Search for the Standard Model Higgs Boson in the $p\bar{p} \rightarrow ZH \rightarrow \nu\bar{\nu}b\bar{b}$ Channel

Published in Physical Review Letters 97, 161803 (2006)
(D0 Collaboration)

(1) Universidad de Buenos Aires, Buenos Aires, Argentina
(2) Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
(3) Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo, Brazil
(4) University of Alberta, Edmonton, Alberta, Canada; Simon Fraser University, Burnaby, British Columbia, Canada; York University, Toronto, Ontario, Canada; and McGill University, Montreal, Quebec, Canada
(5) Laboratoire de Physique Corpusculaire, IN2P3-CNRS, Université Blaise Pascal, Clermont-Ferrand, France
(6) Laboratoire de Physique Subatomique et de Cosmologie, IN2P3-CNRS, Université Grenoble I, Grenoble, France
(7) Laboratoire de Physique Corpusculaire, IN2P3-CNRS, Université Blaise Pascal, Clermont-Ferrand, France
(8) Laboratoire de Physique Subatomique et de Cosmologie, IN2P3-CNRS, Université Grenoble I, Grenoble, France
27 Panjab University, Chandigarh, India
28 Delhi University, Delhi, India
29 Tata Institute of Fundamental Research, Mumbai, India
30 University College Dublin, Dublin, Ireland
31 Korea Detector Laboratory, Korea University, Seoul, Korea
32 SungKyunKwan University, Suwon, Korea
33 CINVESTAV, Mexico City, Mexico
34 FOM-Institute NIKHEF and University of Amsterdam/NIKHEF, Amsterdam, The Netherlands
35 Radboud University Nijmegen/NIKHEF, Nijmegen, The Netherlands
36 Joint Institute for Nuclear Research, Dubna, Russia
37 Institute for Theoretical and Experimental Physics, Moscow, Russia
38 Moscow State University, Moscow, Russia
39 Institute for High Energy Physics, Protvino, Russia
40 Petersburg Nuclear Physics Institute, St. Petersburg, Russia
41 Lund University, Lund, Sweden; Royal Institute of Technology and Stockholm University, Stockholm, Sweden;
 Uppsala University, Uppsala, Sweden
42 Physik Institut der Universität Zürich, Zürich, Switzerland
43 Lancaster University, Lancaster, United Kingdom
44 Imperial College, London, United Kingdom
45 University of Manchester, Manchester, United Kingdom
46 University of Arizona, Tucson, Arizona 85721, USA
47 Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
48 California State University, Fresno, California 93740, USA
49 University of California, Riverside, California 92521, USA
50 Florida State University, Tallahassee, Florida 32306, USA
51 Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
52 University of Illinois at Chicago, Chicago, Illinois 60607, USA
53 Northern Illinois University, DeKalb, Illinois 60115, USA
54 Northwestern University, Evanston, Illinois 60208, USA
55 Indiana University, Bloomington, Indiana 47405, USA
56 University of Notre Dame, Notre Dame, Indiana 46556, USA
57 Purdue University Calumet, Hammond, Indiana 46323, USA
58 Iowa State University, Ames, Iowa 50011, USA
59 University of Kansas, Lawrence, Kansas 66045, USA
60 Kansas State University, Manhattan, Kansas 66506, USA
61 Louisiana Tech University, Ruston, Louisiana 71272, USA
62 University of Maryland, College Park, Maryland 20742, USA
63 Boston University, Boston, Massachusetts 02215, USA
64 Northeastern University, Boston, Massachusetts 02115, USA
65 University of Michigan, Ann Arbor, Michigan 48109, USA
66 Michigan State University, East Lansing, Michigan 48824, USA
67 University of Mississippi, University, Mississippi 38677, USA
68 University of Nebraska, Lincoln, Nebraska 68588, USA
69 Princeton University, Princeton, New Jersey 08544, USA
70 State University of New York, Buffalo, New York 14260, USA
71 Columbia University, New York, New York 10027, USA
72 University of Rochester, Rochester, New York 14627, USA
73 State University of New York, Stony Brook, New York 11794, USA
74 Brookhaven National Laboratory, Upton, New York 11973, USA
75 Langston University, Langston, Oklahoma 73050, USA
76 University of Oklahoma, Norman, Oklahoma 73019, USA
77 Oklahoma State University, Stillwater, Oklahoma 74078, USA
78 Brown University, Providence, Rhode Island 02912, USA
79 University of Texas, Arlington, Texas 76019, USA
80 Southern Methodist University, Dallas, Texas 75275, USA
81 Rice University, Houston, Texas 77005, USA
82 University of Virginia, Charlottesville, Virginia 22901, USA
83 University of Washington, Seattle, Washington 98195, USA

(Received 17 July 2006; published 20 October 2006)
We report a search for the standard model (SM) Higgs boson based on data collected by the D0 experiment at the Fermilab Tevatron Collider, corresponding to an integrated luminosity of 260 pb\(^{-1}\). We study events with missing transverse energy and two acoplanar b jets, which provide sensitivity to the ZH production cross section in the $\nu\bar{\nu}bb$ channel, and to WH production when the lepton from the $W \rightarrow \ell \nu$ decay is undetected. The data are consistent with the SM background expectation, and we set 95% C.L. upper limits on $\sigma(p \bar{p} \rightarrow ZH/WH) \times B(H \rightarrow bb)$ from 3.4/8.3 to 2.5/6.3 pb, for Higgs-boson masses between 105 and 135 GeV.

In the standard model (SM), the Higgs boson (H) responsible for electroweak symmetry breaking has yet to be observed. The experiments at the CERN e^+e^- Collider (LEP) provide lower limits on its mass, $m_H > 114.4$ GeV, while electroweak global fits favor a light Higgs boson, $m_H < 207$ GeV at 95% C.L. [1]. If it exists, the Higgs boson could be observed at the Fermilab Tevatron Collider (center of mass energy $\sqrt{s} = 1.96$ TeV) by combining different analysis channels from both the D0 and CDF experiments [2,3].

We present a search for a SM Higgs boson with m_H between 105 and 135 GeV, in the final state with missing transverse energy (E_T) and two or three jets, in which one or two jets are identified (“tagged”) as b jets. This final state is sensitive to Higgs bosons produced in the $p \bar{p} \rightarrow ZH \rightarrow \nu\bar{\nu}bb$ channel, which is particularly promising because of the expected large $Z \rightarrow \nu\bar{\nu}$ and $H \rightarrow bb$ branching fractions. The product of cross section (σ) and branching fraction (B) is predicted to be about 0.01 pb for a 115 GeV Higgs boson, which is comparable to that for $WH \rightarrow l\nu bb$ [4].

The chosen final state also has sensitivity to WH production since the charged lepton from W decay can be undetected or not identified properly ($\nu\bar{\nu}bb$ channel). Searches for WH production have been performed previously by relying on the identification of the electron or the muon from leptonic W decay [5,6].

There are two main sources of background to this final state: (i) the “physics” backgrounds $Z + j$, $W + j$, electroweak diboson production (WZ and ZZ), and top quark production with undetected leptons or jets, and (ii) a large instrumental background caused by multijet events with mismeasured jet energies that is difficult to simulate. In the ZH or WH processes, since the two b jets are boosted along the Higgs-momentum direction, they are not back-to-back in azimuthal angle (ϕ), in contrast to the dominant dijet background. Our search is based on an integrated luminosity of 260 pb\(^{-1}\) accumulated with a dedicated trigger designed to select events with significant E_T and with jets that are not back to back.

The D0 tracking system consists of a silicon microstrip tracker (SMT) and a central fiber tracker (CFT), both located within a 2 T superconducting solenoid magnet [7], with tracking and vertexing at pseudorapidities $|\eta| < 3$ and $|\eta| < 2.5$, respectively, where $\eta = -\ln[\tan(\theta/2)]$ and θ is the polar angle. A liquid-argon and uranium calorimeter has a central section (CC) covering $|\eta|$ up to ≈ 1.1, and two end calorimeters (EC) that extend coverage to $|\eta| = 4.2$ [8]. An outer muon system, at $|\eta| < 2$, consists of a layer of tracking detectors and scintillation trigger counters in front of 1.8 T toroids, followed by two similar layers after the toroids.

To estimate the number of expected events, the signal (ZH, WH), $t\bar{t}$, and diboson production is simulated with PYTHIA [9]. For W and Z events with two or more jets we use ALPGEN [10], and for single top simulation we use COMPHEP [11]. The samples generated by COMPHEP and ALPGEN are passed through PYTHIA for showering and hadronization. The cross sections for the ALPGEN samples are normalized to next-to-leading-order calculations [12]. All the samples are processed through D0 detector simulation based on GEANT [13], and D0 reconstruction software. Trigger efficiencies measured in data are applied to correct the simulated events.

Event selection requires two or three jets reconstructed with the “iterative-midpoint-Run-II” cone algorithm, with $p_T > 20$ GeV, $|\eta| < 2.5$, and a cone radius of $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} < 0.5$. Jets are required to pass quality criteria designed to reject noise and suppress electron or photon-induced energy depositions, and jet energies are corrected to the particle level using jet energy calibration and resolution factors determined from photon + jet events. Corrections depend on the p_T and η of the jet and are typically 30%. Jet energy resolution varies from 20% to 10% for p_T between 40 and 150 GeV.

The primary vertex has to be within ± 35 cm of the longitudinal (z) center of the detector, and at least two “taggable” jets that pass the above requirements must be present for the event to be included in our final sample (a jet is defined taggable if it contains within its cone at least two tracks satisfying strict quality criteria, one with $p_T > 1$ GeV, and another with $p_T > 0.5$ GeV). The average fraction of taggable jets is measured using $W(\rightarrow \mu \nu)$ + jets data, and is (86 \pm 1)% per jet. This fraction, which is a function of η and p_T of the jet, and of the z coordinate of the primary vertex, is used to correct the simulated jets.

We then require: (i) $E_T > 50$ GeV, where E_T is calculated from the position and energy of the calorimeter cells, (ii) the azimuthal angle between the two highest p_T (leading) jets to be less than 165°, and (iii) no isolated electrons or muons, in order to suppress multijet background and
Run IIOD \sim (260 pb$^{-1}$) events. Since our search requires good modeling of the rejection of ground in the signal region amounts to the Higgs signal is negligible.) The instrumental background while the physics background amounts to $2520 / 0.0001$.

The sideband region, which is defined by requiring all above variables are well modeled. The instrumental background and is modeled with a polynomial function tested through a fit to the data in the sideband region. The physics background in the signal region due to mismeasurement of jet energy or of ground contributes about 15% of the events in the sideband and in the signal region.

The sum of the absolutely normalized TG parametrization and of the polynomial function is then fitted to the data in the signal region, as shown in Fig. 1. (Before b tagging, the Higgs signal is negligible.) The instrumental background in the signal region amounts to 696 ± 91 events, while the physics background amounts to 2520 ± 330 events. Since our search requires good modeling of E_T, we show in Fig. 2 the E_T distribution after all requirements, excepting b tagging. The data are well described by the sum of the simulation of $Z/W + jj/bb\bar{b}$ and the estimated contribution from instrumental background. Top-pair and single top production represent negligible contributions before requiring b tagging.

To select b jets, we apply a b-tagging algorithm that uses a jet lifetime probability (JLIP) computed from the tracks associated with the jet. A small probability corresponds to a jet lifetime probability (JLIP) computed from the tracks associated with the jet. A small probability corresponds to the jet. A small probability corresponds to the jet.

$$W(\rightarrow e\nu, \mu\nu) + \text{jet} \, \text{and} \, Z(\rightarrow ee, \mu\mu) + \text{jet events.}$$
TABLE I. Number of expected signal (for \(m_H = 115 \) GeV), background, and observed events (obs.) before \(b \) tagging, after inclusive (IST), and exclusive (ST) single \(b \) tagging, and after double \(b \) tagging (DT). Before \(b \) tagging, the expected background is by construction equal to the observed events (see text on the background determination). The number of events after the \(\pm 1.5 \) standard deviation (s.d.) mass window requirement are given in parenthesis. The average errors on these numbers are 18% (19%) for the ST (DT) sample.

<table>
<thead>
<tr>
<th>(\mathcal{E}_T) + 2, 3 jets</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{IST})</td>
<td>(\text{ST})</td>
<td>(\text{DT})</td>
<td>(\text{DT})</td>
</tr>
<tr>
<td>(ZH)</td>
<td>0.71</td>
<td>0.62</td>
<td>0.26 (0.20)</td>
</tr>
<tr>
<td>(WH)</td>
<td>0.54</td>
<td>0.47</td>
<td>0.20 (0.15)</td>
</tr>
<tr>
<td>(\text{Zjj})</td>
<td>843</td>
<td>93.3</td>
<td>7.9 (2.6)</td>
</tr>
<tr>
<td>(\text{Wjj})</td>
<td>1600</td>
<td>260</td>
<td>36.1 (13.6)</td>
</tr>
<tr>
<td>(\text{Zbb})</td>
<td>13.1</td>
<td>11.3</td>
<td>4.7 (1.6)</td>
</tr>
<tr>
<td>(\text{Wbb})</td>
<td>12.4</td>
<td>10.5</td>
<td>4.4 (1.4)</td>
</tr>
<tr>
<td>(\ell\ell/\text{t}\bar{t}/\text{t}q\bar{b})</td>
<td>42.3</td>
<td>33.6</td>
<td>15.3 (5.6)</td>
</tr>
<tr>
<td>(\text{WZ/ZZ})</td>
<td>7.3</td>
<td>3.4</td>
<td>1.1 (0.71)</td>
</tr>
<tr>
<td>(\text{Instrumental})</td>
<td>696</td>
<td>143</td>
<td>25.0 (8.4)</td>
</tr>
<tr>
<td>(\text{Total expectation})</td>
<td>(= \text{obs.})</td>
<td>555</td>
<td>94.5 (34.0)</td>
</tr>
<tr>
<td>(\text{Observed events})</td>
<td>3210</td>
<td>592</td>
<td>106 (33)</td>
</tr>
</tbody>
</table>

we require JLIP <1% for the leading jet and <4% for the second-leading jet. In the ST sample we require a more stringent JLIP <0.1%. The average \(b \)-tagging efficiency is \(\approx 50\% \) (40\%, 30\%) for JLIP <4%(1%, 0.1%). The relative uncertainty on the \(b \)-tagging efficiency is 7% per jet. The mistag rate is defined as the fraction of light-quark jets tagged as \(b \) jets, and its average value is approximately the value of the JLIP requirement. For the instrumental background, we estimate the mistag rate from data in the sideband region, and extrapolate it into the signal region. Table I lists the number of \(ZH \) and \(WH \) signal, background, and observed events for each \(b \)-tag requirement, and also for the inclusive sample of events with at least one \(b \)-tagged jet with JLIP <4% (to verify that the data are also well described by the simulation in another \(b \)-tagging configuration). After the ST requirement, 106 events remain, while 94.5 \pm 17.0 events are expected. In the DT sample, we observe 25 events, whereas 27.0 \pm 5.1 are expected, and in the inclusive sample these numbers are 592 and 555 \pm 70 events, respectively.

We estimate the systematic uncertainty due to trigger and jet reconstruction efficiency, jet energy calibration, instrumental-background estimation, physics-background cross sections, and parton distribution functions by varying each source of uncertainty by \(\pm 1 \) s.d. and repeating the analysis. The systematic uncertainties are estimated separately for the DT and ST samples. In total, we find a 19% (14%) uncertainty on signal acceptance and 19% (18%) uncertainty on the total background for the DT (ST) analysis. The dominant systematic uncertainties are due to \(b \) tagging and jet reconstruction and calibration. The uncertainty on the integrated luminosity is 6.5%.

We then search for an excess of events as a function of \(m_H \) by counting events in the dijet mass distribution within a \(\pm 1.5 \) s.d. window around the reconstructed Higgs-boson mass peak, e.g., \(\pm 25.2 \) GeV for \(m_H = 115 \) GeV. No excess over the SM background is found in the data, as can be seen for the ST dijet mass distribution in Fig. 3, in which the expected \(ZH \) signal for \(m_H = 115 \) GeV is also shown. The acceptance for \(ZH \) (\(WH \)) events is 1.04% (0.43%) for \(m_H = 115 \) GeV. We thus set 95% C.L. upper limits on

FIG. 3 (color online). Dijet invariant mass distribution in the DT sample. The expectation originating from \(ZH \) production with \(m_H = 115 \) GeV is also shown.

TABLE II. Expected/observed 95% C.L. limits on \(\sigma(p\bar{p} \rightarrow ZH) \times B(H \rightarrow bb) \) in pb, as a function of \(m_H \).

<table>
<thead>
<tr>
<th>Higgs mass (GeV)</th>
<th>105</th>
<th>115</th>
<th>125</th>
<th>135</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST</td>
<td>7.7/8.2</td>
<td>6.8/6.8</td>
<td>6.0/7.3</td>
<td>5.4/7.5</td>
</tr>
<tr>
<td>DT</td>
<td>3.3/4.2</td>
<td>2.8/3.6</td>
<td>2.5/2.8</td>
<td>2.2/2.2</td>
</tr>
<tr>
<td>ST + DT</td>
<td>3.1/3.4</td>
<td>2.7/3.2</td>
<td>2.4/2.9</td>
<td>2.1/2.5</td>
</tr>
</tbody>
</table>

\[
\sigma(p\bar{p} \rightarrow ZH) \times B(H \rightarrow b\bar{b}) \quad \text{and} \quad \sigma(p\bar{p} \rightarrow WH) \times B(H \rightarrow b\bar{b})
\]

using a modified frequentist approach, the \(CL_s\) method [14]. In this method, the binned distributions are summed over the log-likelihood ratio test statistic. Systematic uncertainties are incorporated into the signal and background expectations using Gaussian sampling of individual uncertainties. For the limits obtained when combining the likelihoods of the ST and DT analyses, correlations between uncertainties are handled by varying simultaneously all identical sources. Limits are determined by scaling the signal expectations until the probability for the background-only hypothesis falls below 5% (95% C.L.). This translates into a cross-section limit for \(m_H = 115\) GeV. The limits for four Higgs-boson mass points (105, 115, 125, and 135 GeV) and for ST, DT, and the combined ST + DT results are summarized in Tables II and III. We set 95% C.L. upper limits from 3.4 to 2.5 pb on \(\sigma(p\bar{p} \rightarrow ZH)\times B(H \rightarrow b\bar{b})\) for \(m_H = 105\)–135 GeV (Fig. 4). The CDF Collaboration has published combined limits (ST + DT) with Tevatron Run I data, i.e., at \(\sqrt{s} = 1.8\) TeV, of 7.8–7.4 pb for \(m_H = 110\)–130 GeV [15].

In conclusion, we have performed a search for \(ZH\) and \(WH\) associated production in the \(E_T + b\) jets channel using 260 pb\(^{-1}\) of data. We have studied the dijet mass spectrum of the two leading jets with double and exclusive single \(b\)-tagged jets for Higgs-boson masses between 105 and 135 GeV. In the absence of signal, we have set upper limits on different Higgs-boson production channels or final states, and have combined them. The combined limits are between 3.4 to 2.5 pb (8.3 to 6.3 pb) on the cross section for \(ZH\) (\(WH\)) production multiplied by the branching fraction for \(H \rightarrow b\bar{b}\). These are the first limits in the \(ZH\) channel based on Tevatron Run II data.

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CAPES, CNPq, FAPERJ, FAPESP, and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); PPARC (United Kingdom); MSMT (Czech Republic); CRC Program, CFI, NSERC, and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); Research Corporation; Alexander von Humboldt Foundation; and the Marie Curie Program.

TABLE III. Expected/observed 95% C.L. limits on \(\sigma(p\bar{p} \rightarrow WH) \times B(H \rightarrow b\bar{b})\) in pb, as a function of \(m_H\).

<table>
<thead>
<tr>
<th>Higgs mass (GeV)</th>
<th>105</th>
<th>115</th>
<th>125</th>
<th>135</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST</td>
<td>18.5/17.6</td>
<td>15.9/16.9</td>
<td>14.9/18.9</td>
<td>12.4/18.5</td>
</tr>
<tr>
<td>DT</td>
<td>8.0/9.6</td>
<td>6.6/8.1</td>
<td>6.3/7.1</td>
<td>5.3/5.3</td>
</tr>
<tr>
<td>ST + DT</td>
<td>7.6/8.3</td>
<td>6.3/7.5</td>
<td>6.0/7.4</td>
<td>5.0/6.3</td>
</tr>
</tbody>
</table>

*On leave from IEP SAS Kosice, Slovakia.
†Visitor from Helsinki Institute of Physics, Helsinki, Finland.