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Unified approach for universal quantum gates in a coupled superconducting two-qubit system
with fixed always-on coupling
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We demonstrate that in a coupled two-qubit system any single-qubit gate can be decomposed into
|0)-controlled and |1)-controlled two-qubit gates which can be implemented by manipulations analogous to that
used for a controlled NOT (CNOT) gate. Based on this we present a unified approach to implement universal
single-qubit and two-qubit gates in a coupled two-qubit system with fixed always-on coupling. This approach
requires neither supplementary circuit or additional physical qubits to control the coupling nor extra hardware

to adjust the energy level structure. The feasibility of this approach is demonstrated by numerical simulation of
single-qubit gates and creation of two-qubit Bell states in rf-driven inductively coupled two superconducting
quantum interference device flux qubits with realistic device parameters and constant always-on coupling.

DOI: 10.1103/PhysRevB.73.104521

During the past decade, a variety of physical qubits have
been explored for possible implementation of quantum gates.
Of those solid-state qubits based on superconducting devices
have attracted much attention because of their advantages of
large-scale integration and easy connection to conventional
electronic circuits.!~!> Superconducting single-qubit gates*~!!
and two-qubit gates'>"'> have been demonstrated recently.

However, building a practical quantum computer requires
the simultaneous operation of a large number of multiqubit
gates in a coupled multiqubit system. It has been proved
theoretically that any type of multiqubit gate can be decom-
posed into a set of universal single-qubit gates and a two-
qubit gate, such as the controlled-NOT (CNOT) gate.'®!” Thus
it is imperative to implement the universal single-qubit and
two-qubit gates in a multiqubit system with the minimum
resource and maximum efficiency.!'®

Implementing universal single-qubit gates and two-qubit
gates in coupled multiqubit systems can be achieved by turn-
ing off and on the coupling between qubits.!®2! In these
schemes, supplementary circuits were required to control in-
terqubit coupling. However, rapid switching of the coupling
results in two serious problems. The first one is gate errors
caused by population propagation between qubits. Because
the computational states of the single-qubit gates are not a
subset of the eigenstates of the two-qubit gates the popula-
tions of the computational states propagate from one qubit to
another when the coupling is changed, resulting in additional
gate errors. The second one is additional decoherence intro-
duced by the supplementary circuits.>>?* This is one of the
biggest obstacles for quantum computing with solid-state qu-
bits, particularly in coupled multiqubit systems.” In addition,
the use of supplementary circuits also significantly increases
the complexity of fabrication and manipulation of the coup-
led qubits.

To circumvent these problems, a couple of alternative
schemes, such as those with untunable coupling? and al-
ways-on interaction,”* have been proposed. In the first
scheme, each logic qubit is encoded by extra physical qubits
and coupling between the encoded qubits is constant but can
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be turned off and on effectively by putting the qubits in and
driving them out of the interaction free subspace. In the sec-
ond scheme, the coupling is always on but the transition
energies of the qubits are tuned individually or collectively.
These schemes can overcome the problem of undesired
population propagation but still suffer from those caused by
the supplementary circuits needed to move the encoded qu-
bits and tune the transition energies. Recently, a protocol for
universal gates in coupled superconducting qubits with fixed
coupling was proposed,? in which the qubits have detuned
and fixed Larmor frequencies during gate operation. The ad-
vantage of this scheme is that it requires minimal extra hard-
ware and control lines. However, to perform two-qubit gates
one needs a sequence of seven pulses and each pulse’s am-
plitude and phase must be controlled dynamically with high
precision. This level of complexity make it quite difficult to
realize in practice.

In this paper, we present a unified approach to implement
universal single-qubit and two-qubit gates in a coupled two-
qubit system with fixed always-on coupling. This approach
can be used to construct scalable quantum information pro-
cessing with simpler and fewer hardware resources when it is
combined with other schemes.!3-2%24 In this approach, each
single-qubit gate is realized via two controlled two-qubit
gates which we call |0)-controlled and |1)-controlled two-
qubit gates, respectively. The |0) (|1))-controlled gate imple-
ments a desired gate in one of the two coupled qubits when
the other is in |0) (J1)). Notice that the conventional CNOT
gate is a special case of the |1)-controlled two-qubit gate.
The approach needs no extra circuits or physical qubits in
addition to what would be required to perform CNOT gate.
Moreover, since the computational states of the single-qubit
gates are a subset of those of the two-qubit gates the gate
errors due to population propagation are completely elimi-
nated. The effectiveness of the approach is demonstrated by
numerically simulating the single-qubit gates and creating
the Bell states in a unit of inductively coupled two supercon-
ducting quantum interference device (SQUID) flux qubits
with realistic device parameters and constant always on cou-

pling.

©2006 The American Physical Society


http://dx.doi.org/10.1103/PhysRevB.73.104521

ZHOU, CHU, AND HAN

(4) (C)) I
U Ui Ut

\J

FIG. 1. (Color online) Single-qubit operation U on Q1 and its
equivalent operations by two controlled two-qubit gates U(]4()) and
U(lﬂ in a coupled two-qubit system. The |0)-controlled gaté and
|1)-controlled gate are denoted by the open and closed circles for
the state of Q2 being |0) and |1), respectively.

Let us consider a basic unit consisting of two coupled
qubits, labeled, respectively, as qubit 1 (Q1) and qubir 2
(Q2) for convenience. An eigenstate of the coupled qubits is
denoted by |n)=|ij), which can be well approximated by the
product of an eigenstate of QI, |i), and that of Q2, |j),
|n)=|ij)=[i)| ), for weak interqubit coupling. The computa-
tional states of the coupled qubits are |1)=|00), |2)=|01),
[3)=|10), and |4)=|11), which correspond to the eigenstates
for i, j=0, 1 and n=1,2,3,4, respectively. In general, the
result of an operation on Q1 depends on the state of Q2
since Q1 is coupled to and hence influenced by 9O2. As a
consequence, any unitary operation of the coupled qubits, U,
will act on states in the four-dimensional (4D) Hilbert space
spanned by |n). For U being a single-qubit operation on
Q1 one wants the state of Q1 to evolve according to U
independent of the state of Q2 which is left unchanged.
Thus all single-qubit gates on Q1 can be represented by
U(14)= U(12) ®I(22), where the 4 X 4 unitary matrix U(14) and the
2 X 2 unitary matrix U(lz) are the representations of U in the
Hilbert space of the coupled qubits and in the subspace of
Q1 while the 2 X 2 unitary matrix 1(22) is the representation of
the identity operation in the subspace of Q2. If the matrix
elements of U(lz) are u,, (u,v=1,2) the operation can be
decomposed into two operations as

1 0 0 0\/[uy 0 up 0
o _ 0 uy 0 up {[ 0 1 0 0
P10 001 0 Jluy 0 upy 0
0 uy 0 uy 0 0 0 1
= ULy
= UipUt. (1)

where the 4 X 4 unitary matrices U(]4()) and U(lﬂ represent |0)-

controlled and |1)-controlled operations on Q1 in the 4D
Hilbert space of the coupled qubits since U(f% only involves
the states [00) and [10) and U'") only involves |01) and [11).
Namely, when the state of Q2 is [0) (|1)), U(Ii% (Uﬁ‘f)) imple-
ments the desired single-qubit operation U while U%ﬂ (U(l‘f())
does nothing. Equation (1) shows that for the coupled qubits
any single-qubit gate on one qubit can be obtained by a joint
application of the |0)-controlled and |1)-controlled two-qubit
gates regardless of the state of the other qubit. This property
is universal and is shown schematically in Fig. 1, where the

single-qubit operation U and its equivalent operation via two
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controlled two-qubit gates U(li% and U(ﬁi are illustrated.

The most obvious advantage of implementing single-qubit
gates this way is that the single-qubit gates can be realized
using essentially the same set of operations as those for con-
trolled two-qubit gates in the coupled qubits without addi-
tional hardware resources. Without loss of generality, let us
consider a rf-driven coupled two-qubit system with suffi-
ciently different energy-level spacings AE 3, AE,,, AE|,, and
AFE;,, which is readily realizable with engineered solid-state
qubits, where AE,, is the level spacing between the states
|n) and |n"). To implement, for example, a single-qubit NOT
gate on Q1, we apply two 7 pulses to the Q1: the first one is
resonant with AE,; and the second with AE,,. Because both
pulses are largely detuned from AE |, and AE;,, they do not
induce unintended population transfer when the fields are
sufficiently weak. If the state of Q2 is |0) (|1)), the first
(second) pulse accomplishes the desired transformation.
Therefore when the two microwave pulses are applied to 91,
either sequentially or simultaneously, the NOT gate is accom-
plished and the gate time is essentially the same as that of a
stand-alone Q1 if both pulses are applied simultaneously.

To implement a two-qubit gate such as CNOT in coupled
qubits, we use Q1 and Q2, respectively, as the control qubit
and target qubit and apply a 7 pulse resonant with AE;, to
Q2.2 In this case, the state of Q2 flips if and only if the state
of Q1 is |1). Since the energy level structure for the single-
qubit gates and the CNOT gate could be the same the univer-
sal single-qubit gates and CNOT gate can be implemented in
the same fashion without adjusting interqubit coupling as
long as Q1 and Q2 can be addressed individually by micro-
wave pulses which is straightforward to realize, through
control/microwave lines of each qubit, with engineered
solid-state qubits in general and with rf SQUID flux qubits in
particular.

For the sake of concreteness, we demonstrate how to re-
alize the single-qubit and two-qubit gates in rf-driven two
SQUID flux qubits with constant always-on coupling. The
coupled flux qubits comprise two SQUIDs coupled induc-
tively through their mutual inductance M. Each SQUID
consists of a superconducting loop of inductance L inter-
rupted by a Josephson tunnel junction characterized by its
critical current I, and shunt capacitance C.>’ A flux-biased
SQUID with total magnetic flux @ enclosed in the loop is
analogous to a “flux” particle of mass m:Cq)(z) moving in a
one-dimensional potential, where ®y=h/2e is the flux
quantum. For simplicity, we assume that the two SQUIDs are
identical. In this case, C;=C, L;=L, and [I,=I. for
i=1,2. The Hamiltonian of the coupled qubits is?®?8
H(xy,x0)=Ho(x))+Ho(xy) +Hip(x1,x5),  where  Hy(x;) s
the Hamiltonian of the ith single qubit given by H(x;)
=p?2m+me; (x;=x,)?/2=E,cos(2mx;) and Hy, s
the interaction between the SQUIDs given by Hi,
=mw; -K(X;=X,1) (X, X,,). Here, x;=®;/®,, is the canonical
coordinate of the ith “flux” particle and p;=—ihd/dx; is the
canonical momentum conjugate to x; x,=®,/P, is
the normalized external flux bias of the ith qubit, E,
=mwiCBL/ 47> is the Josephson coupling energy, [
=2mLI./®, is the potential shape parameter, w; ~=1/VLC is
the characteristic frequency of the SQUID, and k=M/L is

104521-2



UNIFIED APPROACH FOR UNIVERSAL QUANTUM...

the coupling strength. The coupled SQUID qubits are a mul-
tilevel system. The eigenenergies E, and eigenstates |n) are
obtained by numerically solving the eigenvalue equation of
H(x,,x,) using the two-dimensional Fourier-grid Hamil-
tonian method.”” When x,, and x,,~ 0.5 the coupled SQUID
qubits have four wells in the potential energy surface.”® The
four computational states are chosen to be the lowest eigen-
state of each well.

To realize single-qubit and two-qubit gates in the coupled
SQUID qubits, we apply microwave pulses x. and x; to Q1
and Q2, respectively. The interaction of the coupled
qubits and pulses is V(x;,x,,0)=d,(x;=x,,)+d(x3—x,5)
+dy, with dy=mw}(xc+Kxy), dy=mor(xp+Kxc), and
dyy=mw} (xz+x7+2Kxcx7)/2. The time-dependent wave
functions of the coupled SQUID qubits, #(x;,x,,t), are
governed by the time-dependent Schrodinger equation
ihoyl dt=[H(x,;,x;)+ V(x,x,,1) ]if. To solve this equation we
expand ¢ in terms of the first 20 eigenstates of the coupled
qubits: y=3,c,(t)|n). The expansion coefficients c,(7) are
calculated by numerically solving the matrix equation
ide, (7)1 dT= S HY (e, () using the split-operator meth-

0d,>* where 7=w;t is the dimensionless time and Hn”
=[E,5,, +(n|V|n")]/fiw, - is the reduced Hamiltonian matrix
element. The probability of being in the state |n) is thus
|c,(7)|>. For single-qubit gates two resonant pulses, Xxc
=X¢i0 Cos(wet) with wey=AE 3/f and xey=x¢y0 cOs(wat)
with w=AE,,/#, are applied simultaneously to the Q1 so
that xo=xc|+xc,. For controlled two-qubit gates such as the
CNOT gate one resonant pulse xp=xp,cos(wst) with wr
=AFE;,/h is applied to the Q2. To minimize the possible
intrinsic gate errors caused by leakage to unintended states,
we select the parameters of the coupled SQUID qubits using
the independent transition approach.’! For SQUIDs with L
=100 pH, C=40 fF, and B;=1.2 one set of the better work-
ing parameters is x,;=0.499, x,,=0.4998, and k=2.5X 1074,
which will be used in the calculation.

Most of the single-qubit gates, such as the NOT gate and
Hadamard gate, can be described by rotations of the state
vector on the Bloch sphere.'® Thus we demonstrate how to
realize an arbitrary single-qubit rotation of an angle 6 about
an axis perpendicular to the z axis, R?(6), in the coupled
SQUID qubits. Based on Eq. (1), the rotation R(14)(0) on Q1
is accomplished via two controlled two-qubit rotations
R(]4())(0) and Rﬁ(ﬁ) as shown in Fig. 2(a). They are realized
by‘ applying two microwave pulses xc; and x~ to Ql
simultaneously. The amplitudes and frequencies of x.;
and x¢, are xc10=5X 107>, we=0.239w; =27 19.0 GHz,
Xc20=5.14X 1075, and w=0.259w;=27%20.6 GHz. In
Figs. 2(b) and 2(c), we plot the rotation angle # and the
populations of the states |[00) and |10) (populations of the
other states remain essentially at zero) as a function of pulse
width when the initial state of the coupled qubits is |00). It is
shown in Fig. 2(b) that the rotation angle 6 is essentially a
linear function of the pulse width. This indicates that the
state of Q1 undergoes Rabi oscillations for which the phase
angle 7 is a linear function of pulse width, where () is the
Rabi frequency. It is also shown in Fig. 2(c) that from the
initial state |00) the coupled qubits evolve into the state
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FIG. 2. (Color online) Arbitrary single-qubit rotation about an
axis perpendicular to z axis in the coupled SQUID flux qublts (a)
Quantum circuit: the state |ij) evolves to the state |i’j)=R 4)(0)|1 7
—[R(4)(0)\z>]| j) after the two controlled two-qubit rotations. (b) The
rotation angle 6 vs pulse width. (c) Populations of the states |00)
and |10) vs pulse width.

(|00y+|10))/+2 after two /2 pulses and into the state |10)
after two m pulses. We have also computed the rotation
angles and populations for the coupled qubits with the initial
states
each case, the state is transformed from |ij) to R4)(0)|1])
—[R(4 (6)|i)]jy for i,j=0,1 with §=Q 7 as expected.

The quality of a gate can be quantified by normalized gate
fidelity F=Tr{ppp;]/ Tt p;p;], where pp and p; are the physi-
cal and ideal density matrices after gate operation and the
overline denotes averaging over all possible initial states.?'-3?
The fidelities of the single-qubit gates in Fig. 2(c) are quite
high. For example, F=0.9998 for the Hadamard gate and
F=0.9963 for the NOT gate, which demonstrate the effective-
ness of the approach.

Entanglement is one of the most profound characteristics
of quantum systems and a cornerstone of quantum informa-
tion processing and communication.!® The maximally en-
tangled two-qubit states are referred to as the Bell states. To
create the Bell states from a state |i /), a Hadamard gate on
ol, H(4) which is decomposed into two controlled two-qubit
Hadamard gates H(4) and H(141, and a CNOT gate are com-
monly used [see F1g 3(a)]. The two controlled two-qubit
Hadamard gates are implemented by applying two /2
pulses xc; and xq, to Q1 and the following CNOT gate is
implemented by applying a 7 pulse x; to Q2, as shown in
Fig. 3(b). The amplitudes and frequencies of xr; and xc
are the same as those used in Fig. 2 and those of x; are
X70=5%107 and w;=0.0592w,=27X4.7 GHz. In Fig.
3(c), we plot the population evolution of the computational
states when the initial state is |00). It is shown clearly that
the coupled qubits evolve first into a product state
(|00)+10))/+2 from the initial state |00) after the 7/2 pulses

and then into a Bell state (J00)+|11))/\2 after the subse-
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FIG. 3. (Color online) Creation of the Bell states in the coupled
SQUID flux qubits. (a) Quantum circuit: the state |ij) evolves into
an entangled state |B,-j) after two controlled two-qubit Hadamard
gates and one CNOT gate. (b) Microwave pulses: two 7/2 pulses x¢
and x(, are applied to the Q1 first and then a 7 pulse x7 is applied
to the Q2. (c) Population evolution: the coupled qubits evolve into
a product state (|00)+|10))/V2 from the initial state |00) after the
first two 77/2 pulses and then into a Bell state (|00)+|11))/y2 from
the product state after the second 7 pulse.

quent 7 pulse. We have also calculated the population evo-
lution for the coupled qubits being initially in |01), |10), and
[11), respectively. The final state in each case is also one of
the expected Bell states. During this process, F'=0.9998 for
the Hadamard gate and F'=0.9999 for the CNOT gate.

The unified approach is efficient only for a basic unit
containing a few coupled qubits because for a unit with N
qubits it needs 2V~! pulses and requires the computational
energy levels to be unequally spaced. However, the scalable
quantum information processing for a system with a large
number of qubits can be achieved by a hybrid architecture
(HA)® in which adjacent basic units are linked by adjustable
couplers.'8-2224 The HA can significantly reduce the com-
plexity of the circuit compared to the conventional scheme
(CS) which uses a qubit as a basic unit. For the sake of
concreteness let us consider a generic 1D array of an even
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number of N qubits with the nearest neighbor coupling.???*

In this architecture the CS needs N—1 adjustable couplers,
while the HA only needs N/2—1 adjustable couplers if each
basic unit contains, for example, two qubits with fixed
always-on coupling. Compared to the CS the HA saves about
50% in the couplers for large N. Further let us consider an
rf-driven N-qubit gate which comprises a Hadamard gate on
each single qubit followed by a CNOT gate on the nearest
neighbors from left to right. If the initial state is |00 - -0) the
system will be in an entangled state after this gate. To imple-
ment this gate the CS needs 2N-2 microwave pulses and
2N-2 operations on the couplers, while the HA needs
3N-6 microwave pulses and N—2 operations on the cou-
plers. Although the HA requires about N pulses more than
the CS it saves about N operations on the couplers which are
usually adiabatic and thus much slower.

In summary, we showed that in a coupled two-qubit sys-
tem any single-qubit gate can be decomposed into two con-
trolled two-qubit gates which can be implemented with ma-
nipulations analogous to that used for the CNOT gate. Based
on this universal property of single-qubit gates we present a
general approach to implement the universal single-qubit and
two-qubit gates in the same coupled two-qubit system with
fixed always-on coupling. This approach is demonstrated by
using a unit of two SQUID flux qubits with realistic device
parameters and constant always-on coupling. Compared to
other methods'32>?425 our approach for a unit with two
coupled qubits has the following characteristics and advan-
tages: (1) The approach is universal as long as each qubit can
be locally addressed; (2) no extra hardware resources re-
quired; (3) no additional decoherence from the hardware
added to control interqubit coupling; (4) gate errors induced
by the population propagation from one qubit to another is
completely eliminated; and (5) the architecture for both hard-
ware (circuits) and software (pulse sequence) is much sim-
plified. For a system with N coupled qubits the scalable
quantum information processing can be achieved by the hy-
brid architecture.
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