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LIPSCHITZIAN SOLUTIONS OF PERTURBED NONLINEAR
PROGRAMMING PROBLEMS*

B. CORNETf AND J.-PH. VIALf

Abstract. We prove that if a second order sufficient condition and a constraint regularity assumption
hold, then for sufficiently small perturbations of the constraints and the objective function, the set of local
minimizers reduces to a singleton. Moreover, the minimizer and the associated multipliers are Lipschitzian
functions of the parameter.
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1. Introduction. This paper deals with the stability of solutions and multipliers of
nonlinear programming problems when the data are subjected to small perturbations.
In order to formulate the problem, we introduce an open subset U of Rn, a metric
space P, functions f and g from U x P to R and m and a nonempty closed subset Q
of ’. The problem of interest is then:

minimize f(x, a),
P(a)

subject to g(x, a) Q,

where x is the variable in which the minimization is done and a a perturbation
parameter which belongs to P and which remains fixed in the minimization problem.

We are interested in the behavior of local minimizers of P(a) when the parameter
a varies. Our main result can be informally stated as follows. Under a set of assumptions
dealing with (i) the smoothness of the functions f and g, (ii) the regularity of the
constraints at (, 6), (iii) the weak convexity of the set Q and (iv) a strong sufficient
second-order condition at (, c), it is shown that, for small perturbations of the
parameter 6, the solution of P(6) persists and is in Lipschitzian dependence with
respect to the parameter. The importance of this Lipschitz property should be appreci-
ated in the light of recent developments of calculus for Lipschitzian mappings (Clarke
(1975), Rockafellar (1981)).

The above formulation ofproblem P(a) allows us to take into account the classical
nonlinear programming problem with equality and/or inequality constraints, i.e.,
Q= {0}"’ x (-R’2) for nonnegative integers ml and mE. The consideration of more
general sets Q in P(a) is motivated by the following property of weakly convex sets,
a class of sets introduced by Vial (1983) (see also Cornet (1981)), which includes as
special cases, convex subsets of Rm and twice continuously ditterentiable submanifolds
of N" with or without a boundary. Let Q be a nonempty closed subset of N" and let
a be in R’; then the set of projections of a on Q, denoted r(a)=
{x Q IIx-11 -< IIx’-11, for all x’ in Q}, clearly is the set of solutions of problem
P(a) for well chosen mappings f and g. An important property of weakly convex sets
is that the mapping 7r is single-valued and Lipschitzian on a neighborhood of Q. Our
main theorem generalizes the known results for problems with equality and/or
inequality constraints and also includes the above property of weakly convex sets.

* Received by the editors March 31, 1983, and in revised form May 1, 1985.
f CORE, 1348 Louvain-La-Neuve, Belgium.
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1124 B. CORNET AND J.-PH. VIAL

We conclude this section by indicating the link between this paper and the rest
of the literature. The standard problem with equality and/or inequality constraints has
been studied by Fiacco and McCormick (1968), Robinson (1974), Fiacco (1976). The
basic feature of these articles is that, under the strict complementarity slackness
assumption, it is proved, using the standard implicit function theorem, that the station-
ary points (i.e., points that satisfy the first order necessary condition for optimality),
and their associated multipliers are differentiable.

The strict complementarity slackness assumption has been removed, in the case
of equality and/or inequality constraints by Robinson (1980), Kojima (1980), Jittorn-
trum (1984) and in the case where Q is a closed convex subset ofR by Cornet-Laroque
(1986) (see also Cornet-Laroque (1980), Cornet (1981)) and J.-P. Aubin (1981) when
the constraints are linear. In these cases, under a somewhat stronger second order
sufficient condition, a similar result is shown to hold, namely that the stationary points
and associated multipliers are (locally) Lipschitzian mappings of the perturbation. The
main tool for these analyses are generalizations of the standard implicit function
theorem; for example Robinson (1980) proves a general implicit theorem for "general-
ized equations" (i.e. ofvariational inequalities), Cornet-Laroque (1986) use a generaliz-
ation of the implicit function theorem in the case of Lipschitzian mappings due to
Clarke (1976) (see also Auslender (1983)) and J.-P. Aubin (1981) a generalization of
it in the case of convex processes.

Our approach in the present paper is different from the previous ones. It is direct
in the sense that no implicit function theorem or generalization of it is used. We are
able to show the local persistence of a local minimizer of our problem and next the
Lipschitzian dependence with respect to the parameter a. The first step owes much to
a result of Robinson (1982). Finally we shall mention the work of Levitin (1975) who
made an analysis of the Lipschitz dependence of local minimizers, also by a direct
approach. However, it contains an apparent error as is pointed out in the paper of
Robinson (1982).

Our paper is organized as follows. In 2, we recall some definitions and state the
main result of the paper. We also discuss two noteworthy applications" the first deals
with the projection of points on a weakly convex set, and the second deals with the
standard nonlinear programming problem. The proof of the main theorem is given in
3.

2. Statement of the main theorem and some consequences. Let us first introduce
some notations and definitions. Let x=(xi), y=(yi) be in Rq; we denote (x,y)=
"/q=l Xi "Yi, the scalar product of q, and Ilxll-- x, the Euclidean norm. Let A be
a nonempty subset of and let x be in ; we denote d(x)-inf{lla-xHlaA},
B(A, e)= {x qldA(X) e} and B(A, e)= {x qldA(X)_--< e}. Let Q be a subset of
and let x be in Q; we recall the following definitions of Clarke (1975) of the tangent
cone To(x) and the normal cone No(x) to Q at x,

To(x {v ’lfor all sequences {Ok}C (0, ) and {Xk}C Q such that Ok -0,

Xk -- X, there exists a sequence {Vk}- V such that, for all k, Xk + OkVk Q},

No(x --{7 ml(7, v--<_0, for all z To(x)}.
DEFINITION 1. A subset Q of R" is said to be weakly convex, with constant p _-> 0,

at an element yO in t, if there exists e 0 such that, for all yl, y2 in t B(y, e) and
for all A 2 No(y2)/(0, 1), one has

P yl
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LIPSCHITZIAN SOLUTIONS OF PROGRAMMING PROBLEMS 1125

It is possible to give the following geometric interpretation of weakly convex sets,
of constant p > 0. Let Q be such a set and let X t f’) B(y, e) with Yo t. Then for
all xX and l No(x)f’lB(O, 1)(=Nx(x)f’lB(O, 1)),

X f"l B(x + p-’rl, p-’ll, II) .
For r/# O, one could view B(x + p-lrl, p-llrlll) as a "supporting ball," very much

in a sense analogous to a supporting hyperplane for a convex set. In this terminology,
if a set is weakly convex at yO, one can exhibit a "supporting ball" at each point of
the boundary of the set in a neighborhood of yO. Note that the radius of the "supporting
ball" is fixed in the given neighborhood. Clearly, a convex subset Q of R is weakly
convex with respect to any constant p >=0. We refer to Cornet (1981), Vial (1983) for
other examples of weakly convex sets (such as C2 submanifolds in R" with or without
a boundary) and/or for properties of weakly convex sets.

We posit the following assumptions, which describe the general framework of the
paper.

Assumptions A.0
(i) U is an open subset of R"; P is a metric space endowed with a distance d;
(ii) the functions f(.,. and gi(’," ), 1,. , m, are locally Lipschitzian from

UxPto;
(iii) for all a P, the functions f(., a) and gi(., a), i= 1,..., m, are twice

continuously differentiable from U to ;
(iv) the mappings Vf(.,. and Vg(.,. ), i- 1,..., m, of first partial derivatives

with respect to the first argument, are locally Lipschitzian from U x P to ";
(v) the mapping D2f(., and DEg(., of second order derivatives with respect

to the first argument, are continuous;
(vi) m- ml / mE, where ml and mE are nonnegative integers; C is a nonempty

closed subset of R" and Q {0}" x C (with the convention that Q- {0} if

m=0and Q-Cifml-0).
We consider the following perturbed nonlinear programming problem:

minimize g(x, a),

P(a) subjectto g(x, a) Q,

x U,

where g(x, a) is the vector in R" with coordinates g(x, a), 1,..., m, x is the variable
in which the minimization is done, and a P is a perturbation term which remains
fixed in the minimization problem. Note that it is possible to rewrite the constraints
as follows. For all (x, a) in U x P, let g(x, a) (resp. g(x, a)) be the vector in "(resp. ’2) with coordinates g(x, t), 1,. , m (resp. m + 1,. , m). Then x
satisfies the constraints of P(a) if and only if:

g(x,a)=0 and g(x,a)C, xU.

With P(a), we associate the following "generalized equation":

Vf(x, a)+ E A,Vg,(x, a)=0,
i=1

(2.1)
g(x, a) Q and ;t =(A,) No(g(x, a)).

We shall be concerned with pairs (x, a) U x P such that x is a local minimizer of
P(a). If we further assume that"
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1126 B. CORNET AND J.-PH. VIAL

Assumption A.1. The gradients Vgi(x, a), 1, , m, are linearly independent,
then we shall prove later (Lemma 3.1) that there exists )t oR such that (x, a, A)
solves (2.1). In other words, (2.1) is the first order necessary condition associated with
P(a). For such a triplet we posit the following two assumptions"

Assumption A.2. Q is weakly convex with constant p >_-0 at g(x, a). (Note that
it would be equivalent to replace the above statement by "C is weakly convex with
constant p >- 0 at g (x, a).’’)

Assumption A.3. There exist real numbers a >_- 0 and c > 0 such that, for all h
one has

D2f(x, a) +
i=,

hiD gi(x a h, h/)
+ a(Vf(x, a), h)+ a , (Vg,(x, a), h)2_-> cllhl[ 2.

i=1

Note that the index in the first sum runs from 1 to m m + m2 and from 1 to m
in the second. (A.3) clearly implies the more familiar assumption:

Assumption A.3’. For all hRn, h0, such that (Vf(x,a),h)=O and
(Vgi(x, a), h) 0, 1,. , ml, one has

o 2 a) h,h )>0.D:f(x, a) + E AiD g,(x,
It is an immediate consequence of a lemma of Debreu (1952) that (A.3’) implies

(A.3). Thus the two assumptions are equivalent.
We can now state the main theorem.
THEOREM 2.1. Assume (A.0) and let (x, a o, ho) U x P x R" satisfy (A.1), (A.2),

(A.3). Further, assume that the constants p >-_ 0 and c > 0 satisfy
Assumption A.4. c > ht[[Dg,(x, O0) 112, where h/= (hm + 1,""", h,,).
Then, if (x, a, )to) satisfies condition (2.1), there exist neighborhoods U’ of x in

U, V’ ofa in P and mappings x( V’ U’, h (.) V’ " such that:
(i) x(. and h(.) are Lipschitzian;
(ii) x(a) x and h(a) )t;
(iii) for all a in V’, x(a) is the unique minimizer of P(a) in U’ and h (a) is the

unique Kuhn- Tucker multiplier associated with x(a (i.e., (x(a ), h (a)) satisfies
condition (2.1)).

The proof of Theorem 2.1 is given in the next section.
Remark 1. Assumption (A.1) cannot be relaxed in the case of equality and/or

inequality constraints (i.e., when Q={0}’x(-R’)) by only assuming the
Mangasarian-Fromovitz’s constraint qualification (see Robinson (1980)).

Remark 2. If C is convex, then (A.4) is trivially satisfied (since convex sets in

" are weakly convex with constant p--0). It is worth pointing out that in the case
of equality and/or inequality constraints, (A.3) is stronger than the classical sufficient
second-order condition of Fiacco and McCormick (1968). However, Theorem 2.1 does
not hold if one replaces (A.3) by the classical second order condition as it has been
shown by Robinson (1980).

We conclude this section by discussing two noteworthy applications of Theorem
2.1. The first one deals with the projection mapping on a weakly convex subset of

Let Q be a nonempty closed subset of ". For a fixed element a in ", we consider
the following minimization problem:
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LIPSCHITZIAN SOLUTIONS OF PROGRAMMING PROBLEMS 1127

minimize 1/211x-ll =,
subject to x e Q,

and we denote by 7r(a) the set of its solutions. Any element of r(a) is called a
projection of a on Q. The next proposition gives some properties of the (multi-valued)
mapping a- 7r(a) when Q is assumed to be weakly convex.

COROLLARY 2.2. Let (x, ao) , x" be such that x is a local minimizer ofR(a).
Assume that Q is weakly convex with constant p >- 0 at x and that 1 > p IIx- all. Then,
there exist neighborhoods U’ of x, V’ ofa and a Lipschitzian mapping x(. ): V’ U’
such that x(ao) xo and, for all a V’, x(a) is the unique minimizer of R(a) in U’.

Proof. It is a trivial matter to check that (A.1) and (A.3) are satisfied with c 1
and that the Kuhn-Tucker multiplier A associated with x satisfies )t o= -(x- a).
Thus (A.4) reduces to 1 c > pllx-all. Hence the result.

Remark 3. When m 0, we give here an example showing that the inequality in
(A.4) is the best possible. Let Q= {x   lllxll -> 1); clearly, Q is weakly convex at
every element x in Q, with constant p 1. If a 0, let /x =max {1, then
x=a is the unique minimizer of R(a). Since the hypotheses of Corollary 2.2 are
satisfied at x, the conclusion of the corollary holds. However, if a= 0, any x such
that IIxll- 1 is a minimizer of R(a). Obviously, 1= pllx-ll; hence Assumption
(A.4) is violated and one easily sees directly that the conclusion of Corollary 2.2 cannot
hold.

The second application deals with standard nonlinear programming. Assume A.0
and assume furthermore that Q {0}", x (_,2) (i.e., in (vi) of (A.0), C _,2). We
consider the standard perturbed nonlinear programming problem:

s()

minimize f x, a ),

subject to gi(x, a) O, 1,. , ml,

gi(x, a)_--<0, i= ml + 1," ", m,

xU.

With S(a), we associate the first order necessary conditions:

ml+m
Vf(x, a)+ ., A,Vg,(x, a)=0,

i=1

(2.2) g,(x, a) =0, i= 1,..., ml,

g,(x,a)<--O, A,-->0, A,g,(x,a)=O, i=m+l,...,m+m2.

In the case of standard nonlinear programming, Assumptions (A.2) and (A.4) are
satisfied, since Q {0}m x (-+) is convex. We give. now a consequence of Theorem
2.1, where the Assumptions (A.1) and (A.3) are weakened. First, let us introduce the
following notation: for (x, a) U x P, satisfying the constraints of S(a), we let I(x, )
{i {m + 1, , m}[g(x, ) =0} be the set of active inequality constraints.

COROLLARY 2.3. Assume (A.0) and let (x, o, Ao) UxPx be such that:
(C.1) the vectors Vg(x, a), i {1,..., ml}U I(x, o), are linearly independent;
(C.2) for all h ", h O, satisfying (Vf(x, a), h) 0 and (Vg,(x, ao), h) O,

{1,..., m}{i I(x, a)lA>0}, then

DZf(x,a)+ A ziD gi(x,a) h,h >0.
i=1
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1128 B. CORNET AND J.-PH. VIAL

Then, if (x, a, A o) satisfies condition (2.2), there exist neighborhoods U’ ofx in
U, V’ ofs in P and mappings x(. )" V’ U’, A (.)" V’ R such that"

(i) x(. and A (.) are Lipschitzian;
(ii) x(so) xo and A (so) A o;
(iii) for all s V’, x(s) is the unique minimizer of S(s) in U’ and A(s) is the

unique Kuhn- Tucker multiplier associated with it (i.e., (x(s), A (s)) satisfies
condition (2.2)).

The proof of Corollary 2.3 is given in the next section.

3. Proofs. We prepare the proofs of Theorem 2.1 by several lemmas. Some of
them are more or less known. However the entire proofs are given for the sake of
completeness. Our first lemma says that it is sufficient to prove Theorem 2.1 with
Assumption (A.3) replaced by the stronger one

Assumption A.3. bis. There exist real numbers a _-> 0, c > 0 such that for all h Rn
one has

oEf(x,s)h/ _, AO2g,(x,s)h,h /a (Vg,(x,),h)E>-cllhll,
i=1 i=1

(i.e. in (A.3.bis) the term a(Vf(x, s), h)2 which appears in (A.3) has been removed.
LEMMA 3.0. IfTheorem 2.1 is true when (A.3) is replaced by the stronger Assumption

(A.3 bis then it is also true under Assumption A.3 ).
Proof. Let us assume that the weak form ofTheorem 2.1 holds (i.e. with Assumption

(A.3) replaced by (A.3bis)). We show that Theorem 2.1 also holds. Let (x, s, A)
U x P xa satisfy Assumptions (A.0), (A.1), (A.2), (A.3), (A.4) together with the
necessary conditions (2.1) associated with the problem:

minimize f(x, s

P(s) subject to g(x, s) Q,

xU.

We now associate to all s P the following modified problem"

minimize v

subject to f(x, s v 0,
15(s)

g(x, s) Q,

(v, x)x U.

Clearly (v, x) is a solution of (s) if and only if x is a solution of (s) and
v =f(x, s). Moreover at this solution [(v, x), (/x, X)] satisfies the necessary conditions
(2.1) associated with (s) if and only if/z 1, (x, A) satisfies the necessary conditions
(2.1) associated with P(s) and v =f(x, s).

Hence ((v, x), (1, A)), with v=f(x, s) satisfies the necessary conditions (2.1)
associated with (s). From the fact that (x, s,A) satisfies Assumptions (A.0),
(A.1), (A.2), (A.3) and (A.4) for problem (s) one deduces that ((v,x), (1,,X))
satisfies Assumptions (A.0), (A.1), (A.2), (A.3bis) and (A.4) for problem (s).
Applying the weak form of Theorem 2.1 to ((v,x), (1, A)) and using the above
equivalence property between (s) and (s) one deduces the end of the proof of
Lemma 3.0.

In the sequel we shall assume that (x, s, A) satisfies (A.0), (A.1), (A.2), (A.3bis)
and (A.4).
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LIPSCHITZIAN SOLUTIONS OF PROGRAMMING PROBLEMS 1129

LEMMA 3.1. There exist neighborhoods U1 ofx, U1 c U, V1 ofa such that, for all
c V1, if x U1 is a local minimizer of P(c), then there exists A (Ai) R" such that
(x, A) satisfies the first order necessary conditions at a, i.e.,

Vf(x, or)+ , A,Vg,(x, a)=0,
i=1

g(x, a)e Q and A No(g(x, a)).

Proof. Since by (A.1) the gradients Vg(x, a), i{1,... ,m} are independent
from (A.0), there exist neighborhoods U1 of x, U1 c U, V of cr such that, for all
(x, a)e Ulx V, the vectors Vg(x, a), ie{1,..., m}, are independent. In the sequel
of this proof, since a is fixed, there is no ambiguity denoting f(x, a), Vf(x, a),...,
simply by f(x), Vf(x), .

Let X {x e Ulg(x) Q}. If x is a local minimizer of P(cr), from Clarke (1975),
for all v Tx(x) one has (-Vf(x), v)<_-0. Hence from Rockafellar (1970, Cor. 16.3.2),
it is sufficient to prove that the following inclusion holds"

{u a"lDg(x)u To(g(x))}c Tx(x).

Indeed, let u " be such that Dg(x)u To(g(x)) and let { 0} c (0, o), {x} c X
be sequences such that 0- 0 and x- x. From the definition of the tangent cone it
is sufficient to show that there exists a sequence {u}c ’, such that u- u and, for
all q, xq + Ou’ X. Let v Dg(x)u, then v To(g(x)). Since, for all q, g(x’) Q, and
g(x)- g(x), there exists a sequence {}cm such that, for all q, g(x)+0%’ Q
and v- v. We can choose vectors bm+," ", b, in " so that the vectors
Tgl(X),""", Vgm(x), bm+,’’’, bn, form a basis in ’, and we define the mapping
G" U-n by G(y) (gl(Y),""", g,,(Y), (b,,+l, y)," ", (b,, y)). Clearly, G is con-
tinuously ditterentiable, and the derivative DG(x) is nonsingular. Hence, by the inverse
mapping theorem, there exists qo such that, for q => qo, there exists q U1 satisfying"

g(q) g(xq) + Oqvq,
(bi,q)=(bi, xq)+oq(b,,u) (i=m+l,...,n),

and such that q- x. For q_-> qo, let uq- (q-xq)/oq. Recall that, for all q, g(xq)+
Oqvq Q, hence, for q >- qo, g(q) g(xq) + Oqvq Q; thus {q} X. Consequently, for
q >-qo, xq 4-Ouq= X. To end the proof of the lemma, it suffices to show that
uu. Indeed, from Taylor’s theorem, for q>-qo, one has g(a)-g(xq)

q ^q q ^q q[.o Dg(x + t(x x )) dt](x x ). Dividing by 0q > 0, one gets vq

q ^q q q[o Dg(x + t(x x )) dt]u and one easily deduces that limq_. Dg(x)u limq_,o va.
Recall that limq_. vq v Dg(x)u; hence, for all i_<- m, limq_, (Vgi(x), u q)
(Vgi(x), u). Furthermore, for all >- m + 1, (b, u) (b, (q -xq)/ 0) (b, u). Since the
vectors {Vgl(x),’’’, Vgm(X), bin+l, , b,} are independent, one deduces that u q u.
This ends the proof of the lemma.

LEMMA 3.2. For all e > 0 and all c’ (0, c), there exist positive real numbers kl, k2,
a positive real number (independent of e) and neighborhoods U2 of x, U2 U, V2 of
a, such that the two following properties are satisfied.

(a) For all (x, a), (y, fl), (x, a), (xE, a2) in UEX V2 such that g(x1, al) Q,
g(x2, cr2) Q, for all A B(A o, iS) one has"

2

e c’llx -x’ll -k llx -x lld( 
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1130 B. CORNET AND J.-PH. VIAL

(b) For all (X 1, O1), (X2, O 2) in Ua x Va, such that g(x, a) Q, g(x1, a 1) Q, for
all A2 No(g(x2, a2)) one has"

(A 2, g(x2, a 2) -g(x1, a 1))

[ P 2, a’) kEd(2, ]l[Xl[ -[l[Ogf(x, a)l+e]. IIx2-xlll=-k21lx2-xlll d( ’)2

Proo We first claim that, for all e > 0, there exist a positive real number k’ and
neighborhoods U’ of x, U’ c U, V’ of ao such that, for all (x l, a ), (x2, a) in U’x V’,
for all ie{1, ..., m} one has"

Indeed, for all e { 1, , m}, from (A.0), for all e > 0, there exist open neighbor-
hoods U’ of x, U’c U, V’ of a, such that U’ is convex, and, for all (x, a)e U’x V’,
]]Vg,(x, a)-Vg,(x,a)ll<e. Fuahermore, without any loss of generality, we can
assume that there exists a positive real number k’ such that g is Lipschitzian of constant
k’ on U’x V’. Hence, from Taylor’s theorem,

Ig,(x, ) g,(x’, l) vg,(x, )(x xl)l

g,(x2, a2)-g,(x,a2) Vg,(x+t(x-x),a)dt ,x2-x

+ Ig,(x, ) g,(x,
+ IIVg,(x+ t(xE-xl), )-Vg,(x, )11 at. IIx=-xll

0+ k’d(a 2, a)+
(a) For all c’ (0, c), let c"(c’, c). From (A.3.bis) and the continuity of the

mappings DEf(., .) and DEg(., .) (i 1,..., m), there exist neighborhoods U" of
x, U"= U, V" of a and a positive real number 3 such that, for all (x, a), (y, fl) in
U" x V", for all A B(A o, ) and all h ", one has"

D2f(x, a)+ E A,D2g,(Y, fl) h,h c"llhll=-a (Vg,(x, ), h)=.
i=1 i=1

Let e > 0 be such that c"-a.ml" e2 > c’ and let U’, V’ be the neighborhoods
associated with e in the above claim (3.1). Let U U’ U" and V2 V’ V". Recall
that, for all (x,a) Ux V such that g(x,a)Q, from (A.0.vi), for i{1,...,m},
g(x, a)=0. Hence the end of the proof follows easily from (3.1) and the above
inequality.

(b) From the weak convexity Assumption (A.2) and the continuity of the functions
g (i 1, , m), there exist open neighborhoods U" of x, U" U, and V" of a such
that, for all (x, ), (x, a) in U"x V" such that g(x k, ak) Q (k= 1,2), and for all

2 No(g(x2, a)) B(0, 1), one has"

(2, g(x:, a2)-g(xl, a))-l[g(x, =)- g(x

Take any e > 0 and let U’, V’ be the neighborhoods associated with e in the above
claim (3.1). Let U2 U’ U" and V V’ V". From (3.1) and the above inequality,
there exists k2 such that

(, g(x, )-g(x,
-e[llOg,x, )1 + ]. IIx- xll- kllx-xll, d, )-kd, ).
2
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LIPSCHITZIAN SOLUTIONS OF PROGRAMMING PROBLEMS 1131

Now letting A2No(g(x, a2)), we let h2/0 and /2=0 if
h2 =0. Since Q {0} x C, No(g(x2, a2))=R’, x Nc(g(x2, a2)) and since
Nc(g(x2, a2)) is a cone, one deduces that/2 No(g(x2, a2))f-)/(0, 1). Applying the
above inequality to 2 and noticing that

(tx 2 g(x aE)-g(x ’))= (1/II A , II)(A , g(x2 aE)-g(x

yields the inequality of Lemma 3.2(b).
LEMMA 3.3. Let us suppose that x, A o) satisfies the first order necessary condition

at a. Then there exist positive real numbers r and b such that (x, r) U and, for all
x ;(x, r) satisfying g(x, a) Q, one hasf(x, a)>-f(x, a)+ bllx-xll.

Proof For every h =(hi)R", let L(., h): U-* be the function defined by
L(x, A) =f(x, a) +i=l hg(x, a). From Taylor’s theorem, one has:

L(x, o) L(x, ; o) + (VL(x, ;t o), x x

+ (1-t)(D2L(x+ t(x-x), A)(x-x), (x-x)) dt.
o

Let p >0 be the constant of weak convexity defined by (A.2). From (A.4),
c> p[[h[]. [[Dgi(x, a)]l 2. Hence, there exist c’ (0, c) and e >0 such that, if b=
c’/2-p/2[[h[[[llDg(x, a)[[ + e]2, thenb >0. Let U2, V be the neighborhoods of x
and a associated with c’ and e in Lemma 3.2, and let r be a positive real number
such that/(x, r)c U. Since (x, a) satisfies the first order necessary condition (2.1)
at a, one deduces that VL(x, h) =0. From Lemma 3.2(a) (taking a 1= a= a), for
all x /(x, r) one deduces that:

CP
L(x, A)- L(x, A)>-_ (] t)c’llx-xll dt >-_-llx-x]l,

and, from the definition of L, one gets"

f(x, a)-f(x, a)=> (A, g(x, a)-g(x,

By Lemma 3.2(b) (taking a a2= a), for all x /(x, r) c U2, one gets:

(A, g(x, a)- g(x,  )ll +

Hence, from the two above inequalities and the definition of b, for all x /(x, r),
one has f(x, a) _f(xo, a) _>_ b[ix_ xOl12. This completes the proof.

LEMMA 3.4. Let (x, h) Ux" satisfy the first order necessary condition (2.1)
at a. Then, for every neighborhood U’ ofx, U’ U, there exist r’ > 0 and a neighborhood
V’ of a such that B(x, r’)c U’ and, for all a V’, there exists a minimizer x(a) of
P(a) in B(x, r’) (i.e.,x(a) B(x, r’), g(x(a), a) Qandforallx B(r, r), g(x, a)
Q one has f(x(a ), a <-f(x, a )).

The above lemma is related to a previous result of Robinson (1982), proved when
Q is a closed convex cone.

Proof. Let U’ be a neighborhood of x, U’c U, and let b, r be the positive real
numbers defined by Lemma 3.3. There exists a positive real number r’< r and a
neighborhood V ofa such that/(x, r’) c U’ andfis k-Lipschitzian on/(x, r’) x V.

For all a P, let F(a)= {x/(x, r’)lg(x, a) Q}. We claim that there exists a
neighborhood V of a such that, for all a in V, there exists x(a) F(a) satisfying:

f(x(a), a) <=f(x, a) for all x 6 F(a).
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1132 B. CORNET AND J.-PH. VIAL

Since f is continuous and, for all a in P, F(a) is a compact subset of n, it is sufficient
to prove that, for a in a neighborhood of a, F(a) is nonempty. Indeed, by (A.1) the
vectors Vgi(x, a), i {1,. , m}, are independent. Hence, by the implicit function
theorem (Schwartz (1967)), there exists a neighborhood V of a and a continuous
mapping o V-/(x, r’) such that o(a) x and, for all a V, one has g(o(a), a)
g(x, a) Q. This ends the proof of the claim.

We now claim that there exists a neighborhood V’ of a, V’c V, such that, for
all a e V’, the element x(a) defined before satisfies IIx(a)- xll r’. Clearly, the proof
of the claim will end the proof of the lemma. Recall that f is k-Lipschitzian on
/(x, r’)x V. Let V= Vf’lB(a,r’2b/16k) and let r/>0, q<min{r’/2, r’2b/16k}.
Then, for all x 1, x2 B(x, r’) satisfying IIx2- xlll < r/, for all a V, one has:

f(x’, a)-f(x2, a) <- k[/+ d(a, a)]<r’2b/8.

Furthermore, the multivalued mapping a --> F(a) {x /(x, r’)lg(x, a) Q},
from V to n, is upper semicontinuous, with compact values. Hence, there exists a
neighborhood V of a, Vc V, such that, for all a 6 V,, F(a)c B(F(a), r/) and
(from the continuity of ) o(a)6 B(x, l).

Let V’= V (’l V t"l V CI V. We now show that V’ satisfies the conclusion of the
lemma. Recall that, for all a V’, (a) F(a); thus, from the definition of x(a), one
deduces that:

f(p(a), a)>--f(x(a), a).

On the other hand, for all a V’, x(a)F(a)c B(F(a), /). Hence, there exists
yOe F(ao) such that Ily-x(a)ll < ,/. By Lemma 3.3, one has:

f(yO, ) >_ f(xo, o) / b[lyo_ xo[l.
Summing up the two above inequalities, for all a e V’, one gets:

blly-xll2<=f(o(a), a)-f(x, a)+f(y, a)-f(x(a), a).

Let us recall that, for a V’, IIo(a)-xll < ,/ and Ily-x(a)ll < r/. Hence, from the
above inequality and the inequality defining /, one gets blly-xll2<=r’2b/8+ r’2b/8.
Thus, Ily-xll < r’/2, and IIx(a)-xll <-IIx(a)-yll+ Ily-xll <= q+ r’/2 < r’. This
ends the proof of the claim and the proof of the lemma.

In the following, we denote by Dg(x, a)* the n x m matrix whose columns are
Vgi(x, a) (i 1,. ., m), i.e., the transpose of the m x n matrix Dg(x, a).

LEMMA 3.5. Let e be a positive real number. There exist a positive real number k3
and neighborhoods U3 of x, U3 U, V3 of a such that, for all (x, a) U3 x V3, the
matrix Dg(x, a Dg(x, a )* is nonsingular and the mapping o U X V --> m defined by

o(x, a)=[Dg(x, ot)o Dg(x, 0):]-1 Dg(x, a)Vf(x, a),

satisfies the following properties:

((X2, a2)--(O(X 1, otl)l]k3[[lx2-xlll+d(o 2, al)] forall (X 1, tl), (X2, t 2) in U3X V3;

lifo(x, a)-o(x, a)ll<-e, forall (x, a) U3x V3.

Proof. The proof is a straightforward consequence of the independence Assump-
tion (A.1), using the fact that the mappings Vf( .,. ), Vg( .,. (i 1,. ., m) are locally
Lipschitzian and that the mappings A(A A*)-lo A, defined on the set of m x n
matrices of maximal rank, is infinitely differentiable, and hence locally Lipschitzian.
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LIPSCHITZIAN SOLUTIONS OF PROGRAMMING PROBLEMS 1133

Proofof Theorem 2.1. Let c > 0, p > 0 be the constants defined by (A.2) and (A.3).
From (A.4), c > 1111" IIDg,(x, ,,)I1’. Hence, there exist c’ (0, c) and e > 0 such that

(3.2)

Let > 0 be the constant defined by Lemma 3.2; without any loss of generality,
we can suppose that e < 3. From (A.0), there exist a positive real number k and
neighborhoods Uo of x, Uo c U, Vo of a such that all the mappings g(.,. Dg(.,.
and Vf(., .) are k-Lipschitzian on UoX Vo. Furthermore, let U1, V1 (resp. U2, V2 and
U3, V3) be the neighborhoods of x and a associated, in Lemma 3.1 (resp. Lemma
3.2 and Lemma 3.5) with the constants c’ and e as defined above.

Now, by Lemma 3.4, we associate with U’= Uofl U1 f’l U2(’l U3 a positive real
number r’ and an open neighborhood 17’ of a. We take V’= Q f’l Vofq V1 ’) V2 0 V3.

Let a 1, O 2 be two elements in V’. By Lemma 3.4, there exists a minimizer of P(a 1)
(resp. P(a2)) in B(x, r’) not necessarily unique, that we denote by x (resp. x2). By
Lemma 3.1, let A R" (resp. A 2 Rm) be the Kuhn-Tucker multiplier associated with
x (resp. x2), i.e., such that (xh, A h) (h 1, 2) satisfies the first order necessary condition
at a h"

-Vf(xh, a h)= Dg(xh, t h).A h,

g(xh, ah) Q and Ah No(g(xh, ah)).

To end the proof of the theorem, it suffices to show that
and IIx =- x ll--< Kd(t2, 31), where K is a positive real number independent of the
choice of a 1, c2 in V’.

From the first part of the first order necessary condition and Lemma 3.5, for
h 1, 2, the matrix Dg(xh, a h)o Dg(xh, ah). is invertible and one deduces that:

Xh=-[Dg(xh, olh) Dg(xh, cr.h)*]-lDg(x h, ah)Vf(xh, ah)(=Cp(Xh, o/.h)),

(3.3) II,=-,’ll <- k[llx=-x’ll+ d(
(3.4)

From (3.4) and from Lemma 3.2(b), one deduces that:

[llx,ll
(3.5)

Furthermore,

(3.6)

where

> -,[llDg,(xo, )11 + l-IIx= xlll -
-2k,_llx2-x’lld(, a 1)- 2kEd(c 2, 01)2

(a2- a 1, g(x2, a2)_ g(x 1, a 1)} A + B + C,

A (A 2 a 1, g(x2, c2) g(x2, oe 1)},

B=(-A 2, g(x al)-g(x2, oel)-g(x1, a2)+g(x:, a2)},

C--(-,. 1, g(x:, al)_ g(xl, 1))q_ (_,2, g(x 1, a2)_ g(x2, c2)),
and we consider successively each one of the three terms. From (3.3), using the
Cauchy-Schwarz inequality and the fact that g is k-Lipschitzian on U’x V’, one gets:

(3.7) A<-k k3[llx=-x’ll+d(,, a’)]. d(c, a’).
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1134 B. CORNET AND J.-PH. VIAL

By (3.4) the multiplier h 2 is bounded by [[h[[ + e; hence, from Taylor’s theorem,
using the Cauchy-Schwarz inequality, one gets"

B <-[IIAII / ]llx2- xlll Dg(x2+ t(xl-xZ), a) at- Dg(x + u(xZ-x), az) du

Upon performing the change of variable 1 u in the second integral, and using the
fact that the derivative Dg(.,.) is k-Lipschitzian on U’x V’, one gets:

B<=[llAll/]llx=-xlll IlDg(x2/ t(x-x2), l)-Dg(x2/ t(x’-x2), )ll dt,

(3.8)
B kEllzll + ]llx=- xllld( =,
From Taylor’s theorem, one has:

C=<-X Dg(x1, ’)(x2-x’)>+ <-A, Dg(x, )(x’-x))
(1 t) A D2gi(x 1)+ t(x- x), dt (x- x), (x- x

2 2
X
2 2) X

2
X X

2
X(1-t) LX,Dg,( +t(x-x), at ),(

i=1

From the first order necessary condition, Taylor’s theorem, and using the fact that
f(., .) is k-Lipsehitzian on U’x V’, one gets"

(-x 1, Dg(x1, )(x:_ xl))+ (_X: Dg(x, :)(xl_ x:))
-(Vf(x:, :) Vf(x ), x:-x’)

_(Vf(x2, 2)- Vf(x2 1), X2_X1)_(Vf(x2, 1)_Vf(x1, 1), X2_ X1)

D:f(x + t(x

_
xl), 1) at (x- x), (x:- x)

One easily gets (by performing the change of variable 1 u) that"

f(x+(x-x,lat= (-uf(x+u(x-x,u.

Hence

DZf(x+t(xZ-x),al)dt (1-t)D-f(x+t(xZ-x),a)dt

+ (1-u)DZf(xZ+u(xl-x2), o 1) du.

From (3.4), A h /(Ao, 5) (h 1, 2). Hence, from Lemma 3.2(a) and the above equalities
and inequalities

C kd(a, I)IIX2--XIII

(3.9) -2 (1-t)[c’llx2-x’ll2-k, llx x’lld(a, al)-/ld(a2, a dt,

C -c’x- x’ll + (k + kl)llx- xllld(a, a ’)+ k,d(a, a ’).
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LIPSCHITZIAN SOLUTIONS OF PROGRAMMING PROBLEMS 1135

Let b= c’-p[llA/ll + ][llDg,(x, )11 + ]=; then, from (3.2)one has b >0. From (3.5),
(3.6), (3.7), (3.8), (3.9), there exists a positive real number k’ such.that:

bllx-x’ll<-_ k’d(a =, a ’)[ IIx-x’ll + a(, 1)].
Let K =max {2, (2k’)/b}. Then, from the above inequality, one easily deduces

that x-- xlll-< gd(,, , ), and, from (3.3), IIx =- x ill <-_ (k / Kk)d(,, , 1). This ends
the proof of the theorem.

We now give the proof of Corollary 2.3.
Proof of Corollary 2.3. Let (x, a, Ao) satisfy the assumptions of Corollary 2.3

and let:

I+(x, a) {i I(x, a)lA,.> 0}, Io(x,)--{iI(x,cr)lA--O},
J(x, a) {i {ml + 1,..., m}lg,(x, c) < 0}.

For a P, we consider the following problem:

s()

minimize f(x, a

subject to gi(x, a)=O, i{1,..., ml}U/+(x, c),
gi(x, a)<--O, iIo(x, a),
xeU.

Clearly S(a) is a problem of type P(a) with Q--{O}Px(-R+) q, where p=
card I/(x, a)+ ml and q =card Io(x, a). If we let o be the vector in Rp+q with
coordinates =Ai, for e{1,... ml}UI(x,a), then (x, ct, [o) satisfies the
assumptions of Theorem 2.1. Furthermore, (x, a, o) satisfies the necessary condition
(2.2) associated with g(a), since (x, a,A) satisfies the necessary condition (2.2)
associated with S(a). Consequently, from Theorem 2.1, there exist open neighbor-
hoods U1 of x in U, V1 of a in P and Lipschitzian mappings x(. )’V1--) U1 and
(" )" V1 --) RP+q such that x(to) xo, (co) o and, for all c e V1, the pair (x(a), (c ))
satisfies the necessary condition (2.2) associated with problem S(a). We let now
A(.)" V1--) N" be the mapping defined by A,(() [,(a) for ie{1,..., ml}U I(x, a)
and A(a) =0 for ieJ(x, a). Since, for all ieI+(x, a), A(a) A,. > 0 and, for all
ieJ(x, a),g(x, a)=g(x(a), a)<0, from the continuity of the mappings
A (-), x(. and gi(., .), there exists an open neighborhood V2 of a in V such that,
for all a in V_, for all e/+(x, a), A(a) > 0 and, for all J(x, a), g(x(a), a) < O.
Consequently, one easily checks that, for all a e V, (x(a), A (()) satisfies the necessary
condition (2.2) associated with problem S(c).

It now remains to show that there exist neighborhoods V’ of a in V2 and U’ of
x in U such that, for all a e V’ and all x U’, x x(a), satisfying g(x, a)=0 for
ie{1,...,m} and, gi(x, a) <-- 0, for ie{ml+l,"’,m}, then one has f(x,a)>
f(x(a ), a ). We prove this assertion by contraposition. Assume that there exist sequences
{xk}cu and {ak}c V’ such that {xk}-)X,{ak}-)a and, for all k, xk
x(ak),gi(xk,ak)-O for ie{1,..-,m}, g(xk,a k)<-O for i{ml+l,...,m} and
f(xk, ak)<--f(x(ak), ak). Without any loss of generality, one can assume that (xk-
x(,))/llx-x(,)ll converges to some element h in N" such that Ilhll- 1.

From the mean value theorem and the continuity of Vf(-,.) and Vg(.,.) at
(x, a) one has, for i= 1,..., m,

(Vf(x, a), h)= lim [f(xk, ok)--f(x(o k) ok)]/llxk--x(ak)ll
(3.10)

(Vg,(x, a), h)= lim [g,(xk, ak)--g,(x(ok),
k--)
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1136 a. CORNET AND J.-PH. VIAL

From the very definition of the sequences {xk} and {t k} and recalling that from the
first part of the proof, gi(x(ak), C k) =0, {1," ’, ml}t3/+(x, a), one deduces from
(3.10) that

(Vf(x, ao), h) -<_ 0,

(3.11) (Vg,(x, ao), h) 0, 1, , ml,

(Vg(x, a), h) <=O, I+(x, a).
Since (x, h o) satisfies the necessary condition (2.2) associated with S(ao), one gets

(3.12) (Vf(x, a), h)+ Y A,.(Vg,(x, c), h)=0.
{1,...,ml}LJ I+(x,oO)

From (3.11) and (3.12), since A>0, for i I+(x, a), it follows that the inequalities
in (3.11) are in fact equalities. Hence, by (C.2) one gets

(3 13) DEI(x, a)h+ 2 o 2AiD gi(x, a)h, h >0.
i=1

We end the proof of the corollary by contradicting (3.13). Denote Lk(X)=
f(x, ak)+__ A(a)g(x, ak). From Taylor’s theorem and from the continuity of
D2f(., and D:g(., at (x, a)

0 2 01 DEf(xO aO)h + y A,D g,(x, a)h, h
2 i=1

Ion( Ikoolim (1-t) D2Lk[x(ak)+ t(xk--x(ak))] i’i_ ii  _x<  il dt

lim [Lk(xk Lk(x(ak))-<VL(x(a k)), Xk X(a )>]/IIx x() ,
k-

where

x x(,)
h lim IIx-x()ll"

Since (x(a),A(a)) satisfies the necessary conditions (2.2) associated with S(c),
then VLk(x(a))=0, A(c)gi(x(a), a)=0, for all ie{1,...,m} and A(ak) _--> 0,
for i{ml+l," ", m}. Consequently, Lk(X(O))--f(x(a)) and Lk(xk)=
f(x)+E=l A(a)g(x, ok)<=f(xk). Hence, for all k,

Lk(Xk) Lk(X(a k)) (V Lk(X(a’)), Xk X(ak)) <-- O.

Dividing the above inequality by [[xk x(a k)[[2, passing to the limit, when k- oo,
from the above equalities one deduces that:

0 2 a)h,h NODEf(x, ao) h + , A D g, (x,
i=1

which contradicts (3.13). This ends the proof of the corollary.
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