Modeling the Impact of Agricultural Terrace Walls on Spatial Patterns of Erosion and Landscape Evolution

Jennifer Glaubius
Department of Geography
University of Kansas
1. Implement terrace walls within a landscape evolution model

2. Test the impact of human intervention with the terrace walls
 a. Interval between checking the wall for maintenance
 b. Time since abandonment of terraced land
Model

Landscape evolution model from Chen et al. (2014); implemented in Python using Landlab components (Tucker et al. 2013)

- Eq. 57: Water transport and conservation
- Eq. 58: Terrain elevation change
- Eq. 59: Sediment transport and conservation

Terrace wall elevation added to DEM
Simulations

- Synthetic hill with 20% slope
- 1.0 m high terrace added
- 100 years of simulated time
- Rainfall distribution; runoff coefficient of 0.1

Human intervention scenarios:
- Maintenance check interval
 - 1 or 4 years
- Time until land abandonment (end of maintenance)
 - 0, 20, 50, or 100 years
Results and Conclusions

1. Implement terrace walls within a landscape evolution model (LEM)
2. Test the impact of human intervention with the terrace walls
 a. Interval between checking the wall for maintenance
 b. Time since abandonment of terraced land
Results and Conclusions

1. Implement terrace walls within a landscape evolution model (LEM)
2. Test the impact of human intervention with the terrace walls
 a. Interval between checking the wall for maintenance
 b. Time since abandonment of terraced land
Results and Conclusions

1. Implement terrace walls within a landscape evolution model (LEM)

2. Test the impact of human intervention with the terrace walls
 a. Interval between checking the wall for maintenance
 b. Time since abandonment of terraced land
Future Directions

Calibrate the model for Walnut Gulch Experimental Watershed (WGEW) in southern Arizona

Modify model for stone terrace walls

Comments or Questions?
jen.glaubius@ku.edu