Then, they can consider other misspecifications besides the fixed parameters. For

example, an extra factor with small variance may be included as a trivial misspecification in a CFA

model.
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For all types of misspecification, researchers need to set the level of maximal trivial misspecifi-

cation. The level of maximal trivial misspecification could be different across substantive areas. As

shown in Chapter 3, I reviewed several types of misspecification considered in the past research.

Some studies suggested guidelines on the level of misspecification. I reviewed the range of values

that are considered trivial or severe misspecifications in the previous studies. Unfortunately, there

is no consensus on these values. For example, either .1 or .3 may be used as the threshold for

maximal trivial misspecification for measurement error correlations. Because of the subjectivity

of the decision, there is a chance that researchers will abuse it by picking the value that would lead

to a preferred result. However, the problem is not unique to the unified approach but also exists

in the one-size-fit-all cutoffs. For instance, researchers may pick the CFI cutoff of .90 (Bentler &

Bonett, 1980) or .95 (Hu & Bentler, 1999) to get their desired results. Even though this problem

from one-size-fit all cutoffs remains in the unified approach, the parameters values that researchers

used to specify the level of maximal trivial misspecification are more meaningful than specific val-

ues of fit indices. For example, researchers know the amount of misfit by specifying the level of

misspecification at cross loadings (e.g., not greater than .3). In contrast, researchers do not know

the amount of misspecified cross loadings for a given value of a fit index because fit indices are

influenced by model characteristics (e.g., the number of items or the amount of target factor load-

ings). Alternatively, researchers may set the level of maximal trivial misspecification by examining

whether the results from misspecified models provide accurate parameter estimates. This issue is

discussed in the last section of the limitations of the unified approach.

On the one hand, to set up a standard for model evaluation in structural equation modeling,

a consensus needs to be reached in using the unified approach in terms of the common types of

misspecification and level of maximal trivial misspecification for a specific type of model. The

standard will facilitate the communication among researchers when a well-fitting or bad-fitting

model is claimed. On the other hand, different substantive areas can have different levels of maxi-

mal trivial misspecification. A high-risk study may set up a stricter standard on specifying the level

of maximal trivial misspecification. For example, researchers may specify the error correlations of
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.2 as the maximal trivial misspecification for a scale used in correlational research. However, if a

scale is used for individual assessment (e.g., intelligence test), the level of maximal trivial misspec-

ification for error correlation can be lower (e.g., .05). Omitted error correlations of .2 may lead to

slightly distorted target factor loadings and factor scores for each individual. The distorted factor

scores can change the category of diagnosis (e.g., from low average to borderline in intelligence

tests).

Based on the discussion above, there is not a good way to solve the subjectivity problem be-

cause a single standard cannot be applied to all substantive areas. However, to add more objectivity

into the procedure, I recommend that a standard should be established for the maximal trivial mis-

specification in each substantive area. Once the standard is established, justification is required if

a researcher proposes to use values different from the standard. This information should be trans-

parently reported to readers. If readers disagreed with the proposed values, they may reanalyze the

data with different sets of maximal trivial misspecifications. Furthermore, researchers may imple-

ment the unified approach by two or more sets of maximal trivial misspecifications. This practice

will show how the conclusion is sensitive to different sets of maximal trivial misspecification.

6.3.4 Inconclusive Results

As shown above, the unified approach had a higher chance to produce an inconclusive result than

the other approaches. This feature is not desirable because researchers do not know how to pro-

ceed. The proportions of inconclusive results from the unified approach are high, especially for

small sample size. Across all replications in Studies 1 and 2, the proportions of inconclusive results

were 49% and 62%, respectively. Researchers need to narrow down the reasons behind the incon-

clusive results: low sample size (no enough power) or the degree of misspecification is close to the

maximal trivial misspecification. The reasons can be narrowed down using local fit evaluation. If

the decision from local fit evaluation is underpowered, larger sample size is needed. Otherwise,

the degree of misspecification is close to the level of maximal trivial misspecification. In the latter

case, ideally, researchers should still get a larger sample size until conclusive results are obtained.
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Alternatively, researchers may adjust the level of maximal trivial misspecification to be slightly

higher. For example, researchers may specify the level of maximal trivial misspecification of mea-

surement error correlations as .2 initially and then try .3. If they obtain a trivial misspecification

result with the correlations of .3, the researchers will know that the problem is not sample size but

the fact that the model misspecification is close to the level of trivial misspecification. However,

if the change in the level of maximal trivial misspecification still provides an inconclusive result,

this is more likely a small sample size problem. In this case, researchers may consider other model

evaluation methods. As described above, the simulation approach is a good alternative compared

to the other model evaluation methods.

6.3.5 Hidden Concerns of Well-Fitting Models from the Unified Approach

The unified approach solves the problems related to the use of one-size-fit-all fit indices cutoffs.

The unified approach, however, still share some common problems with the other model fit evalu-

ation methods when it is concluded that a model fits data well. First, the unified approach cannot

differentiate between equivalent models. Equivalent models have the same values of discrepancy

functions and fit indices although they are qualitatively different in interpretation (Tomarken &

Waller, 2003, 2005). For example, the full mediation model from observed variables X to Y via

M is equivalent to the model of Y to X via M. Both models would provide almost equal fit in the

unified approach.2 Therefore, researchers can only rely on theories or research designs to differ-

entiate between equivalent models (Bollen, 2000; Tomarken & Waller, 2003, 2005). For example,

if X and M precede Y in time, the mediation model of Y to X via M is not plausible.

Second, there exists nonequivalent models providing equal or better fit than a hypothesized

model (Olsson et al., 2000; Tomarken & Waller, 2003, 2005). Thus, researchers should acknowl-

edge that the unified approach only provides the evidence that the current hypothesized model is

one of the possible explanations of the relations underlying data. Furthermore, one should try to

2Note that the results of equivalent models based on the unified approach may not be exactly the same because
the fixed parameters of equivalent models can be based on different scales. For instance, the misspecified direct effect
from X to Y is standardized by different values from the misspecified direct effect from Y to X .
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rule out other possible explanations using theories, research designs, or model comparisons.

Finally, model fit evaluation is an omnibus test of the fixed parameters. Good model fit is

achieved when constraints imposed on hypothesized models (e.g., fixed parameters or equality

constraints) do not significantly reduce the reproducibility of model implied means and covariances

to sample means and covariances. All model evaluation methods described above (including the

unified approach) only test whether the constraints as a set are plausible3. These methods do

not test whether estimated target parameters are different from 0 or have practically significant

effect sizes. Thus, researchers still need to investigate the magnitude of the effect for each target

parameter.

6.3.6 Symmetric Confidence Intervals of EPCs

The unified approach assumes that the sampling distribution is normal for each parameter in build-

ing confidence intervals of EPCs. This assumption may be violated when sample size is small,

especially for specific parameters, such as variances or correlations. If the sampling distribution

is not normal, the confidence intervals of EPCs for these parameters are not accurate which may

cause erroneous results. However, local fit evaluation requires large sample size to get conclusive

results so the model decision from the local fit evaluation was not biased as shown in Studies 1 and

2.

6.3.7 Accurate Parameter Estimates

All models are misspecified to some degree (MacCallum & Austin, 2000). The unified approach

tries to identify a model that is close to the data-generating model such that the degree of mis-

specification is trivial. However, the list of parameters from a hypothesized model does not match

perfectly with the list of parameters from the model used in data generation. Researchers hope that

the averaged parameter estimates from the hypothesized model are not different from the corre-

3Although local fit evaluation can check individual constraints, the results from individual constraints are combined
to evaluate global fit.
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sponding true parameter values used to generate data (i.e., unbiased). Olsson et al. (2000) showed

that the discrepancies in parameter estimates was negligible if maximum likelihood was used. The

discrepancies decreased as sample size increased. However, it is better to check the discrepan-

cies for the model with the maximal trivial misspecification imposed because biased parameter

estimates could result in misleading research conclusions.

The unified approach allows researchers to do it during the global fit evaluation, multiple data

sets are generated from the model with maximal trivial misspecification. The average parameter

estimates from these data sets can be compared to the data-generating parameter values (i.e., the

prameter estimates from fitting the hypothesized model from the observed data. If the discrepan-

cies are substantial (e.g., change from small to medium effect sizes), the amount of misspecifica-

tion imposed in the model is too large. Researchers should reduce their level of maximal trivial

misspecification.

6.4 Extensions

This dissertation introduces the unified approach for absolute model fit with complete normally

distributed data. In this section, I discuss how the unified approach can be extended to nonnormal

data and data with missing observations. I also provide a sample size estimation method for the

unified approach. In addition, a nested model comparison using the unified approach is introduced.

6.4.1 Nonnormally Distributed Data

I will discuss two types of nonnormally distributed data: nonnormal continuous variables and or-

dered categorical variables. Last two centuries, most data in psychology are treated as continuous

and Micceri (1989) showed that most data sets were not normally distributed. Fortunately, max-

imum likelihood provides accurate parameter estimates even under nonnormality (Olsson et al.,

2000). However, the chi-square values, fit indices, and the standard errors of parameter estimates

will be biased by nonnormality (Yuan, 2005). Because the parameter estimates are accurate, the
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model-implied mean vector and covariance matrix are still accurate. The data in global fit eval-

uation of the unified approach are generated based on multivariate normal distribution. Bollen

and Stine’s (1992) bootstrap may be used for data generation (see Equation 3.1) to account for

nonnormal distribution. Local fit evaluation is based on the confidence interval of EPC. However,

to my knowledge, the impacts of nonnormality on the confidence intervals of EPCs has not been

evaluated.

If data are ordered categorical variables, estimation method designed specifically for categor-

ical data can be used (Flora & Curran, 2004). One popular method assumes that each ordered

categorical variable has an underlying latent normal distribution and thresholds are used to cate-

gorize continous scores into categories. To take ordinal data into account, for the global fit eval-

uation, multivariate normal distributed data can be generated first. Then, thresholds are applied

to transform continuous variables into categorical variables. For local fit evaluation, the obtained

modification indices can be used to obtain the confidence intervals of EPCs directly.

6.4.2 Missing Data

Most social science data sets have missing observations. Given that all variables predicting missing

data patterns (i.e., missing at random) are included, two methods appropriately provide accurate

parameter estimates and standard errors: multiple imputation (Rubin, 1987) and full information

maximum likelihood (Arbuckle, 1996). See Enders (2010), Graham (2009), and Schafer & Graham

(2002) for further details on missing data analysis.

6.4.2.1 Global Fit Evaluation

If data are continuous, researchers may use either multiple imputation or full information max-

imum likelihood to obtain parameter estimates in global fit evaluation. Then, a maximal trivial

misspecification is added and model-implied mean vector and covariance matrix are computed.

After that, researchers need to create data with missing observations. Savalei & Yuan (2009) pro-

posed a modified Bollen-Stine bootstrap procedure accounting for missing data. This method can
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be used to transform the data in a way so that the mean and covariance structure is equal to the

model-implied mean vector and covariance matrix with maximal trivial misspecification. Their

methods also retains the missing data mechanisms if missing at random is assumed. Then, the data

with missing observations can be analyzed by multiple imputation or full information maximum

likelihood.

If data are categorical, multiple imputation is a better option in analyzing data with missing

at random (Asparouhov & Muthén, 2010). Full information maximum likelihood is not available.

Reserachers cannot use the Bollen-Stine bootstrap approach because the method was designed for

continous data. The method of combining bootstrap and multiple imputation proposed by Wu &

Jia (2013) may be modified. First, missing values in the observed data are imputed by multiple

imputation. For each imputation, global fit evaluation is implemented by the unified approach for

ordered categorical variables. Then, the obtained fit indices values from all imputations are mixed

together. The fit indices cutoffs can be obtained from the mixed distribution.

6.4.2.2 Local Fit Evaluation

If full information maximum likelihood is used, the obtained modification indices can be used to

find the confidence intervals of EPCs directly. If multiple imputation is used, researchers need to

obtain the parameter estimates and standard errors of EPCs. Then, Rubin’s (1987) rule may be

used to pool the EPCs and their standard errors across imputed data sets.

6.4.3 Sample Size Estimation

In structural equation modeling, sample size is usually estimated by power analysis. The main

framework of power analysis in model fit evaluation is based on the test of close fit or not close fit

(MacCallum et al., 1996, 2006). Sample size should be large enough so that severely misspecified

model can be rejected with sufficient power for the test of close fit or the trivially misspecified

model can be retained with sufficient power for the test of not close fit. Note that power analysis

can be done based on the significance testing of specific parameters using a Monte Carlo simulation
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(Muthén & Muthén, 2002). Another approach to estimate sample size is based on the width of

the confidence interval for parameter estimates (Lai & Kelley, 2011) or RMSEA (Kelley & Lai,

2011). The confidence interval should be sufficiently narrow to achieve accurate estimates of

parameters and avoid the inconclusive result (i.e., confidence interval brackets the maximal trivial

misspecification value) in test of close fit / not close fit. I will show that both approaches for sample

size estimation are applicable for the unified approach.

Based on the simulation studies provided above, larger sample size decreases the proportion of

inconclusive results in the local fit evaluation. The global fit evaluation is less sensitive to sample

size and takes long computational time so I recommend to ignore the sample size estimation for

the global fit evaluation. For power analysis, the unified approach provides two types of statistical

power: the power in retaining trivially misspecified models and the power in rejecting severely

misspecified models. Thus, researchers should provide two models: a trivially misspecified model

that researchers really wish to retain with a high rate (referred to as MT ) and a severely misspecified

model that researchers really wish to reject with a high rate (referred to as MS). For example,

researchers may specify the level of maximal trivial misspecification as the measurement error

correlations of .2. They may set MT and MS as a model with the measurement error correlations of

.1 and .5, respectively. Researchers may use the repeated sampling method to find MT or MS (see

Steps 2 and 5 of the unified approach in Chapter 3, respectively).

Then, multiple data sets with a given sample size can be created from MT and MS. Then, the

local fit evaluation can be used to check the proportion of inconclusive results from MT and MS.

Researchers can adjust the sample size until they achieve their desired proportions of inconclusive

results, such as less than .2 for both MT and MS. Researchers may consider different types of

misspecifications depending on their research purposes. For example, as suggested in Wu et al.

(2009), misspecification in the mean structure and covariance structure should be both investigated

in power analysis of growth curve model.

The local fit evaluation uses confidence intervals of EPCs to evaluate models. The width of

confidence intervals should be narrow enough for two purposes: (a) to get accurate EPCs (or other
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parameter estimates in a model) or (b) to lower the chance of getting the inconclusive or under-

powered results. I will focus on the latter objective. The width of confidence intervals of EPCs

should be narrow enough to avoid inconclusive results. Initially, researchers need to find the de-

sired width of the confidence intervals of EPC. This can be determined by the level of maximal

trivial misspecification and the specification of MT and MS. Then, for each fixed parameter, the

differences between the maximal trivial misspecification and the values from MT and MS are com-

puted. These differences represent one side of the confidence intervals of EPCs. The smallest

difference is picked and the value is multiplied by 2. The result is the desired width. For example,

for a measurement error correlation, the maximal trivial misspecification is .2 and the values on MT

and MS are .1 and .5 so the differences are .1 and .3, respectively. The desired width is .1×2 = .2.

If MT and MS are not specified, researchers may specify the width that avoids underpowered results

such that the width is less than the range of trivial misspecification. For example, if the maximal

trivial misspecification is .2, the desired width is .4 or less.

A Monte Carlo simulation can be used to estimate sample size to get the expected width of the

confidence intervals of EPC. The procedure is similar to power analysis described above. First,

researchers generate multiple data sets from MT and MS. Then, these simulated data sets are are

fitted by the hypothesized model. The width of the confidence intervals of EPCs are calculated.

Researchers can find the average of the widths and adjust their sample size values until the desired

widths of all confidence intervals of EPCs are achieved. Note that the observed width of the

confidence interval is random across repeated sampling. Researchers may want to make sure that

the observed width is narrower the desired width by C%, which is referred to as degree of assurance

(Kelley & Lai, 2011; Kelley & Rausch, 2006). To find the sample size for a certain degree of

assurance, researchers find the C-th percentile value of the widths across simulated samples. Next,

sample size is adjusted until the C-th percentile value of the width is equal to the desired width.

Then, if researchers obtain a sample with the estimated sample size, there is C% probability that

they get confidence intervals narrower than the desired width.
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6.4.4 Nested Model Comparison

The problems of the current uses of fit indices for absolute model fit were described and I proposed

the unified approach to solve the problems. In practice, researchers may have multiple models

(e.g., from competing theories) and would like to select one model from them, which is referred

to as a model selection problem. Sometimes, both absolute model fit and model selection are

used at the same time. For example, for models with both measurement model and structural

model, instead of testing both measurement model and structural model by absolute model fit,

researchers may test the measurement model by the absolute model fit first and then select a best

structural model through model comparison (Anderson & Gerbing, 1988; see Hayduk & Glaser,

2000, and Bollen, 2000, for the comments of using these steps). In this paper, I will focus on nested

model comparison that is frequently used in multiple-step model evaluation, such as the two-step

approach or a measurement invariance testing.

6.4.4.1 Background

If one model can be created by fixing or relaxing some parameters from the other model, two mod-

els are nested. The model that has more parameters is called the parent model and the model with

fewer parameters is called the nested model. For example, a model with both measurement and

structural parts is nested in a model with the measurement part only. The chi-square test statistic

can be also used in selecting between two nested models. The model-implied mean vectors and

covariance matrices from two nested models are compared. The chi-square statistic tests whether

the discrepancy is attributed to sampling error. Similar to the chi-square test for absolute model fit,

the chi-square test for nested model comparison is sensitive to sample size if the nested and parent

models are trivially different.

Consequently, practical fit indices are proposed as an effect size measure of the difference

between model-implied mean vectors and covariance matrices from two hypothesized models.

For example, the difference in CFI is used to establish measurement invariance across groups

(Cheung & Rensvold, 2002; Meade et al., 2008) by a cutoff (e.g., .002 or .01). If the difference
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in CFI is lower than the cutoff, two models are equivalent and the nested model (measurement-

invariant model) is preferred. As an effect size measure, the difference in CFI can be interpreted

as the difference in the misfit of two models compared to the range of misfit between baseline and

saturated model:

∆CFI =
F0−F2

F0−FS
− F0−F1

F0−FS
=

F1−F2

F0−FS
=

F1−F2

F0
(6.1)

where F1 and F2 are the discrepancy values of two models.

The fit indices in model comparison are also sensitive to the influencing factors described

above, including model characteristics. For example, Meade & Bauer (2007) showed that lower

factors to indicators ratio (i.e., higher factor overdetermination) and higher reliability increased the

change in CFI. Therefore, a one-size-fit-all cutoff for nested model comparison is not achievable.

Furthermore, most simulation studies (except Cheung & Rensvold, 2002) do not impose any par-

simony error such that two nested models are negligibly different in the population. Consequently,

alternative procedures for nested model comparison are needed.

6.4.4.2 Alternative Approaches for Nested Model Comparison

The test of close fit and not close fit can be generalized for nested model comparison (MacCallum

et al., 2006; Li & Bentler, 2011). Researchers first specify the amount of misspecification of

both nested and parent models. They must specify the levels of misspecification such that nested

and parent models are equivalent (or trivially different). For example, population RMSEAs for

the nested and parent models of .04 and .06 are considered equivalent. That is, the difference

of .02 is trivial. Then, the sampling distribution of chi-square values can be derived from the

trivial difference. Li & Bentler (2011) showed the relations between specifying trivial difference

in absolute model fit and nested model comparison. The main problem of this approach is the

use of population fit indices to specify maximal trivial misspecification. Population fit indices

are dependent on model characteristics so they should not be used for specifying maximal trivial

misspecification.
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The modification indices and power approach does not have a direct extension for nested model

comparison. This framework, however, can be easily applied to nested model comparison. The

fixed parameters defining the differences between the nested and parent models can be investigated

by the significance of the modification indices and the power to detect trivial misspecification.

The same problems of using this method for absolute model fit are still applied to nested model

comparison.

There are multiple frameworks in comparing models in Bayesian analysis. As the most popular

framework, researchers may use Bayes factor in comparing between nested and nonnested models

(Gelman et al., 2004; van de Schoot et al., 2012; Kass & Raftery, 1995). To my knowledge, the

performance of the bayes factor in structural equation modeling currently has not been investigated

yet. The simpler form of the bayes factor is Bayesian Information Criterion (BIC; Schwarz et al.,

1978). The performance of BIC in model selection is highly influenced by sample size Preacher &

Merkle (2012) such that one model is preferred in small sample sizes but another model is preferred

in large sample sizes.

The simulation approach can be extended to nested model comparison as well (Pornprasert-

manit et al., 2013). First, both nested and parent models are fitted to the observed data and a

desired fit index (e.g., the difference in chi-square value) is saved. Then, the parameter estimates

from the nested model is imposed by a set of trivial misspecification. For example, small differ-

ences in factor loadings are added to non-invariant items across groups. Then, multiple data sets

are generated from the parameter estimates with trivial misspecification. The data sets are fitted

by both nested and parent models and the desired fit indices are obtained. The fit index values

from the simulated data are compared with the observed fit index. As the major limitation, the

simulation method for the nested model comparison still erroneously assumes that failure to reject

a model means a well-fitting model.
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6.4.4.3 The Extension of the Unified Approach for Nested Model Comparison

The unified approach can be easily modified for nested model comparisons. For the global fit

evaluation, the fit indices for nested model comparison are used instead of the fit indices designed

for absolute model fit. For the local fit evaluation, the method remains the same by evaluating

the absolute model fit of the nested model. However, the fixed parameters that are the differences

between the nested model are emphasized.

Global Fit Evaluation. The method for global fit evaluation in nested model comparison is

similar to the method for absolute model fit. Initially, the observed data are fitted by both nested

and parent models. The target fit indices for model comparison are saved, such as the differences

in CFI, chi-square values, Akaike Information Criterion (AIC; Akaike, 1973) and BIC. Next, the

parameter values in the nested model are used for data generation. The parameter values may come

from theories or previous research as well.

Next, the trivial misspecification can be imposed on the nested population model by the popula-

tion misfit method, the fixed parameter method, or the repeated sampling method. For example, in

weak measurement invariance testing, researchers may use the fixed parameter method by making

two standardized factor loadings different in the magnitude of .1. The repeated sampling method

for maximal trivial misspecification can be used. The domain of trivial misspecification is defined.

Then, multiple sets of trivial misspecification are drawn and the fit indices for model comparison

are calculated. The sets with the worst fit indicated by the fit indices are used for data generation.

Both parent and nested models are fitted to the generated data sets and the fit indices are calculated

from the results. Then, users can compare the observed fit indices with the sampling distribution

of fit indices from generated data sets. If the observed fit indices indicate worse fit than most of

generated fit indices, the nested model is rejected and the parent model is selected. Otherwise, the

decision is still inconclusive. The shortcut (Steps 2a-4a) can be used also.

The minimal severe misspecification can be imposed as well. Researchers may randomly pick

one dimension of misfit defining the difference between nested models. Each dimension is spec-

ified at the threshold of maximal trivial misspecification. For example, four factor loadings are
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constrained to be equal across groups for weak invariance testing. Each factor loading is put at the

thresholds, such as -.1 and .1. Thus, in this case, there are eight possible candidates for minimal

severe misspecification. Then, the fit indices are used to evaluate all eight candidates and the set

with the best fit indicated by the fit indices are picked. Then, data are generated from the model

with minimal severe misspecification. If the observed fit indices indicate better fit than most of the

generated fit indices, the nested model is selected. Otherwise, the decision is inconclusive. The

shortcut (Steps 5a-7a) can be used. The results from different fit indices can be combined with the

similar method as the unified approach for absolute model fit.

Local Fit Evaluation. The results from fitting the nested model to the data are used. The

confidence intervals of EPCs are still used to evaluate local fits. However, the fixed parameters

defining the differences between nested models are used. For example, if four factor loadings from

Indicators 2 to 5 are constrained to be equal across groups for weak invariance testing (Indicator

1 is used for scale identification), researchers only focus on the confidence intervals of EPCs from

the factor loadings from Indicators 2 to 5. The confidence intervals are compared with the range of

trivial misspecification and identified whether the fixed parameter is severely misspecified, trivially

misspecified, inconclusive, or underpowered. The results across fixed parameters can be pooled by

the method used in the absolute model fit.

6.5 The Limitations of the Simulation Studies and Future Stud-

ies.

Although two simulation studies described above support the unified approach, these simulation

studies are not enough to claim that the unified approach is good in every situation. There are many

limitations in the simulation studies. First, only two types of models are examined: confirmatory

factor analytic models and growth curve models. Future studies could investigate the performance

of the unified approach for more types of models including path analysis, autoregressive model,

exploratory factor analysis, growth curve analysis with different types of trajectories, and multi-
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level structural equation modeling. Second, the performance of the unified approach for growth

curve models was not compared to the other model evaluation methods in the second study. Thus I

do not know whether the unified approach outperforms the other model evaluation methods in this

scenario. Third, the influence of the level of maximal trivial misspecification on the performance

of the unified method was not investigated in the second study.

Future studies may study the performance of the unified approach on all extensions described

in this chapter. First, researchers may investigate the performance of using Bollen-Stine bootstrap

in the unified approach to see whether it appropriately handles nonnormal continuous variables.

Second, the performance of the unified approach on categorical indicators could be examined.

Researchers may check the performance of the unified approach if the method for continuous data

(used in this dissertation) is applied to categorical indicators. Third, the performance of the unified

approach with the existence of missing data should be investigated. Finally, the performance of

the unified approach for nested model comparison should be investigated as well, especially in the

situations that researchers typically use nested model comparison, such as the two-step approach

(measurement model vs. structural model) and measurement invariance testings.

6.6 Conclusions

Practical fit indices with one-size-fit-all cutoffs are widely used in structural equation models. In

spite of the popularity, most analysts are not fully aware of the properties of practical fit indices.

This dissertation provides an extensive review of the properties of practical fit indices. The review

reveals several problems of the current use of the practical fit indices:

1. The performance of fit indices cutoffs depends on model characteristics, sample size, model

type, and data distribution.

2. The derivation of the one-size-fit-all cutoffs is arbitrary.

3. Different fit indices may lead to inconsistent results.
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Alternative methods have been proposed to account for parsimony error: the test of close fit and

not close fit (Browne & Cudeck, 1992), the modification indices and power approach (Saris et al.,

2009), Bayesian approach (Muthén & Asparouhov, 2012), and the simulation approach (Millsap,

2013). These approaches have their own limitations and advantages so I enhance these approaches

by combining the advantages of these methods together, referred to as the unified approach.

I used two simulation studies to investigate the performance of the unified approach and com-

pare its performance to the other model evaluation methods. The results showed that the unified

approach outperformed other model evaluation methods, especially in large sample size. The uni-

fied approach retained trivially misspecified models and rejected severely misspecified models, was

negligibly influenced by sample size and model characteristics, and consistently rejected severely

misspecified models across all types of misspecification.

However, the unified approach has several limitations. First, large sample size (≥ 500) is re-

quired to make sure that the unified approach provides a conclusive result. Second, the global fit

evaluation in the unified approach is time-consuming. Third, the unified approach is as subjec-

tive as the other model evaluation methods, especially in specifying the level of maximal trivial

misspecification. Fourth, researchers may obtain inconclusive results that are not desirable as an

analysis outcome. Fifth, the unified approach cannot rule out the possibility of equivalent models

or nonequivalent models with better fit. Researchers must use their theories or research designs to

rule out equivalent or nonequivalent models. Finally, the unified approach is designed for under-

specified models but not overspecified models.

Although this dissertation only considers normally distributed variables with complete data. I

showed that the unified approach can be extended to nonnormal data and missing data. It can be

also extened to nested model comparison. Power analysis can be performed within the framework

of the unified approach.

To fully utilize the advantages of the unified approach, I urge analysts to carefully define trivial

misspecification so that appropriate cutoffs can be identified. The unified approach does not aban-

don the use of cutoffs for the fit indices (in global fit evaluation). Rather, it provides a framework to
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identify appropriate cutoffs for fit indices. This approach encourages analysts to understand their

models and specify every step in model evaluation rather than blindly using the one-size-fit-all

cutoff from others’ suggestions, which they have no idea where the suggestions come from (Lance

et al., 2006).
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Appendix A

Misspecified Models of All Designs across

Simulation Studies

Table A.1 provides the population fit indices of each design across simulation studies defining

misspecified models.
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Appendix B

Misspecified Values for Maximal Trivial

Misspecifications

Table B.1 shows trivial parameter values providing the maximal trivial misspecifications for RM-

SEA, CFI, and TLI. Table B.2 shows trivial parameter values providing the maximal trivial mis-

specifications for RMSEA, CFI, and SRMR.
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Appendix C

Confidence Intervals of Expected Parameter

Changes

Table C.1 shows the confidence intervals of expected parameter changes and the decisions based

on the unified approach.
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Appendix D

Detailed Simulation Conditions for

Simulation Study 1

The combinations of misspecifications for the 16-indicator model that are different from the 8-

indicator model are described as follows:

5. Type B Misspecification, Trivial: The target model omits the following standardized factor

loadings: λ9,1 = .1, λ10,1 = .1, λ11,1 = .1, and λ12,1 = .1.

6. Type B Misspecification, Severe: The target model omits the following standardized factor

loadings: λ9,1 = .3, λ10,1 = .3, λ11,1 = .3, and λ12,1 = .3.

7. Type B Misspecification, Very Severe: The target model omits the following unstandard-

ized factor loadings: λ9,1 = 0.9, λ10,1 = 0.9, λ11,1 = 0.9, and λ12,1 = 0.9.

8. Type C Misspecification, Trivial: The target model omits the following measurement error

correlations: θ1,9 = .1, θ2,10 =−.1, θ3,11 = .1, and θ4,12 =−.1.

9. Type C Misspecification, Severe: The target model omits the following measurement error

correlations: θ1,9 = .3, θ2,10 =−.31, θ3,11 = .3, and θ4,12 =−.3.
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10. Type C Misspecification, Very Severe: The target model omits the following measurement

error correlations: θ1,9 = .9, θ2,10 =−.9, θ3,11 = .9, and θ4,12 =−.9.

The alternative models in the simulation approach for the 16-indicator model that will be dif-

ferent from the 8-indicator model are described as follows:

3. The following fixed standardized cross factor loadings are changed: λ9,1 = .1 (or .3), λ10,1 =

.1 (or .3), λ11,1 = .1 (or .3), and λ12,1 = .1 (or .3).

4. The following measurement error correlations are changed: θ1,9 = .1 (or .3), θ2,10 =−.1 (or

-.3), θ3,11 = .1 (or .3), and θ4,12 =−.1 (or -.3).
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Appendix E

Supplemental Results for Simulation Study

1

Because the unified approach can provide inconclusive results, the rejection rates from the unified

approach were calculated based on conclusive results only. In contrast, other model evaluation

methods calculated rejection rates based on all replications. In this appendix, I show additional

results that the rejection rates for other model evaluation methods are calculated based on the con-

clusive replications from the unified approach. The rejection rates of all model evaluation methods

are treated as missing values if the proportions of inconclusive results in any design conditions are

over .90. As a result, the rejection rates for all model evaluation methods are calculated based on

the same replications.

E.1 Rejection Rate for Model Misspecification and Level of Triv-

ial Misspecification

As shown in Table E.1, four methods had nonnegligible η2s of the interaction between degree of

model misspecification and level of maximal trivial misspecification: the modification indices and

power approach, the PPP method in Bayesian analysis with informative priors on cross loadings,
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the simulation approach, and the unified approach. All of the other methods had rejection rates

sensitive to the main effect of the degree of model misspecification or the level of trivial misspeci-

fication but not to the interaction effect.

Table E.2 provides the rejection rates classified by the degree of model misspecification and

the level of trivial misspecification. The rejection rates for the trivial misspecification conditions

are expected to be close to 0. As mentioned in Chapter 4, model evaluation methods with rejection

rates less than .1 are to be labelled as correctly retaining models. All model evaluation methods

based on the Bayesian approach had the rejection rates over .1 for at least one trivial misspeci-

fication condition. Other methods had rejection rates less than .1 for all trivial misspecification

conditions.

Ideal rejection rates for the severe misspecification conditions are close to 1. The model eval-

uation methods with rejection rates of .9 or higher are deemed correctly rejected models. The

modification indices and power approach, the simulation approach, and the unified approach pro-

vided the appropriate rejection rates in all severe misspecification conditions. Other methods had a

rejection rate lower than .9 for at least one severe misspecification condition. Finally, the rejection

rates for the cutoff conditions are expected to range between .1 and .9. The TLI cutoff, the combi-

nation of fit indices cutoffs, and the combination of the PPP cutoff and the zero coverage in both

cross loadings and error covariances information priors provided the undesirable results such that

the rejection rates were over .90 at least one cutoff condition.
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Table E.2: The Rejection Rates for Each Model Evaluation Method Classified by
the Level of Maximal Trivial Misspecification and the Degree of Misspecification for
Study 1 Selecting Only Replications that the Unified Approach Provided Conclusive
Results

Level of Trivial Misspecification Level 1 Level 2
Degree of Model Misspecification Level 0 Level 1 Level 2 Level 3 Level 0 Level 1 Level 2 Level 3
Classification Trivial Cutoff Severe Severe Trivial Trivial Cutoff Severe

The Proportions of Inconclusive Results
UNIFIED .840 .953 .462 .001 .343 .356 .874 .102

Rejection Rates
RMSEA .000 .000 .346 .999 .000 .000 .498 .999
CFI .000 .000 .510 1.000 .000 .005 .829 1.000
TLI .000 .001 .667 1.000 .002 .017 .951 1.000
SRMR .000 .000 .490 .981 .000 .000 .489 .979
OVCUT .000 .001 .868 1.000 .002 .017 .982 1.000
CLOSE .000 .000 .666 1.000 .000 .000 .864 1.000
MIPOW .000 .740 1.000 1.000 .000 .000 .661 1.000
Bayesian, LOAD, PPP .003 .496 .309 .904 .004 .145 .343 .334
Bayesian, LOAD, ZERO .018 .728 .897 .985 .010 .171 .978 .845
Bayesian, ERR, PPP .250 .462 .550 .972 .043 .043 .135 .356
Bayesian, ERR, ZERO .480 .971 .963 1.000 .315 .569 .999 .797
SIM .000 .734 .947 1.000 .000 .001 .984 1.000
UNIFIED .000 .740 1.000 1.000 .000 .000 .661 1.000

Note. The abbrevations for the model evaluation methods are provided at the begin-
ning of this chapter.

E.2 The Effect of Types of Misspecification

As shown in Table E.1, All methods except the SRMR cutoff and all model evaluation methods

using the Bayesian approach had negligible η2s for all main and interaction effects involving types

of misspecification. The SRMR cutoff had lower rejection rates when the misspecification was in

error correlations (.48) but higher rejection rates when the misspecification was in factor correlation

(.69) or cross loadings (.70).

The PPP method with cross loadings priors had nonnegligible η2 for the interaction effect

between types of misspecification, degree of misspecification, and the level of trivial misspeci-

fication. As shown in Table E.3, in the misspecifications in factor correlation or cross loadings,

the rejection rates were high only when the degree of misspecification was Level 3 and the level

of trivial misspecification was Level 1. However, in the misspecification in error correlations, the

rejection rates were all high except when the degree of model misspecification was Level 0. The

rate of increase in rejection rates was stronger for the Level 1 trivial misspecification. The PPP

method with zero coverage of the credible intervals from cross loadings informative priors had
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Table E.3: The Rejection Rates from the PPP Method with Cross Loadings Priors Classified by
the Level of Maximal Trivial Misspecification, the Degree of Misspecification, and the Type of
Misspecification for Study 1 Selecting Only Replications that the Unified Approach Provided Con-
clusive Results

Type of Misspecification Factor Correlations Cross Loadings Error Correlations
Level of Trivial Misspecification Level 1 Level 2 Level 1 Level 2 Level 1 Level 2
Degree of Model Misspecification
Level 0 .003 .004 .003 .004 .003 .004
Level 1 .000 .004 .003 .004 .779 .426
Level 2 .012 NA .087 .004 1.000 .935
Level 3 .742 .004 .970 .013 1.000 1.000

Note. NA is the condition that the proportion of inconclusive results from the unified approach was
over .90.

lower rejection rates when the misspecification was in factor correlation (.58) but higher rejection

rates when the misspecification was in cross loadings (.82) or error correlations (.87).

The PPP method with error correlations priors had rejection rates of .32, .46, and .60 for the

misspecifications in factor correlation, cross loadings, and error correlations, respectively. The

PPP method with the zero coverage of the credible intervals from error correlations informative

priors had nonnegligible interaction effect of the type of misspecification and the level of trivial

misspecification. In general, the rejection rates were high (.95 - 1.00) regardless of type of mis-

specification when the level of trivial misspecification was Level 1. However, when the level of

trivial misspecification was Level 2, the rejection rate was lower for the misspecificaiton in factor

correlation (.37) than the one in cross loadings (.88) or error correlations (.90).

E.3 The Effect of Model Characteristics

As shown in Table E.1, the size of factor loadings had negligible effects on all model evaluation

methods. However, the number of items had nonnegligible effects on the RMSEA cutoff approach

and the Bayesian approach using informative priors on error covariances (both ERR, PPP and ERR,

ZERO). For the RMSEA cutoff approach, the rejection rate was lower when the number of items

increased (rejection rates were .69 and .47 for 8 and 16 items, respectively). The rejection rates for
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Table E.4: The Rejection Rates from the PPP Method with Error Covariances Priors Classified by
the Level of Maximal Trivial Misspecification, the Degree of Misspecification, and the Number
of Items for Study 1 Selecting Only Replications that the Unified Approach Provided Conclusive
Results

The Number of Items 8 16
Level of Trivial Misspecification Level 1 Level 2 Level 1 Level 2
Degree of Model Misspecification
Level 0 .000 .000 .500 .077
Level 1 .000 .000 .509 .078
Level 2 .191 .000 .793 .197
Level 3 .944 .037 1.000 .631

the PPP method had nonnegligible three-way interaction between the degree of model misspecifi-

cation, the level of trivial misspecification, and the number of items. As shown in Table E.4, in the

eight-item model, the rejection rate was high only when the degree of model misspecification was

Level 3 and the level of trivial misspecification was Level 1. However, in the sixteen-item model,

the rejection rates increased if the level of trivial misspecification was Level 1 or the degree of

model misspecification was increased.

When the PPP method and the zero coverage of nontarget credible intervals are combined,

the interaction effect between the degree of model misspecification and the number of items was

nonnegligible. The rejection rates between eight- and sixteen-item models were not different if

the degree of model misspecification was Level 2 or Level 3 (.89 - .99). However, if the degree of

model misspecification was Level 0 or Level 1, the rejection rates from eight-item model (.06 and

.31 for Levels 0 and 1 degree of misspecification) were lower than one from sixteen-item model

(.58 and .84 for Level 0 and 1 degree of misspecification).

E.4 The Effect of Sample Size

Only the SRMR cutoff and the PPP method with error covariances informative priors had non-

negligible η2s for the main effect of sample size. There was no nonnegligible interaction effect
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involving sample size in any model evaluation methods. When sample size increased, both SRMR

cutoff provided lower rejection rates (.95 and .43 for sample size of 125 and 4000, respectively),

as well as the PPP method (.87 and .32 for sample size of 125 and 4000, respectively).

In sum, if only the replications that the unified approach provided conclusive results were

considered, the modification indices and power approach, the simulation approach, and the unified

approach satisfied all of the desired properties. As shown in Table E.1, the effect size of the

interaction between the degree of misspecification and the level of trivial misspecification was

non-neglibible for all three approaches. As shown in Table E.2, appropriate rejection rates were

provided for trivial, severe, or cutoff conditions. Sample size, type of misspecification, number of

items, and size of factor loadings did not influence the rejection rates from all three approaches.

However, the desired properties of the modification indices and power approach and the simulation

approach relied on the fact that the unified approach provided conclusive results. If the unified

approach provided inconclusive results, the results from the two approaches are not trustworthy.
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