
New distributional modelling approaches for gap analysis

INTRODUCTION

Effective biodiversity conservation and natural resource
management require accurate information on distribu-
tions of species, combined with information on land use
and land tenancy (Scott, Tear & Davis, 1996). An early
approach to this challenge led to the development of the
technique of gap analysis (Scott et al., 1993), which
evolved into the US National Gap Analysis Program
(Scott et al., 1996). This consists of a federation of state
and regional efforts to interpret species’ distributions in
the context of habitat associations towards more effec-
tive management of natural resources.

Methodologies for predicting species’ geographic dis-
tributions in gap analysis have generally been as follows
(Csuti, 1996), although newer efforts have done some
experimentation with other methodologies (Scott,
Heglund & Morrison, 2002). (1) Published range maps,
museum specimen records, and other documented occur-
rences are used to determine general geographic range,
placing species in geographic subunits (e.g. counties).
(2) Habitat use and needs of species are evaluated based
on the scientific literature, identifying suites of land-
cover types as suitable for particular species. The inter-
section of species’ presence in broad units (1) and
fine-scale habitat requirements (2), modified with addi-
tional factors (e.g. elevational limits, proximity to bod-
ies of water) and expert review, yields a predicted
distribution for a species.

Alternative approaches to modelling species’ distrib-
utions have been offered (Nix, 1986; Austin, Nicholls &
Margules, 1990; Walker & Cocks, 1991; Stockwell,
1999; Stockwell & Peters, 1999), based on statistical
modelling of ecological niches from point-occurrence
data (hereafter ‘point-based approaches’). Curiously,
these alternative methods have appeared principally in
the scientific/ecological literature, and have received lit-
tle attention in gap projects (Scott et al., 1996). More
surprising, however, is that few head-to-head compar-
isons have assessed the relative predictive abilities of
gap models versus those of alternative methodologies
(Krohn, 1996). This ‘gap’ in the scientific literature is
the focus of this paper: we compare the accuracy of gap
models and models built using a point-based approach
based on geographic predictions of 30 forest passerine
bird species in the state of Maine.

ECOLOGICAL NICHE MODELLING AND
DISTRIBUTIONAL PREDICTION

Grinnell (1917, 1924) presented an early concept of an
ecological niche, defined as the ranges of ecological
conditions within which a species is able to maintain
populations. This concept contrasts with the more cus-
tomary Hutchinsonian N-dimensional niche concept
(Hutchinson, 1957), which focuses more on the role of
a species within a local community. These concepts can
be refined by distinguishing between the fundamental
and realized niches (Hutchinson, 1957), the latter taking
into account the effects of interactions among species in
reducing habitable areas. Although modelling the fun-
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damental niche based on actual distributional data may
seem counterintuitive, the broad spectrum of community
backgrounds present across a species’ geographic dis-
tribution allows some degree of insight into this more
basic picture of a species’ ecological requirements.

Modelling species’ ecological niches offers important
insights into their distributional ecology. For the vast
majority of species, detailed physiological studies of tol-
erances and requirements are unavailable, making nec-
essary inference of ecological requirements from simpler
data. The data that are almost universally available are
primary-point occurrences (Peterson, Navarro-Siguenza
& Benitez-Diaz, 1998; Peterson, Stockwell & Kluza,
2002d): simple records of a particular species at a point
in space and time. These data, interpreted in the context
of ecological variation across landscapes, can provide
detailed hypotheses about geographic distributions of
most species.

The Genetic Algorithm for Rule-Set Prediction
(GARP) includes several algorithms in an iterative, arti-
ficial-intelligence-based approach (Stockwell & Noble,
1992; Stockwell, 1999; Stockwell & Peters, 1999).
Individual algorithms (e.g. BIOCLIM, logistic regres-
sion) are used to produce component ‘rules’ in a broader
rule-set, so portions of the species’ distribution can be
determined as inside or outside its niche based on dif-
ferent rules. Hence, GARP is a superset of other
approaches, and should have greater predictive ability
than any one of them. Initial testing of GARP has indi-
cated excellent predictive ability (Peterson & Cohoon,
1999; Peterson, Soberon & Sanchez-Cordero, 1999;
Peterson & Vieglais, 2001; Anderson, Laverde &
Peterson, 2002a,b; Feria & Peterson, 2002; Peterson,
Ball & Cahoon, 2002a; Peterson et al., 2002c; Peterson
et al., 2002d; Stockwell & Peterson, 2002a,b; Anderson,
Law & Peterson, in press; Peterson & Robins, in press;
A. T. Peterson, R. Scachetti-Pereira & D. A. Kluza,
unpubl. data) and insensitivity to BIOCLIM’s problems
with environmental data density (Peterson & Cohoon,
1999; Stockwell & Peterson, 2002a,b).

Within GARP, occurrence points are divided ran-
domly and evenly into training and intrinsic testing data
sets. GARP works in an iterative process of rule selec-
tion, evaluation, testing, and incorporation or rejection:
a method is chosen from a set of possibilities (e.g. logis-
tic regression, bioclimatic rules) and applied to the train-
ing data, and a rule is developed or evolved. Predictive
accuracy is then evaluated based on 1250 points resam-
pled from the test data and 1250 points sampled ran-
domly from the study region as a whole, as summarized
in a rule-significance measure (Stockwell & Noble,
1992; Stockwell, 1999; Stockwell & Peters, 1999). Rules
may evolve by a number of means that mimic DNA evo-
lution: point mutations, deletions, crossing over, etc. The
change in predictive accuracy from one iteration to the
next is used to evaluate whether a particular rule should
be incorporated into the model, and the algorithm runs
either 1000 iterations or until convergence. 

Two types of error potentially enter into such niche
modelling and geographic prediction efforts. Omission

of areas actually inhabited is a failing of the modelling
effort to extend to all ecological conditions under which
the species is able to maintain populations. Commission
error is that of including areas actually uninhabited; this
error component includes real error, in which combina-
tions of ecological conditions not actually within the
species’ niche are included, as well as a historical com-
ponent. The historical component results from species’
absences owing to limited colonization ability, specia-
tion and local extinction, and represents a real feature of
species’ distributional ecology—not all habitable area is
inhabited (Peterson et al., 1999; Peterson & Vieglais,
2001). Most challenging is that measurement of com-
mission error is complicated seriously by the rampant
undersampling of biodiversity: many sites apparently not
inhabited by species are in actuality inhabited but the
species has not been detected there (‘apparent error’)
(Nichols et al., 1998).

METHODS

Through consultation with gap coordinators from around
the United States, Maine was chosen as a first test-bed
for the gap–GARP comparison. Maine offered the
advantages of having (1) a recently completed gap analy-
sis project; (2) appropriate geospatial information avail-
able; (3) sufficiently precise distributional information
available for birds in the region from time periods that
coincided with the provenance of the geospatial infor-
mation. The overall plan of analysis was that the same
environmental data coverages and a subset of the occur-
rence information were used in GARP analyses as had
been used in the Maine Gap Analysis Program; gap and
GARP models were evaluated based on the same test
data sets.

GARP models were developed based principally on
topographic and climatic information, and hence were
fairly crudely resolved spatially. Geospatial/environ-
mental data available for Maine (supplied by W. Krohn
and colleagues) included the following environmental
dimensions: elevation; slope; aspect; annual mean pre-
cipitation; average maximum and absolute maximum
temperatures for winter, spring, summer, fall and the
entire year; and average minimum and absolute mini-
mum temperatures for winter, spring, summer, fall and
the entire year. Hence, 26 coverages were used for the
ecological modelling efforts. To make Internet-mediated
analyses feasible, these data were generalized to a 0.02 ×
0.02° pixel resolution (about 1.9 × 1.9 km in linear dis-
tance units) exported as ASCII raster coverages, and
deposited on the GARP server at the San Diego
Supercomputer Center.1

Thirty species of birds were chosen for analysis, under
the criteria that they be generally associated with forest
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1 http://biodiversity.sdsc.edu/cgi-bin/findir.cgi?screen.cgi. Note,
however, that a new version for use on PC desktop computers is
now available for public download at http://beta.lifemapper.org/
desktopgarp/.
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(a habitat type well-sampled at fine scales), and that
more than 20 unique latitude–longitude combinations
documenting presence be available for analysis.
Distributional data were drawn from stop-level data
(sample points approximately every 1 km) from the 1990
results of the US Breeding Bird Survey.2 For each
species, we chose 20 occurrence records at random as a
testing data set for presences. We also used all sample
points from which the species had not been recorded as
a testing data set for absences (‘test data’). (This broader
test absence data set is necessary because absences are
more difficult to demonstrate than presences, with some
dilution of absences by undetected presences (Anderson
et al., in press).) The remaining available occurrence
points, which ranged from 8 to 541 per species, were
used for developing GARP models (‘training data’). 

Training data were analyzed using the Maine cover-
ages on the GARP facility to develop ecological niche
models; resulting geographic predictions were exported
as ASCII raster grid files. In ArcView (version 3.1),
raster grids were imported, and converted to Arc grids.
Crude GARP predictions were downscaled to match the
resolution of gap models as follows: (1) pixel resolution
was artificially increased to 0.001 × 0.001° (90 × 90 m);
(2) a 90 m resolution land-use/land-cover map (also pro-
vided by W. Krohn and colleagues) was queried for veg-
etation types known to be used by each species (DeGraaf
et al., 1992) (D. A. Kluza, unpubl. data); (3) the crude
prediction was cut so that only those areas predicted pre-
sent by GARP and holding the appropriate land-
use/land-cover type were included in the predicted area.
This step was appropriate, given that initial predictions
based on broad climatic parameters did not include
details of local land use patterns, and allowed inclusion
of fine-scale phenomena not included in the original
modelling effort.

To test predictive efficiency of models, the indepen-
dent test data points were overlain on the predictions for
each species. Predictive ability of the final Maine gap
models (Boone & Krohn, 1998; Krohn et al., 1998) was
tested using the same test data points. It should be
pointed out that whereas measurement of omission error
rates is straightforward (= proportion of test presence
points incorrectly predicted as absent), commission error
calculations are complicated by undetected presences of
species (Nichols et al., 1998). However, assuming no
spatial bias in detection probabilities for species, these
false commission errors should not bias results in favour
of one method or another.

The pairs of models for each species (GARP and gap)
were evaluated using the approaches summarized by
Fielding & Bell (1997). These approaches are based gen-
erally on a 2 × 2 ‘confusion matrix’ (Table 1), where N
= a + b + c + d, c represents omission error, and b rep-
resents commission error. These quantities are used to
calculate three complementary measures of predictive
efficiency (Fielding & Bell, 1997): (1) false positive

(commission) rate = b / (b + d ); (2) false negative (omis-
sion) rate = c / (a + c); and (3) κ = ((a + d ) – (((a +
c)(a + b) + (b + d)(c + d)) / N )) / (N – (((a + c)(a + b)
+ (b + d )(c + d )) / N )). (1) and (2) measure the two
components of error described above, whereas (3) offers
an overall measure of predictive efficiency. 

To deal with ‘near misses’ caused by imprecision of
georeferencing, these measures were further modified
using a city-block weighting scheme (Fielding & Bell,
1997), in which c is downweighted by a factor wx = 1
– 1/2x, in which x represents the city-block distance by
which a point fell outside of the predicted area; the wx

> 0.85 threshold for neglecting near misses suggested
by Fielding & Bell (1997) was employed. Relative per-
formance of the two models was compared statistically
using the McNemar test described by Fielding & Bell
(1997), in which test points classified correctly by both
models as present (e) or absent (h), or incorrectly by one
method ( f ) or the other (g), are summarized with the χ-
square approximation ( f – g)2 / ( f + g), with one degree
of freedom. Details of the derivation of each measure
are offered in Fielding & Bell (1997). 

RESULTS

The two approaches to predicting geographic distribu-
tions produced results that contrasted sharply (Fig. 1).
In general, gap models identified habitats for species, but
predictions extended across the entire state; GARP mod-
els, on the other hand, homed in on particular regions
of the state, and avoided predicting species’ presence
over the entire state. The initially crude scale of the
GARP predictions was refined by use of land-use/land-
cover information, providing both fine resolution and
regional restriction for predictions.

GARP models were relatively insensitive to training
sample size (Fig. 2). Neither false-positive (commission)
rates nor false-negative (omission) rates were signifi-
cantly related to numbers of points used to develop mod-
els. This result suggests that the sample sizes available
to us for model building in this study did not approach
lower limits of inferential power of the GARP algorithm.

Omission error was lower in gap models (Table 1). In
24 of 30 species, gap models had better success in pre-
dicting the 20 test presence points, whereas GARP mod-
els were better in only three species; the two methods
tied for three species. Hence, on the omission criterion,
gap models performed better than GARP models. The
situation regarding commission error, however, was 
different. For this error component, GARP models

Table 1. Confusion matrix summarizing model performance and pro-
viding variable names used in summary statistics (Fielding & Bell,
1997).

Actual

Predicted Present Absent
Present a b
Absent c d

2 http://www.mp2-pwrc.usgs.gov/bbs/index.htm.
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Key
species 
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transect 

GARP 
prediction 

Gap 
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Fig. 1. Four example species showing results of gap (dark gray) and GARP (red) modelling approaches, with test presence
points (in yellow) and all BBS sample points (black) overlaid. Shown are (a) ovenbird, (b) black-throated blue warbler, 
(c) Blackburnian warbler. A detail of one BBS route is shown for ovenbird. Although patterns of overlap among the two pre-
dictions are difficult to display owing to the different levels of detail that each includes, these maps serve to show the differ-
ences in regional extent of the predictions, and the coincidence of those differences with patterns of presence and absence of
species.



outperformed gap models in 28 of 30 species, with sub-
stantial differences in commission error (Table 1). 

McNemar’s tests provided overall tests of model
performance, based both on presence and absence test
data sets. In all, 28 of 30 species were significantly
better predicted by GARP models than by gap models
(all P < 10–7). The remaining two species, Regulus
satrapa and Seiurus noveboracensis, were predicted sig-
nificantly better by gap models (10–3 > P > 10–5). κ
scores averaged significantly higher in GARP models
than in gap models (0.030 versus 0.009, paired t-tests,
P < 10–7). Both of these tests take into account the over-
all area predicted present, and examine models’ predic-
tive ability above and beyond that expectation.

DISCUSSION

The two approaches produced very distinct types of dis-
tributional models. Gap models appear focused on habi-
tat associations, but fail to identify regional patterns of
range restriction. GARP models identified regional
limitations and managed habitat associations via the
fine-grained land-use/land-cover map queries. The fine-
grained but geographically extensive gap models con-
trasted sharply with the less finely resolved, but
geographically specific GARP models. This difference
in area predicted present (greater in gap, lower in GARP)
coincides with differences in error components: gap
models omitted fewer points but included many extra
areas apparently not inhabited by species. This differ-
ence in overall performance, as reflected in the
McNemar’s test and κ statistic results, indicates that
GARP models have overall much greater predictive
power than gap models.

An important consideration is that avoiding omission
error is quite easy: simply predicting the entire region as
‘present’ reduces omission error to zero (Fielding & Bell,

1997). For this reason, arguments that accepting higher
levels of commission error so as not to omit occurrences
lead to an unacceptable conclusion – better just to pre-
dict the entire map present for all species – one clearly
not desirable for useful products based on distributional
models. The true challenge is that of minimizing omis-
sion error and commission error simultaneously, which
removes the easy alternative of predicting ubiquity, and
instead involves predicting the smallest possible area
without omitting independent test presence points. In this
sense – reducing apparent commission error as much as
possible without omitting potential habitats for species –
GARP models outperformed gap models, reducing com-
mission error substantially, at a relatively small cost of
increased omission.

The uniform test presence data sets (20 points) offer
a view of the sensitivity of GARP approaches to train-
ing sample sizes (Peterson, 2001; Peterson et al., 2002a;
Peterson et al., 2002d; Stockwell & Peterson, 2002b).
Sensitivity of the method to sample size was minimal:
indeed, highly statistically significant models were
developed based on as few as eight training points. No
significant negative relationship was detected between
sample size and either false-positive or false-negative
error rates, suggesting that minimum training sample
size thresholds for accurate GARP modelling were not
approached in this study. Parallel results have been
obtained in a more formal test of GARP’s sensitivity to
sample size in predicting distributions of Mexican birds
(Stockwell & Peterson, 2002b).

The GARP methodology is readily incorporated into
existing gap efforts. GARP models provide an effective
solution to the challenge of modelling species’ distribu-
tions that forms a major component of gap programmes
(Scott et al., 1996). The vertebrate habitat modelling
efforts that typify gap applications can identify land-
use/land-cover associations for species, and can be used
to cut GARP outputs to reduce scales to fine levels.
Indeed, GARP models are easily developed on a variety
of geographic scales, and can be developed on scales
more broad than single states; this method thus offers a
clear solution to edge mapping and multistate efforts in
regional gap applications. GARP models, given their
reduced commission error rates, offer a clear solution to
mapping species richness, which has been complicated
with gap models (J. A. Hepinstall, unpubl. data). In this
way, GARP methodologies can be incorporated directly
into ongoing Gap studies, and can greatly improve the
predictive accuracy of species’ distributional models in
gap analyses.

A further feature of GARP modelling is its time-inex-
pensiveness relative to gap efforts (Scott et al., 1996).
After a relatively brief period of development of pre-
dictor environmental coverages (3 weeks), modelling
30 species’ distributions took one person less than
8 hours. Indeed, with batch implementations of GARP
now available, entire faunas of hundreds of species
can be modelled in the course of a few days. This time
efficiency, which is remarkable in comparisons with the
person-years of effort expended in building gap models

51Distributional modelling for gap analysis
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(Scott et al., 1996), suggests that modelling distributions
for gap analysis could be streamlined considerably via
GARP approaches.

Finally, GARP models offer numerous capabilities not
available with present gap models. For example, inte-
gration of current distributional patterns with the effects
of global climate change yields new distributional pre-
dictions that must be taken into account if management
decisions are to be robust to changes expected in com-
ing decades; such modelling efforts are eminently fea-
sible with GARP models (Peterson et al., 2001b;
Peterson et al., 2002b). Species’ invasions are also eas-
ily incorporated into GARP approaches (Peterson &
Vieglais, 2001; A. T. Peterson, M. Papes & D. A. Kluza,
unpubl. data; A. T. Peterson, R. Scachetti-Pereira & W.
W. Hargrove, unpubl. data; A. T. Peterson, R. Scachetti-
Pereira & D. A. Kluza, unpubl. data). Hence, a variety
of new functionalities would open for the gap commu-
nity, as well as simply improved predictive ability in the
core mission of the programme.
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