a.C.J. L. & TURNER, G. (1977a). Can. J. Chem. 55, 32-339.

a.C.J.L. & TURNER, G. (1977b). Can. J. Chem. In the TISS.

MANN, R. K. & SCHLEMPER, E. O. (1971). Inorg. Chem. 10.2352-2354.

SERGIENKO, V. S., PORAI-KOSHITS, M. A. & KHODASKOVA, T. S. (1974). J. Struct. Chem. 15, 250-255.

SHANDLES, R., SCHLEMPER, E. O. & MURMANN, R. K. (1971). Inorg. Chem. 10, 2785-2789.

TURNER, G. (1976). PhD Thesis, McMaster Univ., Hamilton, Ontario, Canada.

aCryst. (1978). B34. 927-930

Sodium 5,6-Dihydro-2-thiouracil-6-sulfonate Monohydrate

By N. B. JAIN, BYUNGKOOK LEE,* KRISTIN BOWMAN MERTES AND IAN H. PITMAN

martments of Pharmaceutical Chemistry and Chemistry, The University of Kansas, Lawrence, Kansas 66045,

USA

(Received 8 July 1977; accepted 28 October 1977)

Mattact. C₄H₇N₂O₅S₂Na, monoclinic, $P2_1/c$, Z = 4, a $13.101(4), b = 7.043(3), c = 9.654(5) \text{ Å}, \beta =$ $^{1.98}(4)^{\circ}, D_{-} = 1.90(1), D_{c} = 1.90 \text{ g cm}^{-3}, \lambda(\text{Mo})$ l = 0.7107 Å, R = 0.033 for 2045 observed tetions. This is the product of a bisulfite addition tion of 2-thiouracil at pH 8. The sulfonate group is attached axially at the 6-position of the uracil.

toduction. The title compound was prepared by tion of bisulfite ion to 2-thiouracil. Preliminary ression photographs of the crystals obtained from tous solution showed monoclinic symmetry and sction patterns (0k0 reflections absent when k odd, reflections absent when l odd) consistent with the $\frac{2e}{2}$ group $P2_1/c$. The calculated density for Z = 4with the experimental density obtained by ation in a monobromoethane-chloroform mixture. small crystal ($0.4 \times 0.2 \times 0.2$ mm) was then anted on a Syntex $P2_1$ diffractometer. Accurate cell ansions were determined from a least-squares fit of ω, φ and χ for 15 reflections with graphite-monois the second s recollected with a $\theta - 2\theta$ scan technique, the details of have been reported (Seccombe, Lee & Henry, (b) 2642 reflections were measured with $2\theta \le 60^{\circ}$ which 2045 had $I \ge 3\sigma(I)$ and were used for data stysis. The data were then corrected for the 1.8%^{say} that was observed, and reduced to the structure or amplitudes by the application of the Lorentzdistization correction. Because of the small linear Sorption coefficient, 3.39 cm⁻¹, and the small size of crystal, no absorption or extinction correction was ista .

The positions of the S and Na atoms were found from a Patterson map. All other atoms, including H, were found in subsequent electron density and difference electron density maps. For the refinement, all non-hydrogen atoms were treated with anisotropic thermal parameters and all H atoms with fixed isotropic thermal parameters. The final discrepancy indices were $R_1 = \sum ||F_o| - |F_c|| / \sum |F_o| = 0.033 \text{ and } R_2 = |\sum w(|F_o| - |F_c|)^2 / \sum w|F_o|^2|^{1/2} = 0.042.$

The positional and isotropic thermal parameters are given in Table 1 with their estimated standard

Table 1. Positional (\times 10⁵; for H \times 10³) and isotropic thermal $(Å^2)$ parameters with e.s.d.'s in parentheses

		z	В
x	у	-	1 24 (6)
15760 (4)	73961 (8)	11856 (6) 4964 (5)	1.93 (5)
35651 (4)	23343(1)	25919 (9)	1.94 (9)
49649 (7)	(112(11))	-12501 (16)	1.72 (17)
36431 (12)	5781 (22)	7689 (14)	2.13 (15)
43941 (11)	25652 (21)	-14219 (16)	2.35 (17)
34528 (12)	39906 (23)	-29360 (15)	2.24 (18)
4164 (12)	32891(25)	12326 (17)	1.50 (18)
40357 (13)	76443 (25)	9063 (17)	1.84 (18)
22447 (13)	39237 (20)	-9873 (18)	1-34 (19)
10175 (14)	50509 (27)	3377 (21)	1.47 (20)
16249 (15)	33370(29)	-17239 (20)	1.57 (21)
9205 (15)	33024 (31)	-9085 (22)	1.58 (21)
14085 (16)	10800 (30)	1978 (20)	2.08 (19)
23815 (16)	21012 (29)	115 (4)	3.29
341 (3)	763 (3)	48 (4)	3.29
408 (3)	114(3)	163 (3)	2.12
258 (3)	414 (3)	-136(3)	2.85
63 (3)	609 (5)	-43 (3)	2.34
87 (3)	137(3)	-154(3)	2.34
154 (3)	12(4)	89 (3)	2.06
251 (2)	112(5)		
	x 15760 (4) 35651 (4) 49649 (7) 36431 (12) 43941 (11) 34528 (12) 40357 (13) 22447 (13) 10175 (14) 16249 (15) 9205 (15) 14085 (16) 23815 (16) 341 (3) 408 (3) 258 (3) 63 (3) 87 (3) 154 (3) 251 (2)	xy 15760 (4) 73961 (8) 35651 (4) 23543 (7) 49649 (7) 1112 (11) 36431 (12) 5781 (22) 43941 (11) 25652 (21) 34528 (12) 39906 (23) 4164 (12) 32891 (25) 40357 (13) 76443 (25) 22447 (13) 39237 (26) 10175 (14) 50569 (27) 16249 (15) 53378 (29) 9205 (15) 33624 (31) 14085 (16) 16806 (30) 23815 (16) 21612 (29) 341 (3) 774 (5) 258 (3) 414 (5) 63 (3) 609 (5) 87 (3) 137 (5) 154 (3) 72 (4) 251 (2) 112 (5)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

^{*}Author to whom correspondence should be addressed.

Fig. 1. Stereoview of DHTUS anion. The 50% probability thermal ellipsoids are shown for non-hydrogen atoms.

Fig. 2. Bond lengths (Å) with e.s.d.'s in parentheses; not shown on the figure: O(w) - H(w, 1) 0.81 (4). O(w) - H(w, 2) 0.74 (4).

Fig. 3. Bond angles (°) with e.c.d.'s in parentheses; not shown on the figure: $O(1)-S(2)-O(3) = 112 \cdot 5(1)$, $O(2)-S(2)-C(6) = 104 \cdot 0(1)$, $C(5)-C(6)-S(2) = 114 \cdot 4(1)$, H(6)-C(6)-N(1) = 110(2), H(5,1)-C(5)-C(6) = 108(2), H(5,2)-C(5)-C(4) = 110(2), H(w,1)-O(w)-H(w,2) = 101(4). deviations.* A stereodrawing of the molecule and it: atom numbering scheme are shown in Fig. 1 and the bond lengths and angles are given in Figs. 2 and 3.

Discussion. The common bisulfite ion modifies nucleic acid bases such as uracil under mild conditions (room temperature and neutral pH):

The product of this reaction has been identified and characterized by means of various spectroscopic techniques (Shapiro, Servis & Welcher, 1970). The title compound was obtained by a similar reaction of 2-thiouracil. The elemental analysis and its IR and NMR spectra are consistent with the expected structure but its UV spectrum shows a large absorbance (log $\varepsilon = 4.14$) at $\lambda = 274$ nm. This was unexpected since (II) shows only end absorption at this wavelength. The structure shown in Fig. 1, however, clearly shows that the reaction went as expected. Apparently, the shift in the UV absorption spectrum is caused by the substitution of S for O at position 2.

The structure of the anion (DHTUS) is in general similar to that of the 5,6-dihydro-2-thiouracil molecule (DHTU) (Kojić-Prodić, Ružić-Toroš & Coffou, 1976) except, of course, that one H at the 6-position is replaced by a sulfonate group. The differences in bond lengths and angles in these two structures are mostly minor with one notable exception: the C(5)-C(6) bond length of 1.522 (3) Å in DHTUS is much closer to the

Table 2. Dihedral angles (°)

The positive sense of rotation is clockwise while looking along the BC bond.

A-B-C-D	DHTUS	DHTU
C(6)-N(1)-C(2)-N(3) N(1)-C(2)-N(3)-C(4)	-4.5 (3)	-7.4(4) -5.2(4)
C(2)-N(3)-C(4)-C(5) N(3)-C(4)-C(5)-C(6)	-8.6(3) -8.6(3)	-5.6 (4)
C(4)-C(5)-C(6)-N(1) C(5)-C(6)-N(1)-C(2)	-40.1(2)	-36.9 (4)

^{*} Lists of structure factors and anisotropic thermal parameters nave been deposited with the British Library Lending Division as Supplementary Publication No. SUP 33138 (14 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

mal C-C single bond length than the correinding bond length of 1.474(5) Å in DHTU. A less arkable difference that may be noted is a slight ming of about 1° of each of the ring bond angles at 3 and C(6).

he six-membered ring is puckered in both strucas The ring in DHTUS is, however, somewhat more kered than that in DHTU. The following may be as evidence for this conclusion. (1) The sum of edihedral angles within the ring is greater for iTUS (120°) than for DHTU (111°) (Table 2). (2) esum of the ring bond angles is less for DHTUS 7.6°) as compared with DHTU (709.7°). (3) The as displacement of the atoms N(1), C(2), N(3), and after their mean plane is greater for DHTUS than DHTU as discussed below.

h both structures the six-membered ring is puckered such a manner that the four atoms N(1), C(2), N(3), 1C(4) lie closely on one plane but the atoms C(5) 1C(6) are substantially displaced from this plane on

Table 3. Na ion interactions

Distances are in Å, angles in degrees.

	2.358(2)	$\Omega(w)^{\mu}$ -Na- $\Omega(3)^{\mu\nu}$	92.34 (6)
4-0(w) ¹¹	2.360(2)	$O(w)^{\mu} - N_{2} - O(2)^{\mu}$	99.38 (6)
1-0(2) ⁱⁱ	2.423 (2)	$O(w)^{ij}$ Na $O(2)$	82.49 (6)
2-0(3)ili	2.452 (2)	O(w) = Na = O(2)	00.25 (6)
2-0(2)	2.469(2)	$O(w) = Na = O(1)^{n}$	90.25(0)
0(1)lv	2.494(2)	O(1) = Na = O(3)	00.20(6)
1-Na-0(2)	83.52 (6)	$O(2)^{n} - Na - O(1)^{n}$	90.20(0)
4/-Na-O(2)	94.25 (6)	$O(2)^{-}-Na=O(3)^{-}$	97.80(0)
AF-Na-O(Div	85 10 (0)	$O(2) - Na - O(3)^{m}$	86.94 (6)
- 0(1)*	02.13 (0)	$O(2) - Na - O(1)^{W}$	84.93 (6)

anetry code for superscripts

None (i) (ii)	x, y, z x, y-1, z 1-x, (4+y) = 1, 1 = z	(iii) (iv)	$x, \frac{1}{2} - y, \frac{1}{2} + z 1 - x, -y, -z$
'	1 - 5 (3 + y) - 1, 1 - g		

either side (the 'pseudo-chair' form). The r.m.s. deviation of N(1), C(2), N(3), and C(4) from their least-square-displacement plane is 0.021 Å in DHTUS as compared with 0.016 Å in DHTU. The two structures are substantially different in the manner in which the atoms C(5) and C(6) are displaced from this plane. In DHTU these two atoms are about equally displaced from the plane, with out-of-plane displacements of 0.226 and 0.238 Å respectively for C(5) and C(6). In DHTUS, however, C(5) is much more displaced than C(6) since the corresponding distances are 0.323 and 0.198 Å, respectively. This trend is also reflected in the values of the dihedral angles N(3)-C(4)-C(5)-C(6)and C(2)-N(1)-C(6)-C(5). Since N(1), C(2), N(3) and C(4) lie nearly on one plane, these two dihedral angles essentially define the conformation of the ring. They are nearly equal in DHTU, but in DHTUS the former is substantially larger than the latter (Table 2).

The sulfonate group is attached to the ring axially. The dihedral angle around the C(6)–S(2) bond is such that the three sulfonate O atoms are nearly staggered with respect to the substituents around C(6). The O atoms are arranged tetrahedrally around S but the average S–O distance of 1.46 Å indicates the existence of significant π -bond character in these bonds (Cruickshank, 1961). Consistent with this interpretation are the observations that all O–S–O bond angles are somewhat larger and all C–S–O angles are somewhat smaller than the tetrahedral angle of 109.5°. A similar phenomenon occurs in 2-amino-1-methylpyrimidinium 6-sulfonate (Pitman, Shefter & Ziser, 1970) and other sulfonate structures (Hall & Maslen, 1967).

The crystal may be considered to consist of sheets which are two anions thick and stacked parallel to the *bc* plane. Each sheet occupies the space between $x = -\frac{1}{2}$ and $+\frac{1}{2}$. The two surfaces of these sheets are lined with sulfonate groups. The interface between these sheets,

Fig. 4. Packing diagram. The a axis runs nearly vertically up, the b axis runs into the page, and the c axis runs horizontally across.

Table 4. Hydrogen-bond parameters

$X - H \cdots Y$	$X \cdots Y(\mathbf{A})$	$\mathbf{H}\cdots Y(\mathbf{\dot{A}})$	$\angle X - H \cdots Y(^{\circ})$
$N(1)-H(1)\cdots O(1)^{i}$	2.988 (2)	2.23(3)	173 (3)
$N(3)-H(3)\cdots O(4)^{ii}$	2.997 (2)	2.09(4)	172 (3)
$O(w)-H(w,1)\cdots S(1)$	3.218(2)	2.41(4)	172 (4)
$O(w)-H(w,2)\cdots O(1)^{m}$	3-125 (2)	2.59(4)	130 (4)
$O(w)-H(w,2)\cdots O(2)^{iv}$	3.104(2)	2.54(4)	134 (3)

Symmetry code for superscripts

None	$X_{1}V,Z$	(iii)	x, 1 + y, z
(i)	$x, \frac{1}{2} - y, \frac{1}{2} + z$	(iv)	1 - x, 1 - v, -z
(ii)	$-x, \frac{1}{2} + y, (\frac{1}{2} - z) - 1$, , , ,

occurring at $x = \frac{1}{2}$, is largely hydrophilic and is where the Na ion and the water molecule are found. The Na atom is nearly on the crystallographic 2, screw axis and is surrounded by six O atoms in an octahedral array, with O-Na-O angles ranging from 82.5 to 99.4° (Table 3). The equatorial plane of this octahedron is made by four sulfonate O atoms. The axial positions are occupied by water O atoms. One H of this water molecule is involved in a hydrogen bond with S(1) (Table 4). The other appears to be involved in a bifurcated hydrogen bond, being close to both O(1) of one DHTUS and O(2) of another (Table 4).

Each sheet, in turn, may be considered to be made of long chains. These chains run parallel to b and possess crystallographic 2_1 symmetry at x = 0, $z = \frac{1}{2}$. The

DHTUS anions in a given chain are connected to or another by a strong hydrogen bond between N(3) (one anion and O(4) of its neighbor (Table 4 Neighboring chains in each sheet are related to on another by crystallographic *c*-glide symmetry (o equivalently, by crystallographic center of inversio symmetry). There are numerous van der Waal interactions between chains, but also there is one stron hydrogen bond per anion connecting these chains. Thi hydrogen bond occurs near the surface of the shee between N(1) of one DHTUS and O(1) of another.

This work was supported in part by NIH Research Grant No. GM 18348 to Ian H. Pitman and T Higuchi.

References

- CRUICKSHANK, D. W. J. (1961). J. Chem. Soc. pp. 5486-5504.
- HALL, S. R. & MASLEN, E. N. (1967). Acta Cryst. 22, 216-228.
- Колс-Ргодіć, В., Ružić-Toroš, Z. & Coffou, E. (1976). Acta Cryst. B32, 1099–1102.
- PITMAN, I. H., SHEFTER, E. & ZISER, M. (1970). J. Am. Chem. Soc. 92, 3413–3417.
- SECCOMBE, R. C., LEE, B. & HENRY, G. M. (1975). Inorg. Chem. 14, 1147-1153.
- SHAPIRO, R., SERVIS, R. E. & WELCHER, M. (1970). J. Am. Chem. Soc. 92, 422-424.

Acta Cryst. (1978). B34, 930-932

Calcium Di(hydrogen maleate) Pentahydrate

By Bennett Hsu and E. O. Schlemper

Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65201, USA

(Received 7 June 1977; accepted 1 November 1977)

Abstract. $Ca(C_4H_3O_4)_2.5H_2O$, orthorhombic, *Pnam*, a = 11.737 (2), b = 6.477 (1), c = 19.593 (2) Å, Z = 4, $D_m = 1.590$, $D_c = 1.586$ g cm⁻³, $\mu = 1.40$ cm⁻¹, final $R(F^2)$ of 0.060. Ca is seven coordinate with distorted monocapped trigonal prismatic geometry (Ca–O ranges from 2.359 to 2.469 Å). The hydrogen maleate ion is coordinated to Ca through one O and possesses a short intramolecular O···O hydrogen bond [O···O 2.426 (1), O–H 1.13 (3) and 1.31 (3) Å].

Introduction. The title compound was prepared by titrating a saturated aqueous solution of maleic acid

with calcium hydroxide to pH = 3.95. Solvent was then removed by slow evaporation at room temperature to produce crystals suitable for diffraction studies. Precession photographs gave the systematic absences 0kl, k + l = 2n + 1, and h0l, h = 2n + 1, which indicated that the space group was either *Pnam* or *Pna2*₁. The former was indicated by statistical examination of the distribution of *E* values and was confirmed by the structure refinement. Any deviation from *Pnam* would be necessarily small because of the very successful refinement in *Pnam*. A crystal ($0.7 \times 0.6 \times 0.3$ mm) was mounted on a programmed Picker four-circle