

Phylogeography and MetaCommunity

Jeff Cavner, Jim Beach, Aimee Stewart, CJ Grady Informatics, Biodiversity Institute, KU

LmSDM: Species Distribution Modelling

Kirtland's Warbler Range

Lifemapper Qgis plugin

Component Design

LmRAD: Presence Absence Matrix (PAM)

Multi-species analyses and visualizations

It's that moment they told us about when matrix algebra would save our lives

	NAME	ALGEBRAIC DEFINITION	LINEAR ALGEBRA
1	Whittaker's multiplicative beta	$\beta_{W} = \frac{1}{\overline{\varpi}^{*}}$	$\beta_{W} = \frac{SN}{Trace(\mathbf{\Omega})}$
2	Lande's additive beta	$\beta_{\mathcal{A}} = S(1 - 1/\beta_{W})$	$\beta_{A} = S[1 - \frac{Trace(\Omega)}{SN}]$
3	Legendre's beta	$\beta_L = SS(\mathbf{X}) = SN / \beta_W - \left(\sum_{j=1}^s \omega_j^2\right) / N$	$\boldsymbol{\beta}_{L} = Trace(\boldsymbol{\Omega}) - \boldsymbol{\varphi}^{T} 1_{N}$
4	Range-richness of a species	$\Psi_i = \sum_{j=1}^N \delta_{i,j} \alpha_j$	$\boldsymbol{\Psi} = \mathbf{X}\boldsymbol{\alpha} = \boldsymbol{\Omega}1_{s}$
5	Per-site range size of a locality	$\varphi_j = \sum_{i=1}^{S} \delta_{i,j} \omega_i$	$\boldsymbol{\varphi}^T = \boldsymbol{\omega}^T \mathbf{X} = 1_N^T \mathbf{A}$
6	Matrix of covariance of composition of sites	$\Sigma_{siles}(j,k) = \frac{1}{S} \sum_{l=1}^{S} \delta_{j,l} \delta_{k,l} - \frac{\alpha_j \alpha_k}{S^2}$	$\boldsymbol{\Sigma}_{sites} = \frac{1}{S} \mathbf{A} - \boldsymbol{\alpha}^* (\boldsymbol{\alpha}^*)^T$
7	Matrix of covariance of ranges of species	$\Sigma_{sps}(h,i) = \frac{1}{N} \sum_{j=i}^{N} \mathcal{S}_{i,j} \mathcal{S}_{h,j} - \frac{\varpi_i \varpi_h}{N^2}$	$\boldsymbol{\Sigma}_{species} = \frac{1}{N} \boldsymbol{\Omega} - \boldsymbol{\omega}^* (\boldsymbol{\omega}^*)^T$
8	Mean composition covariance	$\alpha_j^* = \frac{\tau_j}{\overline{\varphi}_j^* - \beta_W^{-1}}$	$\overline{\boldsymbol{\tau}} = \frac{1}{NS} \boldsymbol{\varphi} - \boldsymbol{\beta}_{W}^{-1} \boldsymbol{\alpha}^{*}$
9	Mean range covariance	$\alpha_j^* = \frac{\tau_j}{\overline{\varphi}_j^* - \beta_W^{-1}}$ $\omega_i^* = \frac{\overline{\rho}_i}{\overline{\psi}_i^* - \beta_W^{-1}}$	$\overline{\boldsymbol{\rho}} = \frac{1}{NS} \boldsymbol{\Psi} - \boldsymbol{\beta}_{W}^{-1} \boldsymbol{\omega}^{*}$
10	Schluter sites- composition covariance	$V_{sttes} = \frac{\overline{\varphi}^* - S / \beta_W^2}{1 / \beta_W - \overline{\psi}^* / N}$	$V_{sites} = \frac{1^T \boldsymbol{\Sigma}_{sites} 1}{Trace(\boldsymbol{\Sigma}_{sites})}$
11	Schluter species- ranges covariance	$V_{sps} = \frac{\overline{\psi}^* - N / \beta_W^2}{1 / \beta_W - \overline{\varphi}^* / S}$	$Vsps = \frac{1^T \Sigma_{sps} 1}{Trace(\Sigma_{sps})}$
12	Wright & Reeves' nestedness	$N_{C} = \frac{1}{2} \sum_{j=1}^{S} \omega_{j}(\omega_{j} - 1)$ $= \frac{1}{2} (N\overline{\varphi} - \frac{S}{N} \frac{1}{\beta_{W}})$	$N_c = \frac{1}{2} \left(N \mathbf{\Phi}^T 1 - \frac{S}{N} \frac{1}{\beta_{W}} \right)$
13	Stone & Roberts C-score	$C = \frac{2}{S(S-1)} \left[\sum_{i=1}^{S} \sum_{h < i} (\omega_i - \omega_{i,h}) (\omega_h - \omega_{i,h}) \right]$	$C' = 1^{T} \left[\left(\frac{ns}{\beta_{W}} \right)^{2} - 2\boldsymbol{\omega}^{T} \boldsymbol{\Psi} - \boldsymbol{\Omega} \odot \right]$

Covariance in interactive plot show biogeographic patterns

Similarity of Sites

Degree of Co-Occurrence

Phylogenetic Diversity Across Transition Zones

Using PAMs for Predicting Patterns of Diversity

Mapping Diversity across a Species' Range

Phylogenetic Diversity P(D)Community Assembly

Community

Phylogenetic clustering

Mean pair-wise distance between all species in a community

Mean distance to nearest taxon for each species in the community

Phylogenetic evenness

Grand Integration: Phylogeny, Biogeography, Diversity

Finish