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ON THE SOLUTIONS OF A STOCHASTIC CONTROL SYSTEM. II*

TYRONE DUNCAN’}" AND PRAVIN VARAIYA:

Abstract. This paper presents generalizations of the work in [1], [2] to include controlled stochastic
processes which take values in a certain class of Fr6chet spaces. The crucial result is an extension of
Girsanov’s technique for defining solutions of stochastic differential equations by an absolutely
continuous transformation of measures. The result is used to prove existence results for stochastic
control problems and for a class of two-person zero sum games.

1. Introduction and summary. Consider a controlled stochastic process
represented by the stochastic differential equation

dX(t) f(t, X, u(t, X)) dt + dB(t), [0, 1],

where B(t) is a Fr6chet-valued Brownian motion, X(t) is the state process. The
drift f, and the control u, depend at any time on the past of the state process,
{X(s), s __< t}. For the case where the Fr6chet space is Rn, a satisfactory theory
dealing with the problem of existence of solutions of the differential equation and
existence of optimal control laws is now available [1], [2]. A crucial building
block in this theory consists in defining a solution of the differential equation via
an absolutely continuous transformation of measures. Each control thereby de-
fines a solution characterized by its (unique) probability law which is absolutely
continuous with respect to Wiener measure. Thus the influence of a control law
upon the system is captured in the Radon-Nikodym derivative of the resulting
probability law with respect to Wiener measure. Questions dealing with the
existence of an optimal control can then be converted into questions about the
compactness (in an appropriate sense) of the set of Radon-Nikodym derivatives.
The measure transformation technique mentioned above is due originally to
Girsanov 16].

This paper deals with these same questions for the case where the state space
is infinite-dimensional. The problem of characterizing Brownian motion in
infinite-dimensional spaces is a difficult one and has been resolved for certain
Fr6chet spaces only. This is described in the next section, where some additional
properties of such Brownian motion as sample continuity and stochastic inte-
gration are established also.. In 3 the result of Girsanov is extended to cover the
differential equation under consideration. Once this has been achieved the tech-
niques of [1], [2] apply without change and the existence of optimal controls and
saddle points follows easily. This is sketched in 4.

2. Preliminaries for defining Brownian motion. To define probability measures
on Fr6chet spaces the results of Dudley-Feldman-LeCam [3] are used. The
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1078 TYRONE DUNCAN AND PRAVIN VARAIYA

latter are generalizations of the work of Gross [4]. While the generality of the
immediately following discussion is not used subsequently, it does serve to
indicate some directions along which the results reported here can be further
pursued. Some notation and definitions are introduced first.

For a locally convex Huasdorff topological (real) vector space X let X*
denote its topological dual. A dual system or duality over the reals consists of
two vector spaces X, Y and a bilinear form (.,. X Y--* R that separates
points for both X and Y. For a pair X, Y in duality, let FD(X) denote the collection
of all finite-dimensional subspaces of X. For G c X, let///(Y, G) be the a-algebra
of Y generated by the sets (y: (x, y) B}, where x G, B is a Borel set in R. Thus
/J/(Y, G) is the smallest r-algebra on Y for which each x G, regarded as a function
on Y, is measurable. Finally let (g(Y, X) U (/J/(Y, G)IG FD(x). A cylinder set
measure on Y is any nonnegative, finitely additive set function m on (g(Y, X) with
m(Y) such that m is countably additive on ’(Y, G) for each G FD(X).

The following notion of a measurable seminorm given in [3] is crucial to the
analysis.

DEFINITION 1. Given a duality X, Y, (.,. , and a cylinder set measure m
on Y, a seminorm I" on Y is said to be m-measurable if for each e > 0 there is a
G FD(Y) such that if F FD(X) and F d_ G (i.e., (x, y 0 for x e F, y G),
then

or equivalently

m{y:ly- F+/-I _-< e} _-> 1-e

m*{y:iy- Gl<e} l-e,

where m* is the outer measure on cg(y, X) induced by m.
The next result follows from [3, Thm. 2].
FUNDAMENTAL THEOREM. Let I" be a Mackey-continuous seminorm on Y and

suppose that it is m-measurable. Then the cylinder set measure induced by m on
the Banach space Y/I" obtained from Y via the seminorm ]. extends to a regular
Borel measure.

From here on the discussion is specialized to a fixed, separable Hilbert
space H. It is assumed that there is given for each R+ a cylinder set measure

Pt on H such that pt is a canonical normal distribution on H with variance param-
eter (see [4] or [5]). It is also assumed that there is given an increasing family of
Mackey-continuous seminorms I" I, j 1, 2,..., on H. Let F be the Fr6chet
space obtained from H with respect to the topology defined by the seminorms
I" I by completion modulo the intersection of their null spaces (which without
loss of generality is assumed to equal {0}). As a corollary to the Fundamental
Theorem it is proved in [3, Cor. 2.1] that each Pt, tR+, extends to a regular
Borel measure, denoted #t, on F. For future reference note that H c F, F* H*

This means that if C e (H, is of the form C P- (E), where P is the orthogonal projection
of H onto a subspace L FD(H) and E is a Borel subset of L, then

lxl dx,pt(C) (2t)-"/Z feexp (-
where n is the dimension of L, and ]. lu denotes the norm on H induced by its inner product.D
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STOCHASTIC CONTROL SYSTEM 1079

H, and define the maps i’H F, j’F* H*, as the canonical injections.
Finally let N(F) denote the Borel sets of F. Throughout, H and F denote the
spaces introduced here.

The collection #t, e R/, will be used now to define a Brownian motion
with values in F. For eacl e R/ let F be a copy of F. For each finite collection
t < < t,, let tl,’",trt be the measure on (]-[7= Ft" HT=l (Ft’)) defined by

fAn d#tl’""t" d#,._t._,(x,,) dl.tt=_t,(x2) dYt,(Xl)

for Ai (F"), 1, ..., n. Since sets of the form l--I’= Ai generate the product
r-algebra ]-I’-1 (F") the measure #,1,...,,, is defined. To show that the family of
measures #,1,...,,, is a projective system, it is necessary to verify consistency. Since
F is separable in the topology determined by the countable seminorms I. j, the
measure #,1,...,,, is determined by sets of the form Ai (I P)F @ Fi, where P
is an orthogonal projection with finite dimensional range and F is a Borel subset
of PF. Let A1, "’", A, be such sets, and suppose Aj F. Then

fA fA d’’’’’"= fA fA dl’tt"-t"-’(xn)’"d#t*(x1)
2--Xl y.- 1Xi

@,._,._ ,(x,)

dp,._,._

..dp,,+ =-t,+ dpt,+ ,-t,_,(x)

[l,’,[j l[j+ 1,",n
j-1 j+l

In the above p is the measure of a Brownian motion with values in the finite-
dimensional space PF and so the third equality above follows from the Markov
property of such a process. Since each of the measures #,, R/, is a regular
Borel measure, the projective system of measures admits a projective limit
[6, p. 49]. The projective limit thus obtained is denoted (f2, ff, P). Evidently,
(f2, )= 1-[,e+ (U, (F’)). It will be assumed that (f2, if, P) is complete. For
each let X denote the F-valued evaluation map on f2 at t. Let o be the smallest
completed a-algebra with respect to which X is measurable for s =< t. Then
(Xt, t, P)te is a Brownian motion as defined below.

DEFINITION 2. A stochastic process (Xt, ,, P)tzR+ (or simply (X,, P)tzR or
(X,) if there is no ambiguity) is said to be a Brownian motion with values in the
Frdchet space F induced from a family of canonical normal distributions on a
Hilbert space H, if for each e F* (the topological dual of F) the real-valued
process ((1, X,), ,P)tzR+ is a real-valued Brownian motion with E<l, Xt>2

tljll2n. (Here and throughout I" In denotes the norm on H and j’F* --, H* is
the canonical injection mentioned before.)

The process (Y,, P),R is said to be a modification of the process (X,, P),R
if for each R+X,(og) Y,(o) a.s. (the null set {X, # Y,} may depend on t).D
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1080 TYRONE DUNCAN AND PRAVIN VARAIYA

For Fr6chet-valued Brownian motion there is a modification which has
continuous sample paths as shown by the following lemma.

LEMMA 1. Let (Xt,
, P)tR +be a Frchet-valued Brownian motion. There is a

modification of Xt with continuous sample paths.
Proof. Since a countable number of seminorms determine the topology of a

Fr6chet space it suffices to verify the continuity ofthe sample function ofBrownian
motion with respect to each of these countable number of seminorms and there-
fore it is enough to prove the lemma for a Banach-valued Brownian motion.

Fernique [7] has shown that for a Gaussian random variable X on a topo-
logical vector space with a measurable seminorm I. there is an > 0 such that

(1) E exp lSl2 <

Combining (1) with a result of Nelson [8, Thm. 2] as used by Gross [9, p. 134] it
follows that the Banach valued Brownian motion has a modification with con-
tinuous sample paths.

Since stochastic integrals will be used subsequently, a family of processes
has to be described that can serve as integrands. The following definition gives
such a family.

DEFINITION 3. Let / be a separable Hilbert space. An/-valued stochastic
process ()g on (f, , P) that is adapted to ()tR is said to be predictable if
the map (og)’R+ f-/ is measurable with respect to the a-algebra on

R+ f generated by the left-continuous/-valued processes adapted to ()R
Real-valued stochastic integrals will now be defined from F-valued Brownian

motion and predictable H-valued processes.
LEMMA 2. Let (d/)tR be a predictable H-valued process with

(2) E I,lr dt < ,
and let (Bt,tt, P)teR be an F-valued Brownian motion. Then the real-valued
process Yt, , P)tR+

(3) Y (Os, dBs),

is a square integrable martingale which has a modification with continuous sample
paths. (The integral (3) is defined in the course of the proof.)

Proof. Let e, > 0 be a sequence decreasing to zero and for each n let Pc. be
a projection on H with finite-dimensional range P.H c jF* such that

Let 11, "", lu be an orthonormal basis for P.H. The process (P,) defined by

(4)
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STOCHASTIC CONTROL SYSTEM 1081

is a (continuous) martingale since by the definition of the process (B), ((/i, B))
is a real-valued Brownian motion. By Doob’s inequality [10, p. 353] the sequence
of continuous martingales (Y(P,)) converges uniformly on compact subsets of
R+ because

EIY,(P,) Y(P)I 2 E I(P, P,,)&I ds

which vanishes as m, n increase to infinity. The integral (3) is defined as the limit
of the martingales Y(P.). Clearly the limit does not depend on the particular
choice of the projections P. and Y is evidently square integrable. U

COROLLARY 1. Let ()R be a predictable H-valued process with

(5) 112 ds < o a.s. for all t.

Then the real-valued process Z defined by

(6) Z, (,dB)

is a locally square integrable martingale which has a modification with continuous
sample paths.2

The following representation of square integrable functionals on the F-valued
Brownjan motion probability space will be useful subsequently. For R"-valued
Brownian motion, K. It6 [11] has obtained this representation by describing results
of Wiener [12] and Cameron-Martin [13] in terms of stochastic integrals.

PROPOSITION 1. Let (g), ,, P) be the probability spacefor an F-valued Brownian
motion (B, ’)tR /. Let f be a real-valued square integrablefunctional on (f, if, P).
Then f can be represented as

(7) f= c + (,dB),

where c Ef and (lt)teR is a predictable H-valued process with

e Itl2ndt < .
Proof. Since H is separable so is F, hence by the Hahn-Banach theorem,

there is a countable family F c F* that separates points of F. Consider the
random variables (7,j’ dBs), where 7 e F, e R+ and let be the algebra of
real-valued random variables formed from these and the constant random
variables. Since the random variables (7, j’ dBs) are jointly Gaussian, it follows
that c L2(p) and furthermore

L2(p)

mt is said to be a locally square integrable martingale if there exists a sequence of stopping
times T. T a.s. such that mt r. is a square integrable martingale for each n.D

ow
nl

oa
de

d 
09

/1
0/

14
 to

 1
29

.2
37

.4
6.

10
0.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



1082 TYRONE DUNCAN AND PRAVIN VARAIYA

for ai R and f. Since F is separable, the family of random variables
(7,odB), 7 F, R+, generates the a-algebra -. By a result of Segal [14,
Lemma 2.1] it follows that is dense in L2(p).

Let f L2(p). There exists then a sequence g, in such that Elf g,I 2 O.
By properties of finite-dimensional Brownian motion, g, has a representation of
the form (7) (see [15]), i.e.,

(8) g. c. + <’, dB>,

where c, Eg, and (’) is a predictable process with values in some finite-
dimensional subspace L of H and with L c iF*. Since LZ(P)-convergence implies
Ll(P)-convergence it follows that c, converges to c. Furthermore the stochastic
integrals in (8) must be Cauchy; hence

ElO’ O’12n dt 0

as m, n . Since the sequence of processes (’) are predictable, there must
exist a predictable process (fit) such that

and evidently (7) is satisfied.

3. Transformation of measures. Theorem below describes how Fr6chet-
valued Brownian motion is transformed by changing the probability measure by
an absolutely continuous substitution of the measure. This result was first estab-
lished by Girsanov [16] for the case of R"-valued Brownian motion. The result
has been presented in [17] and a related result is given in [18].

THEOREM-1. Let (Bt,,P)tO,ll be an F-valued Brownian motion and let

(tt)tto, be a predictable H-valued process such that

| IGlat<oo a.s,P,(9)
d0

Define the nonnegative process (Mr, , P),to,l by

(10) M exp (d/z, dB> -} IGI2 ds

Then

(11) E(M) 1.

Suppose tkat

(12) (M,) ;
then the process (,, P)to, is an F-valued Brownian motion where

Bt Bt iO ds,
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1083STOCHASTIC CONTROL SYSTEM

and the probability measure is given by

dp M1.

Proof. Define the increasing sequence of stopping times T, by

inf{tlM > n},
T,

if the set above is empty.

Because of (9) M has (a modification with) continuous sample paths, so T, ]"
a.s. P, and in particular,

(13) lim Mt^r. Mt a.s.P.

By the main result in [19], the processes (M,) and (M, ^r.) satisfy

(14) M, + Ms(/s, dBs)

(15) M, ^T. + M(0s, dB).

Since (M, ^T.) is bounded, (15) implies that it is a martingale and hence

E(M,^T. E(MT. 1.

An application of Fatou’s lemma to this result and (13) yields (11).
From now on suppose that (12) holds, so that from (14) it follows that

(M,, , P)o,x is in fact a martingale. Let H be fixed and consider the process
(N,, o, P),t0,l, where

N, (1, ,) ( l, B,) (1, Os) ds.

The theorem will be proved once it is shown that

(16) (N,, t, P) is a martingale,

(17) /(N N[)= [/[(t- s),

where/ denotes expectation with respect to the measure P. Now to prove (16)
it is sufficient to show instead that

(18) (M,N,, , P) is a martingale.

Because suppose that (18) is true. Then using the fact that (M,, P) is a martingale,

(N,[) E(M,N,J)
(by [20, p. 345])

E(M,I)

(by (18))
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1084 TYRONE DUNCAN AND PRAVIN VARAIYA

which is equivalent to (16). Now

MtN Mr(l, Bt) M (1, d/) ds.

Applying the differentiation formula for continuous martingales 15] gives

MtNt MoNo Ms(l, dBs) Ms(l, Ps) ds

+ N dM + Ms(l, /s) ds

Msl, dBs) + gsdMs,

which clearly implies (18).
It remains to prove (17). To this end note that

(19) /(Nt2 N2I)--

and apply the differentiation formula to MtNt to obtain

MtN2t MoN N2 dM + 2 MsNs(l, dBs) 2 MsNs(l, s) ds

+ 2 NsMs(1, Os) ds + MsIll ds.

Substitution of this into (19) gives

/(N2 N2])=

and so (17) is proved, l-I

Ill(t- s),

In many applications ofthe transformation ofmeasures technique ofTheorem
the crucial difficulty is to verify that/3(f) 1. The next result gives a sufficient

condition for/() 1. It is due to V. Beneg.

LEMMA 3 (Beneg). Let (Bt, t, P)tto,ll be an F-valued Brownian motion. Let
0Pt)t[o,ll be a predictable H-valued process such that

(20) IP(t, B)IH =< K + K’ sup IBI,
sz[O,t]

where I" is a seminorm on F and K, K’ are constants. Then there is > and
M < o, depending only on K and K’, such that

(21) E exp a (q, dBs) - ]d/si2n ds < M.

In particular,

E exp <Ps, dBs> - Iq,lH ds 1.
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STOCHASTIC CONTROL SYSTEM 1085

Proof. For any (,) denote

((O) (t, dB) - IGI ds.

Fix ($,) satisfying (20) and let

T=inf IOl ds > n

Evidently T T a.s. and let 0’ 0 ^r. Let e > 1. Let ’ B,- o[.o iO’ ds.

I01 dt <= n, it is easy to use the proof of [16, Lemma 1] to show thatSince j’ ,2

Eexp(eO")= Hence by Theorem 1 ,,
11P)tto, is a Brownian motion,

where dP" [exp (e0")] dP. Now

IO’ln --< K + K’ sup IBl
s[O,t]

so that

IBt] I/’[ + o K + K’ sup IB.I ds,
u[0,s]

sup IBI <_- sup Itl + Kt + K’ sup IB,,I ds,
ss[0,tl se[0,tl ue[0,sl

and hence by Gronwall’s inequality,

IIBII <- (eK + II/11) exp eK’,

where Ilxll supto,1 IXl. From (20), [0l2 _< 2K2 + 2K’IIBI[ 2, so that

Iq,71z as 2K2 4K’(o2Kz II/"ll =)exp 2xK’.+ +

By the differentiation formula,

E exp e(0) E exp (0@) + IGI ds

< E exp (0@")exp e-2 z)[2K22 + 4K’(02K2 + IIB"I 2)exp 2K’]

NE" exp
2-a)(4K’ exp 2K’)II"I] 21

where N is a constant and E" denotes expectation with respect to P". Since
(,,/3,) is a Brownian motion by a result of Fernique [7] there exists 7 > 0 such
that

E" exp IIB"II 2 A <

independent of n. Let > be so small that ((2 e)/2)(4K’ exp 2eK’) < 7. Then

E exp (") < NA,D
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1086 TYRONE DUNCAN AND PRAVIN VARAIYA

and so (21) follows by Fatou’s lemma. The final assertion is then immediate
because (21)implies that exp [ (ks, dBs 1/2’o I1 ds is a martingale, l-]

4. Preliminaries for optimization. The system to be controlled is represented
by the stochastic differential equation

(22) dX(t) if(t, X, u(t, S)) dt + dB(t), [0, 1],

where B is an F-valued Brownian motion, X e F is the state with Xo 0 a.s.,
and u is the control law taking values in a prespecified compact subset U F
called the control set. The functionftakes values in H and :H F is the canonical
injection. The first difficulty to be resolved is to define the solution ofthe differential
equation (22) for a large class of control laws. This is achieved in the following
manner. One starts with a process (X, , Po)to, which is an F-valued Brownian
motion. For a given control law u an F-valued process B’ is defined by

B’ X, if(s, X, u(s, X)) ds.

Next the probability measure Po is replaced by another probability measure pu
B is an F-valued Brownian motion. Thesuch that the process

process (X,, , W),to,1 is then regarded as the solution of (22) corresponding to
the control law u. To make this procedure precise the following notations and
definitions are useful.

DEFINITION 4. (a) is the linear space of all F-valued continuous functions,
denoted by z, on [0, 1].

(b) For [0, 1], is the smallest a-algebra of subsets of cg which contain
all sets of the form {z e lz(s) A}, where s [0, t] and A is a (topological) Borel
subset of F. 6e .

Throughout the remainder of this paper f is a fixed probability space with
an increasing family of a-algebras , [0, 1]. ff . It will be necessary to
consider different probability measures on the space (fL if). If Y, is a family of
measurable functions on (f, ) and if P is a probability measure on (fL if), the
stochastic process corresponding to P and the family Y will be denoted by
(Y, , P)to,. Then the same family Y generates different stochastic processes
corresponding to different probability measures. Finally let Po be a distinguished
probability measure, and let X be a distinguished family of F-valued measurable
functions on (fL ), [0, 1], such that the process (Xt, , Po)tto, is an F-
valued Brownian motion with continuous sample paths. Unless mentioned other-
wise the process X refers to this process. Also Eo will denote expectation with
respect to Po. The measure induced on
and will be called the Wiener measure on (, 6).

The following conditions are imposed on the function f in (22).
fl. f is a map from [0, 1] cg U into H and f is measurable with respect

to the product a-algebra (R) (R) u, where (’) is the family of Borel subsets
of [0, 3 (u).

I"2. For [0, I], f(t, .,. is (R) )-measurable.
t3. For (t, z) [0, 1] x cg, f(t, z,. ): U - H is continuous.
f4. There is an increasing function fo :R/ R/, and a seminorm I. on FD
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STOCHASTIC CONTROL SYSTEM 1087

such that for (t, z, u) e [0, 1] x cg x U,

If(t, z, u)lt fo(llzII),

where Ilzll max,to,1] Iz(g)l. Throughout the remainder the symbols l" and I1"
will denote the seminorms assumed here.

f5. For (t, z) e [0, 1] x cg, f(t, z, U) f(t, z, u)lu U} is a closed and convex
subset of H.

DEFINITION 5. (a) An admissible control (law) is a map u:[0, 1] x ---, U
which is (R) ,9-measurable and, further, is such that for each e [0, 1], u(t,. is
,-measurable. //denotes the set of all admissible controls.

(b) The drift corresponding to u e //is the function gu given by gu given by
g,(t, z) f(t, z, u(t, z)). {g,lu U}.

(c) For g e and positive integer n, g" is the function given by

g"(t, z) { g(t,o z) if Iz(s)l n for s e [0, t],
otherwise.

DEFINITION 6. A function 4)’[0, 1] x c H is causal if it is (R) 5-measurable and if qS(t,. is -measurable for [0, 1].
DEFINITION 7. (I) is the collection of all causal functions such that Ib(t, z)ln

--< fo( ]z 1) for (t, z) [0, 1] cg. , {b 11q(t, z)l/ _-< n for all (t, z)}.
The next result which follows immediately from [21, Lemma 1] gives a very

useful characterization of.
LEMMA 4. A causal function g is in Y/ if and only if g(t, z) f(t, z, U)for all

t Z.

DEFINITION 8. Let q5 be a causal function such that

(23) | Ic/)(t, z)lEn dt< for all z
d 0

Then ((t(b), , Po))tto,l denotes the continuous real-valued process defined by

,() ((s, x), dx) I(s, X)l ds.

Let ((O) a(). Note that (23)is always satisfied for
The problem of the existence of solutions of (22) is resolved in the following

result which follows immediately from Theorem 1.
THEOREM 2. Let u be such that

(24) Eo exp ((g.) ,
where Eo denotes expectation with respect to Po. Define the probability measure
P, by

P. exp ((gu)Po.

Then the process (B,, , P,),to,l defined by

B, X, if(s, X, u(s, X)) ds

is an F-valued Brownian motion.D
ow

nl
oa

de
d 

09
/1

0/
14

 to
 1

29
.2

37
.4

6.
10

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



1088 TYRONE DUNCAN AND PRAVIN VARAIYA

The next result shows that (24) must be satisfied by every solution of (22).
LEMMA 5. Let d? O. Let (Yt, , P)ttO,Xl be any process with continuous sample

paths such that the stochastic process (Bt, , P)tto,xl defined by

dB dY ice(t, Y)dt

is an F-valued Brownian motion. Then

exp (dp(s, Y), dBs) - Ib(s, Y)12u ds dP 1.

Proof. Define the function b. :[0, 1] x cg H by

j" (t, z) if Iz(s)l _-< n for s [0, t],
z)

0 otherwise.

From the definition of it follows that

[b.(t, Y(o))ln __< fo(n) for e [0, 1],

By Lemma 3,

exp ’(-.) dP 1,

P.(gl.) fn exp(-b.)dP fn exp((-b)dP__> e.

Since e > 0 is arbitrary, the result follows. U
COROLLARY 2. Let O and (Y, , P),[o,x satisfy the hypothesis of Lemma

5. Let v be the measure indaced by the process (Y, , P) on the measurable space

so that

where

( dp.) ( dp.(s Y) dBs) - ]dp.(s, Y)12n ds

By Theorem the process (Y.(t), ., P.),[o,, where

Y.(t) idp.(s, Y) ds + B(t),

dP. exp ((-b.)dP,

is a Brownian motion with continuous sample paths and hence induces Wiener
measure # on fig, 5). Let e > O, and n be so large that

P,,(gl,,) P.(II Y,,II < n)= ,u(z1 Ilzll < n) 1 e.

Now it is clear that Y(co)l] n only if Y()ll n and hence

Y.(co, t) Y(oo, t), .(, t) b(co, t) for co

D
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STOCHASTIC CONTROL SYSTEM 1089

(c, ). Then v is mutually absolutely continuous with respect to # and

dldv(Y(o)) exp ((-$)(o)).

Remark. This corollary implies that the solutions of (22) are unique in a
weak sense, i.e., all solutions of (22) which have continuous sample paths must
induce the same measure on ((, 5). The qualification "weak" is inserted because
only the uniqueness of the probability law has been proved.

Recall that (Xt, t, Po)tto, 11 is an F-valued Brownian motion with continuous
sample paths. Also recall Definition 8.

DEFINITION 9. For any subset A c tI) define (A) c L l(fl, if, Po) by

@(A) {exp (b)lb e A}.
The corollary to Lemma 3 implies the next assertion.
PROPOSITION 2. (O") is a bounded subset of LE(f), o, Po).
LEMMA 6. :((I)") is a closed subset of L2(fl, o, Po).
Proof. Let bl, b2, be a sequence from tI)" and let p be such that

(25) lim Eolp exp (b.)l / 0,

and

(26) lim exp (b.)= p a.s. Po-

Since Eo exp (b,)= for all n, Eop 1, and so by Proposition 1 there is a
functional such that Eo IO(t, x)12 dt < oz and

(27) p 1 + (d/(t, X), dX) a.s. Po.
0

Define the martingale Pt by

Pt Eo{Plt}, [0, 1].

By taking modifications if necessary it can be assumed that the martingales Pt
and t(b,) have continuous sample paths so that, by Doob’s inequality [10, p. 353],
it follows from (25) that

(28) Pt lim exp (t(b.) uniformly on [0, 1] a.s. Po.

Next

exp ((b,) -4- exp (t(b,)(,(t), dX(t))

so that from (25), (26),

lim Eo lexp ’(4)4(t) 0(t)l dt 0,

and hence by taking subsequences if necessary it can be assumed that

(29) 0(t) lim exp (4,)4,(t) a.s. l(R) Po,D
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1090 TYRONE DUNCAN AND PRAVIN VARAIYA

where denotes Lebesgue measure on [0, 1]. Now p > a.s. Po, because if Po(A)
Po{P 0} > 0, then (26), together with the fact that 14,lu _-< n, implies that

lim (O,(t),dX(t)) o on A.

But then

=Eofjl(dp,(t),dX(t)) <= E0 Id.(t)12 dt N2

so that to avoid the contradiction one must have p > 0 a.s. Po. It follows that

Pt > 0 a.s., and hence combining (28) and (29) gives

lim b.(t) a.s. (R) Po.

Thus there is a causal map b e q)" such that

th(t, X) lim b,(t, X) a.s. (R) Po

and evidently p exp ((b).
The proofs of the next two results are identical respectively with the proofs

of [2, Lemma 4] and [2, Thin. 2] with some obvious notational changes. Hence
the proofs are omitted.

LEMMA 7. (") is a convex subset of L2(fL , Po).
THEORE 3. Let

o {g lEo exp ((g) 1}.
Then (o:) is a closed, convex subset of L l(fL ._, Po).

5. Applications. The results developed above immediately imply the existence
of optimal control laws for a broad class of problems. Consider the control
system

dX(t) if(t, X, u(t, X)) dt + dB(t), e [0, 1],

with X(0) 0 a.s. Suppose that f satisfies the assumptions fl to f5 and in addition
the function fo in f4 satisfies assumption f6.

f6. There exists K, K’ such that fo(n) <= K + K’n for all n e R +.
Let L : R be a fixed bounded 5-measurable function. For each u e q/

the cost incurred by u is defined to be

(30) J(u) Eo[(exp (g,))L(X)] fn L(X(o))) exp (g,(o))) dPo.

THEOREM 4. Under assumptions fl to f6, there exists an optimal control u*

J(u*) <__ J(u), u eD
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STOCHASTIC CONTROL SYSTEM 1091

Proof. From Lemma 3 it follows that Eo exp (g,)= for all u q/ and
furthermore there exists > such that

sup Eo exp (g,) < .
Hence by [6, Chap. 2], () is a uniformly integrable subset of L l(fL , Po). By
Theorem 3, @() is convex and strongly closed in L l(f,,Po). So that by
[6, Chap. 2] () is weakly compact in L l(f, , Po). Hence the linear functional
exp (gu) EoL(X) exp (gu) attains a minimum.

In a manner corresponding exactly to the argument developed in [2], the
results presented above can be used to obtain the existence of a saddle point for
a class of two-person zero-sum games. Since there is nothing new here the details
are omitted.

As an example of the class of the Brownian motions described here let
(B,,0,,)to, 112 be a biadditive Gaussian process, i.e., a zero mean Gaussian process
with independent increments in each coordinate of the index set such that

E[B(tl,Z)B(t2, "/72)]--(/71 A tz)(Z A q72).

This stochastic process has continuous sample paths and when it is considered
as indexed by one coordinate of the index set, it is a Brownian motion with values
in the Banach space of continuous functions, C[0.1]. Optimal control results
can be obtained by the previous results for stochastic differential equations with
this Brownian motion.

Remark on [2]. It is necessary to make the assumption of uniform integrability
of the family of densities to obtain the results in Theorems 4 and 5 of [2]. One
sufficient condition for this uniform integrability is that the growth of the drift
term is at most linear. This fact is shown by Bene [1] by verifying that the family
of densities have a bounded th. moment for some > 1.

REFERENCES

l] V. E. BENE, Existence of optimal stochastic control laws, this Journal, 9 (1971), pp. 446-472.
[2] T. DUNCAN AND P. VARAIYA, On the solutions ofa stochastic control system, this Journal, 9 (1971),

pp. 354-371.
[3] R. M. DUDLEY, J. FELDMAN AND L. LECAM, On seminorms and probabilities, and abstract Wiener

spaces, Ann. of Math., 93 (1971), pp. 390-408.
[4] L. GROSS, Abstract Wiener spaces, Proc. Fifth Berkeley Symposium on Math. Stat. and Prob.,

University of California Press, Berkeley, Calif., 1965.
5] I. E. lEGAL, Distributions in Hilbert space and canonical systems of operators, Trans. Amer.

Math. Soc., 88 (1958), pp. 12-41.
[6] P. A. MEYER, Probability and Potentials, Blaisdell, Waltham, Mass., 1966.
[7] X. FERNIQUE, IntegrabilitO des vecteurs gaussians, C.R. Acad. Sci. Paris S6r. A-B, 270 (1970),

pp. 1698-1699.
[8] E. NELSON, An existence theorem for second order parabolic equations, Trans. Amer. Math. Soc.,

88 (1958), pp. 414-429.
[9] L. GROSS, Potential theory on Hilbert space, J. Functional Analysis, (1967), pp. 123-181.

[10] J. L. DOOB, Stochastic Processes, John Wiley, New York, 1953.
I1 l] K. ITtS, Multiple Wiener integral, J. Math. Soc. Japan, 3 (1951), pp. 157-169.
[’12] N. WIENER, The homogeneous chaos, Amer. J. Math., 60 (1938), pp. 897-936.
[13] R. H. CAMERON AND W. T. MARTIN, Transformation of Wiener integrals under a general class of

linear transformations, Trans. Amer. Math. Soc., 58 (1945), pp. 184-219.
14] I. E. lEGAL, Tensor algebras over Hilbert space I, Ibid., 81 (1956), pp. 106-134.D

ow
nl

oa
de

d 
09

/1
0/

14
 to

 1
29

.2
37

.4
6.

10
0.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



1092 TYRONE DUNCAN AND PRAVIN VARAIYA

[15] H. KUNITA AND S. WATANABE, On square integrable martingales, Nagoya Math. J., 30 (1967),
pp. 209-245.

16] I. V. GIRSANOV, On transforming a certain class of stochastic processes by absolutely continuous
substitution ofmeasures, Theor. Probability Appl., 5 (1960), pp. 285-301.

[17] T. E. DUNCAN, Transforming Frdchet-valued Brownian motion by absolute continuity of measures,
unpublished.

18] A. BENSOUSSAN, Gdndralization du thdorbme de Girsanov, to appear.
[19] C. DOLIANS-DADE, Quelques applications de la formule de changement de variables pour les

semimartingales, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 16 (1970), pp. 181-194.
[20] M. LolvE, Probability Theory, 2nd ed., Van Nostrand, Princeton, N.J., 1960.
[21] V. E. BENE, Existence of optimal strategies based on specified informationfor a class of stochastic

decision problems, this Journal, 8 (1970), pp. 179-188.

D
ow

nl
oa

de
d 

09
/1

0/
14

 to
 1

29
.2

37
.4

6.
10

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p


