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METACOMPACT SUBSPACES OF PRODUCTS OF ORDINALS
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(Communicated by Alan Dow)

Abstract. Let X be a subspace of the product of finitely many ordinals. X
is countably metacompact, and X is metacompact iff X has no closed subset
homeomorphic to a stationary subset of a regular uncountable cardinal. A
theorem generalizing these two results is: X is λ-metacompact iff X has no
closed subset homeomorphic to a (κ1, . . . , κn)-stationary set where κ1 < λ.

1. Sources

This paper combines two lines of research. The first is the investigation of
countably metacompact subspaces of the product of ordinals by Kemoto and Smith
in [7] and [8]. A synthesis of the main theorems from these papers is

Theorem 1.1. If X is a subspace of the product of two ordinals, or a subspace
of ωn1 , then X is countably metacompact. However, not every subspace of ωω1 is
countably metacompact.

The second line is an investigation of D-spaces. Van Douwen and Lutzer [1]
proved that a subspace of a linearly ordered space is a D-space iff it is metacom-
pact iff it has no closed subset homeomorphic to a stationary subset of a regular,
uncountable cardinal. Stanley ([11] and [3]) proved the same equivalence for sub-
spaces of the product of finitely many ordinals.

Theorem 1.2. Let X be a subspace of the product of finitely many ordinals. The
following are equivalent:

1. X is a D-space.
2. X is metacompact.
3. X is metalindelöf.
4. X has no closed subset homeomorphic to a stationary subset of a regular

uncountable cardinal.

Kemoto, Tamano, and Yajima ([9]) proved that metacompactness, screenability,
and weak submetalindelöfness are equivalent for subspaces of the product of two
ordinals.

Considering these results, it is natural to conjecture first, that every subspace
of a finite product of ordinals is countably metacompact, and second, there is a
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unified proof which yields Theorem 1.1, Theorem 1.2, and an analogous statement
about λ-metacompactness. We confirm these conjectures by proving the following
theorem.

Theorem 1.3. Let X be a subspace of the product of finitely many ordinals. X is λ-
metacompact iff X has no closed subset homeomorphic to a (κ1, . . . , κn)-stationary
set where κ1 < λ. In particular, (λ = ω1), X is countably metacompact, and (λ =
∞), X is metacompact iff X has no closed subset homeomorphic to a stationary
subset of a regular uncountable cardinal.

2. Metacompactness

Definition 2.1. Let κ be an infinite cardinal, X be a set, and V a family of subsets
of X . We say that V is point-< κ iff for all x ∈ X , |{V ∈ V : x ∈ V }| < κ. It is
usual to say point-finite when κ = ω, and point-countable when κ = ω1.

It is convenient and harmless (in the context of metacompactness) to require
that refinements be precise. Also, we frequently use the original family of sets to
index itself and subsequent refinements.

Definition 2.2. We say that V is a partial refinement of U if V has the form
{V (U) : U ∈ U} and V (U) ⊂ U for all U . If additionally,

⋃
V =

⋃
U , we say that

V is a refinement of U .

Definition 2.3. We say that a space X is metacompact if every open cover U of
X has a point finite open refinement V . We say that a space X is λ-metacompact
if every open cover U of X , with |U| < λ, has a point finite open refinement V .
Countably metacompact is a synonym of ω1-metacompact.

To include Theorem 1.2 as a particular case of Theorem 1.3, we wish metacom-
pact to be a particular case of λ-metacompact. Let∞ be a symbol such that λ <∞
for all cardinals λ. Then ∞-metacompact is a synonym for metacompact.

A space X is called λ-metalindelöf if every open cover U of X , with |U| < λ,
has a point countable open refinement V . The methods of this paper show that a
subspace of a finite product of ordinals is λ-metalindelöf iff it is λ-metacompact.

The union of two metacompact spaces need not be metacompact. Consider,
for example, the Moore plane (aka Niemytzki plane or the tangent disk space).
The upper half-plane and the discrete x-axis are metacompact, but their union,
the whole space, is not. In clause 3 of Corollary 2.6, we show that for subspaces
of finite products of ordinals, the union of finitely many metacompact spaces is
metacompact. (When we finish, Theorem 1.3 with Theorem 3.9 will show that the
union of countably many metacompact spaces is metacompact.)

Definition 2.4. Let α be an ordinal number, and let n be a natural number. If
y ∈ αn and z ∈ ({−1} ∪ α)n we define

z < y iff zi < yi for all i ≤ n,

z ≤ y iff zi ≤ yi for all i ≤ n,

(z, y] = {a ∈ αn : z < a ≤ y}.
Such “intervals” form a basis for the product topology on αn.
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Lemma 2.5. Let κ be an infinite cardinal and let (yµ : µ < κ) be a κ-sequence
of n-tuples of ordinals. There is H ∈ [κ]κ such that if µ < ν are both in H, then
yµi ≤ yνi for all i ≤ n.

Proof. Define c : [κ]2 → {0, 1} as follows: c(µ, ν) = 0 if yµi ≤ yνi for all i ≤ n,
and c(µ, ν) = 1 otherwise. By the Dushnik-Miller-Erdös Theorem [2], either there
is H ∈ [κ]κ as desired, or there is H ′ ∈ [κ]ω such that c(µ, ν) = 1 whenever
both µ and ν are in H ′. Towards a contradiction, assume the latter. Define
c : [H ′]2 → {1, 2, . . . , n} so that if c(µ, ν) = i, then yµi > yνi . By Ramsey’s
Theorem, there is an i and H ′′ ∈ [H ′]ω such that c′(µ, ν) = i whenever both µ
and ν are in H ′′. Then yµi , µ ∈ H ′′, is an infinite strictly decreasing sequence of
ordinals. Contradiction!

Corollary 2.6. Let α be an ordinal number, let κ be an infinite cardinal, and let
n be a natural number.

1. Let V be a point-< κ open cover of Y ⊂ αn. There is V ′, a point-< κ open in
αn family such that V = V ′ ∩ Y for all V ∈ V.

2. If Y ⊂ X ⊂ αn, U is an open cover of X with |U| < λ, and Y is λ-
metacompact, then there is V ′′, a point-< κ open in X partial refinement
of U satisfying Y ⊂

⋃
V ′′.

3. If Y is a finite family of λ-metacompact subspaces of αn, then
⋃
Y is λ-

metacompact.

Proof. For each y ∈ Y and V ∈ V such that y ∈ V , choose z(y, V ) ∈ ({−1} ∪ α)n

so that (z(y, V ), y] ∩ Y ⊂ V . For each V ∈ V , set V ′ =
⋃
y∈V (z(y, V ), y]. Clearly

V ′ is open in αn and V ′ ∩ Y = V . We claim that V ′ = {V ′ : V ∈ V} is point-
< κ. Towards a contradiction, assume that there are κ-sequences (V µ : µ < κ) and
(yµ : µ < κ) and an a ∈ αn satisfying

z(yµ, V µ)i < ai ≤ yµi for all µ < κ and all i ≤ n.
Apply Lemma 2.5 to (yµ : µ < κ) to get H . Let ν ∈ H . Then yν witnesses that V
is not point-< κ. Contradiction!

For clause 2, let Y , X , and U be as hypothesized. For each U ∈ U , set U ′ = U∩Y .
Because Y is λ-metacompact, there is a point-finite open (in Y ) refinement of
{U ′ : U ∈ U}. Apply clause 1 to get V ′. For each U ∈ U , set V ′′(U) = V ′(U) ∩ U .
Then {V ′′(U) : U ∈ U} is the desired partial refinement.

Clause 3 follows from clause 2.

Example 2.7. Let Y be a subset of a regular, uncountable cardinal κ. Let U be
an open cover of Y by bounded open sets (for example, {[0, y] ∩ Y : y ∈ Y }). It is
easy to verify that if U has a point-< κ open refinement, then Y is not stationary
in κ. Contrapositively, if Y is stationary, then Y is not metacompact. If a space X
has a closed subset homeomorphic to a stationary subset Y of κ, then X is not.

If we assume that X is a subspace of an ordinal, the converse of the preceding
sentence is true (it is a special case of Theorem 1.3), and seems to be folklore.
Theorem 1.1 and Theorem 1.2 suggest that this converse extends to subspaces
of the product of finitely many ordinals. The following example shows that for
ω1 < λ <∞, the one dimensional notion of stationary is not sufficient.

Example 2.8. Let κ1 < κ2 be regular, uncountable cardinals. Let {Aζ : ζ ∈ κ1}
be a family of stationary subsets of κ2. Set X = {(ζ, ν) ∈ κ1×κ2 : ν ∈ Aζ∧ζ ∈ κ1}.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



296 WILLIAM G. FLEISSNER

If we choose {Aζ : ζ ∈ κ1} to be pairwise disjoint sets of ordinals of cofinality at
least κ1, then X has no subspace homeomorphic to a stationary subset of κ1.

For θ < κ1, set Uθ = {(ζ, ν) ∈ X : ζ ≤ θ}. Then U = {Uθ : θ ∈ κ1} is an open
cover of X with |U| = κ1. Let V = {Vθ : θ ∈ κ1} be an open refinement of U .
We will show that V is not point-< κ1. For each (ζ, ν) ∈ X , choose θ(ζ, ν) < κ1,
ηζ,ν < κ1, and µζ,ν < κ2 so that(

(ηζ,ν , ζ]× (µζ,ν , ν]
)
∩X ⊂ Vθ(ζ,ν).

Via the Pressing Down Lemma ([10], Chapter II, Lemma 6.15), for each ζ < κ1

find θ(ζ) < κ1, ηζ < κ1, µζ < κ2 and A′ζ , a stationary subset of Aζ , so that(
(ηζ , ζ]× (µζ , ν]

)
∩X ⊂ Vθ(ζ)

for all ν ∈ A′ζ . Apply the Pressing Down Lemma again to find η < κ1 and B
stationary in κ1 so that (

(η, ζ] × (µζ , ν]
)
∩X ⊂ Vθ(ζ)

for all ν ∈ A′ζ and all ζ ∈ B. Set η∗ = η + 1 and µ∗ = sup{µζ : ζ ∈ B}+ 1. Then
(η∗, µ∗) ∈ Vθ(ζ) for all ζ ∈ B. Recall that ζ ≤ θ(ζ), so |{θ(ζ) : ζ ∈ B}| = κ1.

3. (κ1, . . . , κn)-stationary sets

First, we set notation for concatenating n-tuples. If a = (a1, . . . , am) and b =
(b1, . . . , bn), then a_b is the (m + n)-tuple c = (c1, . . . , cm+n), where ci = ai for
i ≤ m and cm+j = bj for j ≤ n.

Definition 3.1. For A ⊂ κ1 × . . . × κn, we define a tree T (A). The ith level,
denoted li(A), is defined to be {b ∈ κ1× . . .×κi : (∃c ∈ κi+1× . . .×κn)(b_c ∈ A)}.
In particular, l0(A) = ∅ and ln(A) = A. For b ∈ li(A), let Ab = {c ∈ κi+1×. . .×κn :
b_c ∈ A)} and set N(A, b) = {ξ ∈ κi+1 : b_ξ ∈ li+1(A)}.

Definition 3.2. Let (κ1, . . . , κn) be a nondecreasing sequence of uncountable reg-
ular cardinals. We say that A ⊂ κ1 × . . . × κn is (κ1, . . . , κn)-stationary iff
N(A, b) is stationary in κi+1 for all i < n and b ∈ li(A). If κi = κ for all
i, we write κn-stationary in place of (κ1, . . . , κn) -stationary. Let κn denote
{a ∈ κn : a1 < . . . < an}. It is easy to verify that A ⊂ κn is κn-stationary
iff A ∩ κn is κn-stationary. Notions equivalent to κn-stationary were called sta-
full in [4] and [5]. Kemoto remarks that even for A ⊂ ω2

1, this notion differs
from inductively stationary of [8]. Sometimes we will say stationary in place of
(κ1, . . . , κn)-stationary.

We will need the following observations.

Lemma 3.3. Let X ⊂ κ1×. . .×κn, and let T = lm(X) be (κ1, . . . , κm)-stationary.
If for all t ∈ T , Xt is (κm+1, . . . , κn)-stationary, then X is (κ1, . . . , κn)-stationary.

Lemma 3.4. If Y ⊂ κ, then Y is stationary in κ iff Y is (κ)-stationary. If X is
(κ1, . . . , κn)-stationary, then for all j ≤ n, for all b ∈ lj(X), Xb is closed (in X)
and homeomorphic to a (κj , . . . , κn)-stationary set. However, X need not contain
any subset homeomorphic to a stationary subset of κ1.

Lemma 3.5. If Y is (κ1, . . . , κn)-stationary and Cj is club in κj for each j, then
Y ∩ (C1 × . . .× Cn) is (κ1, . . . , κn)-stationary.
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Definition 3.6. For regular cardinals ρ1 ≤ ρ2, an index set I ⊂ ρ1, and a family
(Ci)i∈I of club subsets of ρ2, set∧

i∈I
Ci = {γ ∈ ρ2 : (∀i ∈ γ ∩ I)(γ ∈ Ci)}.

We mention two special cases. First, if ρ1 < ρ2 and ρ1 ≤ minCi for all i ∈ I, then∧
i∈I Ci is

⋂
i∈I Ci, which is club in ρ2. Second, if I = ρ1 = ρ2, then

∧
i∈I Ci is the

diagonal intersection, which is club in ρ2. In the general case,
∧
i∈I Ci is club in ρ2

by the “diagonal intersection proof” (see, for example, [10] Ch. II, Lemma 6.14).

In contrast to the familiar n = 1 case, if n > 1, a superset of a (κ1, . . . , κn)-
stationary set is not necessarily (κ1, . . . , κn)-stationary. The next lemma explains
this situation.

Lemma 3.7. Let Y ⊂ {a ∈ κ1 × . . . × κn : (∀i < n)(ai < ai+1)}. There are
C1, . . . , Cn, with each Cj club in κj, such that

1. Y ∩ (C1 × . . .× Cn) is (κ1, . . . , κn)-stationary and closed in Y if Y contains
a (κ1, . . . , κn)-stationary set.

2. Y ∩ (C1 × . . .× Cn) = ∅ if Y contains no (κ1, . . . , κn)-stationary set.

Proof. We define eY : T (Y )→ {0, 1} by induction down the tree. Set eY (t) = 1 for
t ∈ ln(Y ) = Y . For i < n and t ∈ li(Y ), set eY (t) = 1 if {ξ ∈ κ : eY (t_ξ) = 1} is
stationary in κ; set eY (t) = 0 otherwise.

For each j ∈ {1, . . . , n}, we define C(j, t), club in κj , for t ∈ li(Y ) by induction
from i = j−1 to j = 0. Let i = j−1. If eY (t) = 0, choose C(j, t) club in κj so that
C(j, t) ∩ {ξ ∈ κj : eY (t_ξ) = 1} = ∅; if eY (t) = 1, set Ct = κ. Next, for i < j − 1,
set C(j, t) =

∧
ξ∈N(Y,t)C(j, t_ξ). Then C(1, ∅), . . . , C(n, ∅) are the desired club

sets.

Definition 3.8. When c and r are n-tuples of ordinals, let entw(c, r) abbreviate

c1 ≤ r1 < c2 ≤ r2 < . . . < cn ≤ rn.

For C1, . . . , Cn with each Cj club in κj , define

E(C1, . . . , Cn) = {r ∈ κ1 × . . .× κn : entw(c, r) for some c ∈ C1 × . . .× Cn}.

The next lemma provides more combinatorics for (κ1, . . . , κn)-stationary sets.
When κ1, . . . , κn-stationary = κn-stationary, clause 1 is in [4] and [5], clauses 1
and the particular case of 2 are in [8], and clause 2 may be new. Note that when
n = 1, clause 3 gives the familiar result that an open stationary set contains a final
segment.

Theorem 3.9. Let Y ⊂ {a ∈ κ1 × . . .× κn : (∀i < n)(ai < ai+1)}.
1. If Y is (κ1, . . . , κn)-stationary and f : Y → S, where |S| < κ1, then there are
s ∈ S and Y ′, a (κ1, . . . , κn)-stationary subset of Y , such that f(a) = s for
all a ∈ Y ′.

2. If Y is open in κ1 × . . . × κn and contains a (κ1, . . . , κn)-stationary set, A,
then there are C1, . . . , Cn, each Cj club in κj, such that E(C1, . . . , Cn) ⊂ Y .
In particular, {a ∈ C1 × . . .× Cn : (∀i < n)(ai < ai+1)} ⊂ Y .
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Proof. Clause 1 follows from Lemma 3.7. Alternately, we could make a direct proof
similar to the first paragraph of the proof of Lemma 3.7.

By induction on i from i = n down to i = 0, we define bt for t ∈ li(A) for
0 ≤ i ≤ n, also ζt and St for t ∈ li(A) for 0 ≤ i < n. Because A ⊂ Y and Y is
open in κ1 × . . . × κn, for t ∈ ln(A) = A there is bt < t so that (bt, t] ⊂ Y . Now
let t ∈ li(A), where i < n. By applying the Pressing Down Lemma repeatedly, find
bt ∈ κi, ζt ∈ κ, and St stationary in κi+1 so that

bt_η = b_t ζt for all η ∈ St.
For each j ∈ {1, . . . , n}, we define C(j, t), club in κj for t ∈ li(A) by induction

from i = j − 1 to i = 0. Let i = j − 1. For t ∈ li(A), let C(j, t) be the set of γ ∈ κj
satisfying γ = sup(St ∩ γ) and ζt_η < γ for all η < γ. Next, for i < j − 1, set
C(j, t) =

∧
ξ∈N(A,t) C(j, t_ξ). Then (C(1, ∅), . . . , C(n, ∅)) is the desired n-tuple.

Note that ζ∅ < minC(1, ∅).
Now assume entw(c, r) for some c ∈ C(1, ∅) × . . . × C(n, ∅). We define tj by

induction from j = 1 to j = n. For j = 1, choose t1 ∈ S∅ satisfying r1 < t1 <
c2. Note that bt1 = ζ∅ < c1 ≤ r1. If j < n and tj has been defined, choose
tj+1 ∈ St1,... ,tj satisfying rj+1 < tj+1 (and tj+1 < cj+2 if j < n − 1). Because
(t1, . . . , tj) ∈ cjj+1, we have ζt1,... ,tj < cj+1 ≤ rj+1. Set t = (t1, . . . , tn). Then
t ∈ A and r ∈ (bt, t] ⊂ Y , as claimed.

Lemma 3.10. If Y is a (κ1, . . . , κn)-stationary set, then Y is not λ-metacompact
for λ > κ1.

Proof. Via Lemma 3.4 and passing to a closed subspace, we may assume that
κ1 < κ2. For θ < κ1, set Uθ = {y ∈ Y : y1 ≤ θ}. Then U = {Uθ : θ ∈ κ1} is an
open cover of X with |U| = κ1. Let V = {Vθ : θ ∈ κ1} be an open refinement of
U . We will show that V is not point-< κ1. For each ζ_q ∈ Y , choose θ(ζ, q) < κ1,
ηζ,q < κ1, and pζ,q ∈ κ2 × . . .× κn so that

((ηζ_q, ζ]× (pζ_q, q]) ∩ Y ⊂ Vθ(ζ_q).
Apply Theorem 3.9 for each ζ < κ1 to find θ(ζ) < κ1, ηζ < κ1, and C2,ζ , . . . , Cn,ζ
with each Cj,ζ club in κj , so that

(ηζ , ζ]× E(C2,ζ , . . . , Cn,ζ) ∩ Y ⊂ Vθ(ζ).
Next, find η < κ1 and B stationary in κ1 so that η = ηζ for all ζ ∈ B. For each j,
set Cj =

⋂
ζ∈B Cj,ζ , and inductively choose qj ∈ Cj with η < q2 < . . . < qn. Then

η_q ∈ Vθ(ζ) for all ζ ∈ B. Recall that ζ ≤ θ(ζ), so |{θ(ζ) : ζ ∈ B}| = κ1.

Not all results about stationary sets generalize to (κ1, . . . , κn)-stationary sets.

Example 3.11. Let κ be an uncountable regular cardinal. For each (ζ, ν) ∈ κ2,
define f(ζ, ν) = (0, ζ). Then f “presses down” on a κ2-stationary set, but f is not
constant on a κ2-stationary set.

To apply κn-stationary techniques to arbitrary subspaces of κn (instead of sub-
spaces of κn), we need another technique from [8]. We decompose κn into finitely
many pieces, each homeomorphic to κm for some m ≤ n. For n = 1, κ1 is κ1.
For n = 2, the decomposition is κ2 = Z0 ∪ Z1 ∪ Z2, where Z0 is the diagonal,
homeomorphic to κ1, Z1 is above the diagonal, which is κ2, and Z2 is below the
diagonal, which is homeomorphic to κ2.
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For the general case, we define the partition via an equivalence relation. For
a, b ∈ κn, let a ∼ b iff (for all i, j < n, ai < aj iff bi < bj). For example, if
a = (ω2, 6, 6) ∈ κ3, then the equivalence class [a] = {b ∈ κ3 : b1 = b2 < b0}.
Clearly, a 7→ (a1, a0) is a homeomorphism of [a] onto κ2 (there are details on p. 69
of [8]).

Next, we must confine the closure of the equivalence class of a. Note that {b ∈
κ3 : b1 6= b2}, {b ∈ κ3 : b0 < b1}, and {b ∈ κ3 : b0 < b2} are open and disjoint
from [a]. Hence [a] ⊂ {b ∈ κ3 : b1 = b2 ≤ b0}. In the general case, if b ∈ [a] \ [a],
then |range b| < |range a|. List the equivalence classes as Zk, k < K, so that if
|range b| < |range a|, Zk′ = [b], and Zk = [a], then k′ < k. We have proved

Lemma 3.12. For all n ∈ ω, κn can be decomposed into finitely many pieces, Zk,
k < K, so that:

1. Each Zk is homeomorphic to κm, for some m ≤ n,
2.
⋃
k′<k Zk′ is closed in κn for all k < K.

4. Proof of Theorem 1.3

One direction of Theorem 1.3 follows from Lemma 3.10. For the other direction
we will use the following abbreviations. We let Sλ(Y ) abbreviate “Y is homeo-
morphic to some (κ1, . . . , κn)-stationary subset of κ1 × . . . × κn with κ1 < λ”.
We let Nλ(X) abbreviate “X has no closed subset Y with Sλ(Y )”. We let Hλ(Z)
abbreviate “For all X ⊂ Z, if Nλ(X), then X is λ-metacompact”.

The special cases λ = ω1 and λ =∞ deserve discussion. There is no uncountable
cardinal less than ω1. Hence, Sω1(Y ) is true of no Y , Nω1(X) holds for all X , and
Hω1(Z) means that every subspace X of Z is countably metacompact. For λ =∞,
recall Definition 2.3 and Lemma 3.4.

Our proof of Theorem 1.3 will be by induction. The next theorem lists some
methods to prove Hλ(Z) for “big” spaces from Hλ(Z ′) for “small” spaces.

Lemma 4.1. Each of the following are sufficient to imply Hλ(Z):
1. Z is homeomorphic to a subset of Z ′ and Hλ(Z ′).
2. Z =

⊕
i∈I Zi and (∀i ∈ I)Hλ(Zi).

3. for every X ⊂ Z satisfying Nλ(X), for every open cover U of X with |U| < λ,
there is V, a point-finite open partial refinement of U , such that Hλ(Z \

⋃
V).

4. Z =
⋃
k<K Zk, Hλ(Zk) for all k < K, and

⋃
k′<k Zk is closed in Z for all

k < K.

Proof. Clauses 1 and 2 are obvious. Towards clause 3, let X , U , and V be as hy-
pothesized. Note that X ′ = X \

⋃
V is closed in X , so we have N(X ′). Next,

Hλ(Z \
⋃
V) gives that X ′ is λ-metacompact. Let V ′ be a point-finite open refine-

ment of {U ∩X ′ : U ∈ U}. By Corollary 2.6, there is V ′′, a point-finite open partial
refinement of U with X ′ ⊂

⋃
V ′′. Then {V (U) ∪ V ′′(U) : U ∈ U} is the desired

refinement of U .
For clause 4, it suffices to do the case K = 2 because the general case then

follows by induction. Let X ⊂ Z satisfy N(X), and let U be an open cover of X
with |U| < λ. Note that X1 = X ∩ Z1 is closed in X , so H(Z1) gives V1, a point-
finite open refinement of {U ∩X1 : U ∈ U}. By Corollary 2.6, V1 can be expanded
to V which satisfies the hypotheses of clause 3, which we apply to complete the
proof.
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Preparations complete, let us begin the proof of Theorem 1.3. Fix λ and omit
the subscript on S(Y ), N(X), and H(Z). Because every product of finitely many
ordinals is a subspace of αn for some n and α, to prove the theorem, it suffices to
prove (∀n ∈ ω)H(αn). We proceed by induction. The base step is easy: if α is
countable, then αn is metrizable, hence (∀n ∈ ω)H(αn). For the induction steps,
we will use Lemma 4.3 when α is an uncountable regular cardinal, and Lemma 4.2
otherwise.

Lemma 4.2. Let α be either a successor ordinal or a singular limit ordinal. If
(∀m ∈ ω)H(βm) for all β < α, then (∀n ∈ ω)H(αn).

Proof. We prove (∀m ∈ ω)H(βm × αn) by induction on n. The case n = 0 follows
from hypothesis. Let n = k + 1.

If α is a successor, α = γ + 1, say, then set C = {γ}. If α is a limit, let
C = {γj : j < cof α} be increasing, closed, and cofinal in α, with γ0 = 0. Set Z1 =
βm×αk×C. Then Z1 is closed in βm×αn, and H(Z1) because Z1 is homeomorphic
to a subspace of ζm+1 ×αk, where ζ = max{β, cof α}. Set Z2 = (βm ×αn) \Z1. If
α = γ+ 1, then H(Z2) follows from H(γm+n). If α is a singular limit ordinal, then
Z2 =

⊕
j<cof α β

m × αk × (γj , γj+1). In this case, H(Z2) holds by the induction
hypothesis and Lemma 4.1.2. We conclude H(βm × αn) from H(Z1), H(Z2), and
Lemma 4.1.4.

Lemma 4.3. Assume that α is regular. If (∀m ∈ ω)H(βm) for all β < α, then
(∀n ∈ ω)H(αn).

Proof. We prove (∀m ∈ ω)H(βm × αn) by induction on n. The case n = 0 follows
from hypothesis. Let n = k+1. Our plan is to prove H(βm×αn) via Lemma 4.1.3.
There are two tasks: find V and prove H(βm × αn \

⋃
V). We do the easier first.

Sublemma 4.4. Let β < α, let m < ω, and let C be club in α. Set Z = βm ×
(αn \ Cn). Then H(Z).

Proof. Let (γν : ν < α) be the increasing enumeration of C. For j ≤ n and
0 < ν < α, set

Sj,ν = βm × {a ∈ αn : γν < aj ≤ γν+1}
and set Sj,0 = βm × {a ∈ αn : aj ≤ γ1}. Then S = {Sj,ν : j ≤ n ∧ ν < α} has the
following properties:

1. Each S ∈ S is clopen in βm × αn.
2.
⋃
S ⊃ Z.

3. S is point finite.
4. Each S ∈ S is homeomorphic to a subset of ζm × αk for some ζ < α.

Let U be an open cover of X ⊂ Z such that |U| < λ and N(X). For each j ≤ n
and ν < α, Xj,ν = X ∩ Sj,ν satisfies N(Xj,ν). Therefore, by H(ζm × αk) there is
Vj,ν , a precise, point-finite, open refinement of U|Xj,ν . Set V (U) =

⋃
{Vj,ν(U) :

j ≤ n ∧ ν < α}; then {V (U) : U ∈ U} is the desired point-finite open refinement of
U . Hence X is λ-metacompact, establishing H(Z).

Sublemma 4.5. Let X ⊂ (βm × αn). If N(X), then X is λ-metacompact.

Proof. Set T = {t ∈ βm : Xt is αn-stationary}. For each s ∈ βm \ T , choose Cs,
club in α, so that Xs ∩ Cns = ∅. If α < λ, then T is empty and in this case we set
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X ′′ = X and skip to the last paragraph of this proof. We continue, assuming that
λ ≤ α.

We claim that N(T ) holds. Towards a contradiction, assume that S(Y ) for some
Y closed in T . Then (Y × αn) ∩X is stationary by Lemma 3.3. Set E =

⋂
s/∈T Cs,

and set Y ′ = (Y ×En)∩X . Then Y ′ is closed in X and satisfies S(Y ′), contradicting
N(X).

Now let U be an open cover of X with |U| < λ. Note that |U| · |βm| < α. Hence,
by Theorem 3.9, for each t ∈ T we can find Ut ∈ U , Bt basic open in βm, and X ′t
a stationary subset of Xt such that for each x ∈ X ′t there is Rt,x, basic open in αn

satisfying

t_x ∈ (Bt ×Rt,x) ⊂ Ut.
Set U∗t =

⋃
{Rt,x : x ∈ X ′t}. Now U∗t is open and stationary, so by Theorem 3.9,

there is a club Ct satisfying (Cnt ∩ αn) ⊂ U∗t . Hence (Bt × (αn)) ∩ (X \ Ut) = ∅.
For each U ∈ U , define U ′ =

⋃
{Bt : Ut = U}. Then U ′ = {U ′ : U ∈ U}

is an open cover of T ⊂ βm. From H(βm) and N(T ), we conclude that T is λ-
metacompact; hence there is a point-finite, open refinement V ′ of U ′. For U ∈ U ,
set V ′′(U) = π←[V ′(U)] ∩ U (where π : βm × αn → βm is the natural projection).
Then V ′′ = {V ′′(U) : U ∈ U} is an open partial refinement of U . Notice that
X ′′ = X \

⋃
V ′′ is a subset of βm × (αn \

⋂
t∈T C

n
t ).

Set C =
⋂
t∈βm Ct. Now we have N(X ′′), X ′′ ⊂ Z = βm × (αn \Cn), and H(Z)

(by Lemma 4.4). Hence X is λ-metacompact.

With H(βm×αn) established, H(βm×αn) follows from Lemma 3.12 and Lemma
4.1. This completes the proof of Lemma 4.3.
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