Lifemapper

Phylogeography and MetaCommunity

Jeff Cavner, Jim Beach, Aimee Stewart,
CJ Grady
Informatics, Biodiversity Institute, KU

Lifemapper

LmSDM: Species Distribution Modelling

Lifemapper

Kirtland's Warbler Range

Lifemapper

Lifemapper Qgis plugin

Lifemapper

Component Design

Lifemapper

LmRAD: Presence Absence Matrix (PAM)

Sites

$$
\left[\begin{array}{lllllllllllll}
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right.
$$

Multi-species analyses and visualizations

Lifemapper

It's that moment they told us about when matrix algebra would save our lives

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & & \\
a_{21} & a_{22} & \cdots & \\
& \vdots & & \\
& & & a_{k n}
\end{array}\right) *\left(\begin{array}{ccc}
b_{11} & b_{12} & \\
b_{21} & b_{22} & \ldots \\
\vdots & \vdots & \\
& & b_{m j}
\end{array}\right)=\left(\begin{array}{cccc}
\sum_{k=1}^{m} a_{k j} * b_{k 1} & \sum_{k=1}^{m} a_{k k} * b_{k 2} & & \sum_{k=1}^{m} a_{k j} * b_{k j} \\
\sum_{k=1} a_{2 k} * b_{k 1} & \sum_{k=1}^{m} a_{2 k} * b_{k 2} & \ldots & \\
\vdots & & & \\
\sum_{k=1}^{m} a_{n k} * b_{k 1} & \sum_{k=1}^{m} a_{n k} * b_{k 2} & & \sum_{k=1}^{m} a_{n k} * b_{k j}
\end{array}\right)
$$

Lifemapper

	NAME	ALGEBRAIC DEFINITION	LINEAR ALGEBRA
1	Whittaker's multiplicative beta	$\beta_{W}=\frac{1}{\bar{\omega}^{*}}$	$\beta_{W}=\frac{S N}{\operatorname{Trace}(\boldsymbol{\Omega})}$
2	Lande's additive beta	$\beta_{A}=S\left(1-1 / \beta_{W}\right)$	$\beta_{A}=S\left[1-\frac{\operatorname{Trace}(\boldsymbol{\Omega})}{S N}\right]$
3	Legendre's beta	$\beta_{L}=S S(\mathbf{X})=S N / \beta_{W}-\left(\sum_{j=1}^{s} \omega_{j}^{2}\right) / N$	$\beta_{L}=\operatorname{Trace}(\boldsymbol{\Omega})-\boldsymbol{\varphi}^{T} \mathbf{1}_{N}$
4	Range-richness of a species	$\psi_{i}=\sum_{j=1}^{N} \delta_{i, j} \alpha_{j}$	$\boldsymbol{\psi}=\mathbf{X} \boldsymbol{\alpha}=\boldsymbol{\Omega} \mathbf{1}_{s}$
5	Per-site range size of a locality	$\varphi_{j}=\sum_{i=1}^{s} \mathcal{S}_{x, j} \omega_{i}$	$\boldsymbol{\varphi}^{T}=\boldsymbol{\omega}^{T} \mathbf{X}=\mathbf{1}_{N}^{T} \mathbf{A}$
6	Matrix of covariance of composition of sites	$\Sigma_{\text {states }}(j, k)=\frac{1}{S} \sum_{l=1}^{S} \delta_{j, l} \delta_{k, l}-\frac{\alpha_{j} \alpha_{k}}{S^{2}}$	$\Sigma_{\text {stres }}=\frac{1}{S} \mathbf{A}-\boldsymbol{\alpha}^{*}\left(\boldsymbol{\alpha}^{*}\right)^{T}$
7	Matrix of covariance of ranges of species	$\Sigma_{s p a s}(h, i)=\frac{1}{N} \sum_{j=i}^{N} \delta_{x, j} \delta_{h, j}-\frac{\omega_{i} \omega_{h}}{N^{2}}$	$\Sigma_{\text {species }}=\frac{1}{N} \mathbf{\Omega}-\omega^{*}\left(\omega^{*}\right)^{T}$
8	Mean composition covariance	$\alpha_{j}^{*}=\frac{\tau_{j}}{\bar{\varphi}_{j}^{*}-\beta_{W}^{-1}}$	$\overline{\boldsymbol{\tau}}=\frac{1}{N S} \boldsymbol{\varphi}-\beta_{W}^{-1} \boldsymbol{\alpha}^{*}$
9	Mean range covariance	$\omega_{i}^{*}=\frac{\bar{\rho}_{i}}{\bar{\psi}_{i}^{*}-\beta_{W}^{-1}}$	$\overline{\boldsymbol{\rho}}=\frac{1}{N S} \boldsymbol{\psi}-\beta_{W}^{-1} \omega^{*}$
10	Schluter sitescomposition covariance	$V_{\text {stres }}=\frac{\bar{\varphi}^{*}-S / \beta_{W}^{2}}{1 / \beta_{W}-\bar{\psi}^{*} / N}$	$V_{\text {stivs }}=\frac{\mathbf{1}^{T} \Sigma_{\text {stites }} \mathbf{1}}{\operatorname{Trace}\left(\Sigma_{\text {stias }}\right)}$
11	Schluter speciesranges covariance	$V_{\text {sps }}=\frac{\bar{\psi}^{*}-N / \beta_{W}^{2}}{1 / \beta_{W}-\bar{\varphi}^{+} / S}$	$V s p s=\frac{\mathbf{1}^{T} \Sigma_{\text {sps }} \mathbf{1}}{\operatorname{Trace}\left(\Sigma_{s p s}\right)}$
12	Wright \& Reeves' nestedness	$\begin{aligned} N_{C} & =\frac{1}{2} \sum_{j=1}^{S} \omega_{j}\left(\omega_{j}-1\right) \\ & =\frac{1}{2}\left(N \varphi-\frac{S}{N} \frac{1}{\beta_{W}}\right) \end{aligned}$	$N_{C}=\frac{1}{2}\left(N \boldsymbol{\varphi}^{T} \mathbf{1}-\frac{S}{N} \frac{1}{\beta_{W}}\right)$
13	Stone \& Roberts C-score	$C=\frac{2}{S(S-1)}\left[\sum_{i=1}^{S} \sum_{h<1}\left(\omega_{i}-\omega_{i, h}\right)\left(\omega_{h}-\omega_{i, k}\right)\right]$	$C^{\prime}=\mathbf{1}^{T}\left[\left(\frac{n s}{\beta_{W}}\right)^{2}-2 \boldsymbol{\omega}^{T} \boldsymbol{\psi}-\boldsymbol{\Omega} \odot\right.$

Lifemapper

Covariance in interactive plot show biogeographic patterns

Lifemapper

Similarity of Sites

© (Range Diversity Plot

Sites Plot

Lifemapper

Degree of Co-Occurrence

Lifemapper

Phylogenetic Diversity Across Transition Zones

 \title{
Lifemapper
}
 \title{
Lifemapper
}

Using PAMs for Predicting Patterns of Diversity

Lifemapper

Mapping Diversity across a Species' Range

Lifemapper

Phylogenetic Diversity P(D)Community Assembly

Phylogenetic Distances

D	D	E	F
	0.00	0.05	0.16
E	0.05	0.00	0.16
F	0.16	0.16	0.00

Mean pair-wise distance between all species in a community
Mean distance to nearest taxon for each species in the community

Community

Phylogenetic clustering

Phylogenetic evenness

Lifemapper

Grand Integration: Phylogeny, Biogeography, Diversity

Lifemapper

Finish

