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LEFT SEPARATED SPACES 
WITH POINT-COUNTABLE BASES 
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ABSTRACT. Theorem 2.2 lists properties equivalent to left separated spaces in 
the class of Tl with point-countable bases, with examples preventing plausible 
additions to this list. For example, X is left iff X is a-weakly separated or X 
has a closure preserving cover by countable closed sets, but X is left separated 
does not imply that X is a-discrete. Theorem 2.2 is used to show that the 
following reflection property holds after properly collapsing a supercompact 
cardinal to W2: If X is a not a-discrete metric space, then X has a not a-
discrete subspace of cardinality less than W2. Similar reflection properties are 
shown true in some models and false in others. 

1. Introduction. If P is a property of topological spaces, let S(P) denote 
the assertion: "whenever X is a space with property P, then X has a subspace of 
cardinality s: W1 with property P". In particular, we consider Sl == 8 (metric, not 
a-discrete). The proof of the consistency of 8 1 leads to consideration of S2 == 8 
(Tl, point-countable base, not left separated) and S3 == 8 (T1' point-countable 
base, not a-relatively discrete). 

§2 starts with an explanation of the topological terminology used in Theorem 
2.2, which lists properties equivalent to left separated in the class of T1 spaces with 
point countable bases. Examples A and B limit additions to this list. 

We will discuss three other refelction properties which can be studied by the same 
techniques: S4 == 8 (T1' local density s: Wl, countable tightness, not cwH), S5 == 8 
(T1' first countable, not cwH), and S6 == 8 (first countable, not metrizable). A 
space X is said to be collectionwise Hausdorff (cwH) if every closed discrete subset 
of X can be simultaneously separated by disjoint open sets. Assuming extra axioms 
of set theory, there are spaces similar to Examples A and B refuting the 8's (§3). 

In §4, Axiom R is explained and showns to imply 81 ,82 and 84 . Further, we 
discuss decompositions of metric spaces. In §5, we describe iterated proper forcing 
collapsing a supercompact to W2, and show that it makes Axiom R true. This 
forcing is flexible, and so Theorem 5.1 shows that Axiom R is consistent with CH, 
with the Proper Forcing Axiom, with MAw!, and with ~ CH and ~ MAw!, etc. 
(assuming, of course, that the existence of a supercompact cardinal is consistent). 
Thus Axiom R cannot imply 83 ,85 , or 86 because MAw! implies their negations. 

§6 contains various remarks which do not fit elsewhere. 
Set theoretic notation follows [Kun]. In particular, IXI is the cardinality of 

X, [X]<" = {Y c X: WI < K}, and AB = {f:! is a function, dom! = A, 
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666 W. G. FLEISSNER 

range feB}. <WB = U{nB: nEw}. For the typist's sake, [X1W is often used for 
[Xl<wl. 

2. Left separated spaces with point countable bases. We call a subspace 
Y of a space X relatively discrete (respectively, weakly separated) if there is a family 
{Uy : y E Y} such that Uy is a neighborhood of y and if y ::j:. Z then y tt Uz and 
(respectively, or) z ¢ Uy • Y is closed, discrete if Y is relatively discrete and closed 
in X. Y is left separated if there is a well-ordering < of Y so that initial segments 
are closed in Y. A left separated space is weakly separated; consider the family 
{[y, 00): y E Y}. When P is one of the above properties, X is a-P means that X 
is a countable union of P subspaces. 

It is immediate that a-closed discrete implies a-relatively discrete implies a-
left separated implies a-weakly separated. In a metric space, the implications can 
be reversed. A relatively discrete Y can fail to be closed because of a set L of 
limit points. L is closed, hence G6, i.e., L = n{Un : nEw}. Now Y - Un is closed, 
discrete, and we conclude that in perfect spaces a-relatively discrete implies a-closed 
discrete. Now let Z be weakly separated by {Uz : z E Z} in a semimetric space. For 
each nEw, let Zn = {z E Z: Bn(z) C Uz }, where Bn(z) = {y E Z: d(y, z) < lin}. 
If y, Z E Zn, then (y ¢ Bn(z) or Z tt Bn(Y)) because Z is weakly separated and 
hence (y tt Bn(z) and z tt Bn(Y)) because d(y, z) = d(z, y). 

We say that X has point-countable base E if E is a base for X and, for all x E X, 
{B E E: x E B} is countable. By the Nataga-Smirnov-Bing Theorem, metrizable 
spaces have point-countable bases. A space X is said to have countable tightness if 
whenever x E X, Y C X and x E Y, then there is a E [Ylw such that x E a. Spaces 
with point countable bases have countable tightness. 

We define a game G(X, E) of infinite length played by two players, I and II. 
Roughly, I aims to play a base for a point of X that II does not guess. More 
precisely, at turn n, I plays Bn E E and II plays a countable subset, an, of X. 
Then they proceed to turn n + 1. After w turns, the winner is decided. I wins iff 
{Bn: nEw} contains a base for a point x E X -U{an : nEw}. What is a winning 
strategy for II? It is a function, s, from the set of I's previous moves to the set of 
plays allowed II; i.e., s: <wE - [X1W, such that if II plays according to s, then II 
wins the play of the game; i.e., if (Bn: nEw) contains a base for a point x, then 
x E U{ s(Bo,.· ., Bn): nEw}. It is possible that II has a simple winning strategy 
(let us call it a winning tactic, t) which looks only at I's last move and plays only 
one point. Rephrasing, t: E - X is such that if {Bn : nEw} contains a base for a 
point x, then there is nEw, such that t(Bn) = x. 

For example, if X is the real line, then I can win by listing a countable base for 
X. No matter how II plays, U{an : nEw} is countable, so X - {an: nEw} ::j:. 0, 
and I's plays contain a base for every x. In the other direction, if X is countable, 
then II can win by playing X, either all at one turn, or one point at a time. We 
leave it to the reader to work out that if X is a a-discrete metric space, then II has 
a winning strategy. 

We say that )I = {Hi: i E I}, a family of subsets of a space X is closure 
preserving if for all J C I, U{Hi : i E J} = U{Hi : i E J}. If )I is a family of closed 
sets, then it is the same to say that arbitrary unions from )I are closed. We can 
weaken the concept by requiring only that countable increasing unions be closed. 
Alone, this condition can be very weak, for maybe there are no increasing chains 
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from )I. So we add a condition yielding many increasing unions. We will express 
these ideas in the terminology of proper forcing. (Unfortunately, this leads us to 
overwork the word "closed".) 

Let r c [X]w. We say that r is unbounded if for all a E [X]W there is c E r such 
that a C c. We say that r is closed if whenever (Cn)nEw is an increasing chain from 
r, then U{ cn : nEw} E r. r is a club if r is closed and unbounded. We say that 
I: C [X]W is stationary iff or all clubs r, I: n r =1= 0. If f: [X]<w - X and Y C X 
satisfies {f(e): e E [Y]<W} c Y, we say that Y is closed under f. The following 
lemma of Kueker [Kue; Bal, Theorem 1.4] is basic to proper forcing. 

LEMMA 2.1. If r E [X]W is club, then there is a function f: [X] <w - X such 
that 

{a E [X]W : a is closed under f} cr. 
THEOREM 2.2. Let X be a Tl space with a point-countable base, E. The fol-

lowing are equivalent. 
(a) X is left separated in order type IXI. 
(a') X is a-weakly separated. 
(b) II has a winning tactic in G(X, E). 
(b /) II has a winning strategy in G(X, E). 
(c) X has a closure preserving cover )I = {Hi: i E I} by countable closed sets. 
(c /) r = {a E [X]w: a is closed} contains a closed unbounded subset of [X]w. 

PROOF. The implications (a) =? (a /), (b) =? (b /) and (c) =? (c /) are obvious. 
(a) =} (b) Let < be a well-order showing that X is left separated. Define t(B) to 

be the <-least element of B. If {Bn: nEw} includes a base for x, then x E Bn C 
[x, (0) for some n, in which case x = t(Bn). 

(a') =? (b/) Let X = U{Xn : nEw}, where each Xn is weakly separated by 
{Ux: x E X n}. For BEE define s(Bo, ... ,Bm) = {x E X: x E Bm C Ux}. The 
definition of weakly separated guarantees that for each n, there is at most one point 
in s(.8o, ... , Bm) n Xn . 

(b /) =} (c) For x EX, we define H x containing x such that if Bo, ... ,Bn each 
meet Hx, then s( .80, ... , Bn) C Hx. Explicitly, we define countable sets H~ and 
E: for k E w by induction on k. Set H1 = {x}. Set E: = {B E E: B n H: =1= 0}. 
E: is countable because H: is countable and E is point-countable; and set H:+l = 
{s(Bo, ... ,Bn): Bo, ... ,Bn E En. Set Hx = U{H:: k E w} and)l = {Hx: x E 
X}. 

We have shown that )I covers X and that each H E )I is countable. We will show 
that for all 9 C )I, U 9 is closed, so )I is closure preserving. In particular, H = 
U{H} is closed. Let 9 C )I, set Y = U g, and let z E Y. We will show that z E Y. 
Let (Bn: nEw) list a base for z. By (b /) there is n so that z E s(Bo, ... , Bn). Let 
U = n{Bk: k S n}; because z E Y, there is y E Un Y. Then y E Hx E g. If 
y E H:, then z E H:+l c Y. 

(c /) =} (a) Apply Lemma 2.1 to r to obtain f: [X]<w - X. Next we claim that if 
Y c X and Y is closed under f, then Y is closed. If Y is countable, this follows from 
the choice of f; if Y is uncountable and z E Y, by countable tightness let ao E [Y] W 
be such that z E ao. By induction on jEw, set aj+l = aj U {f(e): e E [ai]<W}; 
aj C Y because Y is closed under f. Now aw = U{ aj: jEw} is countable and 
closed under f; hence z E aw C Y. 
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Now we prove (a) by induction on WI, Y eX. If Y is countable, then Y is left 
separated because it is Tl • Now we assume that WI = A and every Z E [X] <>' is 
left separated. Well order Y = {Yo: a < A}. By induction, define an increasing 
sequence Zo of sets closed under f such that {y,,: {3 < a} C Zo and IZol = lal for 
infinite a. By induction hypothesis, for each a < A, there is a left separation <0 
of ZOo For y E Y, define {3(y) to be the least a such that y E Z,,(y)' We define 
a left separation of Y as follows: y < z if {3(y) < {3(z) or {3(y) = {3(z) = a and 
y <0 z. the set of predecessors of Y is U{Z,,: {3 < a} U {z E Zo: z <0 y} (where 
{3(y) = a), a union of two closed sets. 0 

I thank Fred Galvin for improving this theorem. I explained to him that if X has 
a point-countable base then the following are equivalent: X is u-Ieft separated, (b'), 
and a complicated statement analogous to (c), (c'). The next day Fred suggested 
assuming Tl , correctly formulated (c), and pointed out Corollary 2.5. 

COROLLARY 2.3. If X is a Tl , left separated space with a point-countable base, 
then for all Y eX, WI = Y. 

PROOF. Immediate from Theorem 2.2(c). 
A more subtle corollary follows from the following theorem of Fodor [Fo; Wi, 

Theorem 3.1.5, p. 69]. 

THEOREM 2.4. Let f: X - [X]<>'. Then X can be written as U{Xo: a < A} 
so that if x E Xo , then f (x) n Xo ~ {x}. 

COROLLARY 2.5. If X is a left separated space with a point countable base, 
then X can be written as U{Xo: a < wil, where each Xo is relatively discrete. 

PROOF. Let}/ satisfy Theorem 2.2(c). Define f: X - [X]<Wl so that x E 
f(x) E }/. Apply Fodor's Theorem. If x E Xo, then K = U{f(y): y E Xo - {x}} 
is closed, and (X - K) n Xo = {x}. 0 

We conclude this section with some results about concepts related to those men-
tioned in Theorem 2.2. 

LEMMA 2.6. If X is a left separated Tl space with a u-point-finite base B = 
U{Bn : nEw}, then X is u-relatively discrete. 

PROOF. Let < left separate X. For x E X, choose Ux E B, so that x E Ux C 
[x, 00). Set Xn = {x E X: Ux E Bn}. Fix nEw. Set Yo = 0 and 

lj+1 = {y E Xn: if x < y & x E Xn - U{Yk : k ~ i}, then y ~ Ux}. 

Because Bn is point-finite, Xn = U{Yj: i < w}. 0 

LEMMA 2.7. (a) If X has a closure preserving cover by finite sets, then X is 
u-relatively discrete. 

(b) If X is u-relatively discrete, perfect, and collectionwise Hausdorff, then X 
has a closure preserving cover by finite sets. 

PROOF. (a) As in Corollary 2.5. Theorem 2.4 with A = w is due to ErdOs and 
DeBrujn. 

(b) By perfect and u-relatively discrete, X = U{Xn : nEw} where each Xn 
is closed, discrete. Apply collectionwise Hausdorff to obtain disjoint open families 
Un = {Ux: x E Xn} with x E Ux and Ux n (U{Xk: k ~ n}) = {x}. We define an 
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open set Vk containing x for x E Xn by induction on n. For x E Xo, set Vx = Ux' 
For x E Xn , n > 0, set 

Fx = {y E Xk : k < n and x E Vy}, 

Vx = Ux n (n{Vy : y E Fx}) , 

Hx=FxU{x}. 
It is routine to check that y E Hx iff x E Vy. We claim that {Hx: x E X} is 

closure preserving. Suppose that Z E U{Hx: x E XI}; then y E Hx n Vz for some 
x E XI, Y E X. Hence x E Vx C Vy c Vz and Z E Hx. 0 

The examples in the following section show that Lemma 2.7 cannot be improved 
to an equivalence. We may delete from the hypothesis of 2. 7(b) neither perfect 
(Michael line), nor cwH (Cantor tree). The existence of a closure preserving cover 
by finite sets implies neither perfect (one point compactification of uncountable 
discrete space) nor cwH (Pixley-Roy). 

3. Examples. 
EXAMPLE A. Let A be the set of countable limit ordinals. For 0 E A, let 

rJ8: W -+ 0 be increasing and cofinal in O. Define a metric d on A by d(o,~) = 2- n , 

where n is least so that rJ81n =I rJ,ln. The conclusion of Corollary 2.3 holds because 
if YeA, then sup Y = sup Y. The conclusion of Corollary 2.5 holds because 
each {o} is relatively discrete. A point-countable base is 8 = {B,,: (J E<w wd, 
where BO' = {o E A: rJ81n = (J}. If 0 E B", then max range (J < 0, so the pressing 
down lemma yields that A is not left separated. In fact, Theorem 2.2(b) is strongly 
contradicted. 

LEMMA 3.1. Player I has a winning strategy in G(A, 8). 

PROOF. It is easy to verify that the following changes in G(A, 8) do not change 
the existence of a winning strategy: (1) player I may play count ably many basic 
open sets at each turn; (2) at turn n + 1 player II must play an+! ~ an such 
that SUpan+l > supan. (If an is enlarged I's task is harder. I can in effect play 
countably many moves at once using a partition of w into infinitely many infinite 
pieces.) Now a strategy for I is to play {BO' : range (J C sup an} at turn n + 1. After 
w steps, I's plays include a base for sup{ an: nEw} tI- U{ an: nEw}. 0 

For subspaces Y of A, I has a winning strategy in G(Y, 8) iff Y contains a club, 
II has a winning strategy in G(Y,8) iff Y is nonstationary. Hence the game is 
undetermined if both Y and Wl - Yare stationary. 

The following axiom is true in L, every generic extension of L, and every model 
of set theory without inner models of many large cardinals (see [KM, p. 222]). 

AXIOM E. For some regular cardinal A > Wl, there is E C {8 E A: cf A = w} 
stationary in A with E n !3 nonstationary in !3 for all !3 < A. 

EXAMPLE A 1. Assume A, E satisfy Axiom E. For 0 E E, let rJ8: W -+ 0 be 
increasing and cofinal in O. Define a metric d on E by d(o,~) = 2-n , where n 
is least so that rJ81n =I rJ,ln. Then E is not (J-discrete, but every Y E [E]<A is 
(J-discrete (see [Po]). Thus Axiom E implies that S1, S2 and S3 fail. 

EXAMPLE A2. Assume A, E satisfy Axiom E; define rJ8 as above. Let Z = 
E U <w A. Let <w A be the set of isolated points. Define the mth basic open set of 
o E E to be {o} U {rJ8In: m ::::; n}. Then Z is first countable and locally countable 
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but not cwH. Every Y E [Z]<A is cwH and metrizable (see [Fa]). Thus Axiom E 
implies that 84,85 and 86 fail. 

EXAMPLE B. This space is from Aull [Au], who calls it a modification of an 
example of MiScenko [Mi]. I thank Pete Nyikos for calling this example to my 
attention. 

Let F = U{O:w: 0: E WI}' Basic open sets are indexed by 1 E F, nEw: 
B(f, n) = {J} U {g E F: 1 c g and g(domf) ~ n}. 

We can picture F as a tree where open sets "look up" . 

If B(f, n) n B(g, m) 1= 0, 
then either 1 c g and B(f, n) :J B(g, m) 
or gel and B(g,m) c B(f,n). 

It is routine to verify that F is a Tl, regular, ultraparacompact, left separated 
space. (Given an open cover U, define a disjoint refinement by induction on dom 1-
possible by (*).) 

LEMMA 3.2. F is not u-relatively discrete. 
PROOF. Towards a contradiction, assume that {Fn: nEw} and 0: F - ware 

such that F = U{Fn: nEw} and, for each nEw, {B(f, O(f)): 1 E Fn} is disjoint. 
By induction on 0: < WI, define 10: E O:w so that if 0: < /3, then 1{3(0:) = O(fo:), 
hence 1{3 E B(fo:,O(fo:)). For some nEw and 0: < /3 < WI, 10:,1{3 E Fn but 
1{3 E B(fo:,O(fo:))' Contradiction. 0 

Hence u-relatively discrete cannot be added to the list in Theorem 2.2. 
Next, we assume that the weak Kurepa Hypothesis fails (~wKH) and Martin's 

Axiom (MAwJ holds (see [Tol and Ba, Theorem 7.10]). 

LEMMA 3.3. (MAwl + ~ wKH). Every Y E [F]Wl is u-closed discrete, and 
hence metrizable. 

PROOF. If Y E [F]Wl, then Y is a tree of height and cardinality WI, so Y has 
at most WI uncountable branches, {bo:: 0: < wI} (this is ~wKH). By induction on 
0: < WI we can define Co: as a final segment of bo: so that {co:: 0: E WI} is disjoint. We 
consider T = Y - U{co: - {minco:}: 0: < wd. T has no wI-branches, so by MAwl 
[BMR], T is the union of count ably many antichainsj i.e., T = U{An: nEw}. Let 
Yn = An uU{co:: minco: E An}. Then Y = U{Yn : nEw} and if y E Yn then 
{J E Y: y C f} is totally ordered. Hence each Yn is relatively discrete. 

Fix 0: Y - w so that {B(y, O(y)): y E Yn } is disjoint for all nEw. For each 
nEw we define Pm a poset of finite approximations to a closed subset of Yn. Let 
P n be the set of triples (a, s, 17) satisfying 

(1) a E [Yn]<w, 
(2) s E [Y - Yn]<w, 
(3) 17: s - w, 
(4) "iy E S,17(y) ~ O(y), 
(5) "iy E s, B(y, 17(y)) n a = 0. 
We show that Pn is ccc. Aiming for a contradiction, suppose that W E [Pn]Wl is 

a set of pairwise incompatible elements. By usual counting arguments (~-system 
lemma, discard the root, etc.), we may assume that W = {(ao:, so:, 170:): 0: E WI} 
satisfies for some fixed k E w, lEw and m: I - W, 
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(1) {aa USa: a E wd is disjoint, 
(2) Va E WI, aa = {a(a,i): i < k}, 
(3) Va E WI, Sa = {s(a,j): j < I}, 
(4) Va E WI Vj < I, s(a,j) E Ym(i)' 

671 

Because W is pairwise incompatible, we can define <1>: [WI J2 ~ k x 1 x {O, 1} so 
that if <1>(a,,8) = (i,j,e), then a(,8,i) E B(s(a,j),1](s(a,J'))) and a < ,8 if e = 0, 
,8 < a if e = 1. Apply Ramsey's Theorem to get i < k, J' < I, e < 2 and a,,8, I < W 

so that 
a(" i) E B(s(a,j), 1](s(a,j))) n B(s(,8,j), 1](s(,8,j))), 

and a < ,8 < I if e = 0, 1< ,8 < a if e = 1. This contradicts that {B(y, (}(y)): y E 
Y m(j)} is disjoint. 

By MAw" P = (Pn)W, the finite support product of W copies of Pn, has ccc. An 
element of P can be considered to be a triple of functions, (a, s, 1]) with domain w' 
so that (a(i),s(i),1](i)) E Pn and {i: (a(i),s(i),1](i)) i- (0,0,0)} is finite for all 
i. For each y E Yn , Dy = {(a, s, 1]): C:3i)(y E a(i))} is dense. For each i E wand 
fEY - Yn , DiJ = {(a, s, 1]): f E s( i)} is dense. By MAw" let G be a filter on P 
meeting each of the above dense sets. Set Zi = U{a(i): (a, s, 1]) E G}. Then each 
Zi is closed, discrete and Yn = U{ Zi: i E w}. Because this construction can be 
done for all nEw, Y is a-closed discrete. Then by (*) and Nagata-Smirnov-Bing, 
Y is metrizable. 0 

Thus, MAw, + ~ wKH implies that S3 and S6 fail. 
Choose A C WI with both A and WI - A stationary. Let U(A) be the tree of 

continuous, increasing functions from a countable ordinal to A. Gary Gruenhage 
suggested using U(A) in place of F in Example B. Because U(A) has no WI-branches, 
we do not need ~wKH before applying MAw, and [BMR]. This space is essentially 
the same as the linearly ordered space M (A) of maximal branches through U (A) 
(see [T02, p. 288]). An analog of Example B1 also can be constructed. Thus MAw, 
suffices to refute S3, S5 and S6. 

EXAMPLE B 1. Assume ~ wKH + MAw,. Let F be as in Example B. For 
each f E F, enumerate {h E F: h C f} as {h(f,m): m < w} and set e(f,n) = 
{h(f,m): m::::; n}. Let W = {(f,g) E F2: f C g}. Set X = FUW. Points ofW 
are isolated. The other basic open sets are indexed by f E F and nEw: 

U (f, n) = {f} U { (f, g) E W: g( dom f) 2 n} U {( h, f) E W: h if- e(f, n)}. 

With this basis X is a Moore space and F is closed discrete. If A E [F]W' , then 
A is a-closed discrete in the topology of Example B. It is routine to use that fact 
to separate A in X. 

X is not cwH because F cannot be separated. We follow the proof of Lemma 3.2. 
Towards a contradiction, assume that (): F ~ W is such that {U(f, (}(f)): f E F} 
is disjoint. By induction on a < WI, define fa E aw so that if a < ,8, then 
fj3(a) 2 (}(fa); i.e., (fa,fj3) E U(fa,(}(fa)). By the pressing down lemma, there 
is nEw, e E [Wl]<w and a stationary set S such that if a E S, then (}(fa) = 
nand e(fa,n) = e. If a,,8 E S, then (fa,fj3) E U(fa,(}(fa)) n U(f(3,(}(fj3)). 
Contradiction. 0 

EXAMPLE C. This example is from [vD, Remark 12.6]' to which the reader 
is referred for more details and more information about b. The point set of C is 
(Ww) U W U (Ww X W x w). Points of Ww x w x ware isolated. The nth neighborhood 
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of k Ewe C is {k} u (Ww x {k} x (w - n)). The nth neighborhood of f E Ww C C 
is {J} U ({J} X ((k,f(k)): k ~ n}). 

Consider subspaces C(H) of the form HUwu (H x w x w), where H C Ww. If H 
is bounded, i.e., there is f E Ww such that for all hE H, {n E w: f(n) ~ h(n)} is 
finite, then C(H) is metrizable. If H is unbounded, then C(H) is not cwH. Hence 
b > WI (Le., every H E [WW]Wl is bounded) implies that S5 and S6 fail. 

4. Axiom R and applications. We have seen in §3 that Axiom E implies 
that all the Si'S fail. Since Axiom E implies the existence of counterexamples, ,....., E, 
the negation of Axiom E is potentially weaker than the Si'S. In any case, it is often 
frustrating to work with,....., E because it is so "linear". (An exception: it follows 
quickly from Engelking and Lutzer [EL] that S (first countable linearly ordered 
topological space, not paracompact) is equivalent to E.) 

The statement that stationary subsets of [X]W reflect is stronger than the state-
ment that stationary subsets of {o: E K,: cf 0: = w} reflect. Even this seems to be 
not enough because if X has structure, we may need to reflect to a closed subset of 
X. 

Recall that a space X has countable tightness when for all x E X and Y E X, 
if x E Y, then 3a E [Y]W x E a. It is easy to see that in a space of countable 
tightness, the union of an increasing sequence of closed sets is closed if the sequence 
has uncountable cofinality. We say that r c [X]<I< is tight if whenever {COt: 0: < 8} 
is an increasing sequence from r and w < cf 8 < K" then U { COt: 0: < 8} E r. 

AXIOM R. If ~ c [X]W is stationary and r c [X]<W2 is tight and unbounded, 
then there is Y E r such that P(Y) n ~ is stationary in [Y]w. 

LEMMA 4.1. Let X be a TI space with a point countable base. If every Y E 
[X]<W2 is left separated, then for all Y E [X]<W2, WI = WI. Hence r = {Y E 
[X]<W2: Y is closed} is tight and unbounded. 

PROOF. For Y finite, use TI . Let WI = w. Towards a contradiction, assume 
that WI > w, choose Z E [X]Wl with Y c Z c Y. Then Iclosurez(Y)1 = W n ZI = 
IZI = WI. However Z is left separated, so by Corollary 2.3Iclosurez(Y)1 = w. Now 
let Y = {YOt: 0: < wt}. By countable tightness, Y = U{{y~: j3 < o:}: 0: < WI}. 

Hence WI = WI' W = WI. 
r is tight because X has countable tightness. r is unbounded because for all 

Y E [X]<W2, Y c Y E r. 0 

THEOREM 4.2. Axiom R implies S2 (hence Sd. 

PROOF. Towards a contradiction, assume (a) X is a TI not left separated space 
with a point countable base and (b) every Y E [X]<W2 is left separated. From 
(a) and Theorem 2.2(c') we get that ~ = {a E [X]w: a is not closed in X} is 
stationary in [X]w. From (b) and Lemma 4.1 we get that r = {Y E [X]<W2: Y 
is closed} is tight and unbounded. Applying Axiom R, we get Y E r such that 
~ n [Y]W = {a E [Y]W; a is not closed in X} = {a E [Y]w: a is not closed in Y} is 
stationary in [Y]w. (The second equality is why we wanted Y to be closed.) Hence 
Y E [X]<W2 is not left separated. Contradiction. 0 

In order to use the technique of the above proof for other properties, we must 
first have a characterization of those properties in terms of [X]w. We give three 
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more examples. (Forcing and reflection proofs of the consistency of 4.4 and 4.7 are 
well known.) 

Let T be a tree of height wand B a set of infinite branches through T. We say 
that B is nonstationary if there exists a one-to-one function f: B ----7 T such that 
for all bE B, f(b) E b. B is stationary otherwise. (This terminology is justified by 
Theorem 4.3.) Set X = TUB. Say that Y c X is B-closed iff (i) for all bE B, 
beY implies bEY and (ii) s <T t and t E Y implies s E Y. The set of B-closed 
sets is tight. 

THEOREM 4.3. Let T be a tree of height wand B a set of infinite branches 
through T. B is stationary if and only if {a E [T U B]w: a is closed} is stationary. 

PROOF. This is Theorem 8.5 of [Ball, where the proof is done in detail. The 
only if direction is similar to (c') =* (a) of Theorem 1, by induction on cardinality 
of X = TUB and using a function f: [X] <w ----7 X. 

COROLLARY 4.4 (AXIOM R). If B is a stationary set of branches through a 
tree T of height w, then there is a stationary A E [B] <W2 . 

PROOF. First prove the analogue of 4.1, then follow the proof of 4.2. 0 
We can show, again by induction on lXI, that B is nonstationary iff there is a 

function 1': B ----7 T so that f'(b) E band {{t E b: f(b) S t}: b E B} is disjoint. 
If we topologize X so that each t E T is isolated, and a neighborhood of b E B 
has the form {b} U {t E b: sst} for some s E b, then X is a space similar to 
Examples B1 and B2. Moreover B is nonstationary iff X is cwH. Generalizing from 
trees of height w, Shelah [Sh2] showed S (locally countable, not cwH) holds after 
the Levy collapse of a supercompact to W2. However, locally countable spaces are 
very special. Manifolds, which are more geometric, are locally separable and have 
countable tightness. These ideas lead to the unusual hypotheses of Lemma 4.5. 
(Also see recent work of Tall, e.g. [T 2].) 

LEMMA 4.5. Let D be a closed discrete subset of a space X and /\, a cardinal 
such that 

(a) 'VA E [D]<K:, A can be separated. 
(b) 3,8 < /\, 'Vy ED, Y has a neighborhood of density S ,8, 
(c) X has countable tightness at every point of D (i.e., 

('Vy E D'VZ c X)(y E Z ----7 3a E [Z]W)(y E a)). 
Then D can be separated iff {a E [X]w: anD i= anD} is not stationary. 

PROOF. (----7) is easy. 
(+--) Say that Z c X is D-closed if Z n D = Z n D. By Lemma 1.1, let 

f: [X]<w ----7 X be such that closed under f implies D-closed. By (b), for y E D, 
choose Qy E [X] <::;13 so that y E Int(Qy). The proof is by induction on X, again. 
By (a) D can be separated if IXI < /\'. For IXI 2: /\', we can define a continuous 
increasing sequence of sets, Xo:, so that U{Xo:: a < IXI} = X, IXo:l < lXI, and 
each Xo: is D-closed and Q-closed; (i.e., y E Xo: implies Qy C Xo:). By inductifon 
hypothesis, for each a, Do: = D n (Xo:+ 1 - Xo:) can be separated in Xo:+l-by 
{Uy : y E Do:}, say. Then 

U{{Int(Uy) - Xo:: y E Do:}: a < IXI} 
separates D in X. 0 
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COROLLARY 4,6 (AXIOM R), If X is Wl -cwH, has local density Wl, and has 
countable tightness, then X is cwH. In particular wl-cwH manifolds are cwH. 

PROOF. Again, prove the analogue of 4.1 and follow the proof of 4.2. 0 
A graph G = (V, E) consists of a set V of vertices and a set of edges E C [Vl2. 

G is said to have coloring number ~ W if there is a well-ordering < of V so that for 
all v E V, {u E V: {u, v} E E} is finite. 

THEOREM 4.7 (AXIOM R). If G = (V, E) is a graph such that (Y, E n [Yl2) 
has coloring number ~ W for every Y E [Vl <W2, then G has coloring number ~ w. 

PROOF. Say that Y c V is E-closed iffor all v E V, {y E Y: (y,v) E E} infinite 
implies v E Y. Argue as above. 0 

Below, we will use Axiom R to prove a reflection property which fits well with 
theorems of Pol [Pol and Hansell [Halon a-discretely refinable families. Analogous 
results about a-discretely decomposible families are left to the reader. These results 
allow us to replace Axiom SC(W2) with Axiom R in Lemma 4.9 of [Fll. For further 
discussion and references, see [Frl. 

Let e = (Ee: ~ E I) be an indexed family of subsets of a metric space X with 
a-discrete base 8 = U {Bn: nEw}. We will assume that X, I and 8 are pairwise 
disjoint. We say that e is a-discretely refinable if there exists an indexed family 
e' = (Eej: ~ E I,j E w) such that (a) Vj E w, (Eej: ~ E I) is discrete, (b) 
"Ie E IVj E w, Eej c Ee, and (c) U e' = U e. We say that a C 8 uI is e-closed if 
whenever an 8 contains a base for x E U e, then x E U{ Ee: ~ E a n I}. 

LEMMA 4.8. Let e, X, I and 8 be as above. The following are equivalent. 
(a) e is a-discretely refinable. 
(b) There is s: 8 -+ [IlW such that for all bE [8lW, bU (U{s(B): B E b} is 

e -closed. 
(c) {a E [8 u Ilw: a is e -closed} contains a club subset r c [8 u Ilw. 
PROOF. The proof of this analogue to 2.2 is routine except for (c)=>(b). Given 

r, let f: [8 U Il<w -+ 8 U I be the Kueker function. For u E [8l<w and jEw, 
define Uo = U, Uj+l = Uj urangefl[ujl<w and uf = U{Uj: JEW}. (Compare 
2.2(c') =>(a).) 

For BE 8, let 

U(B) = {{Bo, Bi, ... , Bm} E [8l<w: Bl :J Bl :J ... :J Bm = B} 
be a countable set. Set s(B) = U{uf: U E U(B)}. 

Towards verifying (b), let {Bk: k E w} contain a base for x E U e. By passing to 
a subsequence we may assume that Bo :J Bl :J ... :J Bm :J .... (The modifications 
in case x is isolated are easy.) For each mEw, set am = {Eo, ... , Bm}f; then 
{Bk: k E w} C U{am: mEw} E r. Hence for some mEw, x E am C s(Bm). 0 

For Y C X, set elY = (Eeny: ~ E I) and I(Y) = {~E I: Eeny =1= 0}. 
We say that e is wl-like if whenever Y C X has weight ~ Wi, II(Y)I ~ Wl. If CH 
holds, then point countable families are wl-like. If C c 8, set Y(C) = {x E Ue: C 
contains a base for x}. 

COROLLARY 4.9 (AXIOM R). Let X, e be as above. If e is wl-like and not 
a-discretely refinable, then there'is Y c X, weight Y ~ Wl such that elY is not 
a-discretely refinable. 
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PROOF. Set r = {a E [8 U I]<w2: A is [-closed and I(Y(A n 8)) c I n A}. 
Argue as in 4.2. 0 

Axiom VSO s is a consequence of V = L, implies CH and is consistent with 
Axiom R. The proof of the next result follows ideas in [Fl' Ha, and Fr]. 

COROLLARY 4.10 (AXIOM R+VSOs ). Let X, [ = (Ef.: ~ E 1) be as above. 
If [ is point-countable and for all J c I, U{Ef.: ~ E J} is Borel in X, then [ is 
a-discretely refinable. 

5. Properly collapsing a supercompact cardinal. We will force with com-
plete Boolean algebras, B. A B-name is a function from (already defined) B-names 
to B. For definition and dicussion of proper forcing, see [Bal]' An iterated proper 
forcing is a sequence (B",: a ~ 1\:) such that for a < (3, B", is a complete sub algebra 
of Bt3 so that a B", name is a Bt3 name (see, e.g. [Ba2]). Moreover if v ~ I\: is 
inaccessible, then Bv = U{B", : a < v} is proper and BKO = Bv * Av , where Bv is 
proper and Av E VBu is proper in VBv. 

Let B have I\:CC, where I\: is regular. If X E V and A E [X]<KOnV[G] (where G is 
V-generic on B), then A can be represented in V by a name in ).f = {AlA: Y -+ B, 
where Y E [X] <KO}. If r E V[G] and r c [X]<KO, then r can be represented by a 
B-name, t: ).f -+ B. 

THEOREM 5. 1. Let I\: be supercompact. Let (B", : a ~ 1\:) be an iterated proper 
forcing such that for every inaccessible v < 1\:, IBv I < I\: and BKO II - I\: = W2. Then 
BKO II - Axiom R. 

PROOF. We may assume that BKO C VKO ' BKO is I\:CC by a ~-system argument. 
Assume that in V[G], X, E, r satisfy the hypothesis of Axiom R. Without loss 
of generality, X E V. Let t and I' be BKO-names representing E and r of the 
form discussed above. Let A be much bigger than everything mentioned so far, 
and let j: V -+ M :J A V be elementary with critical point 1\:, jl\: > A. For 
every set S, j" S = {j s: s E S} C j S. A careful examination of the form of 
t, I' yields the stronger condition (3) below. (The point is that for A E ).f, 
j(A) = {(jx, b): (x, b) E A}. Because BKO C VKO , jb = b for b E BKO . There 
are no "new" elements of j(A) because IAI < 1\:.) It is routine to check that 
M F iJ!(I\:,j"X,jlt,j"f,jl\:,jX,J·t,J·f), where iJ! is the conjunction of 

(1) jilt, and jilt are BKO-names, j"X E [jX]<JKO. 
(2) BKO If- (jilt, is a stationary subset of [l' X]W, jilt is tight and unbounded in 

[l' X]<KO, and k = W2). 

(3) BJKO If- jilt C J·t and l'f C jf. 
Then M F 3VaV23v33v4iJ!(VI,V2,v3,v4,jl\:,X,t"jt). Byelementarity 

V F 3vdv2 3V3 :3v4 iJ!( VI, V2, V3, V4, 1\:, J'X, t, f). 
Instantiating, we get V F iJ!(v,Y,t',f',I\:,x,t,t). Let Gv = GnBv . By (1) we 
can define E' = val(t',Gv ) and r' = val(f',Gv ). Moreover, by (2) V[Gv ] F E' 
is stationary in [Y]W and r' is tight and unbounded in [Y] <v. By properness E' 
remains stationary in V[G], and P(Y) n E :J E' is stationary. It remains to show 
that Y E r. 

Because V[G] F WI = WI, let Y = {x",: a < WI}. By induction on a < WI, 
we will define A", E r' E V [Gv ] so that (3 < a implies Aj3 U {xj3} C An. Let 
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Ao E r' be arbitrary. For Q = {3 + 1, apply (V[G/./J F r' is unbounded in [YJ</./) 
to A,B U {X,B}. For Q a limit, 8 = {A,B: {3 < Q} is probably not in V[G/./J, but by 
properness there is T E V[G/./J, T E [r'J </./, so that 8 c T. Because V[G/./J F v 
is W2, regular, UTE [YJ</./. Apply unbounded to get Ao , UTe Ao E r'. By 
construction U{ Ao: Q < wd = Y E r, because r is tight. D 

6. Digressions. The following three plausible conjectures may summarize and 
clarify the status of the 8's. 

1. 81 , 82 and 84 are equivalent, 
2. 83 ,85 and 86 are equivalent; in fact, 
3. 83 ,85 and ~ are refutable in ZFC. 
RE CONJECTURE 3. In [MSJ, Milnor and Shelah construct in ZFC an example 

from Truss of a family, X, of W2 countable sets such that every Y E [XJ<W2 has a 
transversal, but X does not. Here, a transversal is a one-to-one choice function. 

In the examples of this paper, reflection properties have the form 8 (PI & rv P2 ), 

where PI is hereditary. The contrapositives can be stated without negation. For 
example, 81 : A metric space X is a-discrete iff every Y E [XJ<W2 is a-discrete. The 
"only if" can be added because a-discrete is hereditary. Note that 8(Pt& rv P2) is 
equivalent to 8 (PI & rv hereditarily P2 ) because a subset of a small set is small. 

We stated the 8's as reflection properties and proved some of them by reflection 
arguments. The contrapositives can be proven by integrating winning tactics ty, 
Y E [XJ<W2, into a winning strategy for X (see Theorem 2.2(b), (b')) using a homo-
morphism h: P([XJ<W2) -t B, where B is a proper complete Boolean algebra. For 
specific Boolean algebras, a strongly compact cardinal, rather than a supercompact 
cardinal, suffices [F2J. 

A timely letter from Peg Daniels reminded me of another reflection that can be 
proven in ZFC. 

THEOREM 6.1. Let X be a Tl space with a point-countable base such that 
IXI = A, singular, and every Y E [XJ<W2 is left separated. Then X is left separated. 

PROOF. We follow the proof in [F 4J of the analogous results for locally small 
spaces and coloring numbers. Let (Ao)o<cf A be a continuous, increasing sequence 
of cardinals cofinal in A with AO ~ cf A. By induction on {3 ~ WI, we will define 
continuous increasing sequences Y,B = {Y,Bo: Q < cf A} such that 

Let Yo be any sequence satisfying (*). If {3 = "I + 1, by the proof of Lemma 4.1 
we can enumerate Y,o as {x~e: , < Ao} for each Q. Set Y,Bo = {xle}: , < Ao, 
8 < crA}. IY,Bol = crA· Ao = Ao. 

If {3 is a limit, set Y,Bo = U{Y,o: "I < {3}. By countable tightness, YWl is a 
continuous, increasing sequence of closed subsets of X. Thus we can piece together 
well orderings of YW10+1 - YW10 to left separate X (as in 2.2(c') -t(a)). D 

It is clear that the "right" generalization of countability in Euclidean space 
to arbitrary metrizable spaces is a-discreteness. Theorem 2.2 suggests that the 
"right" further generalization is left separation in spaces with point countable base. 
In a similar context, Balogh and Junnila [BJJ generalized a theorem about a-
discreteness in metric spaces to a-left separation in Tl spaces of character ~ c. 
They were able to achieve a-relatively discrete only with additional hypotheses. 
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