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Abstract 
 

High-grade gliomas, including the astrocytoma glioblastoma multiforme (GBM), are the 

most common adult primary malignant brain tumor. The mean post-diagnosis survival time of 

patients with GBM is approximately 14 months and has improved only minimally over the last 

several decades given a lack of novel and effective therapeutic strategies or interventions. 

Similar issues persist for other forms of brain cancer, notably medulloblastomas (MB) in the 

pediatric patient population. Given our inability to extend survival and enhance quality of life 

adequately in these brain tumor patients, there is a critical need for novel chemotherapeutic 

agents in the treatment of GBM and MB that may work as monotherapy agents or in synergistic 

combinations with current interventions.  

In this work, the role of the natural product withaferin A (WA), a steroidal lactone with 

intriguing cytotoxic properties, was studied alone or in combination with currently approved 

anti-cancer agents (temozolomide, radiation therapy, and proteosome inhibitors) against GBM 

and MB brain tumors. It was shown that WA could produce G2/M cell cycle arrest and apoptosis 

with inhibitory modulation of the Akt/mammalian target of rapamycin (mTOR) pathway in 

GBM. Similarly, WA inhibited Wnt/β-catenin signaling through degradation of transcription 

factor (TCF)/lymphoid enhancer-binding factor (LEF) family members in MB. Overall, exposure 

to WA was associated with generalized N-acetyl-L-cysteine-repressible cellular oxidation, thiol 

reactivity, and alterations in the heat shock protein (HSP) 90 chaperone axis. WA failed to alter 

intrinsic HSP90 activity but reduced the association between HSP90 and co-chaperone Cdc37. 

These findings were expanded to demonstrate WA-mediated potentiation of cytotoxicity with 

concurrent proteasomal inhibition through an accumulation of aberrant proteins. WA also 

increased tumor cell radiosensitivity through disruption of normal DNA damage recognition and 



iv 
 

repair. While WA failed to significantly enhance the cytotoxicity of temozolomide (TMZ), it 

demonstrated the ability to re-sensitize TMZ-resistant GBM through reduction in O
6
-

methylguanine-DNA methyltransferase (MGMT). 

This study identifies novel utility for the cytotoxic steroid lactone WA in the treatment of 

the malignant brain tumors GBM and MB through its alterations of oncogenic cellular signaling 

pathways, protein homeostasis, and the DNA-damage response mechanism. As such, WA 

represents a promising experimental therapeutic that warrants further translational exploration. 
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1.1 Brain tumors 

 

1.1.1 Glioblastoma mutiforme 

 

According to the National Cancer Institute, there were an estimated 22,070 new cases of 

primary brain tumors with 12,920 deaths from such tumors in 2009 in the United States. High 

grade gliomas, such as anaplastic astrocytoma and glioblastoma (GBM), account for 

approximately 38% of primary brain tumors, and, unfortunately, few definitive observations 

have been reported for potential environmental, occupational, or genetic causes of these tumors. 

The cell of origin for GBMs remains poorly defined, but studies have shown the most likely 

target cells to be astrocytes, neural stem cells, and/or oligodendrocyte precursor cells (Jiang and 

Uhrbom, 2012). Given the fact that these tumors occur in the central nervous system (CNS), 

treatment options have remained limited. Following optimal surgical debulking, radiation 

therapy (RT) is able to increase mean survival time from approximately six months to only one 

year (Gillingham and Yamashita, 1975; Onoyama et al., 1976; Sheline, 1977). Even ideal 

utilization of stereotactic radiosurgery known as Gamma Knife has only been shown to improve 

survival by approximately 2.3 months (Pouratian et al., 2009). Of the few treatment options 

available and approved for high grade malignant gliomas, surgical debulking followed by 

radiation therapy and concurrent chemotherapy with the methylating agent temozolomide (TMZ) 

represents the most effective option but still only yields a two-year survival rate in GBM patients 

of 26.5% (compared to 10.4% for radiation-only patients, the previous standard) (Stupp et al., 

2002; DeAngelis, 2005; Stupp et al., 2005; Taphoorn et al., 2005; Chamberlain et al., 2007). 
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While TMZ confers survival benefit to the glioma patient population as a whole and was 

approved for use in 2005 by the U.S. Food and Drug Administration (FDA), its extent of efficacy 

is largely influenced by the methylation state and expression status of the MGMT (O
6
-

methylguanine-DNA methyltransferase) gene promoter, which occurs in 35-45% of these tumors 

(Paz et al., 2004; Hegi et al., 2005). In patients whose tumors have an unmethylated promoter, 

the MGMT protein is expressed and repairs the initial DNA lesions caused by TMZ, essentially 

eliminating any anti-cancer effects of the drug (Hansen et al., 2007; Kitange et al., 2009). These 

statistics suggest that well over 55-65% of glioma patients do not display tumor phenotypes 

favorable for treatment with TMZ, and given the lack of adequate preliminary screening 

techniques for MGMT status, many of these patients end up receiving a therapy that will 

ultimately have no or minimally significant impact on disease progression. This clinical reality 

exposes the critical need for improved diagnostic and therapeutic approaches for patients with 

gliomas. 

Although not typically considered first-line standard of care, the Gliadel wafer represents 

an FDA-approved localized therapy that combines a biodegradable polymer backbone with the 

alkylating agent carmustine (BCNU) (Buonerba et al., 2011). Following surgical debulking, the 

wafer is set into the resection cavity to allow for a maintained release of drug to residual cancer 

cells at the margin of the resection. Average post-diagnosis survival was shown to be increased 

by two months with the Gliadel wafer, which, while significant, remains a poor outcome for 

these patients (Westphal et al., 2003). Lastly, in 2009, the anti-angiogenic agent bevacizumab, a 

monoclonal antibody against vascular endothelial growth factor (VEGF)-A to prevent the 

recruitment of additional vasculature to the site of the tumor, was approved by the FDA for use 

in patients with malignant gliomas (Serwer and James, 2012). This option is typically reserved 
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for patients with recurrent lesions who have failed or otherwise become resistant to TMZ and RT 

and has demonstrated the ability to extend progression-free survival in Phase II trials (Desjardins 

et al., 2008; Friedman et al., 2009; Zhang et al., 2012a); Phase III studies are ongoing (Serwer 

and James, 2012). 

 

1.1.2 Blood-brain-barrier 

 

Currently, the mean post-diagnosis survival time of patients with GBM and other 

aggressive high grade brain malignancies is approximately 14 months and has improved only 

minimally over the last several decades. This low survival duration following treatment is partly 

due to the lack of long-term efficacy of current treatment and partly a result of the highly 

infiltrative nature of these tumors, resulting in residual invasive tumor cells after surgical 

resection, high rates of recurrence, and poor clinical outcomes (Giese et al., 2003). Various 

groups are attempting to identify novel treatment modalities that better target these infiltrative 

lesions, including identification of chemotherapeutic agents possessing structures more likely to 

pass through the blood-brain-barrier (BBB), novel delivery mechanisms that circumvent current 

limitations, and enhancement of the anti-cancer properties of the immune system through 

immunotherapy (Alam et al., 2010; Serwer and James, 2012; Hamilton and Sibson, 2013). The 

brain displays a unique perivascular environment as a result of this selectively permeable BBB 

that limits the movement of chemicals and endogenous molecules from the blood into the brain 

parenchyma and thereby acts in a protective nature. However, this same protective mechanism 

under normal conditions establishes a therapeutic challenge in the case of a primary or metastatic 

brain lesion. In fact, while many inhibitors of pathways known to be important in the progression 
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of brain tumor growth already exist, the unimpressive results of their use in clinical trials can 

almost always be attributed, at least in part, to pharmacokinetic and biodistribution shortcomings 

(Serwer and James, 2012). While the architecture of the BBB is largely disrupted in advanced 

cases, such a finding becomes largely irrelevant in the context of the poor prognosis 

subsequently observed at that point (Zhang et al., 1992). Additionally, treatment of such lesions 

where the BBB has been compromised, while sometimes locally successful due to disruption of 

the barrier in this location, often fails due to recurrence from peripheral and/or infiltrative 

portions of the tumor where the BBB is still intact (Agarwal et al., 2011). A large portion of the 

success achieved with TMZ in brain tumors is due to its ability to cross the BBB (Patel et al., 

2003). 

 

1.1.3 Medulloblastoma 

 

One major challenge faced in the treatment of cancer, particularly brain tumors with 

CNS-directed chemotherapy and radiotherapy, is the damage known to be caused to normal brain 

and peripheral tissue, resulting in acute and chronic cognitive impairment known as post-

chemotherapy cognitive impairment or “chemobrain” (Butler et al., 2006; Nokia et al., 2012). 

Consideration of long-term complications is particularly important in the treatment of children 

who are affected by these diseases. The most common brain tumor in children is 

medulloblastoma (MB), a high grade lesion that typically arises in the posterior fossa and 

represents 25-30% of primary brain tumors in children but can arise in individuals of all ages 

(Khatua et al., 2012). MBs are categorized in several unique molecular subgroups based on 

tumor genetics, cell histology, growth, and clinical outcome including sonic hedgehog (SHH), 
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Wingless (Wnt), group 3, and group 4 (Northcott et al., 2012). As with glioma, the cell of origin 

for MB has remained elusive, but studies have suggested that different subgroups may develop 

from different cancer stem cell precursors including granule neuronal precursor cells in the SHH 

subgroup and dorsal brainstem precursor cells in the Wnt subgroup (Gilbertson and Ellison, 

2008; McCarthy, 2011). Although the overall 5-year survival rate for MBs in both children and 

adolescents is around 70%, differing somewhat between subgroups, therapeutic challenges 

remain to simultaneously address both treating the tumor and ensuring a high long-term quality 

of life in the pediatric patient population (Smoll, 2012). Current standards of care includes 

surgical resection followed by craniospinal radiation and DNA-damaging chemotherapeutic 

agents such as vincristine, lomustine, cyclophosphamide, carboplatin, and cisplatin (Khatua et 

al., 2012). However, because of significant morbidities associated with these agents, it has been 

reported that long-term survivors of childhood MB suffer from endocrine, cognitive, and 

neurological complications with significant deficits in daily psychosocial functioning including 

driving, employment, independent living, and personal relationships when compared to their age-

matched peers (Boman et al., 2009; Frange et al., 2009; Robinson et al., 2012). 

 

1.2 Proposed targets of withaferin A 

 

1.2.1 Oncogenic pathway signaling inhibition 

 

A recent screening of over 200 compounds derived from natural sources with promising 

anti-cancer potential at the University of Kansas Lawrence identified a 28-carbon steroidal 

lactone, withaferin A (WA), with intriguing cytotoxic properties (Figure 1-1). Interest in WA has  
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Figure 1-1.
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Figure 1-1. Structure of withaferin A.  
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increased within the last ten years as demonstrated by increased publication on its anti-cancer 

and anti-inflammatory properties (Vanden Berghe et al., 2012; Vyas and Singh, 2014). In these 

publications, WA is reported to target or otherwise modulate a plethora of different proteins and 

signaling pathways including Akt, Notch-1, heat shock protein (HSP) 90, nuclear factor kappa-

light-chain-enhancer of activated B cells (NFκB), activator protein 1 (AP-1), estrogen receptor 

(ER), RET, and p38 among others (Mohan et al., 2004; Singh et al., 2007; Mandal et al., 2008; 

Oh et al., 2008; Stan et al., 2008; Oh and Kwon, 2009; Shah et al., 2009; Koduru et al., 2010; 

Samadi et al., 2010a; Yu et al., 2010). Recently, our group and others have demonstrated a pro-

oxidant potential of WA in non-brain tumor cells (Malik et al., 2007; Widodo et al., 2010; Hahm 

et al., 2011; Mayola et al., 2011; Grogan et al., 2013) and its ability to bind to certain thiol 

residues (Yu et al., 2010; Thaiparambil et al., 2011; Santagata et al., 2012). Despite these 

findings, the specific mechanism of WA’s diverse and widespread effects remained elusive, 

especially in brain tumors where work has been largely absent. Regardless of the ultimate 

mechanism, development of WA as an anti-cancer agent has been suggested to provide a 

potentially unique approach compared to most standard therapies because, in contrast to 

disrupting a single molecular pathway or interaction like the integrity of DNA as with TMZ, WA 

demonstrates the ability to modulate several oncogenic pathways simultaneously (Vanden 

Berghe et al., 2012; Vyas and Singh, 2014). Many cancers, including GBM and MB, often 

display overactivation and/or dysregulation of multiple oncogenic signaling cascades, including 

the mitogen-activated protein kinase (MAPK) and PI3 kinase (PI3K)/Akt/mammalian target of 

rapamycin (mTOR) pathways, establishing therapeutic challenges given the heterogeneity of the 

activation and the great level of proliferative signaling (Gilbertson et al., 2006; Wen and Kesari, 

2008; Mohan et al., 2012). 
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1.2.1a Mitogen-activated protein kinase pathway 

 

The MAPK/ERK signaling pathway involves a chain of proteins in the cell that 

communicates a signal from a receptor on the cell surface to the nucleus where promotion of 

growth and proliferation occurs through selective transcription (Figure 1-2A and 1-2B) (Chang 

and Karin, 2001). The generation of an activated membrane receptor complex activates rat 

sarcoma protein (Ras), which subsequently promotes the protein kinase activity of 

rapidly accelerated fibrosarcoma protein (Raf). Raf kinase phosphorylates and activates MEK 

(MAPKK), which subsequently activates a MAPK, frequently extracellular signal-regulated 

kinase (ERK1/2) (Avruch et al., 2001). c-Jun N-terminal kinase (JNK) and p38 MAPKs are more 

responsive to stress signals. Disruption of this pathway at any point can lead to a failure of signal 

transduction and a slowing of cell growth. Inversely, various cancers often demonstrate 

activating mutations of proteins in the cascade like Ras and Raf or elevated activation of a 

surface receptor that promotes pathway signal transduction (Dhillon et al., 2007; Krakstad and 

Chekenya, 2010). GBMs predominately favor the latter, with 40-60% of cases demonstrating 

amplification of the tyrosine kinase epidermal growth factor receptor (EGFR) and 40% of those 

displaying activating EGFR mutations (Krakstad and Chekenya, 2010). Indeed, targeted 

therapeutics against EGFR are currently in clinical trials for GBM, but, despite some promise, 

they have not been approved as standard therapeutic agents (Krakstad and Chekenya, 2010). 

Trials in pediatric CNS tumors patients have also been ongoing but little has been published to 

date (MacDonald et al., 2014). These studies suggest that inhibition of MAPK signaling in brain 

tumors may yield improved therapeutic benefits. WA has been shown to affect this signaling  
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Figure 1-2.
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Figure 1-2. A) Simplified schematic of the MAPK/ERK signaling pathway. Activation of a cell 

surface receptor through ligand binding induces the downstream activation of a Ras GTPase. Ras 

recruits Raf  to the membrane and promotes its protein kinase activity. Raf kinase phosphorylates 

and activates MEK, which subsequently activates a MAPK, frequently ERK1/2, the main 

effector protein of the pathway with over 70 identified substrates. Ultimately, this pathway 

promotes cellular growth and proliferation occurs often through selective transcription of target 

genes. B) Detailed schematic demonstrating the complexities of the MAPK/ERF signaling 

pathway including the involvement of numerous adaptor, scaffolding, and regulator proteins. 

 

Reprinted by permission from Macmillan Publishers Ltd: Nature Reviews Molecular Cell 

Biology (http://www.nature.com/nrm/index.html). Kolch W. Coordinating ERK/MAPK 

signalling through scaffolds and inhibitors, 2005. 
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pathway in non-brain tumor models. In leukemic cells and squamous cell carcinoma, WA was 

shown to deplete total levels of Raf-1 but induce phosphorylation of ERK1/2 and the isoforms 

p38 and JNK (Mandal et al., 2008; Samadi et al., 2010b), with activation of p38 associated with 

induction of apoptosis (Mandal et al., 2008). 

 

1.2.1b PI3 kinase/Akt/mammalian target of rapamycin (mTOR) pathway 

 

Similar to the MAPK pathway, the PI3K/Akt/mTOR pathway can be activated by 

external signaling through tyrosine kinase receptors like EGFR. This leads to a signal cascade 

through PI3K, Akt, and finally mTOR, with numerous additional proteins playing supporting 

roles (Figure 1-3) (Krakstad and Chekenya, 2010). Because the tumor suppressor phosphatase 

and tensin homolog (PTEN), which counteracts PI3K, is inactivated by genetic alterations in 

approximately 60% of GBMs and mutations have been noted in MBs (Hartmann et al., 2006; 

Lee et al., 2011) that lead to constitutive activation of Akt and mTOR, this pathway is likely to 

be highly clinically relevant in the treatment of malignant brain tumors (Koul, 2008; Lino and 

Merlo, 2011). Hyperactivated Akt has been shown to result in uncontrolled cell cycle 

progression and protection from apoptosis (Nogueira et al., 2008). Inhibition of Akt, mTOR, and 

downstream p70 S6 kinase (S6K) represent potential targets for prevention of the pathway’s 

proliferative effects. In the presence of cellular stress, 5' AMP-activated protein kinase (AMPK) 

suppresses mTOR through phosphorylation of the tumor suppressor tuberin/TSC2 or the mTOR 

subunit Raptor (Mihaylova and Shaw, 2011). It has previously been shown that AMPK 

activation contributes to apoptosis in GBM cells (Zhang et al., 2010). Therapeutic activation of 

either the AMPK complex or tuberin/TSC2 represents a more indirect route to inhibit this  
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Figure 1-3. 
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Figure 1-3. Schematic of the PI3K/Akt/mTOR signaling pathway. PI3K is primarily activated by 

extracellular signaling through tyrosine kinase receptors at the cell surface but can also 

associated with Ras. PI3K activity is negatively regulated by PTEN. PI3K ultimately activates a 

signaling cascade including Akt and mTOR with signaling through phosphorylation. mTOR 

increases protein synthesis and cell proliferation through inhibitory phosphorylation of 

translational repressor 4E-BP1 and activating phosphorylation of p70 S6K. Reduction of 

pathway activity is mediated by stress indicator AMPK and tumor suppressors TSC1/2. 

 

Reprinted and adapted by permission from Macmillan Publishers Ltd: Nature Reviews Drug 

Discovery (http://www.nature.com/nrd/index.html). Faivre S, et al. Current development of 

mTOR inhibitors as anticancer agents, 2006. 
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pathway. Current early phase clinical trials in GBM are utilizing agents to inhibit the function of 

EGFR, Akt, PI3K, and mTOR in this pathway (Krakstad and Chekenya, 2010). Although  

multiple groups have demonstrated decreased levels of total and phosphorylated Akt in response 

to WA treatment in several non-brain tumor cancer models (Oh et al., 2008; Oh and Kwon, 

2009; Samadi et al., 2010a; Samadi et al., 2010b), no previous reports described its effects on 

other proteins in the PI3K/Akt/mTOR signaling pathway despite this early promise. 

 

1.2.1c Wnt/β-catenin signaling pathway 

 

MBs are categorized in several unique molecular subgroups including SHH, Wnt, group 

3, and group 4 based on a number of unique tumor traits (Northcott et al., 2012). The Wnt 

subgroup of MB patients is defined by overactivation of the canonical Wnt/β-catenin signaling 

pathway, often through overexpression of β-catenin or inactivating mutations of adenomatous 

polyposis coli protein (APC) and Axin1/2 thereby acting independently of extracellular signaling 

of Wnt through the frizzled surface receptor and downstream disheveled protein (Figure 1-4) 

(Kim et al., 2011). This leads to excessive nuclear accumulation of β-catenin, which associates 

with transcription factors of the transcription factor (TCF)/lymphoid enhancer-binding factor 

(LEF) family to promote cell migratory and proliferative activity of the pathway at the 

transcriptional level (Taylor et al., 2012). As a result, this pathway has been suggested as a 

potential therapeutic target in MB. Only poly(ADP-ribose) polymerase (PARP) inhibition, 

described to destabilize β-catenin through Axin, is under trial for MB (Waaler et al., 2012). 

The Akt/mTOR pathway establishes cross-talk with the Wnt/β-catenin pathway through 

glycogen synthase kinase-3β (GSK-3β) such that activation of Akt produces inhibitory  
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Figure 1-4.  
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Figure 1-4. Schematic representation of the Wnt signaling pathway in (a) the absence of Wnt 

ligand and (b) the presence of Wnt ligand. Without Wnt ligand, β-catenin is sequestered by a 

complex that includes GSK-3β, Axin, and APC which targets it for proteasomal degradation. 

TCF/LEF transcription factors in the nucleus remain associated with repressor proteins Groucho 

to prevent target protein transcription. In the presence of Wnt ligand binding a receptor complex 

that includes Frizzled and low-density lipoprotein receptor-related protein (LRP), the functions 

of dishevelled and CK1 ultimately lead to diminished GSK-3β and a failure to form the 

destruction complex. This leads to accumulation of β-catenin with its eventual translocation into 

the nucleus where it associates with TCF/LEF members to activate gene transcription. Activity 

of GSK-3β can also be reduced with cross-talk from the Akt/mTOR pathway in which Akt 

phosphorylates GSK-3β at Ser9 to inactivate it. 

 

Reprinted by permission from Macmillan Publishers Ltd: Nature Reviews Drug Discovery 

(http://www.nature.com/nrd/index.html). Barker N and Clevers H. Mining the Wnt pathway for 

cancer therapeutics, 2006. 
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phosphorylation of GSK-3β, a reduction in the phosphorylation of β-catenin, and enhanced 

stability of β-catenin. As such, inhibition of PI3K/Akt signaling has been shown to inhibit the 

Wnt/β-catenin pathway in MB (Baryawno et al., 2010). Given the previously described 

alterations in Akt induced by WA exposure, it was hypothesized that WA could act as a novel 

inhibitor of the Wnt pathway in MB by a similar mechanism. Until this study, WA had not 

previously been explored as a Wnt/β-catenin signaling inhibitor nor examined against MB. 

 

1.2.2 Proteotoxicity 

 

Malignant transformation to cancer often results in deregulation of normal homeostatic 

processes that is subsequently associated with increased cellular stress, including oxidative, 

replicative, metabolic, genomic, and proteotoxic stress (Luo et al., 2009). Cancer cell adaptation 

to these stressors is therefore necessary for survival, resulting in dependence on non-oncogene 

proteins and mechanisms that would otherwise play a less vital role in a non-malignant cell. 

Pharmacological induction of oxidative stress has emerged as an intriguing means by which to 

mount an anti-cancer effect. It is shown that pro-oxidant intervention can alter the redox 

homeostasis of cancer cells, already stressed by exposure to constitutively high levels of reactive 

oxygen species (ROS) not observed in normal cells, by shifting the balance to a state of 

cytotoxicity (Laurent et al., 2005; Cabello et al., 2007). In fact, several investigational 

chemotherapeutics with redox potential have recently been explored in preclinical and clinical 

settings (Wondrak, 2009; Tew and Townsend, 2011). Such an oxidative stress mechanism has 

also been demonstrated to effectively induce the proteotoxic stress of protein 

unfolding/misfolding, resulting in a downstream secondary cytotoxicity that likely preferentially 



20 

 

affects these already susceptible cancer cells (Xu et al., 2011; Qiao et al., 2012). Previous reports 

of others have demonstrated the pro-oxidant potential of WA in multiple cancer models (Malik et 

al., 2007; Widodo et al., 2010; Hahm et al., 2011; Mayola et al., 2011; Grogan et al., 2013). 

While this has largely remained a general finding, mechanistic evaluation demonstrated that 

overexpression of Cu,Zn-superoxide dismutase (SOD) resulted in a partial protective effect 

against WA treatment in breast cancer cells (Hahm et al., 2011). The same study suggested that 

WA-mediated ROS generation and toxicity was a result of mitochondrial respiration inhibition. 

While the WA exhibits both thiol reactivity and the ability to induce ROS, it has been 

suggested that the nature of such activity occurs with some protein specificity. It has been 

described that WA is capable of binding to the C-terminus of the chaperone protein HSP90 and 

altering its activity (Yu et al., 2010), although evidence of the latter is largely indirect and 

downstream. HSP90 is an well-conserved protein, making up ~1-3% of total cellular protein in 

any given cell, directly responsible for interacting with and maintaining the stability and function 

of over 400 key cellular proteins (Barrott and Haystead, 2013). Inhibition of HSP90 results in the 

depletion of client proteins critical to the proliferation and ultimate survival of cancer cells such 

as pro-growth signaling proteins, tyrosine kinases, cell cycle regulators, and steroid receptors 

(Zhang and Burrows, 2004; Powers and Workman, 2006; Sidera and Patsavoudi, 2014). 

Inhibition of this activity is cytotoxic. Cancer cells demonstrate enhanced responsiveness to 

HSP90 inhibition compared to normal tissue, and this has been suggested to be a result of 

enhanced reliance on HSP90 for stabilization of oncoproteins, localization in stressful 

microenvironments, and selective accumulation of inhibitors in cancer cells (Sidera and 

Patsavoudi, 2014). To date, 17 HSP90 inhibitors, all N-terminal inhibitors of ATPase activity 

such as 17-allylamino-17-demethoxygeldanamycin (17-AAG) (Workman, 2003), have been 
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brought to clinical trial, and while some have shown therapeutic promise despite formulation 

challenges, none have been approved for standard use against any cancer (Heath et al., 2005; 

Heath et al., 2008; Solit et al., 2008; Pacey et al., 2012). It has been noted that WA may function 

to indirectly modulate the HSP90 chaperone axis through disruption of the HSP90/ cell division 

cycle protein 37 (Cdc37) interaction (Yu et al., 2010; Grover et al., 2011; Gu et al., 2014). Cdc37 

functions as a co-chaperone to HSP90 and plays a vital role in localizing target kinases of the 

kinome with HSP90 for folding (Karnitz and Felts, 2007). 

It has been long-noted that oxidative and other stressor damage to proteins triggers their 

subsequent degradation (Stadtman, 1986). The major chaperones involved in protein quality 

control decisions are HSP70 and HSP90, which act together in a multi-chaperone complex to 

regulate the function, trafficking, and turnover of a wide variety of signaling proteins. However, 

despite being an oversimplification of the complexities of protein chaperoning, these two 

components of the machinery play opposite yet essential roles with HSP70 promoting 

ubiquitination followed by proteosomal degradation and HSP90 stabilizing proteins against 

degradation and instead promoting their refolding (Figure 1-5) (Pratt et al., 2010). This 

mechanism is supported by studies demonstrating that treatment with HSP90 inhibitors promotes 

the degradation of client proteins via the ubiquitin-proteasome pathway (Whitesell et al., 1994; 

Sepp-Lorenzino et al., 1995), and over-expression of HSP70 decreases the level of dysfunctional 

or misfolded proteins and improves viability in cellular models of certain neurodegenerative 

diseases characterized by the aberrant protein accumulation such as Parkinson’s disease, 

Huntington’s disease, and spinal and bulbar muscular atrophy (Jana et al., 2000; Bailey et al., 

2002; Klucken et al., 2004). Indeed, recent reports showed enhanced protein ubiquitination in the 

presence of WA (Bargagna-Mohan et al., 2006; Yang et al., 2012) and elevated total levels of  
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Figure 1-5.  
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Figure 1-5. In general, chaperone HSP90 promotes protein refolding while HSP70 favors protein 

degradation to maintain protein homeostasis and prevent the accumulation of aberrant proteins. 

Various stressors, including oxidation, increases the frequency of protein misfolding. Inhibition 

of HSP90 shifts protein maintenance toward HSP70-mediated proteasomal degradation and vice 

versa. Simultaneous inhibition of the HSP90 and HSP70 axes, especially in the presence of a 

stressor, promotes cellular cytotoxicity through accumulation of many aberrant proteins, given 

an elimination of both homeostatic pathways. 
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HSP70 following treatment (Grogan et al., 2013). While several reports indicate that WA at least 

partially inhibits the proteasome itself, which can lead to an accumulation of ubiquitinated 

proteins (Yang et al., 2007; Yang et al., 2012), this finding remains unclear in the context of 

other data demonstrating that pretreatment with proteasome inhibitor MG132 completely 

reverses WA-mediated degradation of certain proteins (Zhang et al., 2011b) and that the doses 

used to achieve the effect were significantly above pharmacologically-relevant levels. 

Given reports of WA-mediated alterations in proteins and oncogenic signaling pathways 

potentially through oxidation and modulation of the HSP90 chaperone axis, ultimately resulting 

in protein depletion and proteotoxicity, it was hypothesized that combinational therapy with WA 

and an inhibitor of the proteasome would successfully synergize by eliminating the 

cytoprotective effect of homeostatic aberrant protein degradation and allowing the accumulation 

of these dysfunctional molecules. Indeed, inhibition of HSP70 or the proteasome in the presence 

of traditional N-terminal HSP90 inhibitors promotes a synergistic effect (Minnnaugh et al., 2004; 

Ma et al., 2014). In this work, we further define WA’s role in modulating the HSP90 axis and 

evaluate its efficacy in combination with a proteasome inhibitor. 

 

1.2.3 DNA-damage response modulation 

 

Maintenance of genomic integrity is an essential process for cell homeostasis. While 

cancer cells are transformed to malignant status through interruption and manipulation of this 

integrity, excessive disruption of the genome may lead to lethality. The DNA damage response 

(DDR) promotes accurate transmission of genomes in dividing cells by reversing the extrinsic 

and intrinsic DNA damage and is required for cell survival during replication (Harper and 
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Elledge, 2007). Radiation and genotoxic drugs represent a large proportion of anti-cancer agents 

used in the clinic for years, but DNA damage repair mechanisms are often associated with 

chemo- and radio-resistance. These agents promote DNA single- and double-strand breaks 

(SSBs; DSBs) that induce cellular cytotoxicity when unrepaired. DSBs are regarded as the 

primary lesion of ionizing radiation and require repair through homologous recombination (HR), 

which maintains fidelity of the sequence at the break site, or non-homologous end-joining 

(NHEJ), which simply anneals two broken ends together (Figure 1-6) (Mladenov et al., 2013). 

The overall response to DNA damage is regarded as an immensely complex coordination of 

damage recognition and repair with simultaneous signal transduction to halt cell cycling during 

the repair (Figures 1-7A and 1-7B). If such efforts fail, cells enter a sustained period of 

senescence or simply die (Lamarche et al., 2010; Baskar et al., 2012). 

To increase the efficacy of these DNA-damaging treatments and promote the failure of 

repair, inhibitors of the major components of the DDR such as ATM (ataxia telangiectasia 

mutated), ATR (ATM and Rad3-related), DNA-PKcs (DNA-dependent protein kinase, catalytic 

subunit), Chk1 (checkpoint protein 1), and Chk2 (checkpoint protein 2) among others have been 

used or have attracted interest in the drug development realm (Furgason and Bahassi, 2012). 

These inhibitors have demonstrated to sensitize cancer cells to the genotoxic standard therapies. 

Unfortunately, few of these therapeutic options have emerged in the treatment of brain tumors 

and limited compounds have been taken to clinical trials largely due to translational challenges 

including trial funding and poor drug pharmacokinetics. 

Given the observation that numerous pathways are altered in response to WA, perhaps in 

part due to wide-scale oxidation or inhibition of the HSP90 axis, WA’s mechanism would be 

expected to overlap with those involved in the response to other therapeutic agents. Disruption of  
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Figure 1-6.  
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Figure 1-6. Double strand DNA breaks are repaired by either HR or NHEJ. In HR, lesions are 

detected by the MRN complex which subsequently recruits additional repair proteins that utilize 

the homologous templeate to copy and restore the original genetic code that was damaged. In 

NHEJ, lesions are identified by the Ku70/Ku80 heterodimer with a known role of the MRN 

complex as well which functions to recruit additional proteins to form the DNA-PK complex. 

This complex promotes the ligation of two broken ends independent of original DNA sequence 

and is therefore error-prone. 

 

Reprinted by permission from Macmillan Publishers Ltd: Nature Reviews Molecular Cell 

Biology (http://www.nature.com/nrm/index.html). Misteli T and Soutoglou E. The emerging role 

of nuclear architecture in DNA repair and genome maintenance, 2009. 
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Figure 1-7. 
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Figure 1-7. A) Simplified schematic of many of the proteins and interactions involved in HR and 

NHEJ repair responses to double strand DNA breaks induced by radiation or other cytotoxic 

therapies. Damage is identified by the MRN complex with subsequent recruitment of repair 

proteins, many of which demonstrate multiple functions. B) Simplified schematic demonstrating 

ATM phosphorylation-mediated signal transduction cascade in response to double strand DNA 

breaks. ATM phosphorylates p53, Chk1, and Chk2 in response to DNA damage which ultimately 

leads to checkpoint arrests of the cell cycle and ultimately cell death if the damage cannot be 

repaired. Transduction proteins such as p53 are frequently depleted or otherwise mutated in 

certain cancers. 

 

Reprinted and adapted by permission from Macmillan Publishers Ltd: Nature Reviews Cancer 

(http://www.nature.com/nrc/index.html). Begg AC, et al. Strategies to improve radiotherapy with 

targeted drugs, 2011. 
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proteins important in the recognition and repair of DNA damage would be expected to sensitize 

glioma cells to the first-line standard therapy of TMZ and RT, both genotoxic agents. Indeed, 

direct inhibition of HSP90 to destabilize a number of client proteins has previously been shown 

to act as a radiosensitizer (Dote et al., 2006; Noguchi et al., 2006; Kabakov et al., 2010). Several 

preliminary studies have suggested that WA functions as a radiosensitizer in multiple cancer 

models. Utilizing a knockout model to alter the normal function of HR and NHEJ, one study 

reported that WA may inhibit NHEJ (Devi et al., 2008). Other studies have correlated 

combination of WA and radiation to enhanced cellular oxidation (Yang et al., 2011b; Yang et al., 

2011a), however, the underlying mechanism producing WA-induced sensitization to DNA 

damage has not been identified.  We hypothesized that WA would disrupt the normal DDR and 

have explored that in this work as a means of radiosensitization and also re-sensitization of GBM 

cells to TMZ through alterations in MGMT, a protein involved in the removal of TMZ-mediated 

DNA alkylation. 

 

1.3 Specific Aims 

 

The objective of this study was to evaluate the potential of WA either as a stand-alone 

chemotherapeutic in the treatment of chemo-sensitive and -resistant brain tumors including GBM 

and MB, or as an agent whose combination with current standard approaches could be 

synergized or potentiated. As a single agent therapy, the effects of WA were evaluated on several 

major proliferative pathways including the MAPK, PI3K/Akt/mTOR, and Wnt/β-catenin 

signaling pathways as well as its ability to generate intracellular stress through thiol reactivity 

and the creation of ROS. Further, given the induction of DNA DSBs in tumor cells treated with 
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TMZ or RT, interference with recognition and/or repair of this damage by the tumor cells 

indicated a potential broad mechanism through which WA could potentiate the cytotoxicity of 

DNA-damaging therapy. To this regard, proteins of the DNA damage response mechanism were 

evaluated in the context of WA treatment and functional manifestations of DNA damage 

recognition and repair were measured. Additionally, protein levels of repair mechanisms specific 

to TMZ including MGMT and mismatch repair were explored. 

It was hypothesized that WA would act as a potent cytotoxic agent against brain tumors 

and potentiate the activity of several standard therapies through disruption of homeostatic 

cellular processes necessary in the response to those agents. The specific aims designed to 

explore the underlying mechanisms and validate this hypothesis are as follows: 

 

1) Determination of the key anti-cancer mechanistic properties of WA in oncogenic 

signal transduction pathways in GBM and MB in vitro. 

a. Ability of WA to induce cell cycle arrest and apoptosis. 

b. Effects of WA on several major proliferative pathways including the MAPK, 

PI3K/Akt/mTOR, and Wnt/β-catenin signaling pathways. 

c. Ability of WA to generate intracellular stress through thiol reactivity and the 

production of ROS and the response of the cell to this stress. 

2) Evaluation of the proteotoxic mechanism of WA and its therapeutic implications in 

vitro. 

a. The effects of WA on cellular oxidation and the underlying implications. 

b. WA-mediated modulation of the HSP90/HSP70 protein chaperone. 
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c. Therapeutic implications of combination therapy with WA and proteasome 

inhibitors. 

3) Exploration of the effects of WA on the DDR mechanism in vitro. 

a. Exploration of WA’s effects on the DNA damage recognition and repair 

responses. 

b. Evaluation of the efficacy of WA in combination with radiation and TMZ. 

c. Determination the ability of WA to alter mechanisms of resistance to provide 

TMZ resensitization in resistant cell lines. 

 

This research demonstrates several means by which the novel natural compound WA was 

studied in the context brain tumors to further understand its properties so as to better evaluate its 

potential as a new treatment for this disease. Completion of these studies, as outlined in the 

subsequent chapters, provides excellent evidence for the benefit of WA as a novel 

chemotherapeutic strategy for brain tumors, including GBM and MB with great translational 

potential both as a monotherapy and in combination with standard agent. Ultimately, the goal of 

this proposal was to promote progression of novel pharmaceutical development to improve brain 

tumor patient survival and quality of life. 

 

1.4 Statement of Purpose 

 

The purpose of the conducted research was to identify, define, and utilize the cytotoxic 

anti-cancer properties and clinical utility of the steroidal lactone WA in high-grade brain tumors 
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through its alterations of oncogenic cellular signaling pathways, protein homeostasis, and the 

DNA-damage response mechanism. 

 Briefly, the following chapters identify and describe key cellular changes in brain tumor 

cells following exposure to WA. In Chapter 2 (Specific aims 1a-1c), WA was screened as a 

potential cytotoxic agent against GBM brain tumor cells and was identified to exhibit anti-

proliferative activity through induction of G2/M cell cycle arrest and ultimately apoptosis. These 

findings were associated with modulation of the Akt/mTOR and MAPK pathways and induction 

of thiol-mediated oxidation. In Chapter 3 (Specific aims 1a-1c and 3b-3c), TMZ-resistant GBM 

cells were shown to demonstrate enhanced responsiveness to WA as a monotherapy with a 

similar responsiveness to WA as sensitive cells. This study expanded on the inhibitory nature of 

the effect on the Akt/mTOR pathway but showed that alterations in the MAPK are a 

compensatory response to the compound. Additionally, WA pretreatment was shown to deplete 

MGMT and functionally re-sensitize these cells to TMZ. Chapter 4 (Specific aims 1a-1c) further 

demonstrates the cytotoxicity of WA in brain tumors with a model of MB. A comparable pattern 

of general efficacy was observed as in GBM. WA was demonstrated to inhibit Wnt/β-catenin 

signaling through proteasome-mediated degradation of the TCF/LEF transcription factors 

without significant alterations in the total levels nor localization of β-catenin. These findings 

were correlated with TCF/LEF depletion following HSP90 inhibition and WA-mediated 

alterations in HSP90 co-chaperone association. In Chapter 5 (Specific aims 2a-2c), mechanisms 

of action for the observed manifestations of WA treatment were explored. Specifically, WA 

induced reduction of many HSP90 client proteins and disrupted the interaction between HSP90 

and Cdc37 as well as Cdc37-dependent proteins without directly inhibiting intrinsic HSP90 

activity. Additionally, WA induced an NAC-repressible oxidation that was enhanced with 
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glutathione depletion. Overall, WA produced protein degradation through the proteasome and 

cytotoxicity that could be enhanced through the build-up of aberrant proteins with pretreatment 

of a proteasome inhibitor. Finally, Chapter 6 (Specific aims 3a-3b) demonstrates the 

radiosensitizing properties of WA through disruption of the DDR mechanisms and enhanced 

arrest of the cell cycle. WA depleted proteins involved in DNA damage recognition, signaling, 

and ultimately repair through HR and NHEJ. This was functionally associated with altered 

phosphorylation of H2A.X and enhanced DSB with combination of WA and RT. 
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Chapter 2 

 

Cytotoxicity of withaferin A in glioblastomas involves 

induction of an oxidative stress-mediated heat shock 

response while altering Akt/mTOR and MAPK signaling 

pathways  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reprinted with permission from Springer Science + Business Media: 

 

Grogan, P.T., et al., Cytotoxicity of withaferin A in glioblastomas involves induction of an 

oxidative stress-mediated heat shock response while altering Akt/mTOR and MAPK signaling 

pathways. Invest New Drugs, 2013. 31(3): p. 545-557. 
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2.1 Abstract 

 

Withaferin A (WA), a steroidal lactone derived from the plant Vassobia breviflora, has 

been reported to have anti-proliferative, pro-apoptotic, and anti-angiogenic properties against 

cancer growth. In this study, we identified several key underlying mechanisms of anticancer 

action of WA in glioblastoma cells. WA was found to inhibit proliferation by inducing a dose-

dependent G2/M cell cycle arrest and promoting cell death through both intrinsic and extrinsic 

apoptotic pathways. This was accompanied by an inhibitory shift in the Akt/mTOR signaling 

pathway which included diminished expression and/or phosphorylation of Akt, mTOR, p70 S6K, 

and p85 S6K with increased activation of AMPKα and the tumor suppressor tuberin/TSC2. 

Alterations in proteins of the MAPK pathway and cell surface receptors like EGFR, Her2/ErbB2, 

and c-Met were also observed. WA induced an N-acetyl-L-cysteine-repressible enhancement in 

cellular oxidative potential/stress with subsequent induction of a heat shock stress response 

primarily through HSP70, HSP32, and HSP27 upregulation and HSF1 downregulation. Taken 

together, we suggest that WA may represent a promising chemotherapeutic candidate in 

glioblastoma therapy warranting further translational evaluation. 
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2.2 Introduction 

 

Malignant gliomas, including the grade IV astrocytoma glioblastoma multiforme (GBM), 

accounting for 60-70% of such lesions, are the most common adult primary malignant brain 

tumors, representing approximately 14,000 new cancer cases yearly (Wen and Kesari, 2008). 

The mean post-diagnosis survival time of patients with GBM is approximately 14 months (Wen 

and Kesari, 2008; Stupp et al., 2009). Most high grade brain tumors are quite infiltrative, 

resulting in residual invasive tumor cells even after optimal surgical resection. This significantly 

contributes to the high rate of recurrence and poor clinical outcomes associated with this disease 

(Giese et al., 2003). Standard-of-care management typically involves surgical debulking 

followed by treatment with radiation and the methylating agent temozolomide. While this 

currently represents the most efficacious therapy for prolonging survival, tumors are often quick 

to develop resistance to this line of therapy (Chamberlain, 2010; Quick et al., 2010). Recent 

investigational therapies have yielded only modest response rates up to 15% at best without 

impact on 6-month progression-free survival (Wen and Kesari, 2008; Quick et al., 2010).  

Therefore, given a lack of current therapeutic strategies to extend survival in glioma 

patients, there is a critical need for novel therapeutic agents. We previously screened over 200 

natural plant extracts with promising anti-tumor potential and identified a 28-carbon steroidal 

lactone obtained from the Vassobia breviflora, withaferin A (WA), with intriguing cytotoxic 

properties (Samadi et al., 2010b). WA has been identified as a novel cancer therapy with anti-

proliferative, pro-apoptotic, and anti-angiogenic properties as well as a modulator of several key 

cell-survival and regulatory pathways including those involving Akt, Notch-1, heat shock protein 
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(HSP) 90, NFkappaB, AP-1, estrogen receptor, RET, and p38 among others (Mohan et al., 2004; 

Singh et al., 2007; Mandal et al., 2008; Oh et al., 2008; Stan et al., 2008; Oh and Kwon, 2009; 

Shah et al., 2009; Koduru et al., 2010; Samadi et al., 2010a; Yu et al., 2010). Additionally, WA 

has shown promising anti-tumor activity in several murine xenograft and/or orthograft models 

including prostate, breast, medullary thyroid, melanoma, uveal melanoma, ovarian, cervical, and 

brain cancers (Vyas and Singh, 2014). 

We have recently demonstrated the anti-proliferative effects of WA in malignant glioma 

(Grogan et al., 2010; Grogan et al., 2011), and this finding was subsequently confirmed 

demonstrating the thiol-reactivity of WA and its ability to induce a heat shock response via a 

reporter assay (Santagata et al., 2012). Several additional reports have identified the pro-oxidant 

potential of WA (Malik et al., 2007; Widodo et al., 2010; Hahm et al., 2011; Mayola et al., 

2011), however, the mechanism of WA’s diverse and widespread effects, especially in glioma 

cells, is largely unknown. Here, we expand on previous findings to further delineate the nature of 

WA’s anti-cancer effects in glioblastoma and examine the molecular response by the cell. 

 

2.3 Materials and methods 

 

2.3.1 Cell culture and general reagents 

 

Two human glioblastoma multiforme cell lines, U87 and U251, were generously 

provided by Dr. Jann Sarkaria (Mayo Clinic, Rochester, MN), and one murine GBM cell line, 

GL26, was graciously donated by Dr. John Ohlfest (University of Minnesota, Minneapolis, MN). 

All cell lines were grown in Dulbecco’s modified Eagle’s media (DMEM #6429; Sigma-Aldrich, 
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St. Louis, MO) supplemented with 10% fetal bovine serum (FBS; Sigma-Aldrich, St. Louis, 

MO) and 1% penicillin/streptomycin (Sigma-Aldrich, St. Louis, MO) at a 37 °C humidified 

atmosphere of 5% CO2 in air. WA was extracted and isolated as previously described with a 

purity of 99% by HPLC and stored as a stock solution, adjusted for impurities, at 20 mM in 

DMSO at -80 °C (Samadi et al., 2010b). Propidium iodide (PI), RNase, and N-acetyl-L-cysteine 

(NAC) were acquired from Sigma-Aldrich (St. Louis, MO), and Annexin V-FITC was obtained 

from BD Biosciences (San Diego, CA). 

 

2.3.2 Cell proliferation and viability assays 

 

Cells were seeded in 96-well plates at 2,500 cells/well. Following a 6 h incubation 

period, WA-containing media in various concentrations was added to each well, and the cells 

were incubated for an additional 72 h. The number of viable cells was quantified by the 

colorometric CellTiter96 Aqueous MTS assay (Promega, Fitchburg, WI) at 490 nm on a BioTek 

Synergy 2 plate reader (BioTek, Winooski, VT) as per the manufacturer’s instructions. 

Because of the non-enzymatic, auto-reductive potential of NAC, the MTS assay was 

unable to be utilized for evaluating WA/NAC co-treatment studies given the nature of the assay 

mechanism, as described by the manufacturer. As such, the CellTiter-Glo luminescent assay 

(Promega, Fitchburg, WI) was utilized instead to measure cell viability by ATP levels. Cells 

were plated in 96-well plates followed by treatment with NAC after 6 h and WA 1 h later. After 

72 h, assay reagent was prepared as per the instructions, and 50 uL was added to each well. The 

luminescent signal was given 10-20 minutes to equilibrate and quantified by the BioTek Synergy 

2 plate reader. 
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2.3.3 Cell cycle analysis 

 

Cells were plated at an amount previously determined, based on the growth 

characteristics of individual cells, to have a high enough yield without achieving complete 

confluency upon harvest and were allowed to grow overnight. Cells were treated with 

appropriate concentrations of WA and, where indicated, pre-treated with 5 mM NAC. Upon the 

completion of treatment, cells were trypsinized, collected, resuspended in 0.43 mL of 4 °C 1x 

PBS followed by 1mL of -20 °C ethanol for a 70% ethanol fixative solution, and stored at -20 

°C. To analyze, stored cells were collected by centrifugation, resuspended in 1x PBS containing 

40 µg/mL PI and 100 µg/mL RNase, and incubated at -37 °C for 30 minutes before being 

analyzed by flow cytometry (BD LSRII; Becton Dickinson, San Diego, CA). Analysis of these 

results examined only viable cells without DNA fragmentation to establish the distribution of the 

true cell cycle in living cells. 

 

 2.3.4 Analysis of cell death 

 

Staining phosphatidylserine on the outer leaflet of the cell membranes on apoptotic cells 

and DNA staining by PI in necrotic and late apoptotic cells was performed to assess WA-induced 

cell death. Cells were plated and treated as indicated for cell cycle analysis. Upon the completion 

of treatment, cells were trypsinized, collected, and washed once in Annexin binding buffer (150 

mM NaCl, 5 mM KCl,1 mM MgCl2.6H2O, 1.8 mM CaCl2.2H2O, 10 mM HEPES, and 2% (v/v) 

FBS). Cells were stained with Annexin V-FITC and PI according to the manufacturer’s 
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instructions (BD Biosciences, San Diego, CA) for 20 minutes at 4 °C before being washed twice 

and resuspended in binding buffer. Cells were immediately analyzed by flow cytometry on a BD 

LSRII.  

 

2.3.5 Western blotting 

 

 Cells were plated and treated in the manner outlined for cell cycle analysis. Proteins were 

collected, quantified, separated by sodium dodecyl sulfate–polyacrylamide gel electrophoresis 

(SDS–PAGE), and electrotransfered onto a Hybond nitrocellulose membrane as previously 

described in Samadi, et al. (Samadi et al., 2011). Actin levels were assessed to ensure equal 

loading and transfer of proteins. All studies were repeated for accuracy. 

 Primary rabbit antibodies against poly(ADP-ribose) polymerase (PARP; #9542; 1:1000), 

caspase 3 (#9665; 1:1000), caspase 7 (#9492; 1:1000), caspase 9 (#9502; 1:1000), cyclin B1 

(#4138; 1:2000), p-ERK1/2 (Thr202/Tyr204; #4377; 1:1000), Akt (#9272; 1:1000), p-Akt 

(Ser473; #4058; 1:1000), c-Met (#4560; 1:500), p-c-Met (Tyr1234/1235; #3077; 1:500), 

epidermal growth factor receptor (EGFR; #4267; 1:1000), p70 S6 kinase (#2708; 1:500), p-p70 

S6 kinase (Thr389; #9234; 1:1000), mTOR (#2972; 1:1000), p-mTOR (Ser2448; #2971; 1:1000), 

Her2/ErbB2 (#2165; 1:1000), 4E-BP1 (#9644; 1:1000); p-4E-BP1 (Thr37/46; #2855; 1:1000), 

tuberin/TSC2 (#4308; 1:1000), p-tuberin/TSC2 (Thr1462; #3617; 1:1000), AMPKα (#2603; 

1:1000), and p-AMPKα (Thr172; #2535; 1:1000) and primary mouse antibodies against HSP27 

(#2402; 1:2000), caspase 8 (#9746; 1:1000), and p-EGFR (Tyr1068; #2236; 1:1000) were 

acquired from Cell Signaling Technology (Beverly, MA). Total- and phospho-antibodies against 

p70 S6 kinase were used to detect p85 S6 kinase (phospho-Thr412) given the known cross-
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reactivity of the antibodies. Rabbit antibodies against HSP90 (SPA-836; 1:1000), HSP32/heme 

oxygenase 1 (SPA-894; 1:1000), and heat shock factor 1 (HSF1; ADI-SPA-901; 1:1000) were 

acquired from Enzo Life Sciences (Farmingdale, NY) or its affiliates along with the rat antibody 

for Grp94 (SPA-850; 1:1000) and the mouse antibody for HSP70 (ADI-SPA-810; 1:1000). The 

mouse antibody Trap1 (MA1-010; 1:1000) was purchased from Affinity Bioreagents (Pierce 

Biotechnology, Rockford, IL). A mouse total actin antibody (MAB1501; 1:50,000) to be used as 

a control was acquired from EMD Millipore (Billerica, MA). A mouse antibody against Raf-1 

(sc-7267; 1:250), a goat antibody against p-Raf-1 (Ser338; sc-12358; 1:250), and a rabbit 

antibody against ERK1/2 (sc-154; 1:5000) were obtained from Santa Cruz Biotechnology (Santa 

Cruz, CA). Donkey anti-rabbit IgG HRP (sc-2313; 1:5000), goat anti-mouse IgG HRP (sc-2005; 

1:5000), and goat anti-rat IgG HRP (sc-2032; 1:5000) secondary antibodies were also purchased 

from Santa Cruz Biotechnology. Given primary antibody species specificity, Western analysis 

was completed in the human U87 and U251 cells lines. 

 

2.3.6 Detection of ROS 

 

The accumulation of intracellular ROS, particularly peroxides like H2O2, was determined 

using CM-H2DCFDA (Molecular Probes, Grand Island, NY), a general oxidative stress indicator 

that fluoresces upon oxidation. Cells were preloaded with 20 µM CM-H2DCFDA in 1x dPBS at 

37 °C for 1 h, washed once with phenol red-free DMEM containing 10% FBS and 1% 

penicillin/streptomycin, and plated in 96-well plates in phenol red-free media at 40,000 cells/well 

for GL26 and 20,000 cells/well for U87. After 30 minutes, cells were treated with WA, NAC, or 
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both. Measurements were taken on a BioTek Synergy 2 plate reader at 4 h with excitation and 

emission filters of 485 nm and 528 nm, respectively. 

Detection of mitochondrial superoxide present at a given timepoint was examined by 

MitoSOX Red (Molecular Probes, Grand Island, NY), an indicator reagent that fluoresces upon 

oxidation by superoxide radicals. Cells were plated and allowed to attach and grow overnight. 

Pre-treatment with 5mM NAC occurred 1 h before treatment with 5 µM WA. Cells were 

harvested 4 h after WA addition, washed once with 1x dPBS, and stained with 5 µM MitoSOX 

Red in 1x dPBS for 30 minutes at 37 °C. Cells were washed twice with 1x dPBS and run on a 

BD LSRII flow cytometer (Becton Dickinson, San Diego, CA) with excitation and emission 

filters of 488 nm and 580 nm, respectively, to assess mean fluorescence intensity. 

 

2.3.7 Statistical analysis 

 

GraphPad (GraphPad Inc., San Diego, CA) was used to generate best-fit sigmoidal dose response 

curves for IC50 determination. Comparisons of differences between two or more means were 

determined by Student’s unpaired t-test (2 means) via a standard statistical analysis software 

package (SPSS version 17.0; SPSS Inc, Chicago, IL). The level of significance was set at p < 

0.05. Data are presented as mean values with error bars denoting standard deviation. All studies 

were minimally performed in triplicate unless otherwise noted. 

 

2.4 Results 

 

2.4.1 Withaferin A reduces cell proliferation and viability in GBM cells 
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 To investigate the general biological effect of WA in GBM cells, three cell lines (U87, 

U251, and GL26) were incubated with increasing concentrations of WA or a DMSO control for 

72 h. Cell number and viability were subsequently determined by using the MTS assay (Figure 

2-1). WA dose escalation reduced cell proliferation and viability. By GraphPad analysis, the IC50 

values of WA were determined to be 1.07 ± 0.071 µM, 0.69 ± 0.041 µM, and 0.23 ± 0.015 µM 

for U87, U251, and GL26 cells, respectively. 

 

2.4.2 Withaferin A induces G2/M cell cycle arrest in GBM cells in a dose-dependent manner 

 

 In order to establish the nature of the anti-proliferative response to WA, distribution of 

the cell cycle phases of glioblastoma cells was assessed by flow cytometry at 24 h. WA induced 

a dose-dependent shift in cell cycle arrest from the G0/G1 checkpoint to G2/M arrest. Maximal 

shift to G2/M arrest above baseline was observed at 0.75 µM in U87 cells (12.0% G2/M in 

controls increasing to 63.4% with treatment), 1.5 µM in U251 cells (19.1% baseline to 49.7% 

with treatment), and 0.5 µM in GL26 cells (21.7% baseline to 58.7% with treatment (Figure 2-

2A). Doses above these optimal levels showed a somewhat diminished G2/M cell cycle shift. 

The shift to G2/M cell cycle arrest is accompanied by a depletion of cells in the G0/G1 phase and 

a relative increase in S phase as observed in the U87 (11%) and GL26 (14%), whereas the S 

phase proportion in U251 cells was largely unchanged (Figure 2-2A). 

 To confirm these findings, the G2/M-specific protein cyclin B1, which is elevated during 

G2/M cell cycle arrest, was evaluated by Western blot analysis for increases in expression with  

 

 



45 

 

Figure 2-1. 
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Figure 2-1. U87, U251, and GL26 cells were incubated with increasing concentrations of WA or 

a DMSO control for 72 h and then assessed by MTS assay. WA dose escalation reduced cell 

proliferation and viability with IC50 values of 1.07 ± 0.071 µM, 0.69 ± 0.041 µM, and 0.23 ± 

0.015 µM for U87, U251, and GL26 cells, respectively.  
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Figure 2-2.  
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Figure 2-2. A) Cells stained with propidium iodide and analyzed by flow cytometry revealed 

that WA induces a dose-dependent G2/M cell cycle arrest with an optimal range of such a 

response at 24 h. Maximal induction of arrest above baseline was observed at 0.75 µM, 1.5 µM, 

and 0.5 µM for U87, U251, and GL26 cells, respectively. Adjacent histograms display 

representative examples of these peak values in each cell line. B) G2/M arrest was confirmed by 

Western blotting for cyclin B1. At 24 h, U87 and U251 cells demonstrated dose-dependent 

induction of cyclin B1 with highest levels at 1 µM and 2.5 µM, respectively.  
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WA treatment. At 24 h, both U87 and U251 cells demonstrated a dose-dependent induction of 

cyclin B1 expression with maximal expression levels observed at 1 µM and 2.5 µM WA, 

respectively (Figure 2-2B). Flow cytometry identified sustained G2/M cell cycle arrest at both 48 

h and 72 h with Western analysis up to 48 h supporting those findings (data not shown). 

 

2.4.3 Withaferin A induces GBM cell death 

 

 To further characterize the anti-proliferative effects of WA, annexin V and propidium 

iodide (PI) dual staining on flow cytometry was used to evaluate the ability of WA to induce cell 

death through apoptotic and necrotic mechanisms. Figure 2-3A illustrates that increases in WA 

concentration corresponded with enhanced cell death in U87, U251, and GL26 cells at 24h. 

While all cell lines demonstrated evidence of an apoptotic response indicated by annexin V 

staining, U87 cells appear to also exhibit increased levels of necrosis with treatment as indicated 

by staining with PI only. From baseline measurements of 3.9-5.9%, total cell death at 3 µM WA 

treatment was 51.4% for U87 cells (9.0% early apoptosis; 18.4% late apoptosis; 24.0% necrosis), 

24.4% for U251 cells (12.0% early apoptosis; 9.9% late apoptosis; 2.5% necrosis), and 31.7% for 

GL26 cells (4.4% early apoptosis; 22.2% late apoptosis; 5.1% necrosis). Upon doubling the 

concentration to 6 µM, total cell death increased to 86.9% for U87 cells (3.4% early apoptosis; 

55.5% late apoptosis; 28.0% necrosis), 47.1% for U251 cells (9.7% early apoptosis; 32.5% late 

apoptosis; 4.9% necrosis), and 83.1% for GL26 cells (0.6% early apoptosis; 74.1% late 

apoptosis; 8.4% necrosis). Further induction of apoptosis was observed at 48 h (data not shown). 

 In order to confirm that these cells were undergoing an apoptotic response, protein levels 

of mitochondrial/intrinsic procaspase 9, extrinsic procaspase 8, effector procaspases 3 and 7, and  
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Figure 2-3. 
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Figure 2-3. A) Cells stained with propidium iodide and annexin V-FITC and analyzed by flow 

cytometry revealed that increasing WA concentrations correspond with enhanced cell death in 

U87, U251, and GL26 cells at 24 h. Adjacent dot plots display representative examples of each 

cell line. B) Induction of apoptosis was confirmed by Western blotting in U87 and U251 cell 

lines. WA treatment resulted in reduction in the levels of uncleaved initiator caspases 8 and 9 as 

well as effector caspases 3 and 7. Further, PARP cleavage was observed at 2.5 and 5 µM in both 

lines.  
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downstream PARP cleavage were examined by Western blotting (Figure 2-3B). With increasing 

concentrations of WA, a reduction in the levels of all uncleaved caspases was observed at 5 µM 

in both U87 and U251 cells at 24 h. Procaspases 3, 7, and 8 demonstrated reduced levels at WA 

concentrations below 5 µM in U87 cells. Finally, PARP cleavage was observed at both 2.5 and 5 

µM WA in both U87 and U251 cell lines. These data confirm that WA-mediated cytotoxicity at 

concentrations above IC50 is in part due to induction of apoptosis in these GBM cells. 

 

2.4.4 Withaferin A alters normal protein expression and activation in the Akt/mTOR and MAPK 

pathways 

 

Given the inhibition of proliferation and induction of cell death observed with WA 

treatment, several proteins associated with the Akt/mTOR and mitogen-activated protein kinase 

(MAPK) growth, proliferation, and survival pathways as well as key surface membrane proteins 

that signal to each pathway, known to be important in glioma and other cancers (Wen and 

Kesari, 2008), were screened in U87 and U251 cells for total expression and activation via 

phosphorylation status at 24 h post-treatment (Figure 2-4). Total levels of Akt and mTOR were 

reduced with increasing concentrations of WA. Akt and mTOR phosphorylation were dose-

dependently diminished in U87 cells, but only p-mTOR was decreased in U251 cells. Total 

levels of p70 S6K (downstream of mTOR) and its nuclear isoform p85 S6K were largely 

unchanged in both cell lines with enhanced downregulation only observed in p85 S6K at 5 µM 

WA in U87 cells. Low-dose WA induced phosphorylation of both proteins, but this was reduced 

and/or further depleted upon achieving levels of 0.5 µM WA and above. Expression of total 

levels of the translation-repressor 4E-BP1 (also downstream of mTOR) was markedly  
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Figure 2-4. 
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Figure 2-4. Following WA treatment, an array of proteins associated with the Akt/mTOR and 

MAPK growth, proliferation, and survival pathways as well as surface membrane proteins that 

signal to each pathway were screened via Western blotting in U87 and U251 cells for total 

expression and activation via phosphorylation status at 24 h post-exposure in order to help 

evaluate the molecular changes corresponding with cellular observations. Alterations in 

expression are observed in both pathways and with the cell surface receptors.  
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increased in U87 cells with elevated levels of inhibitory phosphorylation upon increasing WA 

concentration. In contrast, U251 cells exhibited decreased levels of both total and phosphorylated 

forms of 4E-BP1 with WA treatment suggesting an overall inhibitory alteration to the 

Akt/mTOR signaling pathway. Negative regulator of the pathway, AMPKα, was sustained or 

upregulated in total levels at all WA concentrations tested with the exception of 5 µM in U87 

cells. Another negative regulator, the tumor suppressor tuberin/TSC2, was sustained in U87 cells 

and upregulated in U251 cells up to 1 µM WA before diminishing at increased concentrations. 

However, activation of both tuberin/TSC2 and AMPKα via phosphorylation was observed at 

WA levels as low as 0.1-0.25 µM and maintained at higher doses. Peak levels were observed 

between 0.5-2.5 µM in a cell-dependent manner. 

Next, the effect of WA on the MAPK cascade was assessed since others have previously 

implicated WA as an inducer of a MAPK-mediated stress response (Mandal et al., 2008; Samadi 

et al., 2010b). In the U87 and U251 cells, total levels of ERK1/2 were unchanged with WA 

treatment over 24 h, but p-ERK1/2 levels were elevated with increasing concentrations of WA 

up to 2.5 µM and then diminished at 5 µM (Figure 2-4). In contrast to U87 cells, which express 

both p-ERK1 and p-ERK2 at comparable levels with treatment, p-ERK2 predominates 

expression with WA treatment of U251 cells. Additionally, total levels of upstream Raf-1 were 

diminished at 2.5-5 µM WA but activation of this protein by phosphorylation of serine 338 was 

observed in a dose-dependent manner with increasing WA concentrations. 

EGFR, Her2/ErbB2, and c-Met are commonly amplified and/or mutated surface proteins 

in glioblastoma and signal both the MAPK and Akt/mTOR pathways. As such attempts have, 

previous attempts have been made to therapeutically target these proteins (Wullich et al., 1993; 

Potti et al., 2004; Puputti et al., 2006; Guessous et al., 2010; Berezowska and Schlegel, 2011). In 
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both GBM cell lines, total levels of EGFR, Her2/ErbB2, and c-Met were decreased at 24h with 

increasing WA levels with the exception of c-Met upregulation from 0.25-2.5 µM WA (Figure 2-

4). Phosphorylation of EGFR increased with WA treatment, whereas c-Met phosphorylation was 

slightly elevated over controls at low WA doses but was downregulated at higher WA 

concentrations. 

 

2.4.5 Withaferin A elevates pro-oxidant potential in GBM cells and induces a cellular oxidative 

stress response 

 

WA-induced apoptosis in several cancer types was recently described as being mediated 

by ROS generation (Malik et al., 2007; Widodo et al., 2010; Hahm et al., 2011; Mayola et al., 

2011). Given the role ROS are known to play in a variety of cancer chemotherapeutic agents 

(Antosiewicz et al., 2008; Wondrak, 2009; Tew and Townsend, 2011), we examined whether the 

oxidation status of glioblastoma cells was altered by WA. The production of peroxide-type 

radicals with CM-H2DCFDA and mitochondrial accumulation of superoxide radicals with 

MitoSOX Red was measured in U87 and GL26 cells at 4 h post-WA exposure. GL26 and U87 

cell lines demonstrated elevated oxidation status in response to increasing concentrations of WA. 

Peroxides rose 29.4% in GL26 cells (p = 0.01) and 90.5% in U87 cells (p = 0.003) compared to 

controls (Figure 2-5A) while mitochondrial superoxide increased 10.9% (p = 0.002) and 10.8% 

(p = 0.03) above control at 5 µM, respectively (Figure 2-5B). In order to determine the nature of 

this response, cells were simultaneously incubated with 5 mM of the thiol antioxidant NAC, 

described as both a redox buffer and ROS scavenger (Deneke, 2000; Mayola et al., 2011). NAC 

significantly reduced peroxide generation in WA-treated cells and returned levels to near- 
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Figure 2-5.  
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Figure 2-5. A) Generation of peroxide-type radicals like H2O2 following exposure to increasing 

concentrations of WA were quantified with CM-H2DCFDA staining in U87 and GL26 cells at 4 

h. B) Mitochondrial accumulation of superoxide radicals was assessed by flow cytometry with 

MitoSOX Red staining in U87 and GL26 cells at 4 h post-exposure to 5µM WA. Elevated 

oxidation status observed in (A) and (B) was reduced or completely eliminated by concurrent 

treatment with the thiol antioxidant N-acetyl-L-cysteine (5 mM). C) An array of proteins 

associated with the heat shock stress response were screened via Western blotting in U87 and 

U251 cells 24 h and 48 h post-treatment of WA. Upregulation was consistently observed with 

HSP70 and HSP32 in a dose- and time-dependent manner (C and D) with alterations in other 

proteins displaying a cell-specific response. Expression of the transcription factor HSF1 was 

decreased across both cell lines. *p < 0.05  
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baseline in both GL26 cells (p = 0.006) and U87 cells (p = 0.001). NAC reduced levels of 

mitochondrial superoxide radicals but failed to do so within statistical significance, and levels 

remained significantly elevated in U87 cells, despite being reduced compared to WA alone. 

Induction of a heat shock response was also recently described in cells via a 

luminescence reporter assay following WA exposure (Santagata et al., 2012). Consistent with 

other models of oxidative stress (Ansari et al., 2011; Qiao et al., 2012), we observed that WA 

modulates heat shock protein expression levels at both 24 h and 48 h in U87 and U251 cells 

(Figure 2-5C). While total levels of HSP90 and its isoforms Trap1 and GRP94 were not 

consistently or significantly altered with changing WA concentration, HSP70 and HSP32 (heme 

oxygenase 1) were markedly upregulated while HSF-1 was potently downregulated with 

increasing WA concentration in both a dose-dependent and time-dependent manner (Figures 2-

5C and 2-5D). Dose-dependent reduction of HSF1 corresponded with an increase in the higher 

molecular weight phosphorylated fraction of the total protein remaining. Moderate induction of 

HSP27 was observed predominantly at 48 h with cell line-dependent diminished expression at 5 

µM, the highest concentration examined. 

 

2.4.6 Pre-treatment with a thiol-antioxidant protects GBM cells from the anti-proliferative and 

cytotoxic effects of withaferin A 

 

To determine if the elevated oxidation state induced by WA is responsible for the 

apoptotic and anti-proliferative effects observed in vitro, proliferation and apoptosis in the GBM 

cells were examined in the context of co-treatment with NAC. Consistent with the MTS assay 

data previously generated, WA was shown to diminish cell viability in a dose dependent manner 
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with the highest potency being demonstrated in GL26 cells. Pre-treatment with 0.5, 1, and 5 mM 

NAC enhanced the resulting cell viability, abrogating the anti-proliferative effects of WA such 

that with 5 mM NAC pretreatment, the anti-proliferative effects of WA were completely 

eliminated at up to 6 µM doses in the U87, U251, and GL26 cell lines (Figure 2-6A). 

Next, the effects of WA on both cell cycle arrest and apoptosis were evaluated by flow 

cytometry in the context of NAC pretreatment. As previously described, flow cytometry with 

WA was performed following 1 h pre-treatment with NAC in U87, U251, and GL26 cells. 

Analysis of the cell cycle data revealed that NAC pretreatment was able to completely prevent 

cell cycle shift to G2/M arrest following 1 µM WA treatment at 24 h (Figure 2-6B). This was 

supported by a lack of dose-dependent increases in expression of cyclin B1 by Western analysis 

at 24 h when NAC was used in combination with WA (Figure 2-6D). Furthermore, dual staining 

with PI and Annexin V revealed that NAC pre-treatment completely eliminated all dose-

dependent apoptosis and necrosis associated with WA treatment (Figure 2-6C). This observation 

was then confirmed by a lack of PARP cleavage associated with increasing WA concentration 

when cells were pre-treated with NAC (Figure 2-6D). 

Finally, WA-mediated effects on heat shock response were evaluated following 

pretreatment with 5 mM NAC.  As shown in Figure 2-6D, NAC pre-treatment effectively 

prevented induction of HSP70 and HSP32 at 24 h post-exposure while limiting depletion of 

HSF1 following WA treatment. 
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Figure 2-6. 
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Figure 2-6. N-acetyl-L-cysteine effectively prevented the WA-mediated decrease in viability by 

the ATP-quantifying CellTiter-Glo assay (A), G2/M cell cycle arrest by propidium iodide 

staining (B), and cell death by propidium iodide/annexin V-FITC dual staining (C). (D) These 

findings corresponded with Western analysis for molecular markers of G2/M arrest (cyclin B1) 

and apoptosis (PARP cleavage) as well as a complete prevention of the heat shock stress 

response with 5 mM NAC pretreatment. *p < 0.05 
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2.5 Discussion 

 

Over the past decade, WA has emerged as a promising anti-cancer chemotherapeutic 

agent. Its effects in cancer cells have been described as anti-proliferative, pro-apoptotic, and anti-

angiogenic (Mohan et al., 2004; Singh et al., 2007; Mandal et al., 2008; Oh et al., 2008; Stan et 

al., 2008; Oh and Kwon, 2009; Shah et al., 2009; Koduru et al., 2010; Samadi et al., 2010a; Yu et 

al., 2010). To date, however, the detailed mechanism of action of WA in malignant gliomas has 

not been well-elucidated. The results presented in this study demonstrate for the first time that 

WA is effectively able to induce a dose-dependent progression of G2/M cell cycle arrest 

followed by apoptosis-mediated cell death in glioblastoma cells. Reduction in both initiator 

caspases 8 and 9 suggests that WA can dually activate both extrinsic and intrinsic apoptotic 

pathways, consistent with previous findings in myeloid leukemia (Malik et al., 2007). Such 

effects appear to be a result of enhanced cellular oxidative stress generated by these compounds 

which can be completely abrogated by pretreatment with NAC. This oxidative stress with WA 

treatment also leads to induction of several heat shock proteins associated with cellular stress as 

well as alteration of the MAPK and Akt/mTOR growth and proliferation pathways including 

several of their corresponding surface receptors EGFR, Her2/ErbB2, and c-Met. 

Pharmacological induction of oxidative stress has emerged as an intriguing means by 

which to mount an anti-cancer effect. It is thought that pro-oxidant intervention can alter the 

redox homeostasis of cancer cells, already stressed by exposure to constitutively high levels of 

ROS not observed in normal cells, by shifting the balance to a state of cytotoxicity (Laurent et 

al., 2005; Cabello et al., 2007). In fact, many investigational chemotherapeutics with redox 

potential have recently been explored in preclinical and clinical settings (Wondrak, 2009; Tew 
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and Townsend, 2011). Such an oxidative stress mechanism has also been demonstrated to 

effectively induce the proteotoxic stress of protein unfolding/misfolding, resulting in a 

downstream secondary cytotoxicity that likely preferentially affects these already susceptible 

cancer cells that may warrant exploration in the WA model (Xu et al., 2011; Qiao et al., 2012). 

In our experiments, induction of HSP70, HSP32, and HSP27 with WA treatment follows 

previous models of oxidative stress (Ansari et al., 2011; Qiao et al., 2012) and lends further 

credence to the pro-oxidant potential of this drug compound. 

HSF1, a transcription factor that plays a major role in the expression of heat shock 

proteins, has been proposed to be a potentially important target in cancer therapy (Au et al., 

2009). While control of HSF1, the major mediator of the observed stress response, has been 

well-studied, regulation of its stability and turnover remains unclear (Hu and Mivechi, 2011). As 

such, it remains unknown if WA directly induces HSF1 degradation or if the resulting decrease 

in expression is due to some cellular feedback mechanism following its role as a transcription 

factor to induce heat shock protein expression. Here, we demonstrate that WA may represent a 

pharmacological means by which to downregulate total HSF1 protein levels. 

 In contrast to studies with other cancer models, superoxide radicals do not appear to be 

highly elevated in glioblastoma cells upon WA exposure as measured by MitoSOX Red staining, 

however peroxide-type radicals are elevated in as detected by CM-H2DCFDA (Hahm et al., 

2011; Mayola et al., 2011). As noted in Figure 2-5B, it is unclear if the transient but statistically 

significant elevation in superoxide detected (11% in both cells lines examined) is physiologically 

relevant. Given that the majority of oxidants measured are known to be potential downstream 

products of superoxide, it is possible that these GBM cells express elevated levels of enzymes 
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like superoxide dismutase, either inherently or as a byproduct of maintenance in cell culture 

(Evans et al., 2004a; Evans et al., 2004b). 

 Our data indicate that the thiol reactivity and/or enhanced oxidation state associated with 

WA treatment can be fully sequestered by NAC and is likely the main mechanism responsible 

for the cytotoxic effects generated by WA, however, it remains unknown whether WA directly 

releases and/or induces ROS or if its thiol-reactive properties shift the normal balance of 

oxidation by altering the responsible cellular regulation. While WA has previously been 

demonstrated to bind directly to thiols of certain proteins including HSP90 (Yu et al., 2010; 

Santagata et al., 2012), the specificity of such binding has not yet been fully explored. Given the 

maintained and sometimes elevated levels of certain proteins and signaling pathways evaluated 

in this study, we hypothesize that some proteins and pathways in gliomas are more susceptible to 

the effects of WA, whether through direct binding or secondary effects, resulting in dysfunction 

and degradation. 

Although multiple groups, including ours, have demonstrated the ability of WA to 

downregulate Akt signaling via its total levels and phosphorylation status in several cancer 

models (Oh et al., 2008; Oh and Kwon, 2009; Samadi et al., 2010a; Samadi et al., 2010b), no 

reports describe its effects on other proteins in the Akt/mTOR signaling pathway. In this study, 

WA shifts the balance of such signaling into an inhibitory state, likely representing a plausible 

means by which the compound limits growth and proliferation in glioma. Because the tumor 

suppressor phosphatase and tensin homolog (PTEN) is inactivated by genetic alterations in 

approximately 60% of GBMs, including the cell lines U87 and U251 (Lee et al., 2011), leading 

to constitutive activation of the Akt/mTOR pathway, the relevance of targeting this pathway is 

important (Koul, 2008; Lino and Merlo, 2011).. Hyperactivated Akt has been shown to result in 
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uncontrolled cell cycle progression and protection from apoptosis (Nogueira et al., 2008). 

Decreases in the total and phosphorylated levels of Akt, mTOR, p70 S6K, and p85 S6K as 

observed here with WA treatment represent direct prevention of the pathway’s proliferative 

effects. In the presence of cellular stress, AMPK suppresses mTOR through phosphorylation of 

the tumor suppressor tuberin/TSC2 or the mTOR subunit Raptor (Mihaylova and Shaw, 2011). It 

has previously been shown that AMPK activation contributes to apoptosis in glioblastoma cells 

(Zhang et al., 2010). Upon WA exposure, GBM cells exhibit activating phosphorylation of both 

tuberin/TSC2 and the catalytic alpha subunit of AMPK. 

The ability of WA to induce phosphorylation of proteins in the MAPK cascade such as 

ERK1/2 and the isoforms p38 and JNK has been previously demonstrated in several other cancer 

models (Mandal et al., 2008; Samadi et al., 2010b). While activation of ERK is generally 

regarded as a pro-survival attribute and may represent a compensatory mechanism of the cells to 

stress, it has also been shown as a potential pro-apoptotic signal which may explain its role here. 

In this study, activation of ERK1/2 with WA treatment was observed in the setting of increasing 

levels of PARP cleavage and caspase activitation. WA has previously been demonstrated to 

induce apoptosis through activation of the p38 MAPK (Mandal et al., 2008), so further 

exploration of ERK’s role in WA-induced cell-death in gliomas is warranted. 

This study provides new insight into the potent anti-cancer activity of WA against 

glioblastomas. The findings presented suggest that the underlying mechanism of WA’s 

antiproliferative, pro-apoptotic, and cell-cycle arresting action are mainly due to its induction of 

oxidative stress and a stress response by the cells leading to alterations in the expression and 

signaling of several major pathways, especially the Akt/mTOR proliferative pathway. While this 

drug has great potential to be a novel therapeutic for the treatment of gliomas, future in vivo 
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studies will determine how these mechanistic effects translate biologically and the role of WA in 

clinical applications for patients with glioblastoma multiforme. 
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Chapter 3 

 

Oxidative cytotoxic agent withaferin A resensitizes 

temozolomide-resistant glioblastomas via MGMT depletion 

and induces apoptosis through Akt/mTOR pathway 

inhibitory modulation 
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Grogan, P.T., et al., Oxidative cytotoxic agent withaferin A resensitizes temozolomide-resistant 

glioblastomas via MGMT depletion and induces apoptosis through Akt/mTOR pathway 

inhibitory modulation. Invest New Drugs, 2014. [Epub ahead of print] 
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3.1 Abstract 

 

Temozolomide (TMZ) has remained the chemotherapy of choice in patients with 

glioblastoma multiforme (GBM) primarily due to the lack of more effective drugs. Tumors, 

however, quickly develop resistance to this line of treatment creating a critical need for 

alternative approaches and strategies to resensitize the cells. Withaferin A (WA), a steroidal 

lactone derived from several genera of the Solanaceae plant family has previously demonstrated 

potent anti-cancer activity in multiple tumor models. Here, we examine the effects of WA 

against TMZ-resistant GBM cells as a monotherapy and in combination with TMZ. WA 

prevented GBM cell proliferation by dose-dependent G2/M cell cycle arrest and cell death 

through both intrinsic and extrinsic apoptotic pathways. This effect correlated with depletion of 

principle proteins of the Akt/mTOR and MAPK survival and proliferation pathways with 

diminished phosphorylation of Akt, mTOR, and p70 S6K but compensatory activation of 

ERK1/2. Depletion of tyrosine kinase cell surface receptors c-Met, EGFR, and Her2 was also 

observed. WA demonstrated induction of N-acetyl-L-cysteine-repressible oxidative stress as 

measured directly and through a subsequent heat shock response with HSP32 and HSP70 

upregulation and decreased HSF1. Finally, pretreatment of TMZ-resistant GBM cells with WA 

was associated with O6-methylguanine-DNA methyltransferase (MGMT) depletion which 

potentiated TMZ-mediated MGMT degradation. Combination treatment with both WA and TMZ 

resulted in resensitization of MGMT-mediated TMZ-resistance but not resistance through 

mismatch repair mutations. These studies suggest great clinical potential for the utilization of 

WA in TMZ-resistant GBM as both a monotherapy and a resensitizer in combination with the 

standard chemotherapeutic agent TMZ. 
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3.2 Introduction 

 

According to the American Cancer Society, over 23,000 new cases of brain and other 

nervous system tumors will be diagnosed in 2013 in the United States (ACS, 2013). High grade 

gliomas, such as anaplastic astrocytoma and glioblastoma multiforme (GBM), account for 

approximately 38% of primary brain tumors, and to date, treatment options have remained 

limited. Following optimal surgical debulking, radiation therapy alone has been shown to 

increase mean survival time of GBM patients from approximately six months to only one year 

(Gillingham and Yamashita, 1975; Onoyama et al., 1976; Sheline, 1977). Concomitant and 

adjuvant temozolomide (TMZ) with surgical debulking and radiotherapy represents the most 

effective approved treatment in GBM patients but still only yields a 2.5 month median survival 

benefit and two year survival rate of 26.5% (Stupp et al., 2002; DeAngelis, 2005; Stupp et al., 

2005; Taphoorn et al., 2005; Chamberlain et al., 2007). 

The efficacy of TMZ is most frequently influenced by the methylation status of 

the MGMT (O6-methylguanine-DNA methyltransferase) gene promoter (Paz et al., 2004; Hegi et 

al., 2005). In patient tumors with an unmethylated promoter, the MGMT protein is expressed and 

repairs the major O6-methylguanine cytotoxic DNA lesions caused by TMZ, essentially 

eliminating its anti-cancer efficacy (Hansen et al., 2007; Kitange et al., 2009). Fifty-five to sixty-

five percent of glioma patients do not display tumor phenotypes favorable for treatment with 

TMZ, and those that do often quickly acquire resistance through acquisition of MGMT or 

mismatch repair (MMR) deficiencies that allow tolerance of the lesion (Chamberlain, 2010; 

Quick et al., 2010; Zhang et al., 2012c). 
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To date, experimental targeted therapies against proteins such as epidermal growth factor 

receptor (EGFR), mammalian target of rapamycin (mTOR), and PI3 kinase have yielded 

disappointing responses in GBM patients despite promising pre-clinical findings (Wen and 

Kesari, 2008; Quick et al., 2010). Combined with the limitations of TMZ, this defines a critical 

need for improved diagnostic and therapeutic approaches for patients with both inherent and 

acquired TMZ resistance to either promote resensitization of the malignancy to TMZ or exploit 

unrelated vulnerabilities. 

The 28-carbon steroidal lactone withaferin A (WA), extracted from several genera of the 

Solanaceae plant family, has emerged as a promising anti-cancer chemotherapeutic agent with 

thiol-reactive and oxidative properties that exploit redox alterations in cancer cells (Malik et al., 

2007; Widodo et al., 2010; Hahm et al., 2011; Mayola et al., 2011; Santagata et al., 2012; Zhang 

et al., 2013). As such, it has demonstrated the ability to modulate many pathways involved in 

promoting cancer progression including specific proteins like heat shock protein (HSP) 90, Akt, 

NFκB, and the estrogen receptor (ER) (Mohan et al., 2004; Singh et al., 2007; Mandal et al., 

2008; Oh et al., 2008; Stan et al., 2008; Oh and Kwon, 2009; Shah et al., 2009; Koduru et al., 

2010; Samadi et al., 2010a; Yu et al., 2010; Grogan et al., 2013). Promising anti-tumor efficacy 

has been observed in prostate, thyroid, breast, melanoma, ovarian, cervical, and brain cancer 

models (Vyas and Singh, 2014). 

Here, we follow-up on our previous findings outlining the efficacy of WA in TMZ-

sensitive glioblastoma cells lines to demonstrate its potential role as a novel therapeutic option 

against resistant tumors as both a single agent therapy and a TMZ-resensitizer through MGMT 

modulation. 
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3.3 Materials and methods 

 

3.3.1 Cell culture and general reagents 

 

U87, U251, and T98G GBM cell lines of human origin were grown in Dulbecco’s 

modified Eagle’s medium (DMEM #11995-065; Gibco, Grand Island, NY) supplemented with 

10% fetal bovine serum (FBS; Sigma-Aldrich, St. Louis, MO) and 1% penicillin/streptomycin 

(Sigma-Aldrich, St. Louis, MO) in a 37°C humidified atmosphere of 5% CO2 in air. An 

additional human GBM cell line, U138, was maintained in equivalent media additionally 

supplemented with 2% L-glutamine (200 mM; Sigma-Aldrich), 1% MEM-vitamin (100x; 

Hyclone, Logan, UT), and 1% MEM nonessential amino acids (Sigma Aldrich). The TMZ 

resistant cells U87TMZ and U251TMZ were derived as previously described via TMZ dose 

escalation from the parental U87 and U251 cells, respectively (Nadkarni et al., 2012). 

TMZ was generously provided by the NCI Developmental Therapeutics Program 

(Bethesda, MD) and was stored as a 100mM stock solution in DMSO at -80 °C. WA (99% pure 

by HPLC) was extracted, isolated, and stored as a 20 mM stock solution in DMSO at -80 °C as 

previously described (Samadi et al., 2010b). Propidium iodide (PI), RNase, N-acetyl-L-cysteine 

(NAC), protease inhibitor cocktail, and MEK inhibitor PD98059 were acquired from Sigma-

Aldrich (St. Louis, MO). Annexin V-FITC was obtained from BD Biosciences (San Diego, CA). 

Caspase 8 inhibitor Z-IETD-FMK and caspase 9 inhibitor Z-LEHD-FMK were obtained from 

R&D Systems (Minneapolis, MN). 

 

3.3.2 MTS assay 
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To determine the IC50 values of WA, all cell lines were seeded in 96-well plates at a 

density of 2,500 cells/well, treated with 0.025-3 µM WA, and incubated for 72 h. Cell number 

and viability were quantified by the colorometric CellTiter96 Aqueous MTS assay (Promega, 

Fitchburg, WI) at 490 nm on a BioTek Synergy 2 plate reader (BioTek, Winooski, VT) as per the 

manufacturer’s instructions. 

To assess combinational effects of WA and TMZ, cells were plated in 75 cm
2
 flasks and 

allowed to grow overnight. Cells were treated with 0.5-2 µM WA and harvested at 24, 48, and 72 

h post-treatment (60-80% confluency) for seeding in 96-well plates at densities of 500-10,000 

cells/well. Following a 6 h incubation period, 10-50 µM and 100-500 µM TMZ were added to 

each well of the TMZ-sensitive and TMZ-resistant cells, respectively. After 48-144 h, cell 

number and viability were quantified by the MTS assay as described above. 

 

3.3.3 CellTiter-Glo luminescent assay 

 

To circumvent the auto-reductive potential of NAC that interferes with the MTS assay 

reagent, studies evaluating combination treatment with NAC and WA were completed with the 

CellTiter-Glo luminescent assay (Promega, Fitchburg, WI) measuring cell viability by adenosine 

triphosphate (ATP) levels. U251TMZ and U87TMZ cells were seeded at a density of 2,500 

cells/well in white-chambered 96-well plates and allowed to incubate for 6 h before treatment 

with 1-5 mM NAC. After 1 h, 0.5-6 µM WA was added to each well. After 72 h, assay reagent 

was prepared and added as per the manufacturer’s instructions, and the plates were evaluated on 

the BioTek Synergy 2 plate reader. 
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 3.3.4 Cell cycle analysis 

 

U251TMZ and U87TMZ cells were plated and allowed to grow overnight to 30-50% 

confluency. Cells were treated with 0.125-4 µM WA for 24 h. Cells were then collected, 

resuspended in 0.43 mL of 4 °C 1x PBS followed by 1 mL of -20 °C ethanol, and maintained at -

20 °C for a minimum of 24 h. Finally, cells were then pelleted by centrifugation, resuspended in 

1x PBS with 40 µg/mL PI and 100 µg/mL RNase, and incubated at 37 °C for 30 minutes before 

analysis by flow cytometry (BD LSRII; Becton Dickinson, San Diego, CA). Data analysis 

included only singlet living cells not displaying DNA fragmentation. 

 

 3.3.5 Apoptosis studies 

 

Cells were plated as described for cell cycle analysis, treated with 1-6 µM WA, and pre-

treated for 1 h with 5 mM NAC where indicated. After 24 h, cells were collected and washed 

once with Annexin binding buffer as previously described (Grogan et al., 2013). Staining 

phosphatidylserine on the outer leaflet of the cell membranes on apoptotic cells with Annexin V-

FITC and DNA staining by PI in necrotic and late apoptotic cells was performed to assess WA-

induced cell death. Cells were stained with both compounds according to the manufacturer’s 

instructions (BD Biosciences, San Diego, CA) for 15 minutes at 4 °C and washed twice with 

Annexin binding buffer. Cells were resuspended in buffer and immediately analyzed by flow 

cytometry on the BD LSRII.  
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3.3.6 Immunoblotting 

 

 Cells were plated in the manner outlined for cell cycle analysis and treated with 0.5-5 µM 

WA. Where indicated, cells were either pre-treated with 5 mM NAC, 50 µM PD98059, 50 µM 

Z-IETD-FMK, or 50 µM Z-LEHD-FMK for 1 h or post-treated with 100-300 µM TMZ 24 h 

after WA. After 24-48 h, proteins were collected in lysis buffer (40 mM HEPES, 2 mM EDTA, 

10 mM sodium pyrophosphate decahydrate, 10 mM β-glycerophosphate disodium salt 

pentahydrate, 1% triton X-100 supplemented with 100 µM phenylmethylsulfonyl fluoride, 1 mM 

Na3VO4, and 2 µL/mL protease inhibitor cocktail), quantified, separated by sodium dodecyl 

sulfate–polyacrylamide gel electrophoresis (SDS–PAGE), and electrotransfered onto a Hybond 

nitrocellulose membrane as previously described in Samadi, et al. (Samadi et al., 2011). 10-80 

µg of protein sample was utilized per lane. Actin levels were used to ensure equal loading and 

transfer of proteins. All studies were repeated for accuracy. 

Primary rabbit antibodies against MGMT (#2739; 1:1500), MSH2 (#2017; 1:1000), and 

MSH6 (#3996; 1:1000) and primary mouse antibody against MLH1 (#3515; 1:1000) were 

acquired from Cell Signaling Technology (Beverly, MA). Primary mouse antibody against p-

H2A.X (Ser139; #613401; 1:1000) was purchased from Biolegend (San Diego, CA). Additional 

primary and secondary antibodies were utilized as previously described at dilutions ranging from 

1:250-1:5000 and 1:5000-1:20000, respectively (Grogan et al., 2013). 

 

3.3.7 Evaluation of reactive oxygen species 
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The accumulation of intracellular peroxide-type reactive oxygen species (ROS) in 

U251TMZ and U87TMZ cells was determined using the general oxidative stress indicator CM-

H2DCFDA (Molecular Probes, Grand Island, NY) that fluoresces upon oxidation. Cells were 

incubated at 37 °C in 1x dPBS containing 20µM CM-H2DCFDA for 1 h to allow for indicator 

preloading and plated in 96-well plates in phenol red-free DMEM at 20,000 cells/well. After 30 

minutes, 1-5 µM WA and/or 5 mM NAC was added to the wells. Fluorescence was assessed on 

the BioTek Synergy 2 3 h post-treatment with excitation and emission filters of 485 nm and 528 

nm, respectively. 

  

3.3.8 Statistical analysis 

 

GraphPad Prism 6 (version 6.02; GraphPad Inc., San Diego, CA) was used to generate best-fit 

non-linear sigmoidal dose response curves for IC50 determination. Comparisons of differences 

between two or more means/values were determined by Student’s unpaired t-test via the 

statistical functions of GraphPad Prism and Microsoft Excel 2010 software (version 

14.0.6129.5000; Microsoft Corporation Redmond, WA). Densitometry, where indicated, was 

completed using ImageJ software (version 1.46r; Bethesda, MD). Combination studies compared 

drug efficacy within normalized WA treatment arms. Data are presented as mean values with 

error bars denoting standard deviation or standard error of the mean where appropriate. Unless 

otherwise noted, all experiments were performed minimally in triplicate. The level of 

significance was set at p < 0.05. 

 

3.4 Results 
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3.4.1 Characterization of TMZ-resistant cell lines  

 

 U251 and U87 resistant sub-lines (U251TMZ and U87TMZ) were generated by exposing 

parental lines to increasing concentrations (30-300 µM) of TMZ over an 8-week period, pooling 

the resulting colonies, and confirming resistance as previously described (Nadkarni et al., 2012). 

Reduced TMZ effectiveness in established lines T98G and U138 has been previously confirmed 

(Ryu et al., 2012). Characterization of these cell lines demonstrated the absence of MGMT and 

the presence of mismatch repair proteins MLH1, MSH2, and MSH6 in parental U251 and U87 

cells (Figure 3-1A). MGMT expression was observed in U251TMZ, T98G, and U138 cells but 

not U87TMZ. Compared to parental U87 cells, U87TMZ displayed lower levels of all three 

MMR proteins screened, suggesting the mechanism of U87TMZ resistance is due to 

heterogeneic deletion or mutation of these proteins. 

 

3.4.2 Diminished cell proliferation and viability following withaferin A exposure 

 

To evaluate the general cytotoxic effect of withaferin A, parental and resistant 

glioblastoma cells were treated with increasing concentrations of WA (0.025-3 µM) for 72 h 

with resulting cell number and viability determined by MTS assay (Figure 3-1B). WA dose 

escalation reduced cell proliferation and viability. By GraphPad analysis, the IC50 values of TMZ 

resistant sub-lines U251TMZ and U87TMZ were lower compared to parental lines, 

demonstrating increased efficacy. IC50 values were determined to be 0.766 ± 0.045 µM, 0.357 ±  
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Figure 3-1.  
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Figure 3-1. A) Characterization of TMZ-resistant cells U251TMZ, U87TMZ, T98G, and U138 

compared to parental U251 and U87 cells. U251 and U87 cell lines demonstrated the absence of 

MGMT and the presence of mismatch repair proteins MLH1, MSH2, and MSH6. MGMT 

expression was observed in U251TMZ, T98G, and U138 cells but not U87TMZ. U87TMZ 

displayed lower levels of all three MMR proteins screened compared to parental U87 cells. B) 

All cell lines were incubated with increasing concentrations of WA for 72 h and then assessed by 

MTS assay. WA dose escalation reduced cell proliferation and viability with IC50 values of 0.766 

± 0.045 µM, 0.357 ± 0.019 µM, 1.050 ± 0.062 µM, 0.657 ± 0.134 µM, 1.027 ± 0.105 µM, and 

0.610 ± 0.279 µM for U251, U251TMZ, U87, U87TMZ, T98G, and U138 cells, respectively. 
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0.019 µM, 1.050 ± 0.062 µM, 0.657 ± 0.134 µM, 1.027 ± 0.105 µM, and 0.610 ± 0.279 µM for 

U251, U251TMZ, U87, U87TMZ, T98G, and U138 cells, respectively. 

 

3.4.3 Induction of G2/M cell cycle arrest by withaferin A in a dose-dependent manner 

 

 Distribution of phases of the cell cycle was assessed by flow cytometry at 24 h. 

Consistent with the anti-proliferative effects seen in the MTS assays, WA treatment induced 

G2/M phase accumulation of U251TMZ and U87TMZ cells in a dose-dependent manner, 

demonstrating a key cellular response to WA exposure. WA induced a dose-dependent shift in 

cell cycle arrest from the G0/G1 checkpoint to G2/M arrest with minimal change in the 

percentage of cells in S phase (Figure 3-2A). Maximal shift to G2/M arrest above baseline was 

observed at 1.5 µM in U87TMZ cells (17.8% G2/M in controls increasing to 42.5% with 

treatment; p = 0.0001) and 2 µM in U251TMZ cells (43.1% baseline to 72.3% with treatment; p 

= 0.0001) (Figure 3-2B). Doses above this level demonstrated diminished deviation from control 

with a return to higher G0/G1 and lower G2/M but also increased DNA fragmentation observed 

in the sub-G0/G1 region (data not presented). 

 Additionally, cyclin B1, a protein that displays G2/M phase-specific elevation, was 

evaluated by Western blotting to provide molecular confirmation of increases in G2/M cell cycle 

arrest. At 24 h, dose-dependent induction of cyclin B1 was observed in both U87TMZ and 

U251TMZ cells with maximum expression levels observed at 1 µM and 2.5 µM WA, 

respectively, corresponding with flow cytometry findings (Figure 3-2C). Cyclin B1 levels 

displayed similar peak expression levels at 48 h but with a more blunted response. 
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Figure 3-2. 
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Figure 3-2. A) Ability to induce cell cycle modulation was assessed by flow cytometry at 24 h 

revealing that WA treatment results in dose-dependent G2/M cell cycle arrest. Maximum arrest 

was observed at 2 µM and 1.5 µM for U251TMZ and U87TMZ cells, respectively. B) 

Histograms demonstrate cell cycle distribution for U251TMZ and U87TMZ cells at 

concentrations up to those yielding maximal arrest. C) Arrest in G2/M phase was molecularly 

confirmed by immunoblotting for cyclin B1 at 24-48 h. Highest levels of cyclin B1 were observed 

at 2.5 µM and 1 µM WA for U251TMZ and U87TMZ cells, respectively, confirming flow 

cytometry findings.  
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3.4.4 Withaferin A induces cell death through both the intrinsic and extrinsic apoptotic pathways 

 

 PI and Annexin V-FITC dual staining analysis with flow cytometry was used to further 

characterize the anti-proliferative effects of WA by assessing levels of apoptosis and necrosis 

following drug exposure. After 24 h of 1-3 µM WA, U87TMZ and U251TMZ cells 

demonstrated increases in Annexin V-only staining representative of early apoptotic processes 

with increases in dual staining representative of late apoptosis present at higher concentrations 

(2-6 µM) (Figures 3-3A and 3-3B). U87TMZ cells alone appear to also show mild increases in 

levels of necrosis with WA exposure as demonstrated by staining with PI only. Total positive 

staining of control U87TMZ and U251TMZ cells was 8.2% and 4.0% but increased to 45.5% (p 

= 0.01: 14.7% early apoptosis; 23.0% late apoptosis; 7.7% necrosis) and 17.1% (p = 0.0004: 

9.1% early apoptosis; 6.9% late apoptosis; 1.0% necrosis) with 2 µM WA, respectively. 6 µM 

WA elevated total cell death to 80.0% for U87TMZ (p < 0.0001: 4.9% early apoptosis; 62.6% 

late apoptosis; 12.5% necrosis) and 51.8% for U251TMZ cells (p < 0.0001: 4.0% early 

apoptosis; 44.6% late apoptosis; 3.1% necrosis). 

Molecular confirmation of an apoptotic response was conducted by Western blotting for 

cleaved and/or total levels of the following proteins: extrinsic procaspase 8, 

mitochondrial/intrinsic procaspase 9, effector procaspases 3 and 7, and downstream poly(ADP-

ribose) polymerase (PARP) cleavage (Figure 3-3C). At 24 h, increasing concentrations of WA 

resulted in progressively decreased levels of all procaspases and PARP, suggesting both intrinsic 

and extrinsic routes of apoptotic cell death. Maximum levels of cleaved caspase 8 were observed 

at 1-2.5 µM WA for U251TMZ and 0.5-1 µM WA for U87TMZ while highest levels for cleaved  
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Figure 3-3.  
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Figure 3-3. A) WA treatment induced apoptotic cell death in U251TMZ and U87TMZ cells with 

increasing concentrations. 1-3 µM WA induced early apoptotic processes with increasing levels 

of late apoptosis observed at all concentrations examined. Only U87TMZ demonstrated elevated 

necrosis with treatment. B) Dot plots demonstrating propidium iodide and Annexin V-FITC 

staining show representative examples from both cell lines utilized. C) An apoptotic mechanism 

was confirmed by Western blotting for total and cleaved initiator caspases 8 and 9, effector 

caspases 3 and 7, and downstream PARP. Uncleaved proteins were decreased with increasing 

WA concentration. U251TMZ and U87TMZ cells demonstrated optimal concentrations for 

caspase cleavage with highest levels of PARP cleavage observed in both lines at 5 µM WA. D) 

U251TMZ cells were pretreated with 50 µM of either caspase 8 inhibitor Z-IETD-FMK or 

caspase 9 inhibitor Z-LEHD-FMK for 1 h followed by 2.5 µM WA for 24 h to determine if WA-

driven apoptosis was intrinsically or extrinsically mediated. Inhibition of both caspase 8 and 9 

reduced WA-induced cleavage of caspases 3 and 7 as well as PARP.  
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caspases 3 and 7 were observed at 5 µM WA for U251TMZ and 1-2.5 µM WA for U87TMZ. 

PARP cleavage increased up to 5 µM in both cell lines, the maximum concentration utilized, and 

suggests that the absence of cleaved caspases despite depletion of the procaspase form at high 

WA concentrations can be explained by a time-dependent nature of caspase signaling in which 

the upstream cleaved caspases are ultimately degraded following their activity. 

To further evaluate the nature of the intrinsic and extrinsic apoptotic processing in WA-

induced cytotoxicity, U251TMZ cells were pretreated with 50 µM of either caspase 8 inhibitor 

Z-IETD-FMK or caspase 9 inhibitor Z-LEHD-FMK for 1 h followed by 2.5 µM WA for 24 h. 

Pretreatment with both inhibitors resulted in a return to baseline for both cleaved caspase 3 and 

PARP levels and decreased amounts of cleaved caspase 7 compared to WA alone (Figure 3-3D). 

Inhibitors alone resulted in negligible changes. These data support that cytotoxicity at WA 

concentrations above IC50 involves induction of intrinsically- and extrinsically-mediated 

apoptosis in the GBM cell lines tested. 

 

3.4.5 Withaferin A modulates the Akt/mTOR and MAPK pathways 

 

Proteins in and related to the Akt/mTOR and mitogen-activated protein kinase (MAPK) 

pathways are key to proliferation and survival of  GBM cells and other cancers  (Wen and 

Kesari, 2008). These proteins were evaluated by Western blotting at 24-48 h post-treatment in 

U251TMZ and U87TMZ cells in order to evaluate WA activity against total and phosphorylated 

protein levels as a potential mechanism for the anti-proliferative effects observed (Figure 3-4A). 

At 24 h, total levels of Akt and mTOR were decreased between ~1-5 µM WA with minimal 

changes occurring in total p70 S6 kinase (S6K) in both cells lines. However, activation of each  
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Figure 3-4.  
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Figure 3-4. A) Key proteins of the survival and proliferation PI3K/Akt/mTOR and MAPK 

pathways as well as common surface tyrosine kinase receptors were evaluated by 

immunoblotting for total levels and activation by phosphorylation following treatment with WA 

at 24-48 h in U251TMZ and U87TMZ cells. Total levels of specific proteins in both pathways 

were decreased, but reduction of protein activation was only observed in the PI3K/Akt/MAPK 

pathway whereas phosphorylation of Raf-1 and ERK1/2 was increased. B) To determine the 

nature of MAPK pathway activation, U251TMZ and U87TMZ cells were pretreated with 50 µM 

of the MEK inhibitor PD98059 for 1 h followed by 2.5 µM WA for 6 h or 24 h. PD98059 

increased ERK1/2 phosphorylation but reduced WA-induced phosphorylation of ERK1/2 in a 

time-dependent manner. WA alone induced caspase 3 and PARP cleavage in both cell lines in a 

time-dependent manner that was increased when combined with MEK inhibitor. This 

demonstrates that MAPK pathway activation with WA was acting in a pro-survival signal rather 

than contributing to apoptosis.  
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protein via phosphorylation (p-Akt Ser473, p-mTOR Ser2448, and p-p70 S6K Thr389) was 

similarly reduced over this range. Phosphorylation at Thr412 of the nuclear isoform of p70 S6K, 

p85 S6K, was also reduced with increasing WA concentration (data not shown). These effects 

were observed through the 48 h timepoint and demonstrate an inhibitory effect of WA on the 

Akt/mTOR growth pathway. Additionally, phosphorylation (Thr172) of AMPKα, the catalytic 

subunit of a negative regulator of the Akt/mTOR pathway that responds to cellular stressors, was 

increased with WA treatment, peaking at 1 µM in U251TMZ cells (Supplemental Figure 3-1). 

Despite depletion of total levels of the downstream tumor suppressor TSC2, phosphorylation at 

Thr1462 was enhanced or maintained at all WA concentrations tested in U251TMZ cells. In 

contrast to previous observations in parental U87 cells (Grogan et al., 2013), total and phospho- 

levels of AMPKα were decreased in U87TMZ cells despite maintenance of p-TSC2 levels 

(Supplemental Figure 3-1). 

The MAPKKK Raf-1 and the MAPK ERK2 were assessed to evaluate the effects of WA 

on the primary proliferative MAPK pathway (Figure 3-4A). Total Raf-1 levels decreased at ~2.5-

5 µM in both U251TMZ and U87TMZ cells, however, activating phosphorylation of the protein 

at Ser338 increased over the same concentration range. Downstream, minimal changes were 

observed in total ERK2 levels, but phosphorylation of ERK1/2 (Thr202/Tyr204) was notably 

increased in a dose-dependent manner in both cell lines with a maximum level achieved at 2.5 

µM WA in each at both 24 h and 48 h. Given that phosphorylation of MAPK proteins is typical 

of a pro-survival response yet WA instead induces apoptosis in GBM cells, the MAPK pathway 

was further explored to determine if its activation was necessary for the induction of apoptosis or 

simply a compensatory pro-survival response. U251TMZ and U87TMZ cells were pretreated 

with 50 µM of the MAPKK MEK inhibitor PD98059 for 1 h followed by 2.5 µM WA for 6h or 
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24 h. Pretreatment with the inhibitor alone resulted in increased ERK1/2 phosphorylation but 

limited WA-induced phosphorylation in a time-dependent manner (Figure 3-4B). Alterations in 

apoptosis were assessed by cleaved caspase 3 and cleaved PARP levels. WA alone induced 

observable caspase 3 and PARP cleavage at 24 h in both cell lines and PARP cleavage alone at 

6h in U87TMZ. However, cleaved caspase 3 and PARP levels were increased when combined 

with the MEK inhibitor at 24 h in U251TMZ and 6 h in U87TMZ, demonstrating that MAPK 

pathway activation with WA treatment appears to represent a compensatory response to the 

apoptotic effects induced by the compound. 

Finally, the tyrosine kinase receptors EGFR, Her2/ErbB2, and c-Met, known to signal to 

both the Akt/mTOR and MAPK pathways, were evaluated due to their status as common 

amplified, mutated, and/or drug-targeted surface proteins in GBM (Wullich et al., 1993; Potti et 

al., 2004; Puputti et al., 2006; Guessous et al., 2010; Berezowska and Schlegel, 2011). Total 

levels of EGFR and Her2/ErbB2 in both U251TMZ and U87TMZ decreased with 2.5-5 µM WA 

treatment at 24 h and 48 h while total levels of c-Met decreased at 5 µM (Figure 3-4A). 

Interestingly, increased phosphorylation of Tyr1068 on EGFR was observed at 2.5-5 µM 

depending on the cell line as well as increased phosphorylation of Tyr1234/1235 on c-Met in 

U87TMZ cells up to 2.5 µM WA at 48 h. Phosphorylation of c-Met was otherwise 

downregulated with WA treatment in both lines. 

 

3.4.6 Withaferin A elevates oxidative status and induces a heat shock stress response in TMZ-

resistant cells 
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We have previously demonstrated the ability of WA to elevate oxidative potential and 

ROS-mediated cell death in TMZ-sensitive GBMs (Grogan et al., 2013). TMZ has also been 

demonstrated to produce ROS that result in inhibitory activation of AMPK (Zhang et al., 2010). 

We therefore evaluated the nature and ability of WA to continue to induce ROS in TMZ-resistant 

U87TMZ and U251TMZ cells. Peroxide-type radical production was monitored with CM-

H2DCFDA conversion at 3 h post-WA exposure. Both cell lines showed statistically significant 

increased detectible CM-H2DCFDA fluorescence with increasing WA exposure. ROS levels rose 

20.9% (p = 0.001), 36.6% (p = 0.002), and 38.8% (p = 0.01) in U251TMZ and 21.3% (p = 

0.003), 40.6% (p = 0.004), 47.3% (p = 0.001) in U87TMZ cells at 1, 3, and 5 µM WA compared 

to control, respectively (Figure 3-5A). The thiol antioxidant and ROS scavenger NAC was added 

simultaneously with WA and was shown to nearly complete abrogate WA-generated ROS, 

further demonstrating the nature of the effect. 

Various models of oxidative stress are known to be associated with a heat shock response 

via induction of several HSPs (Ansari et al., 2011; Qiao et al., 2012), and alteration of HSPs 

were previously reported following WA treatment (Khan et al., 2012; Grogan et al., 2013). 

Treatment with WA yielded a unique pattern of HSP expression modulation in U251TMZ and 

U87TMZ cells (Figure 3-5B). Total levels of HSP32/heme oxygenase 1 and HSP70, but not 

HSP90, were observed to increase with increasing concentrations of WA at 24 h. HSP27 was 

depleted at 24 h with 5 µM WA in both cell lines but remained largely unchanged in U251TMZ 

and mildly elevated in U87TMZ with other concentrations at 24 h. The transcription factor heat 

shock factor 1 (HSF1) showed dose-dependent reduction in expression between 1-5 µM WA. 

Pretreatment with 5 mM NAC virtually eliminated all modulation of proteins in the heat shock 

system (Figure 3-5B). 
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Figure 3-5.  
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Figure 3-5. A) The peroxide ROS indicator CM-H2DCFDA was preloaded into U251TMZ and 

U87TMZ cells prior to WA exposure to determine alterations in oxidative potential. Elevations 

in signal that were observed with increasing concentrations of WA at 3 h were reduced or 

completely absent with co-treatment of 5mM NAC. B) Treatment with WA resulted in the 

induction of an NAC-repressible cellular stress heat shock response. Proteins associated with 

cellular stress and heat shock were evaluated by immunoblotting at 24 h and revealed elevated 

levels of HSP32 and HSP70, known to be upregulated in response to oxidative stress, but 

decreased transcription factor HSF1 with increasing WA exposure that could be completely 

eliminated with 5 mM NAC pretreatment. NAC also prevented induction of cyclin B1 and 

cleavage of PARP. Functionally, NAC pretreatment reduced the anti-proliferative (C) and pro-

cytotoxic (D) effects of WA as assessed by the CellTiter-Glo assay at 72 h and flow cytometry at 

24 h, respectively. *p < 0.05, **p < 0.01, ***p < 0.001  
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Functionally, WA-induced depletion of ATP levels, a marker of reduced cellular viability 

in the CellTiter-Glo assay, could be reduced or completely eliminated with 1-5 mM NAC 

pretreatment (p < 0.0001) (Figure 3-5C). Such effects were seen with up to 6 µM WA, the 

highest concentration examined. Additionally, re-evaluation of cell death by flow cytometry as 

previously described following pretreatment with 5 mM NAC showed the elimination of death-

associated PI and Annexin V staining normally induced by 5 µM WA (p < 0.01) (Figure 3-5D). 

This was supported by blockage of PARP cleavage via NAC pretreatment (Fig. 3-5B). 

Additionally, WA-mediated cyclin B1 induction was blocked by NAC, demonstrating the 

prevention of G2/M cell cycle arrest seen with WA treatment. 

 

3.4.7 Withaferin A resensitizes TMZ-resistant GBM cells to TMZ through MGMT depletion 

 

Expression of MGMT is associated with TMZ resistance in GBMs and therefore is an 

attractive target for TMZ resistance resensitization and prevention (Kitange et al., 2009). WA 

demonstrated the ability to induce depletion of MGMT at 48 h in cell lines (U251TMZ, T98G, 

and U138) utilizing MGMT as the primary means of TMZ resistance (Figure 3-6A). U251TMZ 

and U138 cells showed progressive depletion of MGMT from 0.5-10 µM WA with 

approximately 5-fold and 20-fold less compared to control by 5 µM, respectively. At 5 µM WA 

treatment, there was a 43% reduction in MGMT in T98G cells with complete elimination by 10 

µM. U87TMZ cells, however, failed to express MGMT altogether. 

To determine if these findings extended to functional resensitization of resistant cells to 

WA, two cells lines resistant through MGMT (U251TMZ and T98G) and one cell line displaying 

MGMT-independent resistance (U87TMZ) were treated with WA for 24 h followed by TMZ and  
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Figure 3-6.  
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Figure 3-6. A) WA treatment reduced protein levels of MGMT in TMZ-resistant U251TMZ, 

T98G, and U138 cell lines at 48 h. MGMT was not observed in U87TMZ. B) 24 h pretreatment 

with WA resensitized MGMT-expressing U251TMZ and T98G cells to TMZ in a dose-

dependent manner as assessed by a normalized MTS assay, but no resensitization was observed 

in MGMT-deficient U87TMZ cells. C) TMZ-resistant cells were treated with WA for 24 h 

followed by TMZ exposure for an additional 24 h. Pretreatment with WA potentiated and/or 

synergized with TMZ to induce further depletion of MGMT in MGMT-expressing lines. 

Increasing WA concentrations yielded higher levels of p-H2A.X and cleaved PARP in all cell 

lines, but only T98G demonstrated WA-mediated increased levels with TMZ exposure. *p < 

0.05, **p < 0.01, ***p < 0.001  
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evaluated with the MTS assay (Figure 3-6B). Both U251TMZ and T98G showed statistically 

significant decreases in cell viability when 1, 1.5, or 2 µM WA was combined with 300 or 500 

µM TMZ. Pretreatment with 2 µM WA followed by 300 µM TMZ yielded a 32% (p < 0.0001) 

and 34% (p = 0.004) relative decrease in U251TMZ and T98G cell viability compared to TMZ 

or WA alone, respectively. In contrast, U87TMZ cells only demonstrated a statistically 

significant enhancement of combination therapy over TMZ alone – only 6% additional reduction 

in relative viability – with a 2 µM WA and 300 µM TMZ combination (p = 0.02). 48 h 

pretreatment with WA also demonstrated enhanced effect with significant elimination of the 

benefit by 72 h pretreatment (data not shown). WA pretreatment did not prevent TMZ efficacy in 

TMZ sensitive U251 and U87 parental cells (Supplemental Figure 3-2A). 

Because TMZ also depletes MGMT (D'Atri et al., 2000), the effect of WA and TMZ 

combination on MGMT levels was evaluated. Combination therapy demonstrated dose-

dependent synergy or potentiation to reduce total levels of MGMT in U251TMZ, T98G, and 

U138 MGMT-expressing cells (Figure 3-6C). At 1 µM WA in U251TMZ and U138 cells and 2.5 

µM WA in T98G cells, minimal decreases and/or increases of MGMT levels were observed. The 

addition of 300 µM TMZ for 24 h resulted in 43%, 52%, and 34% reduction in MGMT protein 

levels compared to TMZ alone in U251TMZ, T98G, and U138 cells, respectively. 

Phosphorylation of H2A.X as a marker of double strand DNA damage and cleavage of 

PARP during apoptosis were evaluated to look for molecular evidence of combinational efficacy. 

Both markers were elevated in the setting of increasing concentrations of WA in U251TMZ, 

T98G, U138, and U87TMZ cells. However, PARP cleavage was then diminished at the high 

levels of U87TMZ and U138 cells suggesting non-apoptotic cell death or very late apoptosis at 

this timepoint. Addition of TMZ was observed to increase p-H2A.X and PARP cleavage in only 
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T98G, particularly at 1 µM WA. Interestingly, despite similar or increased levels of cleaved 

PARP within WA treatment groups, levels of uncleaved PARP increased with TMZ treatment in 

each of the TMZ groups but not control in U251TMZ and T98G cells. Given the reported 

oxidative effect induced by TMZ (Zhang et al., 2010), markers of oxidative stress including 

HSP32, HSP70, and p-AMPKα as well as the AMPK-influenced downstream phosphorylation of 

mTOR were evaluated to determine if combination of WA and TMZ demonstrated enhanced 

oxidative effect in GBM. While WA increased HSP32 and HSP70 levels in all lines and TMZ 

enhanced phosphorylation of AMPKα in U138, combination therapy did not result in additional 

effect and failed to further diminish mTOR activation (Supplemental Figure 3-2B). 

 

3.5 Discussion 

 

 While WA has demonstrated effectiveness as a promising new therapeutic agent in a 

variety of cancer types including TMZ-sensitive GBM, this work is the first to explore its 

efficacy in a known model of drug-resistance. Here, we show for the first time that WA induces 

a potent cytotoxic effect against temozolomide resistant GBMs resulting in G2/M arrest and 

apoptosis from both the intrinsic and extrinsic systems. These findings correspond with the 

elevation of cellular oxidative potential and inhibitory modulation of the Akt/mTOR pathway but 

not the MAPK pathway. 

Since its approval by the FDA, TMZ remains the standard-of-care chemotherapeutic 

agent in the treatment of primary GBM. Exposure to this agent results in DNA adducts such as 

O6-methylation of guanine which, if not removed by MGMT, can mispair with thymine. Cells 

with intact MMR undergo futile cycles of attempted repair with resultant replication-associated 
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DNA double strand breaks, G2/M arrest, and ultimately apoptosis (Hirose et al., 2003). Targeting 

mechanisms of DNA damage repair with various inhibitors, such as those of PARP and ataxia 

telangiectasia mutated (ATM), has provided potentially beneficial strategies in enhancing TMZ 

effect, but comparatively limited effort has gone into addressing both inherent and acquired 

resistance to TMZ by MGMT expression or, less frequently, MMR mutation in GBM. Despite 

about half of patients displaying tumor phenotypes not conducive to TMZ use, it remains a first-

line agent, demonstrating the need for better tumor screening techniques. Furthermore, initially 

responsive tumors are often quick to develop resistance to this line of therapy (Chamberlain, 

2010; Quick et al., 2010).  

 Several experimental agents used to resensitize resistant cancer cells to TMZ or other 

alkylating agents – such as valproic acid (Sztajnkrycer, 2002; Weller et al., 2011; Ryu et al., 

2012), O
6
-benzylguanine (Baer et al., 1993; Kaina et al., 2010), IL-24 (Zheng et al., 2008), and 

silencing oligonucleotides (Citti et al., 1996; Xie et al., 2011; Kreth et al., 2013) – possess little 

practical intrinsic anti-cancer cytotoxic properties or clinical applicability, however, some do 

have the potential for adverse effects in the patient. Alternatively, dose-dense TMZ scheduling, 

used to deplete MGMT levels quickly to enhance TMZ effects, has yielded disappointing 

outcomes in several clinical trials (Strik et al., 2012). In this study, WA acted as both an 

inherently cytotoxic agent and an enhancer of the efficacy of TMZ in MGMT-driven resistant 

cell lines while maintaining TMZ sensitivity in parental lines. Such data conceptually support the 

utility of combination therapy WA with TMZ in the first-line treatment of GBM. Such an 

approach should maximize anti-cancer activity across broad tumor heterogeneity. Importantly, 

while tumors with resistance due to MMR mutation may not be resensitized to TMZ by WA, the 

presence of a second cytotoxic chemotherapeutic agent may provide significant benefit in the 
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context of ineffective TMZ treatment. It remains to be fully explored whether increased levels of 

p-H2A.X observed with WA treatment are a result of direct DNA damage, perhaps through an 

oxidative mechanism, or rather a known byproduct observed during cellular apoptosis for DNA 

fragmentation (Rogakou et al., 2000), however, preliminary results in breast cancer support a 

caspase-mediated mechanism (data not published). Elevated total PARP with increasing TMZ in 

the presence of WA in MGMT-expressing lines may indicate the necessity for increased base 

excision repair (BER) during combination therapy, alluding to induction of DNA damage as a 

reason for combinational efficacy which will need to be validated by further scientific 

investigation. 

 Several studies have implicated the role of WA in the disruption of HSP90 chaperone 

functions through binding to the C-terminus of HSP90 (Yu et al., 2010; Grover et al., 2011). 

While direct evidence of such an inhibitory effect has not yet been established, downstream 

depletion of various HSP90-related client proteins suggests that WA may indeed act at least in 

part as a novel HSP90 inhibitor. This could explain and support the wide-ranging effects 

observed in this study, including the depletion in total levels of known HSP90 client proteins 

such as Akt, mTOR, Raf-1, and EGFR. By depleting these key regulatory client proteins of 

HSP90, the normal signaling axes of multiple proliferative pathways are simultaneously 

modulated. MGMT, which is depleted in the presence of WA, has not, however, been reported as 

a client protein of HSP90. Indeed, current studies demonstrate that total levels of MGMT are not 

impacted by the widely-utilized HSP90-inhibitor 17-AAG until high concentrations (1-2 µM) are 

achieved, suggesting that its stability and function are not directly maintained by HSP90 (data 

not shown). Santagata, et al. demonstrated the thiol reactivity of WA (Santagata et al., 2012), and 

our results implicate an oxidative mechanism, representing an alternative means by which 
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MGMT and other non-HSP90 client proteins may be targeted for degradation by WA. 

Interestingly, valproic acid, which diminishes MGMT levels, has also been shown to cause 

oxidative stress in glioma cell lines (Fu et al., 2010). 

 Induction of oxidation has become a promising mechanism by which to target cancer. 

Alterations in the redox potential of cancer cells due to various molecular turnover and quick 

replication results in increased cellular stress that can be exploited to shift cells into a state of 

cytotoxicity (Laurent et al., 2005; Cabello et al., 2007). This approach circumvents traditional 

therapeutic options such as antigen-targeting and DNA-damaging agents that have received the 

most attention but are often rendered useless due to rapid development of resistance. In GBM, 

such traditional agents have been explored in patients but have yielded unimpressive results in 

clinical trials largely due to the development of tumor mutations that limit the effectiveness 

and/or relevance of a particular targeted therapeutic (Wen and Kesari, 2008; Quick et al., 2010). 

In the present study, thiol-reactivity and oxidation by WA resulted in depletion of 

proteins in the Akt/mTOR and MAPK pathways including many cell surface receptors either 

through direct interaction or as a downstream effect of the inhibition of other proteins. As noted 

previously, other reports have shown additional pathways effected. Such an ability to target 

multiple pathways simultaneously with a single compound has great potential to generate an 

enhanced anti-cancer effect while reducing the development of resistance to a particular target. 

The ability to modulate multiple components of the Akt/mTOR pathway simultaneously 

provides a novel and important mechanism by which WA can manifest its beneficial effects 

against GBMs. Because of mutations in proteins like the tumor suppressor phosphatase and 

tensin homolog (PTEN), this pathway is frequently overactivated in GBM to drive proliferation, 

as shown in both U251 and U87 cells (Koul, 2008; Lee et al., 2011; Lino and Merlo, 2011). 
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Interestingly, while we previously showed activation of AMPKα and downstream tumor 

suppressor TSC2 which act to inhibit mTOR in both U251 and U87 parental cells (Grogan et al., 

2013), U87TMZ appears to have lost the ability to act through this pathway which suggests 

direct inhibition of the Akt/mTOR axis. 

 WA treatment yields subsequent induction of the MAPK pathway as demonstrated by 

activating phosphorylation of EGFR, Raf-1, and ERK1/2. Previous studies have shown that 

reactive oxygen species generated by epoxide-containing compounds in GBM cells are 

responsible for the phosphorylation of ERK1/2 which then drives apoptosis (Wu et al., 2011). In 

contrast, inhibition of this pathway prior to WA exposure yields enhanced apoptosis, suggesting 

that the activation of the MAPK pathway is a compensatory pro-survival response to apoptotic 

shifts in the cell and may be a therapeutic target that would synergistically enhance the efficacy 

of WA in future combinational therapy studies. 

 The studies presented here provide an important framework for the utilization of WA in 

TMZ-resistant GBM as both a monotherapy and as a resensitizer in combination with the 

standard chemotherapeutic agent TMZ. WA demonstrates an oxidative mechanism that leads to 

anti-proliferative and pro-apoptotic effects largely through Akt/mTOR pathway modulation. 

Simultaneously, depletion of MGMT allows for enhanced activity of TMZ. While future pre-

clinical animal studies will be necessary to determine its translational potential in GBMs, 

evidence is supportive of a future clinical potential for the utilization of WA across the 

heterogeneic spectrum of glioma patients. 
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Supplemental Figure 3-1.  
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Supplemental Figure 3-1. WA treatment resulted in depletion of total protein levels in both 

AMPKα and TSC2 at 24-48 h in both U251TMZ and U87TMZ cells. U87TMZ cells also 

demonstrated reduced phosphorylation of AMPKα in contrast to previous findings in U87 

parental cells. U251TMZ cells display dose-dependent activating phosphorylation of AMPKα 

and downstream TSC2. 
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Supplemental Figure 3-2.  
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Supplemental Figure 3-2. A) 24 h WA pretreatment did not prevent TMZ efficacy in TMZ-

sensitive U251 and U87 parental cells as assessed by a normalized MTS assay, suggesting a lack 

of inhibition of functional MMR. In U251 cells, WA mildly sensitized cells to TMZ, but no 

sensitization was observed in U87 cells. B) Given a described oxidative component of TMZ 

therapy through activation of AMPKα, markers of oxidation were assessed during combination 

therapy of WA and TMZ in TMZ-resistant cells. HSP32 and HSP70, known to be upregulated in 

response to oxidative stress, increased with WA treatment to a maximal level but were not 

further modulated by the presence of TMZ. Treatment with TMZ only resulted in elevated p-

AMPKα in only U138 cells, but WA failed to further increase this phosphorylation in 

combination with TMZ. This was confirmed downstream by failure to further inhibit mTOR 

activation with combination therapy, suggesting efficacy of such treatment was not due to 

potentiated or synergized elevation in oxidation status. **p < 0.01  
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Chapter 4 

 

Withaferin A is a novel inhibitor of the Wnt/β-catenin 

signaling pathway in medulloblasoma through proteasome-

mediated degradation of TCF/LEF 
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4.1 Abstract 

 

Pediatric medulloblastoma (MB) is a challenging tumor to approach therapeutically given 

significant tumor heterogeneity across patients. While current treatment options have led to an 

approximately 70% 5-year survival rate in children and adolescents, the off-target toxicity of 

these agents frequently manifests with chronic quality-of life impairments in these vulnerable 

patients, identifying a need for novel therapeutic options. Withaferin A (WA) has demonstrated 

notable anti-cancer efficacy against multiple cancer types through several oncogenic pathways, 

but its modulation of Wnt/β-catenin signaling, overactive in 10-15% of MB, has not been 

explored. Here, WA inhibited MB cell proliferation through dose-dependent G2/M cell cycle 

arrest and induction of apoptosis. Treatment with WA was demonstrated to function as a novel 

direct inhibitor of Wnt signaling as assessed by TOP FLASH reporter activity. Reduced 

signaling was mediated through proteasomal degradation the TCF/LEF transcription factors 

TCF1, TCF3, TCF4, and LEF1 and reduced interaction with β-catenin without significant 

alterations of β-catenin level or localization. This was associated with a reduction in total and 

phosphorylated levels of Akt and mTOR but elevations in inhibitory p-GSK-3β which was 

demonstrated pharmacologically to be independent of remaining Akt activity. Consistent with 

previous findings in other models, WA treatment resulted in N-acetyl-L-cysteine-repressible 

cellular oxidation and dissociation of HSP90/Cdc37. While TCF/LEF members were not 

observed to directly associate with HSP90 or Cdc37, each was decreased following inhibition of 

HSP90 with N-terminal inhibitor 17-AAG, suggesting an indirect role for HSP90 in their 

stability. Taken together, these findings show both intriguing translational potential for WA as a 
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therapeutic agent against MB and other Wnt-driven cancers and a novel role for HSP90 in Wnt 

signaling, each warranting further exploration. 

 

4.2 Introduction 

 

Central nervous system (CNS) tumors, including the grade IV medulloblastoma (MB) of 

the posterior fossa, are the most common solid tumors of childhood, accounting for 

approximately 20% of all pediatric malignancies (Linabery and Ross, 2008). Medulloblastomas 

represent 25-30% of these primary lesions in children but can arising in individuals of all ages 

(Khatua et al., 2012). Although the 5-year survival rate for medulloblastomas in both children 

and adolescents is around 70%, therapeutic challenges remain to simultaneously address both 

treating the tumor and ensuring a high long-term quality of life in the pediatric patient population 

(Smoll, 2012). Current standards of care include surgical resection followed by craniospinal 

radiation and chemotherapeutic agents such as vincristine, lomustine, cyclophosphamide, 

carboplatin, and cisplatin (Khatua et al., 2012). However, because of significant morbidities 

associated with these agents, it has been reported that long-term survivors of childhood 

medulloblastoma suffer from endocrine, cognitive, and neurological complications with 

significant deficits in daily psychosocial functioning including driving, employment, 

independent living, and personal relationships (Boman et al., 2009; Frange et al., 2009). 

Medulloblastomas are categorized in several unique molecular subgroups based on tumor 

genetics, cell histology, growth, and clinical outcome including sonic hedgehog (SHH), 

Wingless (Wnt), group 3, and group 4 (Northcott et al., 2012). SHH and Wnt are named due to 

upregulation and overactivation of these key signaling pathways. Specifically, the Wnt subgroup 
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of MB patients is characterized by aberrant overactivation of the canonical Wnt/β-catenin 

signaling pathway, often through inactivating mutations of the adenomatous polyposis coli 

(APC) and Axin1/2 proteins or overexpression of β-catenin (Kim et al., 2011). Although the Wnt 

subgroup represents 10-15% of total MB patients and is characterized by long-term survival rates 

of 90%, the challenges of conventional therapy persist with current patient morbidity and 

mortality largely due to the complications of therapy and the development of secondary 

malignancies rather than recurrence of the MB (Ellison et al., 2011; Kim et al., 2011; Taylor et 

al., 2012; Remke et al., 2013). 

While a number of inhibitors have been identified that alter Wnt signaling at various 

points in the cascade (Voronkov and Krauss, 2013), only four agents are currently in human 

clinic trial against any malignacy: olaparib (poly(ADP-ribose) polymerase (PARP)/tankyrase 

inhibitor), veliparib (PARP/tankyrase inhibitor), LGK974 (porcupine inhibitor), and OTSA101-

DTPA-90Y (radiolabeled antibody against frizzled-10) (MacDonald et al., 2014). Only PARP 

inhibition, described to destabilize β-catenin through Axin (Waaler et al., 2012), is under trial for 

MB with the latter two therapies failing to target the appropriate location in the signaling cascade 

given the mutations of MB. Given the heterogeneic nature of the disease supported by multiple 

subgroup classifications, there is a critical need for novel therapeutics that function to both target 

this critical aberrant signaling to maximize Wnt subgroup effect while maintaining generalized 

anti-tumor cytotoxicity in other subgroups lacking these specific signaling alterations. 

Withaferin A (WA) is a cytotoxic steroidal lactone identified in several species of the 

Solenceae plant family that has demonstrated the ability to modulate multiple signaling pathways 

key to cancer proliferation and survival (Vanden Berghe et al., 2012; Vyas and Singh, 2014). 

Notably, in the brain tumor glioblastoma multiforme (GBM), WA functioned to reduce total and 
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phosphorylated levels of key oncogenic proteins in the Akt/mammalian target of rapamycin 

(mTOR) signaling pathway (Grogan et al., 2013; Grogan et al., 2014). The Akt/mTOR pathway 

establishes cross-talk with the Wnt/β-catenin pathway through glycogen synthase kinase-3β 

(GSK-3β) such that activation of Akt produces inhibitory phosphorylation of GSK-3β, a 

reduction in the phosphorylation of β-catenin, and enhanced stability of β-catenin. As such, 

inhibition of PI3 kinase (PI3K)/Akt signaling has been shown to inhibit the Wnt/β-catenin 

pathway in MB (Baryawno et al., 2010). We hypothesized that WA could act as a novel inhibitor 

of the Wnt pathway in MB by a similar mechanism. To date, WA has not been explored as a 

Wnt/β-catenin signaling inhibitor nor examine against MB. 

Studies by our group and others have suggested that modulation of the Akt/mTOR 

pathway and the other diverse findings associated with WA treatment may be due to two 

underlying mechanisms which are explored here in MB: enhanced cellular oxidation (Malik et 

al., 2007; Widodo et al., 2010; Hahm et al., 2011; Mayola et al., 2011; Santagata et al., 2012; 

Grogan et al., 2013; Grogan et al., 2014) and inhibition of the heat shock protein (HSP) 90 

protein chaperone axis including its disruption of its interactions with co-chaperone cell division 

cycle protein 37 (Cdc37) (Yu et al., 2010; Gu et al., 2014). Previous studies have identified that 

HSP90 associates with Wnt/β-catenin pathways proteins Axin1, GSK-3β, and β-catenin but that 

its inhibition only resulted in a cell line-dependent depletion of GSK-3β (Cooper et al., 2011; Liu 

et al., 2012). p53-regulated HSP90 function was shown to enhance Wnt signaling, but this was 

likely an indirect effect through phosphorylation of Akt and GSK-3β (Okayama et al., 2014). 

Direct inhibition of the Wnt/β-catenin pathway through HSP90 inhibition has not been 

demonstrated previously. 
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In this study, we explored the general cytotoxicity of WA, including evaluation of its 

described oxidative and HSP90 inhibitory effects, as a potential chemotherapeutic for MB and 

demonstrate for the first time that it functions in-part as a potent inhibitor of the canonical Wnt 

signaling pathway. Interestingly, our studies provide evidence that WA induces degradation of 

the transcription factor (TCF)/lymphoid enhancer-binding factor (LEF) family of transcription 

factors critical in Wnt signaling to inhibit pathway activity directly rather than through 

Akt/mTOR pathway cross-talk via GSK-3β. Maintenance of TCF/LEF proteins was shown to be 

indirectly dependent on HSP90 function with WA inducing disruption of the HSP90/Cdc37 

interaction. 

 

4.3 Materials and methods 

 

4.3.1 Cell culture and general reagents 

 

Four human pediatric medulloblastoma cell lines were acquired. DAOY adherent cells 

were obtained from American Type Culture Collection (ATCC; Manassas, VA). ONS76 

adherent cells were generously donated by Dr. Michael D. Taylor (The Hospital for Sick 

Children, Toronto, Ontario, Canada), and D425(MED) and D283(MED) semi-

adherent/suspension cells were kindly provided by Dr. Darell D. Begner (Duke University, 

Durham, NC). All cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM 

#11995-065; Gibco, Grand Island, NY) supplemented with 10% fetal bovine serum (FBS; 

Sigma-Aldrich, St. Louis, MO), 1% penicillin/streptomycin (Gibco), 2% L-glutamine (200 mM; 

Gibco), 1% MEM-vitamin (100x; Hyclone, Logan, UT), and 1% MEM nonessential amino acids 
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(Sigma Aldrich) at a 37 °C humidified atmosphere of 5% CO2 in air. Cells were utilized in 

experiments upon achieving exponential growth phase. Withaferin A was isolated as previously 

described (Samadi et al., 2010b). Propidium iodide (PI), RNase, N-acetyl-L-cysteine (NAC), and 

puromycin dihydrochloride were acquired from Sigma-Aldrich, Annexin V-FITC was obtained 

from BD Biosciences (San Diego, CA), and MG132 was purchased from Selleckchem (Houston, 

TX). 17-N-allylamino-17-demethoxygeldanamycin (17-AAG) was obtained from LC 

Laboratories (Woburn, MA). 

 

4.3.2 MTS assay 

 

Cells were plated at 2,000-4,000 cells/well in 50 µL in a 96-well plate and allowed to 

adhere and/or settle. After 6 h, cells were treated with various concentrations of WA to bring the 

total well volume to 100 µL and allowed to incubate for 72 h. Cell viability and proliferation was 

evaluated with the addition of the colorometric CellTiter96 Aqueous MTS assay reagent as per 

the manufacturer’s instructions (Promega, Fitchburg, WI). Reagent was allowed to incubate with 

the cells for 1-4 h in a cell line-dependent manner, and absorbance was quantified at 490 nm on a 

BioTek Synergy 2 plate reader (BioTek, Winooski, VT). 

 

4.3.3 CellTiter Glo assay 

 

The CellTiter-Glo luminescent assay (Promega, Fitchburg, WI) was used to evaluate cell 

viability and proliferation through assessment of cellular ATP levels in experiments with the 

NAC pretreatment due to its reducing properties. Cells were plated as outlined in the MTS assay 
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in a white-walled 96-well plate. Where indicated, cells were pretreated with NAC for 1 h 

followed by WA. After 72 h, assay reagent was added to the wells as per the manufacturer’s 

instructions and gently shaken for 10 minutes in the dark at room temperature. Well 

luminescence was measured on the BioTek Synergy 2 plate reader. 

 

4.3.4 Cell cycle analysis 

 

Cells were plated to ~50% confluency in the adherent lines or 125,000 cells/mL in the 

suspension lines and treated with various concentrations of WA for 24 h. At that time, total cells 

were collected, pelleted, fixed/permeablized, and stained with PI as previously described 

(Grogan et al., 2013). Cells were analyzed by flow cytometry on a BD LSRII (Becton Dickinson, 

San Diego, CA). Only living cells without DNA fragmentation were gated. 

 

4.3.5 Apoptosis evaluation 

 

Cells were plated and treated as described for cell cycle analysis. After 24 h, all cells 

were collected and processed as previously described (Grogan et al., 2013). Briefly, cells were 

washed once in Annexin binding buffer and subsequently stained with PI and Annexin V-FITV 

as per the manufacturer’s instructions (BD Biosciences, San Diego, CA) for 20 minutes at 4 °C. 

Stained cells were washed twice with the Annexin binding buffer, resuspended in 400 µL of the 

buffer, and immediately analyzed by flow cytometry on the BD LSRII. 

 

4.3.6 Immunoblotting 
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For general Western blotting, cells were plated as previously described for cell cycle 

analysis before treatment with WA or 17-AAG. Where indicated, cells were pre-treated with 5 

mM NAC for 1 h. After 24 h, cells were harvested, and proteins were isolated in lysis buffer (40 

mM HEPES, 2 mM EDTA, 10 mM sodium pyrophosphate decahydrate, 10 mM β-

glycerophosphate disodium salt pentahydrate, 1% triton X-100 supplemented with 100 µM 

phenylmethylsulfonyl fluoride (PMSF), 1 mM Na3VO4, and 2 µL/mL protease inhibitor 

cocktail), quantified, separated by sodium dodecyl sulfate–polyacrylamide gel electrophoresis 

(SDS–PAGE), and transferred onto a Hybond nitrocellulose membrane as previously described 

(Samadi et al., 2011). 10-50 µg of protein sample was loaded per lane. Equal loading and 

transfer of sample was confirmed by blotting for actin levels. Studies were repeated for accuracy. 

For nuclear and cytoplasmic fractionation of proteins, cells were grown and harvested as 

described. Washed cells were lysed in harvest buffer (10 mM HEPES pH 7.9, 50 mM NaCl, 0.5 

M sucrose, 0.1 mM EDTA, and 0.5% triton X-100), incubated on ice for 5 minutes, and pelleted 

at 1,000 rpm. The supernatant was collected as the cytoplasmic fraction. The pellet was 

resuspended for one wash with buffer A (10 mM HEPES pH 7.9, 10 mM KCl, 0.1 mM EDTA, 

0.1 mM EGTA) and subsequently repelleted. The supernatant was discarded. The pellet was then 

resuspended in buffer C (10 mM HEPES pH 7.9, 500 mM NaCl, 0.1 mM EDTA, 0.1 mM 

EGTA, 0.1% NP-40), vortexed periodically while incubating on ice for 15 minutes, and 

centrifuged at 14,000 rpm for 10 minutes at 4 °C. The supernatant was collected as the nuclear 

fraction. Proteins in the two fractions were quantified, prepared, separated, and immunoblotted 

identically to what was previously described. Histone H4 was used as a nuclear-only control. All 

buffers were supplemented with 100 µM PMSF, 1 mM Na3VO4, and 2 µL/mL protease inhibitor. 
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Triton X-100 soluble and insoluble fractionation was completed with triton soluble buffer 

(50 mM Tris-HCl pH 6.8, 150 mM NaCl, 1mM EDTA, 1 mM EGTA, 1% triton X-100) and 

insoluble buffer (50 mM Tris-HCl pH 6.8, 2% SDS) as previously described (Chen et al., 2008) 

supplemented with 100 µM PMSF, 1 mM Na3VO4, and 2 µL/mL protease inhibitor cocktail. In 

brief, cells were pre-treated with proteasome inhibitor MG132 for 1 h followed by WA for 24 h. 

Cells were collected as previously described, lysed with triton soluble buffer, and centrifuged at 

14,000 rpm for 20 minutes at 4 °C. The supernatant was collected as the soluble fraction. The 

pellet was resuspended, washed once with soluble buffer, and repelleted by centrifuged at 14,000 

rpm for 10 minutes. The pellet was resuspended in triton insoluble buffer and subsequently 

ground with a pestle, vortexed, and heated at 100 °C repeatedly for ~15 minutes to promote 

dissolution of the pellet. Any remaining debris was removed by centrifugation, and the 

supernatant was collected as the insoluble fraction. Proteins in the two fractions were prepared 

and evaluated as described above. 

Primary rabbit antibodies against β-catenin (#9562; 1:1000), p-β-catenin 

(Ser33/37/Thr41; #9561; 1:1000), TCF1 (#2203; 1:1000), TCF3 (#2883; 1:1000), TCF4 (#2569; 

1:1000), LEF1 (#2230; 1:1000), GSK-3β (#9315; 1:1000), p-GSK-3β (Ser9; #9323; 1:1000), c-

myc (#9402; 1:1000), c-Met (#4560; 1:500), and Cdc37 (#4793; 1:1000) and primary mouse 

antibodies against Cyclin D1 (#2926; 1:500) and histone H4 (#2935; 1:1000) were acquired from 

Cell Signaling Technology (Danvers, MA). Primary rabbit antibody for Axin2 (#MA5-15015; 

1:1000) was acquired from Pierce Biotechnology (Rockford, IL). Primary mouse antibodies for 

survivin (sc-17779; 1:100) and FLAG (F1804; 1:1000) were purchased from Santa Cruz 

Biotechnology (Santa Cruz, CA) and Sigma-Aldrich, respectively. Secondary mouse anti-rabbit 

conformation specific HRP antibody (#5127; 1:1000) was obtained from Cell Signaling 
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Biotechnology and used for blotting in appropriate immunoprecipitation blotting. All other 

primary and secondary antibodies were used as previously described (Grogan et al., 2013). 

 

4.3.7 Reactive oxygen species measurement 

 

WA-mediated production of intracellular reactive oxygen species (ROS), particularly 

peroxides like H2O2, was measured through fluorescent conversion of the general oxidative 

stress indicator CM-H2DCFDA (Molecular Probes, Grand Island, NY). All MB cells lines were 

preloaded with 20 µM CM-H2DCFDA in 1x PBS at 37 °C for 1 h, washed once with phenol red-

free DMEM supplemented with all aforementioned additives, and resuspended in the same 

medium. Cells were plated at 40,000 cells/well in a 96-well plate and treated with WA ± NAC 

after 30 minutes. Evaluation of fluorescence was completed on a BioTek Synergy 2 plate reader 

after 3-4 h with excitation and emission filters of 485 nm and 528 nm, respectively. 

 

4.3.8 TOP/FOP FLASH reporter assay 

 

A luciferase reporter vector for Wnt/β-catenin signaling activity through TCF/LEF DNA 

binding sites, TOP FLASH, and its negative control, FOP FLASH, along with vectors for wild-

type (WT) β-catenin and overactive mutant S33Y-β-catenin (Kolligs et al., 1999) were 

generously provided by Dr. Eric R. Fearon (University of Michigan, Ann Arbor, MI). DAOY 

cells were transfected in bulk with reporter construct TOP FLASH or FOP FLASH and a renilla 

luciferase construct at a ratio of 100:1 along with either β-catenin vector or a pcDNA3 control 

vector using Lipofectamine 2000 (Life Technologies, Carlsbad, CA) as per the manufacturer’s 
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instructions and plated at 7,500 cells/well in a white-walled 96-well plate (50 ng reporter, 0.5 ng 

renilla, and 400 ng respective β-catenin construct per well in 150 µL). The transfection and gene 

expression were allowed to occur over 24 h before the cells were treated with WA. Reporter and 

renilla luciferase activity were quantified after 24 h with the Dual-Luciferase Reporter Assay 

System (Promega) on a BioTek Syngery NEO plate reader (Winooski, VT). Each reaction was 

carried out in triplicate, and sample well values were normalized to the renilla signal. 

 

4.3.9 Transfections 

 

DAOY cells were transfected with S33Y-β-catenin-FLAG or a pcDNA3 vector and a 

puromycin cassette at a 12:1 ratio (6 µg:500 ng in a 6 cm dish) using Lipofectamine 2000 as per 

the manufacturer’s instructions (Life Technologies). The cells were selected with 1.5 ug/mL 

puromycin, and surviving colonies were pooled. To verify expression of the S33Y-β-catenin, 

Western blotting for the attached FLAG-tag was carried out. The transfected cells were used as a 

model of constitutively active Wnt signaling for the outlined assays. 

 

4.3.10 Real-time polymerase chain reaction (RT-PCR) 

 

DAOY Vector or S33Y cells were plated, treated with WA, and harvested as described 

for cell cycle analysis. RNA was isolated using Qiagen RNeasy Mini Kit as per the 

manufacturer’s instructions (Venlo, Limburg, Netherlands). Quality of the RNA was confirmed 

using a Nanodrop 2000 spectrophotometer (Thermo Scientific, Waltham, MA), and 400 ng of 

each RNA was transformed to cDNA with the High Capacity RNA-to-cDNA Kit as per the 
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manufacturer’s instructions (Applied Biosystems, Foster City, CA) using a MyCycler Thermal 

Cycler (Bio-Rad Laboratories, Hercules, CA). Power SYBR Master Mix (Applied Biosystems) 

was combined with 10 ng of cDNA according to the manufacturer’s directions, and the following 

primer pairs were used for amplification of mRNA/cDNA for survivin: sense 5’-

GGCATGGGTGCCCCGACGTTG-3’ and antisense 5’-CAGAGGCCTCAATCCATGGCA-3’ 

(Ikeguchi et al., 2002), cyclin D1: sense 5’-GCCGCAATGACCCCGCACGATTTC-3’ and 

antisense 5’-TGCCTGGGCCCCTCAGATGTCCACACGT-3’ (Seki et al., 2006), and GAPDH: 

sense 5’-TGATGACATCAAGAAGGTGGTGAAG-3’ and antisense 5’-

TCCTTGGAGGCCATGTGGGCCAT-3’ (Evron et al., 2012) (Invitrogen, Carlsbad, CA). RT-

PCR was carried out in a ViiA7 Real-Time PCR System (Applied Biosystems) with the standard 

SYBR Green amplification settings. 

 

4.3.11 Co-immunoprecipitation (co-IP) 

 

DAOY cells were plated, allowed to adhere overnight, and grown to ~50% confluency 

before treatment with WA. For co-IP of TCF/LEF proteins from IPed β-catenin, cells were 

treated with 5 µM WA for 4-8 h before cells were trypsinized, washed twice with 1x PBS, and 

pelleted. Pelleted cells were lysed in RIPA buffer (50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1% 

NP-40, 0.5% sodium deoxycholate, and 0.1% SDS) supplemented with 100 µM PMSF, 1 mM 

Na3VO4, and 2 µL/mL protease inhibitor cocktail. Proteins were isolated and quantified as 

described for immunoblotting. 750 µg of each protein sample was brought to 300 µL in RIPA 

buffer, and 3 µL of anti-β-catenin antibody (1:100, Pierce Biotechnology #MA1-10056) was 

added to each tube except for a no-antibody control tube with untreated cell lysate. Tubes were 
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rocked at 4°C overnight before the addition of 20 µL of protein A/G PLUS-Agarose beads (Santa 

Cruz Biotechnology) for 2 h. Beads were washed 4x with RIPA buffer, and proteins were eluted 

with the addition of SDS buffer as used in immunoblotting for 10 minutes at 100 °C. Beads were 

cleared by centrifugation, and the supernatant was evaluated by immunoblotting. 

Co-IP of Cdc37 from HSP90 was similar to this procedure but utilized cells treated for 4 

h with varying concentrations of WA collected in a buffer consisting of 20 mM Tris HCl (pH 

7.4), 100 mM NaCl, 2 mM DTT, 20 mM sodium molybdate dihydrate, and 0.5% NP-40 

supplemented with 100 µM PMSF, 1 mM Na3VO4, and 2 µL/mL protease inhibitor cocktail. 2 

mg of protein was IPed with 25 uL of anti-HSP90β antibody (1:12; Invitrogen #379400), and 

IPed proteins were isolated using 25 µL of protein G magnetic bead system as described by the 

manufacturer (Pierce Biotechnology). Proteins were eluted with the addition of SDS buffer as 

used in immunoblotting for 15 minutes rocking at room temperature. 

 

4.3.12 Immunocytochemistry (ICC) 

 

DAOY and ONS76 cells were plated to ~50% confluency in 8-well chamber slides 

(Nalge Nunc International, Penfield, NY) and treated with 1-2.5 µM WA for 24 h. Cells were 

fixed in 4% PBS-buffered paraformaldehyde at room temperature for 30m and washed three 

times with 1x PBS. Cell membranes were de-permeablized for 15 minutes in 1x PBS containing 

0.3% triton X-100 and subsequently blocked in 5% goat serum (Cell Signaling Technology) in 

1x PBS containing 0.15% triton X-100 shaking for 1 h. Cells were exposed to primary antibody 

in blocking solution overnight at 4 °C. Primary antibodies included TCF1 (1:50; Cell Signaling 

#2203), LEF1 (1:100; Cell Signaling #2230), and β-catenin (1:200; Pierce Biotechnology #MA1-
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10056). After three washes with 1x PBS, secondary antibody (1:1000; anti-rabbit IgG Fab2 

Alexa Fluor 555, Cell Signaling #4413; Anti-mouse IgG Fab2 Alexa Fluor 488, Cell Signaling 

#4408) was added to each well for 1 h at room temperature followed by an additional three 

washes. Coverslips were mounted on each slide with ProLong Gold Antifade with DAPI (Cell 

Signaling Technology), allowed to dry, and visualized on a Leica DM IRB microscope (Wetzlar, 

Germany) with Metamorph Basic software (version 7.7.3.0.; Molecular Devices; Sunnyvale, 

CA). 

 

4.3.13 Data and statistical analysis 

 

GraphPad Prism 6 (version 6.02; GraphPad Inc., San Diego, CA) was used to generate 

best-fit non-linear sigmoidal dose response curves for IC50 determination. Comparisons of 

differences between two or more means/values were determined by Student’s unpaired t-test via 

the statistical functions of GraphPad Prism or Microsoft Excel 2010 software (version 

14.0.6129.5000; Microsoft Corporation Redmond, WA). Densitometry, where indicated, was 

completed using ImageJ software (version 1.46r; Bethesda, MD). RT-PCR data was compared 

via the ∆∆Ct method. Data are presented as mean values with error bars denoting standard 

deviation or standard error of the mean where appropriate. The levels of significance were set at 

*p < 0.05, **p < 0.01, and ***p < 0.001. 

 

4.4 Results 

 

4.4.1 WA reduces viability and proliferation of MB 
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General cytotoxicity and anti-proliferative effects induced by WA were evaluated by the 

MTS assay after 72 h exposure. IC50 values were determined to be 168.5 µM ± 7.3, 518.4 µM ± 

28.8, 661.7 µM ± 73.9, and 614.4 µM ± 71.1 in DAOY, ONS76, D425, D283 MB cell lines, 

respectively, representing reduced cell number and viability with sub-micromolar concentrations 

(Figure 4-1A). 

 

4.4.2 WA prevents cell proliferation through G2/M cell cycle arrest 

 

To examine the nature of the observed anti-proliferative effect of WA in MB, shifts in 

cell cycle distribution were analyzed by flow cytometry after 24 h (Figure 4-1B and 4-1C). 

Supporting the general cytotoxicity of the MTS assay, WA demonstrated the ability to induce 

large elevations in the fraction of MB cells in G2/M, suggesting arrest of the cell cycle. DAOY 

cells demonstrated a peak G2/M fraction of 77.6% at 0.5 µM compared to a baseline control of 

22.2% (p = 0.004) and a statistically significant (p < 0.05) elevation from 0.5-1 µM. Similarly, 

ONS76 cells demonstrated a peak G2/M fraction of 59.4% at 1 µM compared to a baseline 

control of 25.3% (p = 0.002) and a statistically significant (p < 0.05) elevation from 0.75-2 µM. 

The fraction of cells in S-phase was slight diminished, but G2/M elevation was shown to be 

largely at the expense of G0/G1. WA levels above those inducing peak G2/M arrest showed 

diminishing responses with increasing concentration. These findings were also observed in D425 

and D283 cells (Supplemental Figure 4-1A). 

Induction of G2/M cell cycle arrest was molecularly confirmed through evaluation of 

G2/M-specific protein cyclin B1 (Figure 1D). Both DAOY and ONS76 cells showed WA dose- 
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Figure 4-1.  
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Figure 4-1. A) IC50 values were determined by MTS assay to be 168.5 µM ± 7.3, 518.4 µM ± 

28.8, 661.7 µM ± 73.9, and 614.4 µM ± 71.1 in DAOY, ONS76, D425, D283 MB cell lines, 

respectively. B) Cells stained with propidium iodide and analyzed by flow cytometry revealed 

that WA induces a dose-dependent G2/M cell cycle at 24 h. Maximal induction of arrest above 

baseline was observed at 0.5 µM in DAOY and 1 µM in ONS76. C) Cell cycle arrest 

corresponded with induction of G2/M-specific protein cyclin B1 with highest levels at 0.5 µM 

and 2.5 µM in DAOY and ONS76, respectively. D) Histograms depict representative examples 

for the cell cycle distribution of control (white/transparent) and WA-treated (grey) DAOY and 

ONS76 cells at concentrations inducing a peak effect. E) DAOY and ONS76 cells stained with 

propidium iodide and annexin V-FITC and analyzed by flow cytometry revealed that WA 

induced a dose-dependent increase of cell death with a progressive shift from early apoptosis to 

late apoptosis at 24 h. F) The presence of WA-induced apoptotic processes in DAOY and 

ONS76 was confirmed by Western blotting that demonstrated dose-dependent reduction in 

initiator procaspases 8 and 9 and effector procaspases 3 and 7. Downstream cleavage of PARP 

was observed by 0.25 µM and 2.5 µM in DAOY and ONS76 cells, respectively. G) Dot plots 

display representative examples of each cell line demonstrating a progressive shift from early to 

late apoptosis with increasing WA concentration. *p < 0.05, **p < 0.01, ***p < 0.001 
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dependent induction of the protein with peak levels observed at 0.5 and 2.5 µM, respectively, 

supporting the flow cytometry data indicating that G2/M elevation is achieved at lower doses in 

DAOY. These findings were supported with D425 cells (Supplemental Figure 4-1B). 

 

4.4.3 WA induces dose-dependent cell death through apoptosis 

 

Induction of cellular death through apoptotic and necrotic mechanisms was assessed by 

flow cytometry with annexin V-FITC/PI staining to further characterize the general cytotoxic 

effects observed from WA. WA induced dose-dependent cellular death with increasing 

concentrations in both DAOY and ONS76 cells (Figures 4-1E and 4-1F). Elevation in early 

apoptosis through annexin V-only staining was notable at low concentrations for DAOY (1-3 

µM) at 24 h with increases in dual staining indicative of late apoptosis observed at the higher 

concentrations evaluated in both DAOY (1-6 µM) and ONS76 (4-6 µM). Each cell line also 

demonstrated small increases in the PI-only necrotic population with increasing concentrations 

that did not reach above 11.5% and 7.3% in DAOY and ONS76, respectively. Total cell death 

staining in control DAOY and ONS76 was 8.0% and 8.7% but elevated to 43.9% (p < 0.001; 

9.4% early apoptosis, 6.9% necrosis, 27.6% late apoptosis) and 15.9% (p = 0.100; 3.7% early 

apoptosis, 2.9% necrosis, 9.3% late apoptosis) with 3 µM WA, respectively. Cell death was 

further increased with 6 µM WA to 63.2% (p < 0.001; 5.6% early apoptosis, 11.2% necrosis, 

46.3% late apoptosis) and 85.5% (p < 0.001 ; 0.8% early apoptosis, 7.3% necrosis, 77.4% late 

apoptosis), respectively. Consistent with the MTS findings, ONS76 cells required higher WA 

concentrations than DAOY to achieve cytotoxicity. D425 and D283 cells also exhibited dose-

dependent elevations in cell death (Supplemental Figure 4-1C). 
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The role of apoptotic processes was confirmed molecularly through protein evaluation of 

procaspase and poly(ADP-ribose) poylmerase biomarkers (Figure 4-1G). Consistent with our 

previous report that WA-mediated apoptosis in GBM is driven through both the 

mitochondrial/intrinsic and extrinsic apoptotic pathways, WA treatment of DAOY and ONS76 

MB cells resulted in depletion of extrinsic procaspase 8, intrinsic procaspse 9, and effector 

caspases 3 and 7 upon exposure to approximately 0.5-2.5 µM WA for 24 h with higher 

concentrations consistently required for ONS76 to achieve the same effect. Downstream 

cleavage of PARP was observed by 0.25 µM and 2.5 µM in DAOY and ONS76 cells, 

respectively. Procaspase depletion and PARP cleavage were also observed in D425 and D283, 

however, PARP cleavage was notably less in D283, consistent with flow cytometry findings 

suggesting a greater necrotic role (Supplemental Figure 4-1D). Together, these data support the 

role of apoptosis in the induction of WA-mediated cell death. 

 

4.4.4 WA promotes an NAC-repressible elevation in cellular oxidation 

 

Elevation of the oxidative potential has been a previously described effect in several 

cancer cell lines following WA treatment and has been suggested to play a partial role in its 

overall cytotoxicity profile. Therefore, the presence and role of WA-generated oxidative stress 

was evaluated to determine if it could be functionally extended into a MB model. Peroxide-type 

reactive oxygen species (ROS) were measured following 3-4 h WA treatment through activating 

conversion of preloaded CM-H2DCFDA to a fluorescent byproduct (Figure 4-2A). ROS were 

elevated at 1, 3, and 5 µM WA by 5.3% (p = 0.031), 16.3% (p < 0.001), and 33.8% (p = 0.009) 

in DAOY and 14.6% (p = 0.037), 37.8% (p = 0.07), and 94.2% (p = 0.048), respectively.  
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Figure 4-2.  
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Figure 4-2.  A) Increases in the concentration of WA generated peroxide-type radicals like H2O2 

as quantified by CM-H2DCFDA fluorescent conversion in DAOY and ONS76 cells at 3-4 h 

post-treatment. 5 mM NAC thiol antioxidant completely abrogated the elevation in ROS. B) 

Consistent with a cellular oxidative stress response, HSP32 and HSP70 were induced with 

increasing WA treatment with corresponding depletion of transcription factor HSF1 in both 

DAOY and ONS76. Total levels of HSP90 remained largely unchanged in both lines. C) 

Pretreatment of DAOY and ONS76 cells with 5 mM NAC eliminated WA-induced upregulation 

of HSP32 and HSP70 and the decrease of HSF1. Similarly, NAC abrogated the cleavage of 

PARP and induction of cyclin B1, demonstration reduction in the molecular apoptotic and 

checkpoint processes. D) DAOY and ONS76 cell viability assessed by ATP levels in the 

CellTiter Glo assay was increased with NAC pretreatment in the presence of WA. E) WA-

mediated induction of overall cell death assessed by flow cytometry of total propidium iodide 

and annexin V-FITC staining was eliminated with NAC pretreatment. NAC alone had no effect 

on cell viability. *p < 0.05, **p < 0.01, ***p < 0.001 
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Pretreatment with the thiol antioxidant NAC (5 mM) completely abrogated the elevation of ROS. 

The pattern of NAC-repressible dose-dependent increases in cellular oxidative potential was also 

observed in D425 and D283 cells (Supplemental Figure 4-2A). 

Elevation in oxidative potential following WA was supported molecularly by the 

induction of HSPs as has been previously described. Consistent with an oxidative stress-induced 

heat shock response, DAOY and ONS76 cells displayed dose-dependent increases in HSP70 and 

HSP32/heme oxygenase 1 with minimal changes in HSP90 levels by 0.1-0.25 µM and 0.5-1 µM 

WA after 24 h, respectively (Figure 4-2B). Transcription factor heat shock factor 1 (HSF1), a 

regulator of HSP70 expression, was reduced with an inverse correlation to HSP70 upregulation. 

Pretreatment with 5 mM NAC completely eliminated induction of the WA-mediated heat shock 

response (Figure 4-2C). This pattern of altered protein levels was also confirmed to occur in 

D425 and D283 (Supplemental Figures 4-2B and 4-2C). 

WA cytotoxicity in MB was functionally reduced or eliminated following pretreatment 

with NAC. General cellular cytotoxicity was evaluated at 72 h by the ATP-measuring CellTiter-

Glo luminescent assay. Pretreatment with 1 mM NAC showed retention of viability in both 

DAOY (p < 0.05) and ONS76 (p < 0.01) up to the highest WA concentration evaluated (6 µM), 

but reduction in cell viability was completely abrogated with 5mM NAC (DAOY: p < 0.01; 

ONS76: p < 0.001) (Figure 4-2D). Similarly, cell death evaluated by annexin V-FITC/PI staining 

at 24 h revealed that 5 mM NAC pretreatment completely eliminated the effects of 5 µM WA in 

both DAOY (p < 0.001) and ONS76 (p = 0.070) (Figure 4-2E). Cells treated with NAC ± WA 

were not statistically different than control. NAC-mediated reduction of cell death was 

confirmed in D425 (p < 0.001) and D283 (p < 0.001) cells (Supplemental Figure 4-2D and 4-

2E). Molecularly, diminished apoptosis was supported by the elimination of PARP cleavage with 
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NAC pretreatment. Similarly, NAC abrogated the cyclin B1 induction of 24 h WA treatment, 

suggesting the prevention of G2/M cell cycle arrest (Figure 4-2C; Supplemental Figure 4-2C). 

Together, these results suggest that WA may manifest its effects in MB through oxidation and 

thiol reactivity, either directly or indirectly. 

 

4.4.5 WA induces inhibitory phosphorylation of GSK-3β independent of alterations in Akt/mTOR 

pathway signaling 

 

Previous studies have demonstrated that WA can functionally alter signaling and total 

proteins levels within the PI3K/Akt/mTOR proliferation pathway (Oh et al., 2008; Oh and 

Kwon, 2009; Samadi et al., 2010a; Samadi et al., 2010b; Grogan et al., 2013; Grogan et al., 

2014). This pathway has been well-described in altering the Wnt/β-catenin signaling pathway, an 

important and over-active cascade in a subset of MB patients, through inhibition of GSK-3β to 

prevent proteasomal degradation of β-catenin (Baryawno et al., 2010). As such, the effects of 

WA on total and phosphorylated protein levels in the Akt/mTOR cascade were evaluated along 

with the resulting manifestations on GSK-3β and β-catenin. 

Akt/mTOR signaling in MB cells lines DAOY, ONS76, D425, and D283 demonstrated 

variable downstream responses to WA exposure after 24 h (Figure 4-3A). With the exception of 

unchanged Akt levels in ONS76, total levels of Akt and mTOR were reduced in all cell lines in a 

dose-dependent manner with complete depletion of Akt occurring at 2.5-5 µM WA. Complete 

elimination of mTOR was observed at 2.5 µM in DAOY and D425 but was not achieved by 5 

µM in ONS76 and D283 despite reduction. Activating phosphorylation of Akt (Ser473) and 

mTOR (Ser2448) similarly patterned the loss of total protein except for a failure to decrease p- 
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Figure 4-3.  
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Figure 4-3. A) Akt/mTOR signaling in MB cells lines DAOY, ONS76, D425, and D283 

demonstrated variable downstream responses to WA exposure after 24 h. All lines demonstrated 

reduction or maintenance of total and phosphorylated/active levels of Akt (Ser473) and mTOR 

(Ser2448) with WA treatment. While total p70 S6K was reduced or sustained in all cell lines, 

activation of p70 S6K through phosphorylation (Thr389) demonstrated significant variability 

with DAOY and D425, the cell lines with the highest WA-mediated Akt and mTOR depletion, 

demonstrating reductionand ONS76 and D283 potently inducing this phosphorylation. Despite 

diminished p-Akt, phosphorylation of GSK-3β (Ser9) was significantly induced with minimal 

changes in total β-catenin levels. B) Pharmacological inhibition of PI3K, upstream of Akt, with 

LY294002 or wortmannin was conducted 1 h prior to WA treatment to evaluate the 

responsibility of residual p-Akt for phosphorylating GSK-3β. Rapamycin, an inhibitor of mTOR 

downstream of Akt, was used as a pathway control. All inhibitors failed to prevent WA-induced 

phosphorylation of GSK-3β, demonstrating that that the observation was independent of Akt 

signaling. 
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mTOR in D283 by 5 µM WA. Downstream of mTOR, total p70 S6K was reduced or sustained in 

all cell lines. However, activation of p70 S6K through phosphorylation (Thr389) demonstrated 

significant variability. DAOY and D425, the cell lines with the highest WA-mediated Akt and 

mTOR depletion, displayed consistent reduction of p-p70 S6K initiating at 0.5 µM and 2.5 µM, 

respectively. In contrast, p-p70 S6K was potently induced through 5 µM WA in ONS76 despite 

decreases in total protein and through 2.5 µM WA in D283 before reduction at 5 µM in the latter. 

This suggests either maintained or enhanced activity of Akt/mTOR signaling despite diminished 

phosphorylation or the presence of alternative and compensatory cell-specific signaling. 

Despite decreased or sustained levels of p-Akt in all cell lines with WA treatment, 

inhibitory phosphorylation of GSK-3β (Ser9), a target of Akt, was induced in all lines by 0.5-1 

µM (Figure 4-3A). Total levels of GSK-3β were largely maintained except at high doses in D425 

which also resulted in a loss of p-GSK-3β. Consistent with active GSK-3β normally functioning 

to promote the proteasomal degradation of β-catenin, total levels of β-catenin after 24 h WA 

treatment remained largely consistent with minimal increases and/or decreases in a cell-

dependent manner. 

In order to determine if phosphorylation of GSK-3β was a result of residual Akt activity 

following WA exposure, pharmacological inhibition of PI3K, upstream of Akt, with LY294002 

or wortmannin was conducted prior to WA treatment. Rapamycin, an inhibitor of mTOR 

downstream of Akt, was used as a pathway control. All inhibitors failed to prevent WA-induced 

phosphorylation of GSK-3β, demonstrating that that the phenomenon was likely independent of 

Akt signaling (Figure 4-3B). Treatment with the inhibitors alone actually induced mild to 

moderate phosphorylation of GSK-3β, suggesting compensatory activation of the Wnt pathway 

through an alternate mechanism. As expected, WA-induced p-GSK-3β correlated with 
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diminished phosphorylation of β-catenin (Ser33/37/Thr41), a marker for degradation, and 

maintenance of total protein levels. Interestingly, LY294002 and rapamycin pretreatment before 

2.5 µM WA in DAOY cells promoted diminished β-catenin despite not altering its 

phosphorylation. 

 

4.4.6 WA inhibits the Wnt/β-catenin signaling pathway 

 

To evaluate if inhibition of GSK-3β and maintenance of β-catenin levels following WA 

treatment led to altered signaling in the Wnt/β-catenin pathway, the TOP/FOP FLASH reporter 

assay was employed to determine pathway activation and function (Figure 4-4A). DAOY cells 

were co-transfected with either the TOP FLASH or FOP FLASH reporter and a renilla luciferase 

control as well as WT-β-catenin, the constitutively active S33Y-β-catenin mutant, or a vector 

control. After 24 h, cells were treated with 1 µM WA for an additional 24 h and quantified. 

Negatively control reporter FOP FLASH failed to demonstrate significant signal induction under 

all conditions. While vector DAOY cells displayed minimal endogenous TOP FLASH reporter 

activation, the addition of extra WT and S33Y β-catenin increased reporter activation 17.1- and 

118.8-fold, respectively. Treatment with WA reduced WT-β-catenin signal by 46.4% (p = 0.073) 

and S33Y-β-catenin signal by 64.1% (p < 0.001), showing that WA, in part, acts as an inhibitor 

of the Wnt/β-catenin signaling pathway. This is in contrast to the findings that demonstrate the 

stabilization of β-catenin following WA treatment and suggests that this retention of β-catenin 

may be a cellular compensatory attempt to maintain pathway activity despite downstream 

inhibition. 
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Figure 4-4.  
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Figure 4-4. A) WA reduced activity of the TOP FLASH luciferase reporter assay for Wnt 

signaling activity after 24 h when activated with excess WT-β-catenin and constitutively the 

active S33Y-β-catenin mutant in DAOY cells. Negative control reporter FOP FLASH yielded 

minimal luminescent signal. All signals were normalize to the renilla control. B) Protein levels of 

known Wnt signaling target genes (axin2, survivin, cyclin D1, c-myc, and c-Met) were reduced 

in DAOY Vector, DAOY S33Y, and ONS76 cells with increasing exposure to WA for 24h. C) 

mRNA levels of Wnt signaling target genes survivin and cyclin D1 were evaluated through RT-

PCR following 24 h WA treatment in DAOY Vector and DAOY S33Y cells. Consistent with the 

protein levels, both genes demonstrated a dose-dependent decrease in transcription of mRNA for 

each gene. *p < 0.05, **p < 0.01, ***p < 0.001 

  



137 

 

Protein levels of known Wnt signaling target genes (Axin2, survivin, cyclin D1, c-myc, 

and c-Met) were subsequently assessed to further evaluate and confirm functional manifestations 

of the inhibition. DAOY cells were stably transfected with S33Y-β-catenin (“DAOY S33Y”) or 

vector (“DAOY Vector”) to establish a model of constitutively active Wnt signaling. DAOY 

Vector, DAOY S33Y, and ONS76 cells were treated with WA for 24 h and evaluated by 

Western blotting. Each target protein was reduced in a dose-dependent manner with initial 

efficacy seen between 1-2.5 µM in both DAOY lines and 1-5 µM in ONS76, supporting 

inhibition of Wnt signaling (Figure 4-4B). Decreases in these proteins were also confirmed in 

D425 and D283 (Supplemental Figure 4-3A). 

To ensure protein decreases were not simply due to WA-induced degradation, 

transcriptional level evaluation was performed through RT-PCR to quantify mRNA for target 

genes survivin and cyclin D1 following WA treatment in DAOY Vector and DAOY S33Y cells 

(Figure 4-4C). Consistent with the protein levels, 1 µM and 2.5 µM WA decreased mRNA levels 

of survivin in DAOY Vector by 47.4% (p = 0.012) and 82.5% (p = 0.004), respectively, and in 

DAOY S33Y by 34.0% (p = 0.162) and 73.0% (p = 0.028), respectively. Also supported by 

protein reduction, mRNA for cyclin D1 was decreased only at 2.5 µM WA by 75.5% in DAOY 

Vector (p = 0.019) and 40.4% in DAOY S33Y (p = 0.105). 

 

4.4.7 WA disrupts Wnt signaling through depletion of TCF/LEF transcription factors and 

without blocking nuclear translocation of β-catenin 

 

Having established functional inhibition of the Wnt signaling pathway with WA 

treatment despite the maintenance of total levels of β-catenin, the inhibitory mechanism of WA 
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on downstream Wnt signaling was evaluated. In addition to decreases of β-catenin levels, Wnt-

specific signaling reduction can manifest through failure of β-catenin to translocate to the 

nucleus or subsequently associated with the necessary transcription factor of the TCF/LEF 

family. 

Changes in nuclear translocation of β-catenin in the presence of WA were assessed by 

nuclear and cytoplasmic protein fractionation of DAOY Vector and S33Y lines (Figure 4-5A). 

Consistent with the initial evaluation of β-catenin following WA treatment in DAOY cells, total 

levels of the endogenous protein were slightly diminished but largely unchanged after 24 h. In 

both lines, nuclear levels of total β-catenin were decreased at 5µM WA with slight increases in 

cytoplasmic levels compared to 2.5 µM WA, suggesting possible disruption of translocation at 

high doses. However, this was associated with slight reduced nuclear histone H4, and it is 

unclear if the small shift is mechanistically relevant at a high concentration of WA. Similarly, 

total levels of nuclear S33Y-β-catenin, observed only in the DAOY S33Y line, were reduced 

only at 5 µM WA, but this was also observed in the cytoplasmic fraction, suggesting a global 

decrease rather than alterations in translocation. Further, reduced levels of cytoplasmic WT- and 

S33Y-β-catenin at 1-2.5 µM WA were not matched in the nuclear fraction, demonstrating 

maintained translocation and localization of remaining β-catenin with WA treatment. ICC of β-

catenin with DAPI in DAOY and ONS76 cells confirmed minimal changes in nuclear β-catenin 

levels up to 2.5µM WA (Figure 4-5B; Supplemental Figure 4-3B). 

Upon entering the nucleus, β-catenin is known to function as a co-activator that 

associates with members of the TCF/LEF transcription factor family to promote transcription of 

Wnt pathway target genes (Voronkov and Krauss, 2013). Because failure of β-catenin to 

associate with these factors prevents proper activation of transcription at these target genes, total  
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Figure 4-5.  
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Figure 4-5. A) Changes in nuclear translocation of β-catenin in the presence of WA were 

assessed by nuclear and cytoplasmic protein fractionation of DAOY Vector and DAOY S33Y 

lines. Total levels of the endogenous protein were slightly diminished after 24 h. In both lines, 

nuclear levels of total β-catenin were decreased at 5 µM WA with slight increases in cytoplasmic 

levels compared to 2.5 µM WA, suggesting possible disruption of translocation at high doses. 

Similarly, total levels of nuclear S33Y-β-catenin, observed only in the DAOY S33Y line, were 

reduced only at 5 µM WA in both fractions. B) ICC of β-catenin (green) with DAPI (blue) in 

DAOY cells confirmed minimal changes in nuclear β-catenin levels. C) Total levels of TCF/LEF 

transcription factors TCF1, TCF3, TCF4, and LEF1 were assessed in DAOY Vector, DAOY 

S33Y, and ONS76. In each cell line, all proteins, including both detected isoforms of TCF4, 

were notable depleted by WA in a dose-dependent manner after 24 h. LEF1 was not detected in 

ONS76. D and E) ICC of TCF1 and LEF1 (red) in DAOY cells revealed diminished staining 

intensity and/or a shift from the nucleus to the cytoplasm after 1-2.5 µM WA for 24 h. F) Co-IP 

experiments revealed decreased β-catenin association with TCF/LEF members after treatment 

with 5 µM WA for up to 8 h, demonstrating that reductions in total proteins also corresponded 

with diminished functional interactions. 
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levels of TCF/LEF family members TCF1, TCF3, TCF4, and LEF1 were assessed in DAOY 

Vector, DAOY S33Y, and ONS76. In each cell line, all proteins, including both detected 

isoforms of TCF4, were notable depleted by 1µM WA after 24 h with near-complete elimination 

by 5 µM except for both TCF3 and the 79kDa TCF4 isoform in ONS76. LEF1 was not detected 

in ONS76 (Figure 4-5C). Depletion of each protein was confirmed in the additional MB cell 

lines D425 and D283 (Supplemental Figure 4-3C). 

ICC of TCF1 and LEF1 in DAOY cells revealed diminished staining intensity and/or 

altered cellular localization of the proteins after 1-2.5 µM WA (Figures 4-5D and 4-5E). Control 

cells showed near-complete overlap of nuclear DAPI staining and both TCF1 and LEF1. 

Treatment with WA induced diffusion of both proteins into the cytoplasmic region with 

diminished nuclear staining intensity. While negative for LEF1, ONS76 cells demonstrated the 

same pattern of TCF1 alteration (Supplemental Figure 4-3D). 

Depletion and delocalization of TCF/LEF proteins would be expected to diminish 

transcription of Wnt signaling target genes given a reduced transcription factors available for β-

catenin association upon entering the nucleus. Co-IP was conducted to evaluate β-catenin 

association with TCF/LEF members after treatment with WA (Figure 4-5F). DAOY cells were 

treated with 5 µM WA for up to 8 h. At 8 h, total levels of TCF1, TCF3, and LEF1 input were 

decreased 82.8%, 75.1%, and 71.9% normalized to actin, respectively. Conversely, total β-

catenin was elevated by 50.9%. IPed β-catenin showed levels of TCF1, TCF3, and LEF1 that 

were decreased 70.1%, 58.1%, and 56.1% normalized to β-catenin, respectively. This confirms 

that total depletion of TCF/LEF proteins also resulted in functional reduction of the association 

between these transcription factors and β-catenin. 
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4.4.8 WA-mediated degradation of TCF/LEF proteins is mediated by the proteasome 

 

Triton X-100 fractionation and pretreatment with proteasome inhibitor MG132 were 

completed to further define WA-mediated alterations in TCF/LEF localization and degradation 

(Figure 4-6A). Triton soluble proteins are largely regarded as functional, stable molecules, 

whereas the insoluble fraction contains labile and aggregated proteins. Treatment of DAOY and 

ONS76 cells with 2.5 µM WA for 24 h resulted in a depletion of triton soluble proteins with 

variable accumulation in the insoluble fraction. Exploration of these findings suggested that early 

timepoints (defined relatively in part by dose and cell line sensitivity) following treatment with 

WA shifted proteins from the soluble to insoluble fractions with later timepoints resulting in 

absolute depletion in both fractions (data not shown). Consistent with previous reports, MG132 

blocked normal protein turnover, inducing cellular stress and a shift of proteins to the insoluble 

fraction (Kawahara et al., 2008). Cells pretreated with MG132 before WA demonstrated 

enhanced retention of all TCF/LEF proteins in the insoluble fraction at 24 h, including proteins 

that were depleted by WA in both the soluble and insoluble fractions and demonstrating the 

proteasome-dependent manner of WA-mediated TCF/LEF degradation. 

 

4.4.9 TCF/LEF proteins require functional HSP90 for stability and WA disrupts the 

HSP90/Cdc37 interaction in MB 

 

Previous reports have suggested that WA may disrupt the association between HSP90 

and co-chaperone Cdc37, thereby altering normal HSP90 function and resulting in widespread 

protein misfolding and degradation. We evaluated this finding through co-IP in DAOY cells, and  
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Figure 4-6.  
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Figure 4-6. A)  DAOY and ONS76 cells were pretreated with the proteasome inhibitor MG132 

followed by WA for 24 h, and cellular proteins were fractionated by triton X-100 solubility. 

Treatment with 2.5 µM WA or 20 µM MG132 for 24 h resulted in a depletion of triton soluble 

TCF/LEF proteins with variable accumulation in the insoluble fraction. Cells pretreated with 

MG132 before WA demonstrated enhanced retention of all TCF/LEF proteins in the insoluble 

fraction at 24 h, including proteins that were depleted by WA in both the soluble and insoluble 

fractions and demonstrating the proteasome-dependent manner of WA-mediated TCF/LEF 

degradation. B) Co-IP experiments in DAOY cells demonstrated that WA reduced the 

association between HSP90 and Cdc37 after a 4 h treatment. Total input Cdc37 was not 

decreased with treatment. C) Treatment of DAOY cells with the N-terminal HSP90 inhibitor 17-

AAG demonstrated dose-dependent decreases in total levels of TCF1, TCF3, TCF4, and LEF1 

but not β-catenin. TCF1 and TCF3 showed notably enhanced reduction by approximately 250 

nM. 
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indeed, WA reduced the association between HSP90 and Cdc37. After 4 h, 0.5 µM and 2.5 µM 

WA reduced IPed Cdc37 by 63.7% and 76.2%, respectively, compared to IPed HSP90 (Figure 4-

6B). Total input Cdc37 was not decreased with treatment. 

To date, members of the TCF/LEF family have not been described as HSP90 client 

proteins or known to associate with Cdc37. Co-IP for TCF1, TCF3, TCF4, and LEF1 with 

HSP90 and Cdc37 was unable to identify any direct association between these proteins (data not 

shown). However, treatment of DAOY cells with the N-terminal HSP90 inhibitor 17-AAG 

demonstrated dose-dependent decreases in total levels of TCF1, TCF3, TCF4, and LEF1 up to 

modest doses (1 µM) but not β-catenin (Figure 4-6C). TCF1 and TCF3 showed notable reduction 

by approximately 250 nM. These findings suggest that while HSP90 and Cdc37 may not directly 

associate with TCF/LEF members, intact HSP90 function is indirectly necessary for their 

stability. Combined with the identification that WA works in part through disruption of the 

HSP90 axis, these findings implicate a potential mechanism involving HSP90 for WA-driven 

alterations in Wnt/β-catenin signaling. 

 

4.5 Discussion 

 

WA has been demonstrated to be a potent cytotoxic agent in a multitude of cancer 

models. In this study, we are the first to demonstrate that this efficacy extends to the treatment of 

MB and is manifested at least in-part through direct inhibition of the oncogenic Wnt/β-catenin 

signaling pathway resulting in dose-dependent G2/M cell cycle arrest and ultimately apoptosis. 

Inhibition of this signaling pathway was determined to be a result of proteasome-mediated 
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degradation of transcription factors from the TCF/LEF family. Consistent with previous findings 

in other models, WA treatment resulted in cellular oxidation and dissociation of HSP90/Cdc37. 

WA was demonstrated to function as a novel inhibitor of the Wnt/β-catenin signaling 

pathway through downstream depletion and altered localization of TCF/LEF resulting in 

diminished association with transcription activator β-catenin. Significant inhibition of reporter 

TOP FLASH signaling in a model of constitutively active β-catenin as well as decreased Wnt 

target mRNA and protein product were observed upon 24 h exposure to 1 µM WA, consistent 

with levels necessary to decrease TCF/LEF proteins. Concentrations necessary to demonstrate 

these findings were within the cytotoxically relevant dosing range, supporting that this inhibition 

was not a high dose off-target drug effect. This study thoroughly evaluated the effects of WA at 

different levels of the Wnt signaling cascade and demonstrated that this inhibition is not driven 

by reduced total β-catenin levels or failure of β-catenin to translocate to the nucleus. 

While WA also plays a role in altering normal Akt/mTOR signaling in MB, this pathway 

is not responsible for inhibiting signaling of the Wnt/β-catenin pathway. Pharmacological 

inhibition of PI3K failed to reduce phosphorylation of GSK-3β or alter levels of β-catenin, 

suggesting that any remaining Akt activity that was not eliminated with WA treatment was not 

responsible for this inhibition. It is likely that inhibition of GSK-3β, perhaps through the 

upstream Wnt signaling protein dishevelled, is a compensatory response to the downstream 

inhibition of the pathway and an attempt by the cells to overcome this bottleneck. Indeed, GSK-

3β phosphorylation was induced at low levels (0.5-1 µM WA) consistent with doses at which 

TCF/LEF are depleted and suggesting a compensatory effect. Further exploration of the 

inhibition of GSK-3β is necessary to explain and potentially exploit this finding. On the whole, 

signaling through the Akt and mTOR proteins was shifted to an inhibitory state with reduced 
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and/or unchanged total and phosphorylated levels. However, in contrast to what has been 

observed in GBM Akt/mTOR signaling (Grogan et al., 2013; Grogan et al., 2014), downstream 

signaling to p70 S6K resulted in inconsistent activation/inhibition of the protein compared to 

GSK-3β inhibition and TCF/LEF depletion, suggesting a greater role of Wnt signaling inhibition 

in MB.  

While a number of inhibitors have been identified that alter Wnt signaling at various 

points in the cascade (Voronkov and Krauss, 2013), only four agents are currently in human 

clinic trials not exclusively for MB: olaparib (PARP/tankyrase inhibitor), veliparib 

(PARP/tankyrase inhibitor), LGK974 (porcupine inhibitor), and OTSA101-DTPA-90Y 

(radiolabeled antibody against frizzled) (MacDonald et al., 2014). Only PARP inhibition, 

described to destabilize β-catenin through Axin (Waaler et al., 2012), is under trial for MB with 

the latter two therapies failing to target the appropriate location in the signaling cascade given 

the mutations in MB. Such an approach, however, loses utility in presence of significantly 

overexpressed β-catenin or otherwise mutated β-catenin and/or APC (Voronkov and Krauss, 

2013). Of note is the fact that WA alters Wnt signaling at the transcriptional level by targeting 

the ultimate transcription factors of the pathway. As such, it avoids the potential development of 

resistance through upstream rerouting or mutations of the Wnt and Akt/mTOR signaling 

pathways. In this way, WA functions differently than currently available therapeutics and avoids 

these potential therapeutic pitfalls. Several small molecules have been identified that limit the 

association of the TCF/LEF members with β-catenin, but to-date, these have not been explored 

clinically (Voronkov and Krauss, 2013). Similarly, other compounds have been identified that 

directly disrupt or induce degradation of β-catenin. 
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Exploration of HSP90 inhibition as a means to disrupt the Wnt pathway therapeutically 

has not yet been explored. HSP90 was show to interact with Axin1, GSK-3β, and β-catenin but 

its inhibition resulted in a cell line-dependent depletion of GSK-3β only, indicating that it likely 

fails to function at that level of the cascade (Cooper et al., 2011; Liu et al., 2012). Further, 

depletion of GSK-3β would be expected to promote stabilization of β-catenin and subsequent 

activation of the pathway. The present study supports previous findings that WA disrupts the 

interaction between HSP90 and Cdc37, a co-chaperone protein necessary for localizing target 

kinases of the kinome with HSP90 for folding (Karnitz and Felts, 2007), and demonstrates this 

finding in MB for the first time (Yu et al., 2010). Further alterations of the HSP90 axis beyond 

this observation have remained unexplored. While direct interaction of HSP90 and Cdc37 with 

members of TCF/LEF was unable to be demonstrated by co-IP, the importance of functional 

HSP90 to promote the stability of the TCF/LEF members, likely indirectly, was identified 

through treatment with the established N-terminal HSP90 inhibitor 17-AAG and subsequent 

depletion of these transcription factors. TCF/LEF members in the absence of β-catenin have been 

shown to interact with co-repressors like Groucho, C-terminal binding protein (CtBP), and 

histone deacetylase (HDAC) with the latter being a known HSP90 modulator (Kekatpure et al., 

2009; Voronkov and Krauss, 2013). The role of HSP90 and/or Cdc37, if any, in the stability and 

function of these proteins remains largely unexplored, especially Cdc37 which is thought to 

primarily associate with kinome proteins instead. However, if inhibition of HSP90 function 

results in a failure of the repressor complex or any of the numerous associated proteins to 

adequately sequester TCF/LEF and result in its delocalization or degradation. Such a hypothesis 

may explain our findings that TCF/LEF bound to β-catenin is somewhat less readily degraded 
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compared to total levels. Further exploration of the role of HSP90/Cdc37-mediated stabilization 

of TCF/LEF directly or indirectly is necessary. 

TCF3 is considered to be a repressor of the Wnt signaling transcription and is noted to be 

less responsive to WA than activator LEF1 as well as context-dependent TCF1 and TCF4 (Arce 

et al., 2006; Voronkov and Krauss, 2013). TCF3 is more potently decreased by 17-AAG 

compared to the others. It is hypothesized that differences in currently undefined Cdc37-

dependence of the system or non-HSP90 axis effects of WA are likely responsible for this 

difference and will need to be defined in future studies. However, given the eventual decrease of 

all TCF/LEF members following WA treatment, it is unclear if this pattern is functionally 

relevant on the context of general disarray. 

Interestingly, ethacrynic acid was previously identified as an inhibitor of Wnt signaling  

through direct targeting and binding of LEF1 that could be blocked by NAC (Lu et al., 2009). 

Our findings demonstrate the thiol-reactive and oxidative properties of WA, the latter perhaps a 

secondary result of the thiol reactivity, which may also play a more direct role in the depletion of 

the TCF/LEF members. WA was previously shown to induce depletion of O
6
-methylguanine-

DNA methyltransferase (MGMT), a non-HSP90 client protein with known susceptibility to 

oxidation (Fu et al., 2010; Ryu et al., 2012; Grogan et al., 2014). Further study is necessary to 

determine if WA can directly interact with TCF/LEF proteins like ethacrynic acid, but while WA 

exposure yields numerous alterations and depletions of cellular proteins, previous reports 

utilizing biotinylated WA for protein pull-down have identified that WA protein-binding is 

specific to a limited subgroup including HSP90 and vimentin rather than broad-spectrum non-

specific associations (Bargagna-Mohan et al., 2007; Yu et al., 2010). Further exploration of the 

implications of the demonstrated general oxidative effects of WA on TCF/LEF is also necessary 
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as published reports on the effects of oxidation on TCF/LEF members is lacking. One study 

utilized hydrogen peroxide treatment to assess oxidative stress on Wnt signaling and 

demonstrated that it decreased the amount of nuclear β-catenin and resulted in diminished 

TCF/LEF-mediated transcription (Shin et al., 2004). It did not, however, directly identify any 

effects on TCF/LEF members. Failure of WA to significantly alter nuclear translocation of β-

catenin suggests that oxidation may be a byproduct of a greater mechanism, supporting a direct 

or HSP90-mediated role for depletion of TCF/LEF by WA. 

While the clinical importance of these findings has yet to be evaluated, they predict that 

WA may be an effective treatment option for MB patients by targeting multiple critical signaling 

pathways including Wnt/β-catenin which is known to be overactive in a significant subgroup of 

these patients. Wnt signaling overactivation is most frequently regarded to occur though an 

increase in total β-catenin, largely through overexpression of β-catenin itself or a failure to 

properly degrade normal production of the protein through mutations in regulators like APC, 

including in colorectal cancer as well as MB (Polakis, 2012). However, overexpression of 

members of the TCF/LEF family like LEF1, which is potently targeted by WA, has also been 

demonstrated as poor prognostic and disease progression marker in B-cell chronic lymphocytic 

leukemia (CLL) and a potential option for a targeted therapeutic (Lu et al., 2009; Erdfelder et al., 

2010a; Erdfelder et al., 2010b; Wu et al., 2012). Taken together, this suggests potential 

therapeutic value of WA in Wnt signaling-altered cancers beyond MB. Indeed, previous reports 

have shown efficacy of WA in colon cancer models despite not evaluating Wnt signaling 

modulation (Jayaprakasam et al., 2003). Importantly, WA exhibits intrinsic cytotoxicity 

independent of Wnt signaling. Therefore, while utilization of WA against cancers such as MB or 

colorectal cancer with frequent overactivation of the Wnt pathway may prove to be beneficial, it 
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retains potential utility for the population of patients with tumors lacking such characteristics for 

which it may be challenging to screen prior to the initiation of therapy, including the other MB 

subgroups representing ~85% of patients. 

In this study, we identify the cytotoxic nature of WA against pediatric MB cells for the 

first time. WA was identified to act as a novel and unique inhibitor of the Wnt/β-catenin 

signaling pathway, overactivated in one of the MB subgroups, with associated induction of 

oxidation and modulation of the HSP90/Cdc37 interaction. These findings suggest intriguing 

clinical potential of the compound in MB and other cancers in which Wnt signaling is known to 

be overactivated and warrant further translational exploration. 
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Supplemental Figure 4-1.  
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Supplemental Figure 4-1. A) Cells stained with propidium iodide and analyzed by flow 

cytometry revealed that WA induces a dose-dependent G2/M cell cycle at 24 h. Maximal 

induction of arrest above baseline was observed at 1 µM in D425 and 0.5 µM in D283. B) Cell 

cycle arrest corresponded with induction of G2/M-specific protein cyclin B1 with highest levels 

at 1 µM in D425 cells. C) D425 and D283 cells stained with propidium iodide and annexin V-

FITC and analyzed by flow cytometry revealed that WA induced a dose-dependent increase of 

cell death with a progressive increase in late apoptotic/necrotic cells 24 h. D) The presence of 

WA-induced apoptotic processes in D425 and D283 was confirmed by Western blotting that 

demonstrated dose-dependent reduction in initiator procaspase 9 and effector procaspases 3 and 

7. Downstream cleavage of PARP was observed by 1 µM and 0.25 µM in D425 and D283 cells, 

respectively. Overall PARP cleavage was weaker in D283, consistent with flow cytometry 

demonstrating a large necrotic response to treatment. *p < 0.05, **p < 0.01, ***p < 0.001 

  



154 

 

Supplemental Figure 4-2.  
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Supplemental Figure 4-2.  A) Increases in the concentration of WA generated peroxide-type 

radicals like H2O2 as quantified by CM-H2DCFDA fluorescent conversion in D425 and D283 

cells at 3-4 h post-treatment. Pretreatment 5 mM NAC thiol antioxidant completely abrogated the 

elevation in ROS. B) Consistent with a cellular oxidative stress response, HSP32 and HSP70 

were induced with increasing WA treatment with corresponding depletion of transcription factor 

HSF1 in both D425 and D283. Total levels of HSP90 remained largely unchanged in both lines. 

C) Pretreatment of DAOY and ONS76 cells with 5 mM NAC eliminated WA-induced 

upregulation of HSP32 and HSP70 and the decrease of HSF1 in D425 cells. Similarly, NAC 

abrogated the cleavage of PARP and induction of cyclin B1, demonstration reduction in the 

molecular apoptotic and checkpoint processes. D) D425 and D283 cell viability assessed by ATP 

levels in the CellTiter Glo assay was increased with NAC pretreatment in the presence of WA. 

E) WA-mediated induction of overall cell death assessed by flow cytometry of total propidium 

iodide and annexin V-FITC staining was eliminated with NAC pretreatment. NAC alone had no 

effect on cell viability. *p < 0.05, **p < 0.01, ***p < 0.001 
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Supplemental Figure 4-3.  
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Supplemental Figure 4-3. A) Protein levels of known Wnt signaling target genes (axin2, 

survivin, c-myc, and c-Met) were reduced in D425 and D283 cells with increasing exposure to 

WA for 24 h. B) ICC of β-catenin (green) with DAPI (blue) in ONS76 cells demonstrated 

minimal changes in nuclear β-catenin levels and alterations in protein localization after 24 h of 

2.5 µM WA. C) Total levels of TCF/LEF transcription factors TCF1, TCF3, TCF4, and LEF1 

were assessed in D425 and D283. In each cell line, all proteins, including both detected isoforms 

of TCF4, were notable depleted by WA in a dose-dependent manner after 24 h. LEF1 was 

scarcely detected in D283. D) ICC of TCF1 (red) in ONS76 cells revealed diminished staining 

intensity anr a shift from the nucleus to the cytoplasm after 2.5 µM WA for 24 h. 
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Chapter 5 

 

Withaferin A promotes global proteasome-mediated protein 

degradation through oxidation and inhibition of the HSP90 

chaperone axis and is cytotoxically potentiated by inhibition 

of the proteasome 
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5.1 Abstract 

 

Withaferin A (WA), a 28-carbon steroidal lactone isolated from members of the 

Solenceae plant family, has previously demonstrated significant anti-cancer efficacy in multiple 

models through modulation and disruption of numerous oncogenic signaling pathways and 

cellular events. The underlying mechanism behind these diverse effects, however, has been 

incompletely explained. In this study, we follow up on previous findings suggesting that WA 

functions through oxidation and modulation of the HSP90 protein chaperone. WA was 

demonstrated to shift the HSP90/HSP70 balance with HSP70 upregulation and associated 

increase in global protein ubiquitination in U87 and HeLa cancer cells. Similarly, WA treatment 

yielded depletion of known HSP90 client proteins but not non-clients. Interestingly, this was 

associated with no inhibition of intrinsic HSP90 function as evaluated by HSP90-mediated 

glucocorticoid receptor (GR) steroid binding, but WA did induce dissociation of co-chaperone 

Cdc37 from HSP90. This was confirmed by dissociation of Cdc37-dependent Cdk6 but not 

Cdc37-independent GR from HSP90. Overall, WA promoted elevated cellular oxidation and 

glutathione (GSH) depletion. Pretreatment with the thiol antioxidant completely eliminated WA-

induced oxidation and cytotoxicity, but non-thiol antioxidant ascorbic acid failed to prevent 

cytotoxicity despite a reduction in general oxidation. Depletion of cellular GSH with γ-

glutamylcysteine inhibitor L-buthionine-sulfoximine enhanced the effect of WA. WA shifted 

depleted proteins to a triton X-100 insoluble fraction with subsequent degradation through the 

proteasome and, to a lesser extent, the lysosome. Functionally, pretreatment of U87 and HeLa 

cells with proteasome inhibitor MG132 potentiated the cytotoxicity of WA with a resulting 

decrease in proliferation, increased apoptosis, and an accumulation of ubiquitinated proteins. 
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This study further defines the mechanism of WA as a proteotoxic agent through increased 

oxidation and modulation of the HSP90 axis to produce significant proteasome-mediated protein 

degradation. Further exploration is warranted to fully explain the inhibitory effect on the HSP90 

axis and the translational use of combination WA and MG132. 

 

5.2 Introduction 

 

The effective and sustained treatment of cancer remains an elusive and challenging goal 

in the scientific community. While great strides have been made in recent decades to understand 

the biological nature of initiation and progression of the disease at the molecular level, these 

finds have arguably resulted in comparatively fewer breakthroughs in the management and 

treatment of such malignancies. 

Many current standard therapeutic agents target mechanisms necessary for cellular 

replication or susceptibilities of cell cycling, often through induction of DNA damage or 

inhibition of DNA replication (Kamal and Burrows, 2004). While these agents have shown 

benefits in preventing disease progression and extending survival, they are often restricted by the 

development of resistance or dose-limiting toxicity, including those affecting neuropsychological 

and cognitive abilities (Ahles and Saykin, 2001). For example, the platinating agent cisplatin, 

currently one of the most effective broad-spectrum agents, is frequently used in the management 

and treatment of many solid tumors including lung, breast, ovarian, cervical, and testicular 

among many others. However, its administration is associated with significant use-limiting 

toxicity, most notably nephrotoxicity, and the ultimate development of resistance through a 

spectrum of complex mechanisms (Stordal and Davey, 2007; Shen et al., 2012; Markman, 2013; 
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Wensing and Ciarimboli, 2013; Petrelli et al., 2014). Similarly, while the alkylating agent 

temozolomide (TMZ) in combination with radiation currently represents the most efficacious 

therapy for glioblastoma multiforme (GBM) patients and demonstrates limited toxicity, its 

efficacy is often quickly limited by the expression of O
6
-methylguanine-DNA methyltransferase 

(MGMT) (Paz et al., 2004; Hegi et al., 2005). 

Advances in targeted therapy through both biological agents and small molecular 

inhibitors allow for the specific and directed inhibition or modulation of many protein targets and 

pathways including epidermal growth factor receptor (EGFR), vascular endothelial growth factor 

(VEGF), BCR-ABL, and Her2/neu, among others (Stebbing et al., 2000; Herbst, 2004; Kamal 

and Burrows, 2004; Baka et al., 2006; Jakopovic et al., 2014). While this results in 

comparatively less toxicity due to the specificity of the protein target, it is frequently limited by 

the development of resistance through tumor mutations or downregulation of the target protein. 

Additional challenges arise with heterogeneity of target protein expression in the patient 

population and the individual patient throughout the treatment period (Ellis and Hicklin, 2008; 

Wheeler et al., 2010; Wong and Lee, 2012; Huang et al., 2014). These considerable challenges 

demonstrate the need for therapeutic agents that can target multiple oncogenic and resistance 

pathways simultaneously to circumvent the shortcomings of established therapeutic options. 

Heat shock protein (HSP) 90, an evolutionarily well-conserved chaperone protein directly 

responsible for the stability and/or function of over 400 key cellular proteins, represents an ideal 

target for this purpose (Barrott and Haystead, 2013). Inhibition of HSP90 results in the depletion 

of client proteins critical to the proliferation and ultimate survival of cancer cells such as pro-

growth signaling proteins, tyrosine kinases, cell cycle regulators, and steroid receptors (Zhang 

and Burrows, 2004; Powers and Workman, 2006; Sidera and Patsavoudi, 2014). Cancer cells 
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demonstrate enhanced responsiveness to HSP90 inhibition compared to normal tissue due to 

enhanced reliance on HSP90 for stabilization of oncoproteins, localization in stressful 

microenvironments, and selective accumulation of inhibitor in cancer cells (Sidera and 

Patsavoudi, 2014). To date, 17 HSP90 inhibitors, all N-terminal inhibitors of ATPase activity 

have been brought to clinical trial, and while some have shown therapeutic promise despite 

formulation challenges, none have been approved for standard use against any cancer. Further 

development of HSP90 axis modulators, both directly and indirectly through co-chaperones, will 

be necessary to better target this potential vulnerability of cancer. 

Withaferin A (WA), a 28-carbon steroidal lactone isolated from members of the 

Solenceae plant family, has shown promise as an experimental anti-cancer agent by inducing 

protein degradation and subsequently disrupting numerous signaling pathways including those 

served by Akt/mammalian target of rapamycin (mTOR), nuclear factor kappa (NFκB), and 

mitogen-activated protein kinase (MAPK) (Vyas and Singh, 2014). These alterations ultimately 

result in pro-apoptotic, anti-proliferative, and anti-angiogenic manifestations both in vitro and in 

vivo (Vanden Berghe et al., 2012; Vyas and Singh, 2014). While this cytotoxic capacity of WA 

has been well-defined in a broad spectrum of cancer types, the underlying mechanism 

responsible for these observations remains incompletely defined. It has been noted that WA may 

function in part through disruption of the HSP90 chaperone axis either directly or through 

disruption of the HSP90/Cdc37 interaction (Yu et al., 2010; Grover et al., 2011; Gu et al., 2014). 

Cdc37 (cell division cycle protein 37) functions as a co-chaperone to HSP90 and plays a vital 

role in localizing target kinases of the kinome with HSP90 for folding (Karnitz and Felts, 2007). 

Additionally, WA has demonstrated intrinsic thiol-reactivity and oxidizing properties which have 

been thought to, in part, play a role in the spectrum of effects observed (Malik et al., 2007; 
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Widodo et al., 2010; Hahm et al., 2011; Mayola et al., 2011; Santagata et al., 2012; Grogan et al., 

2013). 

In this study, we further define the mechanism of WA responsible for protein depletion 

through oxidation and modulation of the HSP90 axis and demonstrate its therapeutic utility in 

combination with an inhibitor of the proteasome. 

 

5.3 Materials and methods 

 

5.3.1 Cell culture and general reagents 

 

The human GBM cell line U87 was generously provided by Dr. Jann N. Sarkaria (Mayo 

Clinic, Rochester, MN), and the human embryonic kidney cell line 293T was kindly provided by 

Dr. Roland Kwok (University of Michigan, Ann Arbor, MI). The human cervical cancer line 

HeLa was obtained through the American Type Culture Collection (ATCC; Manassas, VA). All 

cell lines were grown in Dulbecco’s modified Eagle’s medium (DMEM #11995-065; Gibco, 

Grand Island, NY) supplemented with 10% fetal bovine serum (FBS; Sigma-Aldrich, St. Louis, 

MO) and 1% penicillin/streptomycin (Gibco), at a 37 °C humidified atmosphere of 5% CO2 in 

air. Medium for HeLa cells was further supplemented with 2% L-glutamine (200 mM; Gibco), 

1% MEM-vitamin (100x; Hyclone, Logan, UT), and 1% MEM nonessential amino acids (Sigma 

Aldrich). WA was isolated as previously described (Samadi et al., 2010b). Propidium iodide (PI), 

DL-buthionine-(S,R)-sulfoximine (BSO), ascorbic acid (AA), N-acetyl-L-cysteine (NAC), 

monochlorobimane, chloroquine diphosphate salt, and puromycin dihydrochloride were acquired 

from Sigma-Aldrich, Annexin V-FITC was obtained from BD Biosciences (San Diego, CA), and 
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MG132 was purchased from Selleckchem (Houston, TX). 17-N-allylamino-17-

demethoxygeldanamycin (17-AAG) was obtained from LC Laboratories (Woburn, MA). 

17-AAG resistant HeLa cells were generated through serial escalations in drug exposure 

to the parental HeLa line. Cells were initially exposed to 250 nM 17-AAG and allowed to 

recover. All surviving cells remained pooled. Escalation ultimately reached 5 µM and was 

maintained at this level until the cells were observed to demonstrate minimal change in response 

to the drug. Resistant cells were not treated with 17-AAG for at least one month before any 

functional studies. 

 

5.3.2 MTS assay 

 

HeLa and U87 cells were plated at 1,500 and 3,000 cells/well, respectively, in 100 µL in 

a 96-well plate. After 5-6 h, cells were treated with various concentrations of MG132 for 1 h 

followed by the addition of WA to bring the total well volume to 200 µL. Similarly, parental and 

17-AAG resistant HeLa cells were plated at 1,500 cells/well in 50 µL, allowed to settle for 5-6 h, 

and treated with varying concentrations of WA or 17-AAG. After a 72 h incubation, viable cell 

levels were quantified with the addition of the colorometric CellTiter96 Aqueous MTS assay 

reagent as per the manufacturer’s instructions (Promega, Fitchburg, WI). Reagent was allowed to 

incubate with the cells for 1-2 h, and absorbance was quantified at 490 nm on a BioTek Synergy 

2 plate reader (BioTek, Winooski, VT). 

 

5.3.3 CellTiter Glo assay 
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The CellTiter-Glo luminescent assay (Promega, Fitchburg, WI) was used to evaluate cell 

viability and proliferation through assessment of cellular ATP levels in assays with the use of 

reducing agents that would otherwise interfere with the MTS assay mechanism. Cells were 

plated as outlined in the MTS assay in a white-walled 96-well plate. Where indicated, cells were 

pretreated with AA or NAC for 1h followed by WA. After 72 h, assay reagent was added to the 

wells as per the manufacturer’s instructions and gently shaken for 10 minutes in the dark at room 

temperature. Well luminescence was measured on the BioTek Synergy 2 plate reader. 

 

5.3.4 Evaluation of cell death 

 

HeLa and U87 cells were plated and allowed to adhere and grow to ~50% confluency 

overnight. Cells were then pretreated with MG132 for 1 h followed by WA. DMSO was used as 

a vehicle control for both agents. After 24 h, all cells were collected and processed as previously 

described (Grogan et al., 2013). Briefly, cells were washed once in Annexin binding buffer and 

subsequently stained with PI and Annexin V-FITC as per the manufacturer’s instructions (BD 

Biosciences, San Diego, CA) for 30 minutes at 4 °C. Stained cells were washed twice with the 

Annexin binding buffer, resuspended in 400 µL of the buffer, and immediately analyzed by flow 

cytometry on a Beckman Coulter CyAn ADP analyzer (Brea, CA). 

 

5.3.5 Immunoblotting 

 

For general Western blotting, cells were plated as previously described for the evaluation 

of cell death. Cells were treated with WA or 17-AAG for 24 h and pretreated with 20 µM 
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MG132, 50 µM chloroquine, or 5 mM NAC for 1 h or 500 µM BSO for 24 h where indicated. 

After 24 h, cells were harvested, and proteins were isolated in lysis buffer (40 mM HEPES, 2 

mM EDTA, 10 mM sodium pyrophosphate decahydrate, 10 mM β-glycerophosphate disodium 

salt pentahydrate, 1% triton X-100 supplemented with 100 µM phenylmethylsulfonyl fluoride 

(PMSF), 1 mM Na3VO4, and 2 µL/mL protease inhibitor cocktail), quantified, separated by 

sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE), and transferred onto a 

Hybond nitrocellulose membrane as previously described (Samadi et al., 2011). 20-50 µg of 

protein sample was loaded per lane. Equal loading and transfer of sample was confirmed by 

blotting for total actin levels. Studies were repeated for accuracy. 

Triton X-100 soluble and insoluble fractionation was completed with triton soluble buffer 

(50 mM Tris-HCl pH 6.8, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% triton X-100) and 

insoluble buffer (50 mM Tris-HCl pH 6.8, 2% SDS) as previously described (Chen et al., 2008) 

supplemented with 100 µM PMSF, 1 mM Na3VO4, and 2 µL/mL protease inhibitor cocktail. In 

brief, cells were pre-treated with proteasome inhibitor MG132 for 1 h where indicated followed 

by WA for 24 h. Cells were collected as previously described, lysed with triton soluble buffer, 

and centrifuged at 14,000 rpm for 20 minutes at 4°C. The supernatant was collected as the 

soluble fraction. The pellet was resuspended and washed once with soluble buffer and repelleted 

by centrifuged at 14,000 rpm for 10 minutes. The pellet was resuspended in triton insoluble 

buffer and subsequently ground with a pestle, vortexed, and heated at 100 °C repeatedly for ~15 

minutes to promote dissolution of the pellet. Any remaining debris was removed by 

centrifugation, and the supernatant was collected as the insoluble fraction. Proteins in the two 

fractions were prepared and evaluated as described above. For electrophoresis under non-

reducing conditions, β-mercaptoethanol was not added to the SDS loading buffer. 
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Primary antibodies against ubiquitin (#3936; 1:2000), glucocorticoid receptor (GR; 

#12041; 1:500), Akt (#4691; 1:2000), mTOR (#2972; 1:1000), EGFR (#4267; 1:1000), c-myc 

(#9402; 1:1000), Cdk4 (#2906; 1:2000), Cdk6 (3136; 1:1000), BRCA1 (#9010; 1:500), Chk1 

(#2360; 1:1000), GAPDH (#2118; 1:1000), Cdc37 (#4793; 1:1000), PARP (#9542; 1:1000), and 

caspase 3 (#9665; 1:1000) were acquired from Cell Signaling Technology (Danvers, MA). 

HSP40 (#ADI-SPA-400; 1:1000), HSP90 (SPA-836; 1:1000), and HSP70 (ADI-SPA-810; 

1:1000) antibodies were collectively obtained from Enzo Life Sciences (Farmingdale, NY). Total 

actin antibody (#MAB1501; 1:50000) was obtained from EMD Millipore (Billerica, MA), and 

FLAG antibody (F1804; 1:500) was acquired from Sigma-Aldrich. The primary antibodies for 

ERK2 (sc-154; 1:5000)and Raf-1 (sc-7267; 1:250) and the secondary antibodies donkey anti-

rabbit IgG HRP (sc-2313; 1:2500-1:10000) and goat anti-mouse IgG HRP (sc-2005; 1:5000-

1:20000) were purchased from Santa Cruz Biotechnology (Santa Cruz, CA). 

 

5.3.6 Immunocytochemistry (ICC) 

 

U87 and HeLa cells were plated to ~50% confluency in 8-well chamber slides (Nalge 

Nunc International, Penfield, NY) and treated with 1-2 µM WA for 24h. Cells were fixed in 4% 

PBS-buffered paraformaldehyde at room temperature for 30 minutes and washed 3x with 1x 

PBS. Cell membranes were de-permeablized for 15 minutes in 1x PBS containing 0.3% triton X-

100 and subsequently blocked in 5% goat serum (Cell Signaling Technology) in 1x PBS 

containing 0.15% triton X-100 shaking for 1 h. Cells were exposed to primary antibody in 

blocking solution overnight at 4 °C. Primary antibodies included HSP90 (1:100; Cell Signaling 

#4877), HSP70 (1:250; Enzo Life Sciences #SPA-810), and ubiquitin (1:200; Biolegend 
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#646301; San Diego, CA). After three washes with 1x PBS, secondary antibody (1:1000; anti-

rabbit IgG Fab2 Alexa Fluor 555, Cell Signaling #4413; Anti-mouse IgG Fab2 Alexa Fluor 488, 

Cell Signaling #4408) was added to each well for 1 h at room temperature followed by an 

additional 3 washes. Coverslips were mounted on each slide with ProLong Gold Antifade with 

DAPI (Cell Signaling Technology), allowed to dry, and visualized on a Leica DM IRB 

microscope (Wetzlar, Germany) with Metamorph Basic software (version 7.7.3.0.; Molecular 

Devices; Sunnyvale, CA). 

 

5.3.7 Steroid-binding assay 

 

 The GR steroid binding assay was performed as previously described (Murphy et al., 

2011). U87 and HeLa cells were plated to ~50% confluency, treated with WA or 17-AAG, 

collected after 24 h, washed and pelleted, and snap frozen in liquid nitrogen. Homogenization 

HEM buffer (10 mM HEPES pH 7.35, 1 mM EDTA, 20 mM sodium molybdate, 1 mM PMSF, 

1x protease inhibitor cocktail) was added at 1.5 volumes of the pellet, and the protein was 

isolated by centrifugation. FiGR antibody producing cells were purchased at American Type 

Culture Collection (ATCC; Manassas, VA; FiGR ATCC CRL-2173), and ascites was produced 

at the University of Michigan Hybridoma Core as described (Morishima et al., 2003). 50 µL 

murine GR from the lysate of overexpressing SF9 cells as previously produced (Morishima et al., 

2003) was combined with 178 µL TEG buffer (8 mM TES pH 7.6, 4 mM EDTA, 50 mM NaCl, 

10% (v/v) glycerol), 70 µL protein A sepharose (Sigma-Aldrich), and 2 µL FiGR and rotated at 4 

°C for 2 h to promote immunoadsoption of the GR. Immunoadsorbed GR was salt-stripped of 

associated HSP90 complex proteins with 0.625 M NaCl in TEG buffer at 4 °C. After 2 h, the 
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beads were washed with TEG buffer followed by 10 mM HEPES (pH 7.4) and reconstituted in 

50 µL of U87 (185 µg) or HeLa (250 µg) lysate volume-equilibrated amongst treatment samples 

with 5µL of an ATP-regenerating system (10 mM HEPES pH 7.4, 50 mM ATP, 250 mM 

creatine phosphate, 20 mM magnesium acetate, and 100 U/mL creatine phosphokinase). Each 

sample was incubated at 30 °C for 20 minutes with agitation every 2 minutes. After 20 minutes, 

samples were washed twice with TEGM buffer (TEG buffer with 20 mM sodium molybdate). 

To evaluate the steroid binding ability of the immunopellets, each pellet was resuspended 

in 100 µL of HEM buffer with 100 nM [H
3
]dexamethasone (PerkinElmer, Waltham, MA) and 

incubated overnight at 4 °C. Samples were then washed three times with TEGM buffer and 

measured by liquid scintillation spectrometry on a Beckman LS 5000CE counter. Steroid binding 

was identified as counts/minute. Negative and positive controls were control lysate without FiGR 

and 50 µL reticulocyte lysate, respectively. 

 

5.3.8 Co-immunoprecipitation (co-IP) 

 

HeLa cells were plated, allowed to adhere overnight, and grown to ~50% confluency 

before treatment with WA. For co-IP of Cdc37, Cdk6, and GR proteins from IPed HSP90, cells 

were treated with  5µM WA for 1-16 h or 0.5-5 µM WA for 4 h before cells were trypsinized, 

washed twice with 1x PBS, and pelleted. Pelleted cells were lysed in a buffer consisting of 20 

mM Tris HCl (pH 7.4), 100 mM NaCl, 2 mM DTT, 20 mM sodium molybdate dihydrate, and 

0.5% NP-40 supplemented with 100 µM PMSF, 1 mM Na3VO4, and 2 µL/mL protease inhibitor 

cocktail. Proteins were isolated and quantified as described for immunoblotting. 2 mg of each 

protein sample was brought to 300 µL in buffer, and 25 uL of anti-HSP90β antibody (1:12; 
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Invitrogen #379400) was added to each tube except for a no-antibody control tube with untreated 

cell lysate. Tubes were rocked at 4 °C overnight before the addition of 25 µL of protein G 

magnetic bead system as described by the manufacturer (Pierce Biotechnology, Rockford, IL) for 

2 h. Beads were washed 4x with buffer, and proteins were eluted with the addition of SDS buffer 

as used in immunoblotting for 15 minutes rocking at room temperature. Beads were cleared, and 

the supernatant was evaluated by immunoblotting. For immunoblotting, secondary mouse anti-

rabbit conformation specific HRP antibody (#5127; 1:1000) was obtained from Cell Signaling 

Biotechnology and used for blotting in appropriate to limit heavy-chain interference. 

 

5.3.9 Reactive oxygen species (ROS) measurement 

 

WA-mediated production of intracellular ROS, particularly peroxides like H2O2, was 

measured through fluorescent conversion of the general oxidative stress indicator CM-

H2DCFDA (Molecular Probes, Grand Island, NY). U87 cells were preloaded with 20 µM CM-

H2DCFDA in 1x PBS at 37 °C for 1 h, washed once with phenol red-free DMEM supplemented 

with 10% FBS and 1% penicillin/streptomycin, and resuspended in the same medium. Cells were 

plated at 20,000 cells/well in a 96-well plate and treated with WA ± 5 mM NAC or 100 µM AA 

after 30 minutes. Evaluation of fluorescence was completed on a BioTek Synergy 2 plate reader 

after 4 h with excitation and emission filters of 485 nm and 528 nm, respectively. 

 

5.3.10 Determination of glutathione (GSH) levels 
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U87 and HeLa cells were plated at 10,000 cells/well using phenol red-free medium in 50 

µL in a 96-well plate and allowed to adhere overnight before treatment with WA in a 50 µL 

volume. Monoclorobimane, a non-fluorescent compound until reacting with thiols like GSH, was 

made up in DMSO at a stock concentration of 25 mM and diluted to 200 µM in 1xPBS before 

immediately before use. After 6 h of WA exposure, 100 µL of the diluted monoclorobimane was 

added to each well, and plates were incubated at 37 °C for 30 minutes. Evaluation of 

fluorescence, corresponding with free cellular GSH levels, was then completed on a BioTek 

Synergy NEO plate reader excitation and emission filters of 390 nm and 478 nm, respectively. 

 

5.3.11 Transfections 

 

c-myc has previously been shown to require amino acid sites T58 and S62 for 

phosphorylation-directed ubiquitination and subsequent degradation via the proteasome (Gregory 

and Hann, 2000; Sears et al., 2000; Kamemura et al., 2002). 293T cells were transfected with 

pcDNA3-c-myc
T58A/S62A

-FLAG, a mutant for both sites, or the pcDNA3 control vector and a 

puromycin cassette at a 20:1 ratio (4 µg:200 ng in a 6 cm dish) using Lipofectamine 2000 as per 

the manufacturer’s instructions (Life Technologies, Carlsbad, CA). The constructs were 

previously produced as described (Sundberg et al., 2006). The cells were selected with 1.5 

ug/mL puromycin, and surviving colonies were pooled. To verify expression of c-myc
T58A/S62A

, 

Western blotting for the attached FLAG tag was carried out. The transfected cells were used as a 

model of altered proteasomal degradation in the present of WA. 

 

5.3.12 Data and statistical analysis 
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GraphPad Prism 6 (version 6.02; GraphPad Inc., San Diego, CA) was used to generate 

best-fit non-linear sigmoidal dose response curves for IC50 determination. Comparisons of 

differences between two or more means/values were determined by Student’s unpaired t-test via 

the statistical functions of GraphPad Prism or Microsoft Excel 2010 software (version 

14.0.6129.5000; Microsoft Corporation Redmond, WA). Densitometry, where indicated, was 

completed using ImageJ software (version 1.46r; Bethesda, MD). Data are presented as mean 

values with error bars denoting standard deviation or standard error of the mean where 

appropriate. Unless otherwise noted, all experiments were performed minimally in triplicate. The 

levels of significance were set at *p < 0.05, **p < 0.01, and ***p < 0.001. 

 

5.4 Results 

 

5.4.1 Withaferin A alters the HSP90/HSP70 balance to favor HSP70 upregulation and molecular 

ubiquitination 

 

While HSP90 and HSP70 associate in a heteroprotein chaperone complex, it has been 

described that each, when favored, provides a contrasting dominant function in response to the 

presence of misfolded proteins. HSP90 promotes selective protein refolding and function, 

whereas HSP70 mediates aberrant protein degradation.  WA has previously demonstrated the 

ability to reduce total levels of key proteins in multiple signaling pathways, but the underlying 

mechanisms remain incompletely defined. In order to determine if changes in the HSP90/HSP70 

axis are observed with WA treatment, total levels of HSP90 and HSP70 were evaluated in HeLa  
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Figure 5-1.  
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Figure 5-1. A) ICCrevealed dose-dependent increases of HSP70 in both cell lines with visible 

induction throughout the nucleus and cytoplasm occurring at 2 µM WA in HeLa and elevation at 

1 µM in U87 after 24 h. Baseline HSP70 staining was notably higher in U87 compared to HeLa. 

Total HSP90 levels were largely unchanged in HeLa but slightly elevated in U87 with significant 

staining observed at baseline in both lines.  Merged images revealed the shift in the 

HSP90/HSP70 balance toward HSP70 with the predominant red HSP90 staining in control cells 

replaced by the green staining of HSP70 and yellow staining of combined HSP90/HSP70. B) 

Immunocytochemistry results were confirmed by Western blotting demonstrating minimal 

changes in total HSP90 levels but dose-dependent increases in HSP70 and HSP40. C) Dose-

dependent increases of ubiquitin staining with WA treatment were observed in both HeLa and 

U87 after 24 h. Notable aggregation of ubiquitinated proteins was visible at 2 µM WA in both 

lines. 

 

  



175 

 

and U87 cells by ICC and Western blotting (Figure 5-1A). ICC revealed dose-dependent 

increases of HSP70 in both cell lines with visible induction throughout the nucleus and 

cytoplasm occurring at 2 µM WA in HeLa and elevation at 1 µM in U87. Baseline HSP70 

staining was notably higher in U87 compared to HeLa. Total HSP90 levels were largely 

unchanged in HeLa but slightly elevated in U87 with significant staining observed at baseline in 

both lines.  Merged images revealed the shift in the HSP90/HSP70 balance. Predominant red 

HSP90 staining in control cells was replaced by the notable green staining of HSP70 and yellow 

staining of combined HSP90/HSP70. 

 Western blotting confirmed the ICC observations (Figure 5-1B). Total levels of HSP90 

were predominantly unchanged with WA concentrations up to 5 µM with mild increases noted in 

U87. Consistent with ICC findings, baseline levels of HSP70 were not noted in HeLa cells but 

were observed in U87. HSP70 was significantly induced at 2.5 µM WA in both HeLa and U87. 

Levels in U87 cells were moderately increased between 0.25-1 µM WA. Additionally, HSP40, a 

co-chaperone known to aid in the function of HSP70, was notably elevated from 1-5 µM WA in 

U87 but only 2.5 µM WA in HeLa, consistent with highest levels of HSP70 upregulation. 

 Given the WA-mediated shift toward the HSP70 axis which favors proteasome-mediated 

protein degradation, total cellular ubiquitination, a signaling marker for this degradation, was 

evaluated by ICC following WA treatment. Staining for ubiquitin was increased in a dose-

dependent manner in both HeLa and U87 (Figure 5-1C). By 2 µM, notable aggregates of 

ubiquitination were seen in both cell lines, suggesting accumulation of normal and/or aberrant 

proteins targeted for degradation. 

 

5.4.2 Withaferin A inhibits the HSP90 axis through disruption of the HSP90/Cdc37 interaction 
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Several previous investigations have identified a pattern of protein degradation 

characteristic of HSP90 inhibition following exposure to WA (Samadi et al., 2009; Yu et al., 

2010; Gu et al., 2014). Yu, et al. suggested that WA binds HSP90 and reduces its association 

with co-chaperone Cdc37 but questioned whether alterations in the stability of HSP90 client 

proteins were a result of this disruption or rather inhibition of HSP90 (Yu et al., 2010). To 

evaluate this, the effects of WA were examined in Cdc37-dependent and independent models. 

WA was first demonstrated to induce protein depletion of known HSP90 clients Akt, 

mTOR, Raf-1, EGFR, c-myc, Cdk6, BRCA1, and Chk1 by 2.5 µM in both HeLa and U87 cells 

(Figure 5-2A). In contrast, WA treatment failed to decrease levels of non-HSP90 client proteins 

ERK2, GAPDH, and actin. The role of HSP90 in the stability of each protein was confirmed by 

treating HeLa cells with known HSP90 inhibitor 17-AAG. 

The glucocorticoid receptor (GR) has been well-described as requiring an association 

with HSP90 for its steroid binding activity. In contrast to the androgen receptor, this activity 

does not require the presence of Cdc37 (Rao et al., 2001). HSP90 function was measured through 

the ability of purified GR to bind [
3
H]dexamethasone following re-exposure to cellular lysate 

containing HSP90 and other co-chaperones as previously described (Murphy et al., 2011) (Figure 

5-2B). Lysate was obtained from HeLa and U87 cells treated with vehicle, WA, and 17-AAG for 

24 h. Reticulocyte lysate was used as a positive control and confirmed model efficacy (data not 

shown). WA failed to demonstrate inhibition of HSP90 activity at cytotoxically relevant 

concentrations 2-5 µM and rather displayed elevated promotion of steroid binding by 4-10% and 

49-57% with HeLa and U87 lysates, respectively (p > 0.05 expected 2 µM WA in U87 cells: p = 

0.047). At 10 µM WA, steroid binding in U87 was seen to return to baseline but reduced to 45%  
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Figure 5-2.  
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Figure 5-2. A) WA treatment for 24 h in U87 and HeLa caused protein depletion of known 

HSP90 clients Akt, mTOR, Raf-1, EGFR, c-myc, Cdk6, BRCA1, and Chk1 but failed to 

decrease levels of non-HSP90 client proteins ERK2, GAPDH, and actin. HSP90-mediated 

stability of each protein was confirmed by treating HeLa cells with known N-terminal HSP90 

inhibitor 17-AAG. B) HSP90 function was measured through the ability of purified GR to bind 

[
3
H]dexamethasone following re-exposure to cellular lysate containing HSP90 and other co-

chaperones treated with WA or 17-AAG for 24 h. WA failed to demonstrate inhibition of HSP90 

activity at cytotoxically relevant concentrations 2-5 µM and rather displayed elevated promotion 

of steroid binding with HeLa and U87 lysates. At 10 µM WA, steroid binding in U87 was seen 

to return to baseline but reduced to 45% of baseline in HeLa. In contrast, 1 µM 17-AAG, a 

positive control for HSP90 inhibition, significantly reduced HSP90-mediated GR steroid binding 

with HeLa and U87 lysates. C and D) Co-IP experiments in HeLa cells using an HSP90 antibody 

pull-down demonstrated that WA reduced the association between HSP90 and Cdc37 in a dose-

dependent manner after 4 h and in a time-dependent manner when exposed to 5 µM WA. Total 

input HSP90 and Cdc37 was not decreased with treatment. Similar to Cdc37, the Cdc37-

dependent client protein Cdk6 was also shown to dissociate with WA treatment, but Cdc37-

independent protein GR did not. Total levels of both Cdk6 and GR were reduced over time. E) A 

17-AAG resistant HeLa cell line was developed and shown to have a 72 h IC50 to 17-AAG of 

1380 nM compared to 21 nM for the parental line, a 66-fold difference. F) In contrast to findings 

with 17-AAG, WA IC50s in the parental and resistant lines were 503 nM and 841 nM, 

respectively, a different of only 1.7-fold. G) Both WA and 17-AAG decreased total levels of 

HSP90 client proteins EGFR, Akt, and Cdk4 and increased the apoptotic cleavage of PARP in 
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parental HeLa cells, but only WA demonstrated these findings in the resistant line, showing its 

maintained utility. *p < 0.05, **p < 0.01, ***p < 0.001  
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of baseline in HeLa (p = 0.002). In contrast, 1 µM 17-AAG, a positive control for HSP90 

inhibition, reduced HSP90-mediated GR steroid binding in HeLa and U87 by 99% and 83%, 

respectively (p < 0.001). These findings suggest that WA does not directly inhibit HSP90 

function. 

The ability of WA to alter the association between HSP90 and Cdc37 was confirmed in 

HeLa cells by co-immunoprecipitation for HSP90 (Figures 5-2C and 5-2D). After 4 h WA 

treatment, co-IPed Cdc37 was reduced 36.9% with 1 µM up to 67.0% with 5 µM relative to IPed 

HSP90, demonstrating a dose-dependent effect. Similarly, a time-dependent effect was observed 

by maintaining WA at 5 µM with diminished association from 1-16 h post-treatment. IPed 

Cdc37 was reduced 23.8%, 72.7%, 77.2%, and 99.4% after 2 h, 4 h, 8 h, and 16 h relative to IPed 

HSP90, respectively. Total input HSP90 and Cdc37 remained consistent with WA treatment. 

To further define the importance of this co-chaperone disruption, IPed HSP90 was also 

evaluated for a Cdc37-dependent protein, Cdk6, and a Cdc37-independent protein, GR (Figures 

5-2C and 5-2D) (Lamphere et al., 1997; Rao et al., 2001). Treatment with WA in both dose- and 

time-dependent manners demonstrated a progressive failure of HSP90 to associate with client 

protein Cdk6. This association was completely eliminated after 4 h with 2.5 µM WA. Similarly, 

association was nearly completely eliminated with 5µM WA after 1 h and remained consistently 

reduced at latter timepoints. Total input levels of Cdk6 were constant among samples except for 

5 µM WA at 16 h which demonstrated near-complete elimination of the protein. In contrast, co-

IPed GR in both the dose- and time-dependence studies was maintained under all conditions. 

Interestingly, total input GR was decreased with time and concentration in both experiments with 

near-complete depletion with 5 µM at 16 h, but this did not result in a corresponding decrease in 

HSP90-GR association, suggesting the retention of HSP90 function independent of Cdc37.  



181 

 

In contrast to 17-AAG, WA has been shown to associate with the C-terminus of HSP90 

and did not affect molecular ATPase function (Yu et al., 2010). To demonstrate if WA’s unique 

disruption of the HSP90 axis could be utilized in overcoming inhibition to 17-AAG while still 

generating a similar effect, a HeLa cell line resistant to 17-AAG was developed through serial 

escalations in drug exposure. Evaluation of 17-AAG cytotoxicity revealed 72 h IC50 values of the 

parental and resistant lines to be 21 nM and 1380 nM, respectively, for a 66-fold change in 

response (Figure 5-2E). WA sensitivity, however, was only elevated 1.7-fold from 503 nM in the 

parental line to 841 nM in the 17-AAG resistant derivative (Figure 5-2F). 

Maintained cytotoxicity of WA in the 17-AAG resistant line was confirmed molecularly 

through evaluation of HSP90 client proteins EGFR, Akt, and Cdk4 as well as cleavage of the 

apoptotic biomarker PARP (Figure 5-2G). Depletion of the client proteins and increased PARP 

cleavage observed with 1 µM 17-AAG after 24 h in the parental HeLa line was completely 

absent in the resistant line, but WA-mediated client degradation remained consistent with near-

complete elimination by 2.5 µM. WA also maintained the ability to induce PARP cleavage in the 

resistant sub-line. 

 

5.4.3 Cytotoxicity of withaferin A is driven by thiol-reactivity and cellular oxidation 

 

Previous studies have identified an oxidative component resulting from treatment with 

WA (Malik et al., 2007; Widodo et al., 2010; Hahm et al., 2011; Mayola et al., 2011; Santagata 

et al., 2012; Grogan et al., 2013; Grogan et al., 2014). Given that certain proteins are susceptible 

to oxidative stress and may become misfolded, the nature of this oxidative component was 

explored. Treatment of U87 cells with WA resulted in a dose-dependent increase in oxidation as 
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measured by CM-H2DCFDA conversion to a fluorescent product by 4 h (Figure 5-3A). 5 µM 

WA increased fluorescence 1.9-fold (p = 0.038). This enhanced oxidative signal was reduced by 

pretreatment with 100 µM non-thiol antioxidant AA by 17.2% (p = 0.233) and completely 

returned to baseline with 5 mM thiol antioxidant NAC (p = 0.037), suggesting a greater role of 

thiol reactivity in the manifestation of WA’s effects. 

Further evaluation of thiol reactivity and changes in the redox states following WA 

exposure was accomplished through measurements of GSH levels with monochlorobimane 

which fluoresces when conjugated to GSH (Figure 5-3B). GSH is a protective component of 

cells that sequesters thiol reactive agents to prevent cellular damage. After 6 h, 2.5 µM WA 

reduced total cellular glutathione in both HeLa and U87 cells by 41.1% (p < 0.001) and 31.9% (p 

= 0.012), respectively, further indicating WA-mediated thiol reactivity and disruption of the 

redox balance. 

Evaluation of anti-oxidant pretreatment was completed with the CellTier-Glo assay to 

define the functional cytotoxic effects of WA treatment (Figure 5-3C). In the assay, cellular 

viability was assessed by total ATP levels 72 h after treatment. WA alone exhibited significant (p 

< 0.001) reduction in the viability of HeLa and U87 cells at the concentrations tested (2.5-5 µM). 

While 100 µM AA previously reduced WA-mediated oxidation, it was unable to limit 

cytotoxicity, mirroring the cell viability reduction of WA alone. However, 5 mM NAC 

completely abrogated WA cytotoxicity, returning cell viability to baseline and demonstrating the 

predominant thiol reactive mechanism of WA. 

Triton X-100 fractionation under non-reducing conditions was completed to define WA-

mediated redox alterations in HSP90 localization. While triton soluble proteins are largely 

regarded as functional, stable molecules, the insoluble fraction is thought to contain labile and  
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Figure 5-3.  
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Figure 5-3.  A) WA generated peroxide-type radicals like H2O2 as quantified by CM-H2DCFDA 

fluorescent conversion with increasing concentrations of WA in U87 cells 4 h post-treatment. 

The thiol antioxidant NAC (5 mM) completely abrogated the elevation in ROS, while 100 µM of 

the non-thiol antioxidant AA produced a small reduction in overall oxidation. B) GSH levels 

were measured by monochlorobimane conversion to a fluorescent product in the presence of a 

thiol. WA treatment was shown to significantly reduce GSH levels in both HeLa and U87 after 

treatment for 6 h. HeLa (C) and U87 (D) cell viability was assessed by total ATP levels with the 

CellTiter Glo assay. WA-induced reduction of viability was completely eliminated with NAC 

but not AA pretreatment. E) Triton X-100 fractionation under non-reducing conditions was 

completed to define WA-mediated redox alterations in HSP90 localization. Slower migrating 

proteins aggregates of heterogeneic molecular weight positive for HSP90 were dose-dependently 

increased by WA in the triton insoluble fraction and was reduced with NAC pretreatment. F) In 

contrast, triton insoluble HSP90 aggregation was enhanced by reduction in GSH through 

inhibition of γ-glutamylcysteine synthetase by BSO. *p < 0.05, **p < 0.01, ***p < 0.001 
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aggregated proteins. Additionally, previous reports have demonstrated increased disulfide-

bonded HSP90 in the insoluble fraction in response to oxidative stress (Cumming et al., 2004; 

Chen et al., 2008). Enhanced exposure of Western blots for HSP90 in HeLa and U87 revealed 

minimal changes to total levels of HSP90 in both the soluble and insoluble fractions 24 h after 

2.5-5 µM WA. Slower migrating disulfide-bonded HSP90 was not elevated following WA 

exposure. However, slower migrating proteins of heterogeneic molecular weight positive for 

HSP90 were dose-dependently increased by WA in the triton insoluble fraction indicating 

damaged, aggregated, and delocalized HSP90 protein complexes. Pretreatment with NAC 

completely eliminated this protein aggregation (Figure 5-3D). In contrast, reduction in GSH 

through inhibition of γ-glutamylcysteine synthetase by BSO potentiated the total level of WA-

induced HSP90 aggregate in the insoluble fraction, demonstrating the thiol-dependent nature of 

HSP90 disruption (Figure 5-3E). While BSO enhanced WA-induced HSP70 upregulation and 

NAC prevented HSP70 induction, changes in disulfide-bonded or otherwise aggregated HSP70 

was not detected (data not shown). 

 

5.4.4 Withaferin A-mediated protein degradation requires the proteasome 

 

Cellular protein elimination is largely driven through two primary pathways: proteasome- 

and lysosome-mediated degradation. Given the observation that WA drives upregulation of 

HSP70 and ubiquitination of proteins globally and that the latter targets proteins to the 

proteasome, the mechanism of WA-driven protein depletion was evaluated. 

Triton X-100 fractionation under reducing conditions was utilized to evaluate WA-altered 

protein localization and depletion in the presence of proteasome inhibitor MG132 and lysosome 
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inhibitor chloroquine (Figure 5-4A). As previously described, 20 µM MG132 alone, mimicking 

cellular stress and altering normal protein turnover, reduced soluble levels of the proteins 

evaluated (Cdk6, Cdk4, mTOR, c-myc, Akt, and EGFR) and promoted elevated levels in the 

insoluble fraction (Kawahara et al., 2008). Also, consistent with previous reports (Carter and 

Sorkin, 1998), 50 µM chloroquine, an inhibitor of lysosomal protein degradation, blocked 

endogenous EGFR turnover driven in part through endocytosis and lysosomal degradation and 

enhanced the triton insoluble fraction. WA treatment promoted depletion of soluble proteins with 

variable shift to the insoluble fraction. Complete elimination after 24 h WA exposure was 

favored in the more sensitive HeLa cells compared to U87. However, extended treatment 

duration in U87 cells demonstrated diminished levels of insoluble proteins (data not shown). 

Compared to WA alone, the combination of WA and MG132 demonstrated increased retention 

of all evaluated proteins in the insoluble fraction, suggesting that WA-mediate protein depletion 

occurred at least in part through proteasomal degradation. Protein retention with chloroquine 

pretreatment was variable and demonstrated larger effect in the HeLa cells, suggesting a greater 

cellular role of WA-induced lysosomal degradation in addition to proteasomal degradation. 

Combination of MG132 and chloroquine to rescue WA-induced protein depletion was not shown 

to be greater than either compound alone. 

HSP90 client protein c-myc has previously been shown to require amino acid sites T58 

and S62 for phosphorylation-directed ubiquitination and subsequent degradation via the 

proteasome (Gregory and Hann, 2000; Sears et al., 2000; Kamemura et al., 2002). 293T cells 

were stably transfected with T58A/S62A FLAG-tagged c-myc (c-myc
T58A/S62A

-FLAG), a variant 

with mutations to disrupt the normal c-myc proteasomal degradation, and treated with WA. Both 

vector control and mutant transfected cells demonstrated dose-dependent depletion of  
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Figure 5-4.  
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Figure 5-4. A)  HeLa and U87 cells were pretreated with the proteasome inhibitor MG132 or the 

lysosome inhibitor chloroquine for 1 h followed by WA for 24 h, and cellular proteins were 

fractionated by triton X-100 solubility. Treatment with WA induced a loss of HSP90 client 

proteins (Cdk6, Cdk4, mTOR, c-myc, Akt, EGFR) in the soluble fraction with a shift to either 

the insoluble fraction or a depletion in both fractions. MG132 also acted to shift proteins to the 

insoluble fraction. Combination of WA and MG132 demonstrated increased retention of all 

evaluated proteins in the insoluble fraction. Protein retention with chloroquine pretreatment 

followed by WA was variable and demonstrated greater effect in the HeLa cells. Combination of 

MG132 and chloroquine to rescue WA-induced protein depletion was not shown to be greater 

than either compound alone. B) 293T cells were transfected with c-myc
T58A/S62A

-FLAG, a variant 

with mutations to disrupt the normal c-myc proteasomal degradation, and treated with WA. 

Endogenous wild-type c-myc was depleted by WA in a dose-dependent manner, but the mutant 

failed to decrease after 24 h. 
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endogenous wild-type c-myc by 2.5 µM WA. The c-myc
T58A/S62A

 mutant, however, showed no 

decrease in response to WA treatment, demonstrating the functional requirement for 

proteasomal-targeting in WA-mediated protein degradation (Figure 5-4B). 

 

5.4.5 Proteasomal inhibition potentiates the cytotoxicity of withaferin A 

 

Given the apparent importance of the HSP70 chaperone axis and the proteasome in 

regulating protein degradation following WA treatment, simultaneous inhibition of the 

proteasome with MG132 to prevent degradation of aberrant protein accumulation was evaluated 

to determine the utility of combination therapy. Cell viability was assessed by MTS assay after 

72 h (Figure 5-5A). HeLa and U87 cells displayed no significant decrease in viability with 25-75 

nM and 75-125 nM MG132 alone, respectively. However, 1h sub-cytotoxic MG132 pretreatment 

potentiated the anti-proliferative response to treatment with escalating concentrations of WA. 

62.5 nM WA reduced HeLa cell viability by 15.5% after 72 h but was enhanced to 38.2% with 

25 nM MG132 (p = 0.010) and 42.2% with 75 nM MG132 (p = 0.043). Comparable 

enhancement was observed with 125-250 nM WA. In U87, 750 nM WA decreased cell viability 

by 25.0% but was enhanced to 56.3% with 75 nM MG132 (p = 0.072) and 83.1% with 125 nM 

MG132 (p = 0.016). 

Similarly, evaluation of drug-induced cell death by flow cytometry revealed that 

pretreatment with MG132 potentiated the cytotoxicity of WA (Figures 5-5B and 5-5C). In HeLa, 

combination therapy induced 45.8% cell death (25.3% early apoptosis, 7.7% necrosis, 12.9% late 

apoptosis/necrosis) compared to only 2.4% in control (1.2% early apoptosis, 0.5% necrosis, 0.7% 

late apoptosis/necrosis; p = 0.015), 2.6% with 125 nM MG132 (0.6% early apoptosis, 1.1%  
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Figure 5-5.  
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Figure 5-5. A) HeLa and U87 cell viability following combination therapy with proteasome 

inhibitor MG132 and WA was evaluated by MTS assay after 72 h. HeLa and U87 cells displayed 

no significant decrease in viability with 25-75 nM and 75-125 nM MG132 alone, respectively. 

However, MG132 pretreatment at these concentrations potentiated the anti-proliferative response 

to treatment with escalating concentrations of WA. B) Efficacy of combination MG132 and WA 

therapy on HeLa and U87 cells after 24 h was further evaluated by flow cytometry with 

propidium iodide and annexin V-FITC doe cell death. Staining revealed that pretreatment with 

125 nM MG132 potentiated the cytotoxicity of 1 µM WA in both lines. MG132 alone had no 

statistically significant effect compared to control, and only WA demonstrated elevated death in 

U87 cells, but combined, the cytotoxic effects were significantly elevated. C) A representative 

example of the flow cytometry results in HeLa cells. D) Flow cytometry data was supported by 

molecular evaluation of apoptotic markers procaspase 3 and PARP cleavage in both HeLa and 

U87 cells. After 24 h, treatment with 125-250 nM MG132 in both lines as well as 0.5-1 µM WA 

in HeLa and 1-2 µM WA in U87 failed to induce significant cleavage of either protein but 

yielded large increases in the cleaved product when combined. E) Combined treatment with 

MG132 and WA for 24 h resulted in the accumulation of ubiquitinated proteins at all 

concentrations evaluated in both HeLa and U87 cells, demonstrating retention of proteins 

targeted for degradation. *p < 0.05, **p < 0.01, ***p < 0.001 
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necrosis, 0.9% late apoptosis/necrosis; p = 0.016), and 3.2% with 1 µM WA (1.2% early 

apoptosis, 1.3% necrosis, 0.7% late apoptosis/necrosis; p = 0.016). WA and WA+RT 

demonstrated no statistically significant difference over control. Similarly, in U87, combination 

therapy induced 50.2% cell death (37.3% early apoptosis, 2.2% necrosis, 10.6% late 

apoptosis/necrosis) compared to only 4.7% in control (2.8% early apoptosis, 0.8% necrosis, 1.1% 

late apoptosis/necrosis; p = 0.013), 8.3% with 125nM MG132 (5.4% early apoptosis, 1.2% 

necrosis, 1.8% late apoptosis/necrosis; p = 0.024), and 20.9% with 1 µM WA (14.6% early 

apoptosis, 3.0% necrosis, 3.3% late apoptosis/necrosis; p = 0.015). WA alone also demonstrated 

a statistically significant cytotoxic advantage over control (p = 0.011). Together, these data 

demonstrate that sub-cytotoxic pre-exposure to MG132 potentiates minimally or non-lethal WA 

concentrations. 

 Flow cytometry data was supported by molecular evaluation of apoptotic markers 

procaspase 3 and PARP cleavage in both HeLa and U87 cells (Figure 5-5D). After 24 h, 

treatment with 125-250 nM MG132 in both lines failed to induce significant cleavage of either 

protein. Similar findings were observed with 0.5-1 µM WA in HeLa and 1-2 µM WA in U87. 

However, combination of these agents at the noted concentrations revealed large increases in the 

cleaved product of both procaspase 3 and PARP, demonstrating the advantage of combination 

therapy. 

Consistent with the expectation that combination therapy would result in enhanced 

cytotoxicity through an accumulation of aberrant proteins generated by WA treatment and unable 

to be properly degraded via the proteasome due to MG132, dual treatment over 24 h resulted in 

the accumulation of ubiquitinated proteins at all concentrations evaluated (Figure 5-5E). 

Potentiation of the effect was particularly notable at modest concentration of each compound that 
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alone produced minimal yet early indications of ubiquitination. By denisometry, 125 nM MG132 

increased ubiquitination 2.2-fold in HeLa and 1.8-fold in U87, while 1 µM and 2 µM WA 

resulted in 3.0- and 3.3-fold elevations in HeLa and U87, respectively. Combination of MG132 

and WA showed further enhanced levels of global protein ubiquination by 11.4-fold in HeLa and 

10.7-fold in U87, demonstrating the value of this approach. 

 

5.5 Discussion 

 

WA is a promising naturally-derived anti-cancer compound that has demonstrated 

efficacy across a spectrum of cancer types both in vitro and in vivo. Underlying WA’s 

antiproliferative, pro-apoptotic, and anti-angiogenic effects is disruption of various signaling 

pathways including those utilizing Akt/mTOR, MAPK, Notch, NFκB, JAK/STAT, and more 

(Vanden Berghe et al., 2012; Vyas and Singh, 2014). However, details of the mechanism driving 

these diverse effects have remained poorly defined to-date. Previous studies have identified a 

pro-oxidant effect (Malik et al., 2007; Widodo et al., 2010; Hahm et al., 2011; Mayola et al., 

2011; Santagata et al., 2012; Grogan et al., 2013) and suggested that alterations in HSP90 

function occurs with WA treatment (Yu et al., 2010; Gu et al., 2014). Here, we further 

characterized these findings and propose each as the two of the dominant mechanisms by which 

WA mediates in anti-cancer effects: Induction of cellular oxidation and disruption of the 

interaction between HSP90 and its co-chaperone Cdc37 independent of direct HSP90 inhibition. 

These proposed mechanisms explain the numerous descriptions of alterations in oncogenic 

proteins and signaling pathways that have come to define the cellular response to WA. 
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 HSP90 functions as a chaperone to promote the folding, refolding, and function of a 

specific set of client proteins (Pearl et al., 2008). This ability is dependent on the association of 

HSP90 with several co-chaperone proteins that promote this function (Taipale et al., 2010). 

Although not yet fully understood mechanistically, Cdc37 is thought to act largely as a kinase-

specific co-chaperone to promote the folding and maturation of these proteins through 

localization with HSP90 with enhanced client loading though modulation of HSP90 ATPase 

activity (Siligardi et al., 2002; Roe et al., 2004). Cdc37 has also demonstrated chaperoning 

functions independent of HSP90 (MacLean and Picard, 2003). Here, we demonstrate that 

pharmacological disruption of this interaction between HSP90 and Cdc37 with WA is associated 

with a failure of HSP90 to associate with Cdc37-dependent protein Cdk6 but not Cdc37-

independent protein GR as well as degradation of multiple HSP90 client proteins. Additionally, 

depletion of HSP90 client proteins known to interact with Cdc37 (Akt, Raf-1, EGFR, Cdk4, 

Cdk6, and Chk1) was observed. Intrinsic HSP90 chaperone function, assessed by supporting GR 

steroid binding, was not impaired at relevant concentrations of WA, although several HSP90 

client proteins not previously described as Cdc37-dependent (BRCA1, c-myc, GR) were also 

depleted suggesting an alternate mechanism of protein modulation and/or a previously 

undescribed requirement for Cdc37. These findings, if not mediated through an alternative 

mechanism, suggest that WA may still maintain a direct role in the inhibition of HSP90’s folding 

mechanism independent of its GR support. Cdc37 has been primarily reported to facilitate 

folding of newly translated proteins (MacLean and Picard, 2003; Karnitz and Felts, 2007), but its 

importance has been demonstrated in the stability of existing proteins (Jinwal et al., 2011). 

Further studies are necessary to determine if either situation represents the predominant 

inhibitory effect of WA. 
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Interestingly, a recent study demonstrated that mutant Cdc37 lacking the C-

terminal/middle HSP90-association domain maintained cellular levels of client proteins and 

augmented the interaction between HSP90 and client Cdk4 despite diminished client protein 

interaction itself (Smith et al., 2013). However, this directly contrasts previous reports about the 

importance of the C-terminal/middle domain for association with HSP90 in maintaining the 

stability of client proteins like Raf-1 (Grammatikakis et al., 1999; Rao et al., 2001). It is possible 

that the client proteins evaluated have different co-chaperone requirements for interacting with 

HSP90 or can be maintained through Cdc37’s inherent chaperone activity given that only 

approximately half of mammalian Cdc37/Cdk4 complexes contain HSP90 (Dai et al., 1996). 

However, the latter is likely not the case here given the  reduced client affinity of the mutant 

Cdc37 despite maintained client levels (Smith et al., 2013). Cdc37 has also been shown to 

interact with other co-chaperone proteins, suggesting another way by which it can still join the 

HSP90 chaperone complex, although its ability to alter HSP90 ATPase activity and otherwise 

function properly through this indirect association is unknown (Abbas-Terki et al., 2002). 

Clearly, further study of this system is required to better understand the variations observed. 

Regardless of the nature of the HSP90/Cdc37 interaction, its disruption and the resulting 

cytotoxicity by exposure to WA and celastrol, as previously studied, demonstrate 

pharmacological proof-of-concept of this target (Zhang et al., 2008; Zhang et al., 2009; He et al., 

2013). 

While computational analysis revealed a potential binding site for WA on Cdc37 to 

disrupt the HSP90/Cdc37 interaction (Grover et al., 2011), IP studies with biotinylated WA 

showed that it actually bound to the C-terminus of HSP90 (Yu et al., 2010). The C-terminus of 

HSP90 is responsible for the association with various co-chaperones (Young et al., 1998; Sidera 



196 

 

and Patsavoudi, 2014), however, WA does not decrease HSP90 association with co-chaperones 

Hop or p23 but rather Cdc37 which interacts primarily on the N-terminus of HSP90 (Yu et al., 

2010; Eckl et al., 2013). This unexpected finding requires further study to explain but may be a 

result of WA-mediated direct steric hindrance, conformational alterations in HSP90 structure that 

prevent effective binding of Cdc37 but maintain HSP90 function, or changes in the ability of 

Cdc37 to associate with C-terminal co-chaperones. Interestingly, celastrol also binds to the C-

terminus of HSP90 to disrupt HSP90/Cdc37 interaction but fails to disrupt association with 

HSP70, Hop, or p23 (Zhang et al., 2009). Novobiocin, also known to associate with the C-

terminus, demonstrates completely opposite effects, suggesting specific sites of co-chaperone 

regulation on HSP90 (Yun et al., 2004). 

HSP90 represents an intriguing anti-cancer target given that it is endogenously expressed 

in all cells, typically accounting for 1-3% of the total cellular protein (Welch and Feramisco, 

1982; Workman et al., 2007; Moulick et al., 2011; Barrott and Haystead, 2013). However, most 

cancer cells demonstrate significantly greater sensitivity to HSP90 inhibitors than non-cancerous 

cells with sub-toxic doses resulting in anti-tumor efficacy. This is thought to likely be the result 

of several factors that frequently differ in cancer cells including upregulation of HSP90 protein 

and mRNA, enhanced basal activation of HSP90 through post-translational modifications and/or 

enhanced association with various co-chaperones and client proteins, and altered localization to 

the ectopic portion of the cell (Barrott and Haystead, 2013). These considerations for enhancing 

inhibitory selectivity of HSP90 alone would appear to translate well to the disruption of co-

chaperones such as Cdc37, particularly HSP90 dependency and localization. Further studies are 

necessary to identify whether WA affinity favors disruption of HSP90 and Cdc37 that are 

already associated or prevention of the initiation of the association. Treatment with WA in 
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several murine models demonstrates an appropriate therapeutic window against several cancer 

types with minimal off-target toxicity and shows the translatable promise of this approach (Vyas 

and Singh, 2014). 

WA also demonstrated the ability to induce cellular oxidation. AA was used as a non-

thiol antioxidant to evaluate the oxidative effects of WA independent of concerns that NAC may 

simply sequester WA, preventing the availability of free drug rather than actually directly 

reducing generated oxidation (Santagata et al., 2012; Vyas and Singh, 2014). AA at a previously-

identified effective concentration (100 µM) was capable of reducing total oxidative potential 

within U87 GBM cells but was unable to completely eliminate the effect like NAC. Similarly, 

the cytotoxicity of WA was completely blocked by NAC but not AA. These findings suggest that 

while oxidation does indeed play a part in the mechanism of WA, the generation of free reactive 

oxygen species likely does not have nearly as significant of an impact in the manifestations of 

WA as its thiol reactivity and thiol-mediated redox alterations. The observation that WA depletes 

GSH suggests that the oxidation may be a general effect of an altered redox state. Interestingly, 

overexpression of Cu,Zn-superoxide dismutase demonstrated a partial protective effect against 

WA treatment in breast cancer cells (Hahm et al., 2011). The same study suggested that WA-

mediated ROS generation and subsequent toxicity was a result of mitochondrial respiration 

inhibition, although the impact of the mitochondrial alterations on normal intrinsic/mitochondrial 

apoptotic pathway function, shown to be partially necessary for apoptosis following WA 

exposure (Grogan et al., 2014), was not evaluated. Taken together, these findings support an 

important role for oxidation following WA treatment but suggest it may be more critical for 

cytotoxicity in certain cancer types. 
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We have also previously demonstrated WA-mediated depletion of MGMT, a non-HSP90 

client protein with known susceptibility to oxidation (Fu et al., 2010; Ryu et al., 2012; Grogan et 

al., 2014). Similarly, GR has been shown to be modulated by redox alteration, especially with 

thiol-modifying agents (Carter and Ragsdale, 2014). Despite not requiring Cdc37 for its function 

and stability and maintaining association with HSP90, we demonstrated in the present study that 

GR is eventually depleted with WA treatment, suggesting either an extended role of WA as an 

HSP90 inhibitor beyond Cdc37 effects or oxidation-meditated proteotoxicity. Utilization of 

oxidative therapies to induce proteotoxicity has gained interest as an anti-cancer approach given 

the frequently altered redox states and exposure to increased cellular stress which can be 

exploited in cancer cells (Laurent et al., 2005; Cabello et al., 2007). 

Treatment with WA resulted in the accumulation of aggregated HSP90 of heterogeneic 

molecular weight in the triton insoluble fraction of the cell, often regarded as the biologically 

inactive compartment. Previous studies have suggested that chaperone proteins form disulfide 

bonds in response to oxidative insults (Cumming et al., 2004; Chen et al., 2008), and while the 

described homodimeric complex of HSP90 was not readily observed in this study, significant 

aggregation was noted. Further study will be necessary to determine whether this pattern of 

aggregation was related to dissociation from Cdc37 (showing direct interplay between the two 

proposed mechanisms of WA), a byproduct of oxidative stress, or misfolding and destabilization 

guided by direct WA binding. While Cdc37 plays a role in the appropriate client targeting for 

HSP90 and has been shown to localize in the cell for recruitment of HSP90-mediated refolding 

(Jinwal et al., 2011), it has not been shown necessary to promote HSP90 complex stability or 

intrinsic function. While pretreatment with NAC reduced or eliminated the general cytotoxicity 

of WA, it also prevented this alteration in HSP90 localization. Conversely, depletion of cellular 
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GSH through inhibition of γ-glutamylcysteine synthetase by BSO greatly enhanced this HSP90 

alteration. Together, these findings support an oxidative or thiol-reactive role of WA in 

promoting insoluble complexation of HSP90. Of note, BSO also enhanced general WA 

cytotoxicity in several additional cancer models (data not published). Combined with the 

observation that WA depleted GSH, this suggests that GSH plays a protective role against WA. 

Future studies are necessary to determine how basal cellular oxidation, GSH levels, and 

susceptibility to oxidative stress enhance or resist the cytotoxic sequelae of WA exposure. 

 Several early studies attempting to identify the mechanism of WA suggested that it 

functions through inhibition of the proteasome (Yang et al., 2007; Khan et al., 2012; Yang et al., 

2012). Our data suggests that the proteasome is still functionally intact and necessary for protein 

degradation at cytotoxically-relevant concentrations of WA. While the findings in these reports 

are likely accurate, they have consistently utilized concentrations of WA well-above those 

considered therapeutically relevant – including in cell-free models – to achieve modest 

proteasomal inhibition, suggesting that these findings may simply be off-target effects that 

manifest at high concentrations. Interestingly, our studies demonstrate direct inhibition of the 

HSP90 chaperone heterocomplex independent of Cdc37 in a cell-free system with an IC50 of 

<10µM (data not shown), well above physiologically relevant dosing but still lower than 

observed in the GR-reactivation cell lysate system. Combined, these findings indicate non-

specific targeting by WA at high concentrations and suggest caution is necessary during the 

interpretation of data at these levels.  

While the suggestion that HSP90 promotes protein refolding while HSP70 favors 

degradation oversimplifies the complex mechanism of the protein chaperone machinery, these 

generalizations accurately describe the accepted primary roles that these chaperones play in 
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protein homeostasis (Pratt et al., 2010). In the presence of oxidative stress, proteins are prone to 

misfold with greater frequency. Simultaneous inhibition of the HSP90 axis, as observed with 

WA, would suggest the accumulation of many aberrant proteins requiring proper degradation to 

limit cellular cytotoxicity. Previous studies have identified upregulation of HSP70, as observed 

in the present study, to be a biomarker of HSP90 inhibition and/or oxidative stress (Zhang et al., 

2006; Workman et al., 2007; Ansari et al., 2011; Qiao et al., 2012), acting as a compensatory 

mechanism for protein dysregulation and promoting this necessary degradation. Indeed, 

inhibition of HSP70 or the proteasome in the presence of traditional HSP90 inhibitors promotes a 

synergistic effect (Minnnaugh et al., 2004; Ma et al., 2014). Given the promotion of proteasome-

mediated protein degradation induced by WA, the addition of a proteasome inhibitor was a 

logical progression in the development of a clinical utility for WA. Here, we further demonstrate 

the efficacy of this approach with WA, an oxidizing inhibitor of the HSP90/Cdc37 association. 

This suggests a potential clinical utility for combining a co-chaperone disruptor with already 

established chemotherapeutic agents like the proteasome inhibitor bortezomib. While the value 

of this combination therapy was demonstrated in highly aggressive solid tumor cervical and 

brain cancer cell lines, perhaps the greatest early clinically applicability lies in the treatment of 

multiple myeloma (MM). Proteasome inhibitors have been approved for use as standard agents 

in the treatment of MM (Chauhan et al., 2005), and an early human trial with combination 

bortezomib and the HSP90 inhibitor tanespimycin, a promising formulation of 17-AAG with a 

Cremophor-containing vehicle (Modi et al., 2007; Modi et al., 2011), has shown promise 

(Richardson et al., 2011). Given the enhanced efficacy of many agents in combination with 

traditional HSP90 inhibitors, further exploration of combination therapy with WA in alternative 

models is also warranted (Neckers, 2002). 
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 The studies here provide an important framework for further defining the mechanisms by 

which WA induces significant protein depletion. We demonstrate that WA acts to produce thiol-

mediated oxidation and disrupt the interaction between HSP90 and Cdc37 but fails to inhibit 

intrinsic HSP90 function assessed by HSP90-mediated GR steroid binding. Ultimately, this shifts 

the HSP90/HSP70 balance toward HSP70-domination with associated protein degradation that 

can be cytotoxically potentiated therapeutically with simultaneous inhibition of the proteasome. 

While further pre-clinical studies will be necessary to fully evaluate the therapeutic potential of 

WA alone and in combination with proteasome inhibitors, current findings support the 

translational utility of this approach. 
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Chapter 6 

 

Withaferin A disrupts the cellular DNA-damage response to 

promote radiosensitization 
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6.1 Abstract 

 

Radiation therapy (RT) plays in important role in the treatment of cancer for an estimated 

50% of patients, including as a standard therapy for the brain tumor glioblastoma multiforme 

(GBM). Withaferin A (WA) is a naturally-derived steroidal lactone that has demonstrated 

significant intrinsic anti-cancer activity. Several preliminary reports have identified WA as a 

potential radiosensitizer, but the underlying mechanism has remained largely unexplored. In this 

study, WA potentiated or otherwise enhanced the anti-proliferative activity of RT in both U87 

GBM and HeLa cervical cancer cells. These findings were associated with reduction of cells in 

the DNA-synthesis phase of the cell cycle and increased levels of cell cycle checkpoint inhibitors 

p21 and p27 with combination therapy through 72 h. Combination therapy failed to enhance 

PARP cleavage and LC3B conversion, demonstrating that the effect was not mediated through 

apoptosis or autophagy. Treatment with WA reduced total levels of DNA-damage response 

(DDR) proteins involved in damage recognition (Mre11, p95/NBS1, Rad50), signaling (ATM, 

Chk1), and repair through homologous recombination (BRCA1, BRCA2, Rad51), non-

homologous end-joining (DNA-PKcs, XLF, Ku70, and Ku80), and mismatch repair (MLH1, 

MSH2, MSH6) in both U87 and HeLa. This protein depletion was an expansion of that observed 

with traditional HSP90 inhibitor 17-AAG. WA differentially modulated normal the normal 

recognition response to RT-mediated DNA damage with U87 and HeLa cells showing a 

reduction and an increase of p-H2A.X compared to RT alone, respectively, with WA 

pretreatment. Both lines showed alterations of normal signal transduction through ATM and 

Chk1. WA pretreatment also enhanced the level of RT-induced double strand DNA damage after 

4 h measured by a neutral comet assay and was associated with functional inhibition of 
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homologous recombination through a DR-GFP reporter. These findings demonstrate that WA-

driven radiosensitization is a direct result of an impaired DDR. Given the widespread success of 

WA as a monotherapy in numerous cancer models and the large therapeutic spectrum for RT, 

further translational exploration of WA as an adjuvant agent is warranted. 

  

6.2 Introduction 

 

In recent years, significant effort has been invested in the development of more effective 

therapeutic and diagnostic techniques to better the outcomes of cancer patients. While numerous 

advances have adjusted the treatment paradigms of various malignancies, the management and 

treatment of many cancers depends on the use of radiation therapy (RT), including an indication 

in an estimated 50% of patients (Delaney et al., 2005). Given that survival rates following RT, 

which in many cases represents a component of the base available approved therapeutic regimen, 

remain low for certain cancer types like glioblasoma multiforme (GBM), any means by which to 

elevate RT efficacy would be critical in helping a wide population of patients (Begg et al., 2011). 

With the widespread importance and critical role of RT, efforts have been made to 

maximize its therapeutic potential through adjustments of dose intensity and fractionation as well 

as addition of chemotherapeutics. Such therapies focus on modulating the DNA damage 

response (DDR), signal transduction pathways critical for radioresistance, and oxygen levels 

necessary for generating an effect (Begg et al., 2011). Additionally, several commonly utilized 

DNA-modifying anticancer agents, including 5-fluorouracil (5-FU) and temozolomide (TMZ), 

have shown radiosensitization effects with unclear mechanisms. Similar agents like gemcitabine 

demonstrate off-target inhibition of HR as a mechanism of radiosensitization (Byfield, 1989; 
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Wachters et al., 2003; Chakravarti et al., 2006; Bobola et al., 2010). Other agents that directly 

target elements of the cellular DDR, including the recognition and repair of the damage, have 

generated significant interest as well (Begg et al., 2011). 

RT utilizes the energy of ionizing radiation (IR) to induce DNA lesions in targeted cells. 

Genomic instability through double-strand DNA (dsDNA) breaks (DSBs) is largely recognized 

as the primary cytotoxic event of IR, but other lesions such as single-strand DNA (ssDNA) 

breaks (SSBs) and damage to individual bases has been reported. DSBs are repaired by two 

primary pathways: homologous recombination (HR) and non-homologous end joining (NHEJ). 

While HR maintains the fidelity of the DNA sequence at the break site, NHEJ simply anneals 

two ends of DNA without respect to sequence homology and is therefore intrinsically mutagenic. 

The cellular response to DNA damage, including that induced by IR, involves an 

immensely complex network of signaling pathways that recognize and repair the damage with 

associated arrest of the cell cycle or induction of death (Lamarche et al., 2010; Baskar et al., 

2012). Very generally, following DSBs, damage is recognized by the MRN complex (Mre11, 

Rad50, p95/NBS1) which functions to coordinate signal transduction through ATM to arrest cell 

growth at specific cell cycle checkpoints. This complex also functions directly and indirectly to 

mediate dsDNA damage repair through HR and NHEJ (Weterings and Chen, 2008; Krejci et al., 

2012). Appropriate coordination of these efforts in normal tissue usually results in either 

effective DNA damage repair and cell survival or failure to appropriately correct the insult 

followed by the controlled induction of cellular senescence or death.  

Several studies have identified the potential utility of withaferin A (WA), a 28-carbon 

steroidal lactone identified from genera of the Solenceae plant family with intrinsic cytotoxicty, 

as a potential radiosensitizer (Vanden Berghe et al., 2012; Vyas and Singh, 2014). One study that 
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utilized a knockout model suggested WA may alter NHEJ (Devi et al., 2008), while another 

group identified enhanced oxidation and modulation of the mitogen-activiated protein kinase 

(MAPK) and Akt pathways as markers of combination therapy efficacy (Yang et al., 2011b; 

Yang et al., 2011a). However, to date, the underlying mechanism behind this effect has not been 

explored. Studies from our group and others have identified two key components of WA 

monotherapy that are hypothesized to lead to the inhibition and modulation of many oncogenic 

proteins that have been observed: oxidation and inhibition of the HSP90 axis through disruption 

of the HSP90/Cdc37 association (Malik et al., 2007; Widodo et al., 2010; Yu et al., 2010; Hahm 

et al., 2011; Mayola et al., 2011; Santagata et al., 2012; Grogan et al., 2013). Indeed, direct 

inhibition of HSP90 has been previously noted to function in a radiosensitizing role (Dote et al., 

2006; Kabakov et al., 2010; Ko et al., 2012; Stecklein et al., 2012), suggesting a potential 

mechanism by which WA may function and a novel role for disruption of Cdc37. 

In this study, we identify WA as a potent radiosensitizer of two highly aggressive cancer 

cell lines, the GBM U87 and the cervical cancer HeLa with the latter being utilized as a known 

model of highly competent HR, through depletion of key DDR proteins that prevent the proper 

recognition and repair of DSBs. 

 

6.3 Materials and methods 

 

6.3.1 Cell culture and reagents 

 

The human GBM cell line U87 was generously provided by Dr. Jann N. Sarkaria (Mayo 

Clinic, Rochester, MN), and the human cervical cancer line HeLa was obtained through the 
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American Type Culture Collection (ATCC; Manassas, VA). These cell lines were chosen given 

their DNA damage repair preferences: HeLa is more competent at HR than GBM cells while the 

latter favor NHEJ after RT (Kachhap et al., 2001; Golding et al., 2004; Ransburgh et al., 2010; 

Quiros et al., 2011; Lim et al., 2012; Stecklein et al., 2012). Both cell lines were grown in 

Dulbecco’s modified Eagle’s medium (DMEM #11995-065; Gibco, Grand Island, NY) 

supplemented with 10% fetal bovine serum (FBS; Sigma-Aldrich, St. Louis, MO) and 1% 

penicillin/streptomycin (Gibco), at a 37 °C humidified atmosphere of 5% CO2 in air. Medium for 

HeLa cells was further supplemented with 2% L-glutamine (200 mM; Gibco), 1% MEM-vitamin 

(100x; Hyclone, Logan, UT), and 1% MEM nonessential amino acids (Sigma Aldrich). Where 

indicated, cells were irradiated with a Kimtron IC-320 orthovoltage x-ray device (Oxford, CT) at 

a calibrated dose-rate of 452.23 cGy/minute. WA was isolated as previously described (Samadi 

et al., 2010b). Propidium iodide (PI), RNase, and puromycin dihydrochloride were acquired from 

Sigma-Aldrich, and 17-N-allylamino-17-demethoxygeldanamycin (17-AAG) was obtained from 

LC Laboratories (Woburn, MA). 

 

6.3.2 Clonogenic assay 

 

HeLa and U87 cells in exponential growth phase were plated in 6cm dishes at densities 

expected to yield approximately 20-50 colonies per plate following exposure to WA, RT, or 

combination therapy based on preliminary studies. After 6 h, plates were changed to WA- or 

DMSO-containing media and allowed to incubate for 2 h before exposure to 2-4 Gy of radiation. 

24 h post-RT, media was changed on each plate to remove WA. Cells were incubated for 10-14 d 

at which time they were gently washed with 1x phosphate-buffered saline (PBS), stained and 
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fixed with Coomassie brilliant blue, and quantified. Colonies were considered viable if they 

consisted of approximately > 50 cells. 

 

6.3.3 Cell cycle analysis 

 

U87 and HeLa cells were plated to ~20-50% confluency depending on the collection 

timepoint and treated with WA for 2 h followed by 2.5-5 Gy RT. After 24-72 h, cells were 

collected, pelleted, fixed/permeablized in 70% ice-cold ethanol and stored at -20 °C. Cells were 

subsequently stained with PI as previously described (Grogan et al., 2013) and analyzed by flow 

cytometry on a Beckman Coulter CyAn ADP analyzer (Brea, CA). Only living cells without 

DNA fragmentation were gated for analysis. 

 

6.3.4 Immunoblotting 

 

Cells were plated to appropriate confluencies as outlined for cell cycle analysis and 

treated with various concentrations of WA or 17-AAG. Where indicated, cells were irradiated 

with 5-10 Gy 2 h post-WA. After 1-72 h, cells were trypsinized and washed twice with 1x PBS. 

Proteins were isolated in a HEPES-based lysis buffer, quantified, separated by sodium dodecyl 

sulfate–polyacrylamide gel electrophoresis (SDS–PAGE), and transferred onto a Hybond 

nitrocellulose membrane as previously described (Samadi et al., 2011; Grogan et al., 2014). 25-

50 µg of protein sample was loaded per lane with equal loading and transfer of sample confirmed 

by total actin levels. Studies were repeated for accuracy. 
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Primary antibodies kits were acquired from Cell Signaling Technology (Danvers, MA) 

and used as per the manufacturer’s recommendations: DNA damage (#9947), double stand 

breaks (DSB) repair (#9653), MRN complex (#8344), mismatch repair (#9786), and Rb (#9969). 

Additional primary antibodies obtained from Cell Signaling Technology included ATM (#2873; 

1:1000), Chk1 (#2360; 1:1000), Chk2 (#2662; 1:1000), Ku70 (#4588; 1:1000), BRCA1 (#9010; 

1:500), BRCA2 (#9012; 1:1000), p27 (#2552; 1:1000), cyclin B1 (#4138; 1:1000), cyclin D1 

(#2926; 1:500), cyclin E1 (#4129; 1:1000), poly(ADP-ribose) polymerase (PARP; #9542; 

1:1000), and LC3B (#3868; 1:1000). Rad51antibody (#ab213; 1:1000) was purchased from 

Abcam (Cambridge, England). p-H2A.X antibody (Ser139; #613401; 1:1000) was acquired from 

Biolegend (San Diego, CA). Total actin antibody (#MAB1501; 1:50000) was obtained from 

EMD Millipore (Billerica, MA). The primary antibody for p21 (#sc-6246; 1:200) and the donkey 

anti-rabbit IgG HRP (sc-2313; 1:2500-1:10000) and goat anti-mouse IgG HRP (sc-2005; 1:5000-

1:20000) secondary antibodies were purchased from Santa Cruz Biotechnology (Santa Cruz, 

CA). 

 

6.3.5 Immunocytochemistry (ICC) 

 

U87 and HeLa cells were plated to ~50% confluency in 8-well chamber slides (Nalge 

Nunc International, Penfield, NY) and treated with 2.5 µM WA for 2 h. Slides then received 10 

Gy RT. After 1 h, cells were fixed in 4% PBS-buffered paraformaldehyde at room temperature 

for 30 minutes and washed 3x with 1x PBS. Cell membranes were de-permeablized for 15 

minutes in 1x PBS containing 0.3% triton X-100 and subsequently blocked in 5% goat serum 

(Cell Signaling Technology) in 1x PBS containing 0.15% triton X-100 shaking for 1 h. Cells 
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were exposed to p-H2A.X (Ser139) primary antibody (1:500; Biolegend #613401) in blocking 

solution overnight at 4 °C. After three washes with 1x PBS, secondary antibody (1:1000; anti-

mouse IgG Fab2 Alexa Fluor 488, Cell Signaling #4408) was added to each well for 1h at room 

temperature followed by an additional 3 washes. Coverslips were mounted on each slide with 

ProLong Gold Antifade with DAPI (Cell Signaling Technology), allowed to dry, and visualized 

on a Leica DM IRB microscope (Wetzlar, Germany) with Metamorph Basic software (version 

7.7.3.0.; Molecular Devices; Sunnyvale, CA) 

 

 

6.3.6 Comet assay 

 

U87 cells were assessed for dsDNA damage by a neutral comet assay. Cells were plated 

to 50% confluency and treated with WA. After 12 h, cells were irradiated 5 Gy via the 

orthovoltage device and allowed to incubate for 4 h. Evaluation of DNA damage through 

migration was conducted according to the manufacturer’s instructions (Trevigen, Gaithersburg, 

MD). Briefly, cells were collected, combined with agar, and plated on slides (~500 cells/slide). 

Agar was solidified at 4 °C for 10 minutes, and slides were immersed in a lysis buffer solution 

for 1 h at room temperature. Slides were then washed with neutral electrophoresis buffer and 

underwent electrophoresis for 45 minutes at 4 °C with the recommended voltage. At room 

temperature, slides were then immersed in DNA precipitation buffer for 30 minutes followed by 

70% ethanol for 30 minutes. Samples were dried at 37 °C for 15 minutes, stained with SYBR 

Gold (Molecular Probes, Eugene, OR) as outlined in the instructions, and visualized on the Leica 

DM IRB microscope with Metamorph Basic software. Comets from eight independent visual 
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fields per sample were quantified with ImageJ software (version 1.46r; Bethesda, MD) using the 

automated scoring of the OpenComet software macro (version 1.3) (Gyori et al., 2014). 

 

6.3.7 DR-GFP reporter assay 

 

 The DR-GFP reporter construct, pCAGGS empty vector, and pCBASce I-SceI vector 

were generously provided by Dr. Maria Jasin (Memorial Sloan-Kettering Cancer Center, New 

York, NY). Adenovirus was kindly provided by Dr. Jeffrey Parvin (The Ohio State University, 

Columbus, OH). The production and titering of HA-tagged I-SceI or empty vector adenovirus 

was described previously (Stecklein et al., 2012). U87 and HeLa cells were transfected with the 

DR-GFP and selected with 2-5 µg/mL puromycin. Surviving colonies were collected and 

expanded under puromycin selection. The empty control vector or HA-I-SceI construct (~1 

µg/1x10
5
 cells) were introduced into the U87-DR-GFP stable transfectants via electroporation 

using the Amaxa Cell Line Nucleaofector Kit V according to the manufacturer’s instructions 

(Lonza, Bazel, Switzerland). The vectors were introduced into the HeLa-DR-GFP cells via the 

adenovirus. Both cells were immediately plated and treated with DMSO or various 

concentrations of WA. After 72 h, cells were collected, and HR was evaluated visually by 

microscopy and by determining the number of GFP+ cells on the Beckman Coulter CyAn ADP 

analyzer. Western blotting for HA was used to confirm that WA had no effect on the expression 

level of the HA-tagged I-SceI. 

 

6.3.8 Data and statistical analysis 
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Comparisons of differences between two or more means/values were determined by 

Student’s unpaired t-test via the statistical functions of GraphPad Prism 6 (version 6.02; 

GraphPad Inc., San Diego, CA) or Microsoft Excel 2010 software (version 14.0.6129.5000; 

Microsoft Corporation Redmond, WA). Densitometry, where indicated, was completed using 

ImageJ software (version 1.46r; Bethesda, MD). Data are presented as mean values with error 

bars denoting standard deviation or standard error of the mean where appropriate. The levels of 

significance were set at *p < 0.05, **p < 0.01, and ***p < 0.001. 

 

6.4 Results 

 

6.4.1 WA potentiates the cytotoxicity of radiation therapy 

 

Combinational efficacy of WA and RT was evaluated by the clonogenicity survival assay 

for single cell colony formation (Figure 6-1). Plated cells of appropriate number were pretreated 

with WA for 2 h followed by RT at various doses, washed after 24 h, and quantified after a 

growth period of 10-14 days. WA demonstrated the ability to potentiate or otherwise enhance the 

anti-proliferative effects of RT in both U87 and HeLa cells at concentrations as low as 125 nM. 

U87 cells showed no significant changes in cell survival between control and 2 Gy alone groups 

with a colony growth efficiency reduction of only 1.4% (p = 0.947). The addition of 125 nM and 

250 nM WA reduced colony formation efficiency by 10.8% (p = 0.538) and 74.5% (p = 0.003) in 

U87 cells not treated with RT and 57.3% (p = 0.010 compared to RT only; p < 0.001 compared 

to WA only) and 84.8% (p = 0.002 compared to RT only; p = 0.026 compared to WA only) in 2 

Gy treated cells, respectively. 4 Gy RT reduced colony formation efficiency to 29.1%, however,  
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Figure 6-1.  
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Figure 6-1. U87 and HeLa cells were treated with WA and irradiated 2 h later. After 10-14 d, 

surviving cells demonstrating growth clonogenicity through the formation of a colony were 

scored. WA potentiated or otherwise enhanced the anti-proliferative effects of RT in both U87 

and HeLa cells at concentrations as low as 125 nM. Notably, no significant decrease in cell 

survival was observed with 2 Gy RT in U87 and 125 nM WA in HeLa. Addition of the other 

agent in each line significantly potentiated the anti-proliferative effect. *p < 0.05, **p < 0.01, 

***p < 0.001 (Statistics indicate significant difference from the WA alone treatment.) 
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the relative enhancement of treatment efficacy mediated by WA was comparable to that of the 2 

Gy treated cells. HeLa cells showed a similar pattern of WA-mediated radiosensitization. 2 Gy 

and 4 Gy RT reduced colony formation by 13.2% (p = 0.002) and 26.7% (p < 0.001) compared 

to control, respectively, while 125 nM WA reduced this efficacy by 7.7% (p = 0.126). The 

combination of 125nM WA with 2 Gy RT reduced colony formation by 35.0% (p < 0.001 

compared to control and WA only) and 25.2% relative to 2 Gy alone (p < 0.001). Similarly, The 

combination of 125 nM WA with 4 Gy RT showed additional efficacy, reducing colony 

formation efficiency by 67.7% (p < 0.001 compared to control and WA only) and 56.0% relative 

to 4 Gy alone (p < 0.001). Further extension of these WA sensitizing effects were observed at 

higher WA concentrations with enhanced combinational efficacy compared both to control and 

when normalized to individual RT groups. 

 

6.4.2 Combination WA and RT favors reduced cell cycling but not enhanced apoptosis or 

autophagy 

 

To determine the nature of the reduced clonogenicity following combination WA and RT 

treatment for 24-72 h, cell cycle evaluation was conducted by PI staining and subsequent flow 

cytometry to quantify levels of DNA. As demonstrated previously, WA treatment resulted in an 

increased percentage of cells in the G2/M-phase of the cell cycle with minimal changes in S-

phase percentage (Supplemental Figure 6-1) (Grogan et al., 2013).  RT-treated U87 and HeLa 

cells both demonstrated small reductions in S-phase percentage, maximally at 24 h or 48 h, but 

showed variable shifts with cell predominantly moving to G0/G1 (2N DNA) in U87 and G2/M 

(4N DNA) in HeLa. Combination of WA and RT produced enhanced depletion of S-phase cells 
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at 24 h and maintained the depletion at 72 h despite normalizing levels in the RT-only groups in 

both U87 and HeLa cells (Figure 6-2A). Depletion of S-phase cells was primarily associated 

with maintained or minimally decreased levels of G0/G1-phase cells compared to WA-only with 

displacement to G2/M after 24 h. U87 cells demonstrated maintained elevation of G0/G1-phase 

cells at 24 h only with combination therapy, consistent with a predominant response to RT. 

At 24 h, control HeLa cells displayed 22.3% of cells in S-phase. Treatment with 250 nM 

WA maintained the S-phase fraction at 21.8% (p = 0.205), while 5Gy RT reduced S-phase to 

19.5% (p = 0.010). Combined, the treatment yielded 16.1% of cells in S-phase (p = 0.006 vs. 

control; p = 0.002 vs. WA; p = 0.005 vs. RT). This efficacy was even more pronounced after 72 

h in HeLa cells with respective depletion of the S-phase fraction of WA, RT, and WA+RT to be 

1.7% (p = 0.075), 4.5% (p = 0.036), and 10.6% (p = 0.019 vs. control; p = 0.022 vs. WA; p = 

0.002 vs. RT) (Figure 6-2A). Comparable findings were observed in U87 cells, notably at 24 h 

when the percentage of S-phase cells increased by 0.5% following 500 nM WA (p = 0.648 vs. 

control) but was decreased by 3.5% with 2.5 Gy RT (p = 0.064 vs. control) and 6.8% with 

combination therapy (p = 0.045 vs. control; p = 0.019 vs. WA; p = 0.025 vs. RT) (Figure 6-2A). 

Reduction in S-phase percentage was maintained at 72 h post-treatment. Complete changes in 

G0/G1 and G2/M levels are presented in Supplemental Figure 6-1. 

Shifts in the cell cycle at different levels were then evaluated molecularly through 

Western blotting for cyclins B1 (G2/M transition), D1 (G1/S transition), E1 (G1/S transition) and 

cyclin-dependent kinase inhibitors p21/cip1 (G1/S transition) and p27/kip1 (G1/S transition) 

(Sgambato et al., 2000; Cazzalini et al., 2010) (Figure 6-2B). Consistent with the induction of 

G2/M cell cycle arrest, WA treatment in U87 increased levels of cyclin B1, but this was not 

observed in HeLa at the moderate concentrations tested. Cyclin B1 was also mildly induced with  
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Figure 6-2.  
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Figure 6-2. A) Cell cycle analysis was conducted by propidium iodide staining and subsequent 

flow cytometry following combination WA and RT treatment for 24-72 h. RT-treated U87 and 

HeLa cells both demonstrated small reductions in S-phase percentage, maximally at 24 h or 48 h, 

but combination of WA and RT produced enhanced depletion of S-phase cells at 24 h and 

maintained the depletion after 72 h despite normalizing levels in the RT-only groups in both 

cells. B) Shifts in the cell cycle at different levels were then evaluated molecularly through 

Western blotting for cyclins B1 (G2/M transition), D1 (G1/S transition), E1 (G1/S transition) and 

cyclin-dependent kinase inhibitors p21/cip1 (G1/S transition) and p27/kip1 (G1/S transition). 

Consistent with G2/M arrest, WA alone induced elevated cyclin B1 in U87 cells but was 

abrogated with RT. While Cyclin E1 was largely unchanged, cyclin D1 was elevated in a WA 

dose-dependent manner at 24-48 h in both cell lines. At 24 h in both lines, small increases in 

cyclin D1 were noted with the addition of RT after WA pretreatment. Negative regulators of the 

G1/S transition, p21 and p27, demonstrated notable induction with combination WA and RT 

compared to either agent alone in a time-dependent manner. C) Treatment with RT diminished 

total levels of total Rb protein and phosphorylation at Ser780, Ser795, and Ser807/811 after 6-24 

h. Pretreatment with WA further enhanced this decreased Rb phorphorylation with observable 

depletion of Ser780 and Ser795 at 6h and Ser807/811 at 24h. D) Combination of WA with RT 

failed to enhance apoptotic PARP cleavage or the autophagy-mediated conversion of LC3B 

compared to either agent alone, suggesting the cytotoxic effect of combination therapy was not 

through these mechanisms. *p < 0.05, **p < 0.01, ***p < 0.001 
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5 Gy RT in U87 through 24h and in HeLa through 6 h. WA-mediated induction of cyclin B1 in 

U87 cells was repressed with RT co-treatment. Cyclin E1 was largely unchanged with small RT-

induced elevation at 6 h and 1 µM WA-induced cell-dependent increases at 24-48 h. Cyclin D1 

was elevated in a WA dose-dependent manner at 24-48 h in both cell lines. At 24 h in both lines, 

small increases in cyclin D1 were noted with the addition of RT to WA, suggesting a potential 

block in the G1/S transition and an enhanced attempt to enter S-phase, consistent with the 

reduced S-phase fraction noted by flow cytometry findings. 

Levels of p21 and p27, negative regulators of the G1/S transition which function to block 

cyclin-Cdk1/2/4/6 activity (Sgambato et al., 2000; Cazzalini et al., 2010), supported this claim, 

demonstrating notable induction with combination WA and RT compared to either agent alone 

(Figure 6-2B). p21 was significantly induced by RT in U87 after only 6 h as previously reported 

(Lee et al., 2011) and mildly increased in HeLa. Induction of p21 by WA alone was not observed 

until 24 h in HeLa and 48h in U87, and the enhanced combinational effect, particularly 

distinguishable at 0.5 µM WA, was consistent with these timepoints. p27 induction was driven 

by WA in a dose-dependent manner in both U87 and HeLa cells. Combination with radiation 

enhanced this induction at 6 h but failed to show notable benefit at later timepoints except with 1 

µM WA in HeLa at 48 h as total induced levels were nearing depletion, suggesting that 

predominant early combinational effects are mediated by p27 while long-term responses are p21-

driven. 

 The retinoblastoma protein (Rb) prevents progression from G1- to S-phase through 

inactivation of the transcription factor E2F (Cazzalini et al., 2010). Because cyclin-Cdk1/2/4/6 

promotes inactivation of Rb through hyperphosphorylaton and is inhibited by p21 and p27, both 

of which were elevated with WA+RT therapy, the downstream status of Rb was evaluated in 
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U87 (Figure 6-2C). Consistent with a previous report demonstrating the activated status of Rb 

(Orr et al., 1997), treatment with RT paradoxically diminished total levels of the protein. RT also 

decreased inhibitory phosphorylation of Rb at Ser780, Ser795, and Ser807/811 after 6-24 h. 

Pretreatment with WA further decreased Rb phorphorylation with observable depletion of 

Ser780 and Ser795 at 6 h and Ser807/811 at 24 h. Phosphorylation of Ser795 was nearly 

completely eliminated in all RT treatment groups at 24 h. Notably, 1 µM WA alone increased 

phosphorylation at all measured sites after 24 h, suggesting a single agent-mediated inverse 

effect when not used in combination with RT. 

 To evaluate whether enhanced apoptosis and/or autophagy also played a role in the 

cytotoxicity of combination therapy, cleavage of PARP (apoptosis marker) and conversion of 

LC3B-I to LC3B-II (autophagy marker) were examined by Western blotting from 24-72 h 

(Figure 6-2D). PARP cleavage was noted with increasing concentrations of WA in both cell lines 

but only in HeLa with RT as previously reported (Eriksson et al., 2009; Lee et al., 2011; Grogan 

et al., 2013). WA+RT failed to increase PARP cleavage above RT alone in HeLa cells and 

decreased WA-mediated PARP cleavage in U87 cells. Despite dose-dependent increases with 

WA alone, conversion of LC3B-I to LC3B-II did not demonstrate a consistent pattern of 

enhancement with combination therapy. In U87 cells at 48-72 h, 1 µM WA with RT 

demonstrated reduced levels of LC3B-II compared to WA alone, and by 72 h in HeLa cells, 

LC3B-II levels were consistently depleted compared to control. These findings suggest that 

combination of WA and RT favors a mechanism of diminished cellular replication over 

apoptosis or autophagy in U87 and HeLa cells.  

 

6.4.3 WA induces depletion of key proteins in HR, NHEJ, and MMR 
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The recognition and repair of DNA damage, particularly double-stranded breaks, 

involves the coordination of numerous proteins in multiple pathways with known overlap. For 

the purposes of this study, several well-defined proteins necessary for the DSB response were 

broadly categorized: damage recognition and signal transduction (Mre11, p95/NBS1, Rad50, 

ATM, Chk1, Chk2), homologous recombination repair (Rad51, Rad52, BRCA1, BRCA2), and 

non-homologous end-joining (DNA-PKcs, Ku70, Ku80, and XLF). WA demonstrated the ability 

to deplete key proteins involved in all dsDNA damage response categories as well as mismatch 

repair (MMR) in HeLa and U87 cells (Figure 6-3). 17-AAG was used as a control HSP90 

inhibitor at both timepoints to demonstrate the potential direct or indirect role of HSP90 in the 

stability of each protein. While most proteins depleted by 17-AAG demonstrated a similar 

pattern with WA, the reverse was not explicitly observed. HeLa cells expressed basally lower 

levels of NHEJ proteins DNA-PKcs and XLF while U87 cells exhibited lower expression of the 

HR protein Rad52, consistent with previous reports that HeLa is more competent at HR than 

glioma cells while the latter favor NHEJ after RT (Kachhap et al., 2001; Golding et al., 2004; 

Ransburgh et al., 2010; Quiros et al., 2011; Lim et al., 2012; Stecklein et al., 2012). Each line has 

demonstrated the ability to complete both HR and NHEJ. 

At 24-48 h, dose-dependent decreases in the expression of recognition and transduction 

proteins Mre11, p95/NBS1, Rad50, ATM, and Chk1 were observed in both cell lines evaluated 

with depletion of Chk2 in only U87 cells. Similarly, total levels of HR proteins BRCA1, 

BRCA2, and Rad51 were also decreased following escalated exposure to WA but depletion of 

Rad52 was limited to HeLa.  Notably, reductions of ATM, Chk1, and BRCA1 in both lines 

occurred at the lower WA concentrations evaluated (1-2.5 µM) after 24 h, suggesting enhanced  
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Figure 6-3.  
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Figure 6-3. Treatment with increasing concentrations of WA for 24-48 h reduced total levels of 

DNA-damage response (DDR) proteins involved in damage recognition (Mre11, p95/NBS1, 

Rad50), signaling (ATM, Chk1), and repair through homologous recombination (BRCA1, 

BRCA2, Rad51), non-homologous end-joining (DNA-PK, XLF, Ku70, and Ku80), and 

mismatch repair (MLH1, MSH2, MSH6) in both U87 and HeLa. This protein depletion was an 

expansion of that observed with 1 µM of the traditional HSP90 inhibitor 17-AAG. 
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and consistent selectivity for these targets. Reduced expression of these three proteins was also 

observed with 17-AAG. NHEJ proteins XLF, Ku70, Ku80 were depleted with WA dose 

escalation in both cells lines after 24-48 h, however, the effect in Ku70/80 was observed at 2.5 

µM WA in HeLa (lower baseline expression) compared 10µM WA in U87 (higher expression). 

Higher DNA-PKcs expression was detected in U87 cells and was decreased at 1 µM WA. WA-

mediated decreases in NHEJ protein levels corresponded with the effects of 17-AAG treatment. 

MMR proteins MLH1, MSH2, and MSH6 showed reduction in expression at 2.5 µM WA at 24 h 

with complete protein ablation by 5-10 µM in both HeLa and U87 cells. Treatment with 17-AAG 

induced minimal MMR protein reduction after 24 h, however, this effect was more pronounced 

in HeLa cells after 48 h. Overall, most proteins evaluated demonstrated reduced or absent 

expression at 10 µM WA, suggesting limited selectivity of effect at high concentrations. HeLa 

cells also demonstrated enhanced response to 1µM 17-AAG compared to U87 cells which was 

confirmed by a cell viability assay (data not shown). 

 

6.4.4 WA alters radiation-induced DNA damage recognition 

 

 Following the induction of dsDNA damage and recognition by the MRN complex, ATM 

is recruited to the site of the break where it is phosphorylated and can then phosphorylate 

Chk1/Chk2 for cell cycle checkpoint activation and H2A.X at the site of damage for recruitment 

of repair proteins (Lamarche et al., 2010). Normalized phosphorylation of ATM at Ser1981 was 

measured to evaluate the response to RT-mediated DNA damage following WA pretreatment. 

Compared to control 1 h post-RT (5 Gy in U87; 10 Gy in HeLa), p-ATM was induced 15.4-fold 

in U87 and 8.8-fold in HeLa. The presence of 1 µM WA reduced this activation 56.3% and 



225 

 

14.9% in the two lines, respectively (Figure 6-4A). By 6 h, reduction of ATM activation by WA 

was no longer observed in U87 cells, showing a delayed enhancement of this phosphorylation 

with combination therapy. In HeLa cells, despite diminished total activation of ATM after 6h 

(2.2-fold above control) and 24 h (1.89-fold above control), WA 1 µM WA reduced this 

activation 66.2% and 74.6%, respectively, showing a delayed response to 2 h WA pretreatment. 

U87 cells demonstrated increased p-ATM with WA exposure after 24 h, but this still 

demonstrated a 33.6% and 16.9% reduction in the residual p-ATM induced by RT (5.09-fold 

above control) with 0.5 µM and 1 µM WA, respectively, by despite the increase induced by 

combination therapy at 6 h. 

 To further evaluate the downstream effects of altered ATM signaling, normalized 

phosphorylation of Chk1 at Ser296, an autophosphorylation site requiring previous ATM-

mediated signaling, was measured (Okita et al., 2012) (Figure 6-4A). Minimal changes were 

observed in U87 cells 1 h post-RT with slight elevation of p-Chk1. After 6 h, however, total RT-

mediated induction was 2.82-fold compared to control and was reduced by 58.5% with 1µM WA 

pretreatment, demonstrating a delayed response compared to p-ATM. Despite relative WA-

mediated reductions in p-ATM largely manifesting at 6 h in HeLa cells, induction of p-Chk1 by 

RT at 1 h (2.46-fold above control) was reduced by 40.2% with 1 µM WA pretreatment, 

suggesting WA-mediated inhibition of signal transduction. Overall, high induction of p-Chk1 at 

1 h corresponded with the largest levels of p-ATM 1h post-RT. Induction by RT at 6 h was 

reduced to 1.74-fold above control and only slightly diminished with WA pretreatment. 

 Phosphorylation of H2A.X (Ser139) is regarded as a marker of DNA damage for 

recruitment of repair machinery and is mediated, at least in part, by the activity of ATM 

(Lamarche et al., 2010). Recognition of DNA damage was evaluated by immunocytochemistry  
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Figure 6-4.  
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Figure 6-4. A) WA pretreatment disrupted the normal signal transduction response following 

RT. RT (5 Gy in U87; 10 Gy in HeLa) initiated phosphorylation of ATM (Ser1981) and 

downstream Chk1 (Ser296) at 1-6 h post-irradiation. Pretreatment with WA altered the normal 

signaling response with reduction in ATM and Chk1 phosphorylation in a dose- and time-

dependent manner. Total levels of ATM and Chk1 remained largely unchanged at 1-6 h post-RT. 

Bar graphs represent quantified densitometry of the Western blots. B) Recognition of DNA 

damage was evaluated by ICC for p-H2A.X (Ser139) and quantified by intensity of the nuclear 

staining. Both HeLa and U87 demonstrated significant induction of p-H2A.X 1 h post-10 Gy RT, 

but 2.5 µM WA yielded no effect. WA differentially modulated normal the normal recognition 

response to RT-mediated DNA damage with combination therapy showing enhanced p-H2A.X 

in HeLa but reduction in U87. C) These immunocytochemistry findings were supported by 

Western blotting for p-H2A.X which demonstrated comparable patterns of treatment-mediated 

modulation. *p < 0.05, **p < 0.01, ***p < 0.001 
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for p-H2A.X and quantified by intensity of the nuclear staining (Figure 6-4B). HeLa and U87 

cells displayed 8.1-fold (p = 0.017) and 11.1-fold (p = 0.021) increases in p-H2A.X 1 h post-10 

Gy RT compared to controls, respectively. Pretreatment with 2.5 µM WA for 2 h, which alone 

produced no deviation from control in either line, resulted in diverging effects when followed by 

RT. In HeLa cells, combination therapy further induced expression of p-H2A.X 3.0-fold greater 

than RT alone (p = 0.006) and 24.7-fold above control (p = 0.007). In contrast, the addition of 

WA to RT in U87 cells resulted in a 62.5% decrease in the phosphorylation of H2A.X compare 

to RT alone (p = 0.049) but was still significantly greater than control (p = 0.048). These results 

were supported by Western blotting for p-H2A.X which demonstrated comparable patterns of 

treatment-mediated modulation (Figure 6-4C). Modulation of H2A.X phosphorylation was 

consistent with the large early impairment of ATM activation in U87 but not HeLa, suggesting 

that the effects of WA are manifest at different signaling levels in various cells, such that 

diminished ability to recognize DNA damage is observed in U87 whereas a failure to response to 

and repair the damage is observed and in HeLa despite enhanced phosphorylation of H2A.X.  

 

6.4.5 WA blocks dsDNA damage repair  

 

Direct measurement of dsDNA damage was evaluated through the neural comet assay, 

measuring the movement of the DNA content of single cells through electrophoresis (Figure 6-

5A and 5B). U87 cells were pretreated with WA for 12 h, irradiated, and collected after a 4 h 

incubation. Enhanced DNA damage was associated with a higher percentage of total DNA 

shifted and a greater distance traveled, quantified as the tail moment. Control cells displayed a 

baseline tail moment of 1.1 which was increased 2.3-fold to 2.6 with 0.5 µM WA (p = 0.028),  
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Figure 6-5.  
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Figure 6-5. A) Direct measurement of dsDNA damage was evaluated through the neural comet 

assay, measuring the movement of the DNA content of single cells through electrophoresis 

followed by nucleic acid staining with SYBR Gold. U87 cells were pretreated with WA for 12 h, 

irradiated with 5 Gy, and collected after a 4 h incubation. Mildly increased DNA damage was 

observed with treatment of either WA or RT, but combination of the agents significantly 

enhanced the average comet tail moment, demonstrating enhanced DNA damage. B) 

Representative examples of comets from each treatment group. SYBR Gold = green. C) HeLa 

and U87 cells stably expressing the DR-GFP reporter were transfected with an empty vector 

control or an I-SceI construct, plated, and treated immediately with multiple concentrations of 

WA for 72 h before analysis of GFP expression, a marker of successful HR, by flow cytometry. 

WA demonstrated significant dose-dependent reduction in HR function through decreases in 

GFP+ cells in both lines. Cells transfected with the control empty vector demonstrated no or 

minimal GFP at all concentrations. D) Representative examples of the flow cytometry results for 

HeLa and U87. *p < 0.05, **p < 0.01, ***p < 0.001 
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likely a result of minor DNA fragmentation characteristic of intrinsically cytotoxic compounds, 

and 2.6-fold to 2.9 with 5Gy RT (p = 0.023). Combination of these two agents resulted in a tail 

moment of 6.9, a 6.1-fold increase over baseline (p < 0.001) and statistically greater than either 

agent alone (p < 0.001). These findings demonstrate that reduced phosphorylation of H2A.X 

resulting from WA+RT compared to RT alone in U87 cells is the result of reduced DDR 

signaling rather than enhanced repair. 

These findings were supported functionally by the WA-mediated inhibition of HR as 

evaluated through the DR-GFP reporter assay (Figure 6-5C and 6-5D; Supplemental Figure 6-2). 

U87 and HeLa cells stably expressing the reporter following clonal selection were transfected 

with a vector for the restriction enzyme I-SceI or a control vector. Expression of I-SceI in the cell 

functioned to cut the reporter assay at a specific site, mimicking a dsDNA break with functional 

HR repair that could be monitored through ultimate expression of GFP by flow cytometry and 

microscopy. HR-mediated repair was shown to occur in 1.10% of U87 and 1.12% of HeLa 

control cells after 72 h. This was significantly reduced by treatment with WA. At 0.5 µM, U87 

and HeLa cell repair of the break through HR was reduced to 0.07% (p = 0.017) and 0.59% (p = 

0.003), respectively which was further reduced by 1 µM WA to 0.02% (p = 0.018) and 0.20% (p 

< 0.001), respectively. Cells transfected with the control empty vector demonstrated no GFP+ 

cells at all concentrations in U87 and 0.03% at all concentrations in HeLa. Preliminary data in 

the murine GBM cell line GL26 demonstrated the same pattern of HR reduction with WA 

treatment. These findings support the results demonstrating enhanced dsDNA damage with 

combination of WA and RT as well as reductions in DNA damage repair proteins following WA 

treatment. This suggests that WA-mediated radiosensitization functions in-part through 

inhibition of these repair pathways. 
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6.5 Discussion 

 

WA is a promising novel anti-cancer therapeutic agent that has shown both in vitro and in 

vivo promise in a variety of models by targeting a multitude of proliferation, survival, and 

growth progression pathways (Vanden Berghe et al., 2012; Vyas and Singh, 2014). While 

monotherapy with WA in animal models has yielded impressive results, single agent therapy in 

the treatment of human cancer often demonstrates disappointing outcomes and the rapid 

development of resistance. Treatment of many cancers now relies on the utilization of several 

adjuvant therapies to target multiple cellular susceptibilities simultaneously, often through 

production of DNA damage or alterations of DNA/cellular  replication (Kamal and Burrows, 

2004). Here, we demonstrated that WA inhibits normal pathways of DSB repair through 

depletion of total proteins involved in HR and NHEJ as well as alterations and delays in DDR 

signaling in two highly aggressive cancer cell lines, HeLa and U87. Combining WA and RT 

potentiated the efficacy of both agents leading to enhanced DNA damage and diminished 

viability through failure of cells to synthesize DNA and progress through the cell cycle. 

Several early studies on WA identified it as a possible radiosensitizer, including its 

potential in vivo utility as such (Devi et al., 1995; Devi et al., 1996; Devi et al., 2000; Devi and 

Kamath, 2003; Devi et al., 2008). This research group then demonstrated that knockout of 

Rad54, but not Ku70 or both Ku70 and Rad54, could sensitize cells to radiation and concluded 

that WA may alter normal homologous recombination repair (Devi et al., 2008). Since then, 

several additional studies further evaluated the merit of combination therapy and suggested that 

it increases efficacy through enhanced oxidation and modulation of the MAPK and Akt 
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pathways (Yang et al., 2011b; Yang et al., 2011a). A lack of adequate controls and data 

quantification limits the overall interpretation of the data in these studies, but each demonstrated 

the promise of co-treatment with both agents. 

 Ionizing RT is a frequently utilized treatment modality against many primary cancer 

types and some metastatic disease. While certain cancers are quite responsive to the DNA 

damaging effects of RT, others show only modest sensitivity or even radio-resistance (Begg et 

al., 2011). Given the widespread importance of RT for cancer patients, efforts have been made to 

identify means by which to enhance its effect, frequently through the additional of specific 

adjuvant chemotherapies. For example, the addition of TMZ to RT in the treatment of GBM 

patients extended average post-diagnosis survival by approximately two months, although the 

specific mechanism for this radiosensitization is unclear (Chakravarti et al., 2006; Stupp et al., 

2009; Bobola et al., 2010). Other agents have been developed to specifically target mechanisms 

of the DDR such as direct inhibitors of ATM and Chk1 (Dent et al., 2011; Nadkarni et al., 2012). 

In the present study, WA demonstrated the ability to reduce expression of multiple 

proteins in the HR, NHEJ, and MMR DDR pathways. Such findings suggest that WA may 

sensitize cancer cells to radiotherapy and/or other DNA-altering chemotherapeutic agents 

through induction of instability and promotion of degradation of proteins critical in the 

recognition and response to such an insult. WA has previously shown the ability to disrupt the 

interaction between HSP90 and Cdc37 with direct binding to the C-terminus of HSP90, a 

chaperone protein that functions to fold, refold, and stabilize a specific set of client proteins (Yu 

et al., 2010). This disruption corresponds with subsequent degradation of various client proteins 

despite no direct inhibition of HSP90 function through its mediation of GR steroid binding 

(unpublished data). However, total GR and levels of proteins not previously described to be 
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associated with Cdc37 were depleted, suggesting that WA may also directly inhibit HSP90 

activity through a separate mechanism or induce protein depletion through an alternative means. 

While Cdc37 is thought to have minor intrinsic protein chaperone properties, it has traditionally 

been considered a co-chaperone of HSP90 that promotes localization of the HSP90 chaperone 

complex to various protein targets, largely kinases. Such a binding effect of WA to HSP90 

appears to be specific to a small subset of proteins such as HSP90 and vimentin (Bargagna-

Mohan et al., 2007), demonstrating the specificity of WA targeting. We hypothesize that the 

depletion of a large number proteins globally, including those involved in the DDR, is not due to 

direct interaction with the compound but rather the secondary effect of HSP90 axis modulation. 

Indeed, WA-mediated depletion of DDR proteins patterned HSP90 inhibition with 

enhanced decreases in known HSP90 clients BRCA1 (Stecklein et al., 2012), Chk1 (Arlander et 

al., 2003), and DNA-PK (Solier et al., 2012) compared to other proteins at 1-2.5 µM after 24 h. 

Other HSP90 client or interacting proteins such as BRCA2 (Noguchi et al., 2006), members of 

the MRN complex (Dote et al., 2006), and Rad51 (Ko et al., 2012) demonstrated enhanced 

depletion upon WA exposure or responded in a cell line-dependent manner. This suggests either 

diminished cellular importance on the HSP90 axis for stability as frequently confirmed with 17-

AAG treatment such as for BRCA2, Cdc37-independent protein targeting, or alternate WA-

induced effects. The importance of the roles of HSP90 and Cdc37 for the stability and function 

of proteins involved in the DNA damage recognition and repair pathway is incompletely defined, 

and these findings suggest that it may be more significant than currently understood. Consistent 

with these findings, direct inhibition of HSP90 has been shown to result in radiosensitization 

with inhibition or depletion of proteins in the DDR such as Akt, BRCA1, and Rad51 (Dote et al., 

2006; Kabakov et al., 2010; Ko et al., 2012; Stecklein et al., 2012). To date, no studies have been 
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completed to identify a role for Cdc37 in the interaction with the altered DDR proteins either 

directly or indirectly. Further study is also necessary to identify why ATM is significantly 

depleted with both WA and 17-AAG treatment but has previously been shown to not interact 

with HSP90 (Dote et al., 2006). Importantly, WA modulates proteins from all pathways of the 

DDR, including both HR and NHEJ, demonstrating its potential broad-spectrum effectiveness as 

a radiosensitizer against various malignancies regardless of the favored repair pathway(s). 

Additionally, our group has demonstrated the ability of WA to elevate the oxidative 

potential in cancer cells which suggests an alternative mechanism by which DDR proteins can be 

degraded (Grogan et al., 2013; Grogan et al., 2014). O
6
-methylguanine-DNA methyltransferase 

(MGMT), a protein involved in the removal of TMZ-mediated DNA alkylation, was depleted by 

WA in a dose-dependent manner. While MGMT has not been described as a client of HSP90 or 

Cdc37 and was not significantly decreased with 17-AAG exposure, it had previously shown 

sensitivity to compounds inducing oxidative stress such as valproic acid (Fu et al., 2010; Ryu et 

al., 2012). Further studies are necessary to identify whether the pro-oxidant capacity of WA 

results in protein misfolding and/or depletion and if it is a direct consequence of reactive oxygen 

species (ROS) production through its epoxide group or an indirect shift in background potential 

resulting from thiol sequestering of the compound. Regardless, such a dual mechanism of 

oxidation and HSP90 axis inhibition provides great potential for enhanced efficacy while 

minimizing the development of resistance. In addition, oxygen is a known radiosensitizer 

(Teicher, 1995; Okunieff et al., 1996), and the known oxidizing effects of WA may play an 

indirect role in further enhancing the efficacy of RT through increased formation of DNA-

damaging free radicals, although it is unclear if introduction of oxygen in this form will indeed 

be beneficial. While WA elevates cellular oxidative potential and increases p-H2A.X at high 
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concentrations after 24 h (Grogan et al., 2014), this p-H2A.X induction could be completely 

eliminated with pretreatment of a global caspase inhibitor in a breast cancer model, suggesting 

the effect was an apoptosis-related phenomenon rather than direct damage to the DNA (data not 

published). 

Interestingly, the results of this study suggest that WA not only functions to deplete total 

levels of proteins critical to the DDR but can also alter normal signaling at concentrations below 

those that alter protein levels. In the evaluation of ATM and Chk1 activation and signaling, total 

levels of each protein at low-dose WA remain largely unchanged while phosphorylation is 

altered. If these findings are related to inhibition of the HSP90 chaperone axis induced by WA, 

this may suggest general mild destabilization of some fraction of ATM and its upstream kinases 

that alters function but remains detectable in total level analysis. Consistent with this 

observation, disruption of Cdc37 has previously been demonstrated in prostate cancer to inhibit 

cellular kinase activity without significantly depleting certain HSP90 client proteins (Gray et al., 

2007). 

Despite the WA-mediated modulation of ATM and Chk1 signaling following RT, each 

cell line showed an enhanced the ability to undergo cell cycle arrest at 24-72 h with a notably 

reduced fraction of DNA synthesis phase cells. Diminished phosphorylation of Chk1 after 

combination therapy was observed between 1-6 h post-RT but not after 24 h, suggesting delayed 

but not eliminated cell cycle checkpoint signaling which may perpetuate error generation or lack 

of timely repair early post-RT as the cell continues to cycle. Further, additional signaling 

proteins such as ataxia telangiectasia and Rad3-related protein (ATR) and Chk2 may compensate 

for this effect, and it is unclear if the mild reduction in p-Chk1 was functionally significant. It is 

hypothesized that the maintained low dose WA-mediated reduction of p-ATM after RT favors 
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reduction in DNA damage recognition and ultimately repair, both effects demonstrated in this 

study, compared to inhibited checkpoint modulation and may eventually overcome any 

diminished regulation of the checkpoints. Higher dose WA, which leads to significant direct 

depletion of Chk1 and/or Chk2 but manifests notable cytotoxicity independent of RT, may 

eventually limit the functional execution of these checkpoints. 

Interestingly, the data suggest that combination of WA and RT results in a reduction of 

cells entering the DNA synthesis phase of the cell cycle with cells existing in the S-phase 

shifting to a non-mitotic population containing 4N DNA. The notable accumulation of cyclin B1 

in U87 cells treated with WA for 24-48 h is nearly completely reduced to baseline when 

simultaneously treated with RT. This suggests that the 4N DNA cells are not appropriately 

progressing in the G2/M phase as has previously been demonstrated with the flavoprotein-

specific inhibitor diphenyl eneiodonium (Scaife, 2004). While p21, which is increased in this 

study with WA treatment and further with combination therapy, has traditionally been regarded 

as a regulator of the G1/S transition, it has also been demonstrated to play a role during the 

G2/M phase (Sherr and Roberts, 1995; Dulic et al., 1998; Cazzalini et al., 2010). Indeed, 

knockout of p21 prevented cells from appropriately arresting at the G2/M checkpoint following 

the induction of DNA damage. This was similarly identified in p27 which has also been 

traditionally regarded as an inhibitor of the G1/S transition and is increased in the present study 

(Sgambato et al., 2000; Payne et al., 2008). Further, this induction of p21 and repression of 

cyclin B1 to maintain G2 arrest has been demonstrated to be a p53-mediated effect (Levesque et 

al., 2008), a protein that of wild-type status in both U87 and HeLa albeit of low expression in the 

latter. In addition to functioning as a transient inhibitor of the cell cycle, p21 elevation is also a 

marker of cellular senescence. While further studies are necessary to address this, the enhanced 
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retention of cell cycle arrest and elevated p21 with combination WA and RT supports this idea. 

A previous study has demonstrated that WA alone is capable of inducing senescence with 

induction of marker β-galactosidase (Vaishnavi et al., 2012). 

Previous reports from Yang, et al. showed that combination of WA and RT in U937 and 

Caki cells resulted in enhanced markers of apoptosis without cell cycle radiosensitization 

contributions from p21 (Yang et al., 2011b). In contrast, we demonstrated in HeLa and U87 cells 

that cleavage of PARP as an apoptotic marker was either not enhanced or otherwise reduced with 

combination therapy compared to either agent alone in favor of increased expression of p21 and 

p27 and diminished progression of the cell cycle. These differences may represent intrinsic 

difference among cells or variability in dosing timepoints and concentration as analysis was only 

completed up to 24 h in the previous evaluation, however, both studies demonstrate the 

therapeutic value of combining WA and RT. Of note, U937 cell are a known p53-mutant cell line 

(Sugimoto et al., 1992), suggesting one potential intrinsic explanation for the difference. Caki 

cells contain wild-type p53 comparable to the cells used in the present study which was indeed 

shown to be activated through phosphorylation in the Yang, et al. study, indicating the potential 

role of an alternative mechanism not yet identified (Warburton et al., 2005). The Caki study did 

not evaluate changes in cell cycle distribution resulting from combination therapy, so it is 

possible that p53/p21 may still demonstrate comparable effects at later timepoints. 

Future studies will be necessary to further define the dosing schedule that will yield 

optimal potentiation or synergy in the combination of WA and RT, particularly in vivo. Our in 

vitro studies determined that 2 h pretreatment was sufficient to all for this enhanced efficacy. 

Depending on the tissue levels achieved and the time necessary to manifest effects in the DDR 

pathways, a build-up period may be necessary in translational studies. WA dosing prior to rounds 
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of RT appear to be necessary to fully take advantage of the blockage of DNA damage repair. 

Studies are also necessary to identify the ability of WA to penetrate the blood-brain barrier 

(BBB) to evaluate its potential utility against brain tumors such as GBM which is indicated 

based on these studies, although tumors such as these are frequently described to disrupt the 

normal architecture of the BBB (Zhang et al., 1992). One preliminary study of WA in a murine 

orthotopic GBM model demonstrated a survival advantage with treatment, indicating that WA 

was reaching its target (Santagata et al., 2012). Further, evaluation of WA against the Lipinski 

Rule of Five, typically utilized for predicting favorability of drug absorption oral but often 

applied to the BBB, demonstrates that it does not violate any rule (Banks, 2009; Vaishnavi et al., 

2012). 

In this study, WA was determined for the first time to be a highly effective radiosensitizer 

through modulation of the normal DDR. Following WA treatment, proteins involved in DNA 

damage recognition and repair through HR and NHEJ were depleted, resulting in altered 

recognition and functionally inhibited repair of RT-induced DNA damage. Our previous findings 

show that WA acts as a potent cytotoxic monotherapy against GBM and re-sensitizes resistant 

cells to TMZ, the standard chemotherapeutic along with RT against GBM (Grogan et al., 2013; 

Grogan et al., 2014). Other groups have demonstrated WA efficacy other non-central nervous 

system (CNS) cancers and identified that WA enhances the efficacy of the broad-spectrum agent 

cisplatin, an agent often used against cervical cancer (Kakar et al., 2012; Vanden Berghe et al., 

2012; Vyas and Singh, 2014). Taken together with WA-mediated enhancement of RT, these 

findings suggest the great clinical potential of WA as an adjuvant agent for brain tumors and 

non-CNS solid tumors like cervical cancer that warrant further translational exploration. 
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Supplemental Figure 6-1.  
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Supplemental Figure 6-1. Complete cell cycle analysis of the percentages of cells in the G0/G1 

(2N DNA), S, and G2/M (4N DNA) phases with WA and RT treatment. WA treatment results in 

an increased percentage of cells in the G2/M-phase of the cell cycle with minimal changes in S-

phase percentage. RT-treated U87 and HeLa cells both demonstrated small reductions in S-phase 

percentage, maximally at 24 h or 48 h, but showed variable shifts with cell predominantly 

moving to G0/G1 in U87 and G2/M in HeLa. Combination of WA and RT produced enhanced 

depletion of S-phase cells at 24 h and maintained the depletion at 72 h despite normalizing levels 

in the RT-only groups in both U87 and HeLa cells. Depletion of S-phase cells was primarily 

associated with maintained or minimally decreased levels of G0/G1-phase cells compared to 

WA-only with displacement to G2/M after 24 h. U87 cells demonstrated maintained elevation of 

G0/G1-phase cells at 24 h only with combination therapy. 
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Supplemental Figure 6-2.  
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Supplemental Figure 6-2. HeLa cells stably expressing the DR-GFP reporter were transfected 

with an empty vector control or an I-SceI construct, plated, and treated immediately with 1 µM 

WA for 72 h before analysis of GFP expression, a marker of successful HR. WA demonstrated 

significant reduction in HR function with undetectable GFP+ cells as assessed by microscopy. 

Cells transfected with the control empty vector demonstrated no detected GFP by microscopy. 

GFP = green.  
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Summary, Significance, and Future Directions 
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7.1 Summary and significance 

 

7.1.1 Introduction 

 

The treatment of brain tumors, particularly high grade malignancies like glioblastoma 

multiforme (GBM) and medulloblastoma (MB), continues to remain a tremendous clinical 

challenge. While surgical resection followed by radiation therapy (RT) and temozolomide 

(TMZ) in GBM patients limits disease progression, the average post-diagnosis survival time is 

still only approximately 14 months with rapid and frequent development of TMZ resistance 

(Stupp et al., 2002; DeAngelis, 2005; Stupp et al., 2005; Taphoorn et al., 2005; Chamberlain et 

al., 2007). TMZ was approved for use in GBM patients in 2004, but little therapeutic progress 

has been achieved since that time. Avastin® (bevacizumab), an angiogenesis inhibitor, was 

approved after TMZ but is largely utilized to reduce disease progression during the management 

phase rather than to provide a long-term disease response (Friedman et al., 2009; Zhang et al., 

2012a). MB, largely but not exclusively a pediatric disease, demonstrates a greater response to 

currently available chemotherapies and RT, but patients are shown to frequently develop short-

term and chronic quality of life issues that manifest from the off-target effects of the treatment in 

a young patient population (Khatua et al., 2012; Smoll, 2012). The research of the present study 

demonstrates the potent in vitro utility of WA as a therapeutic agent against the high-grade 

malignant brain tumors GBM and MB. The following briefly summarizes relevant finds in each 

of the chapters and identifies key significance and utility of the data. Further detailed 

interpretation and discussion can be found in each chapter. 
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7.1.2 Chapter 2: Cytotoxicity of withaferin A in glioblastomas involves induction of an oxidative 

stress-mediated heat shock response while altering Akt/mTOR and MAPK signaling pathways 

 

Given the promising efficacy of WA in several non-brain tumor models and the identified 

need for novel therapeutic approaches in these cancers, the effects of WA were evaluated in a 

GBM model. The aim of this chapter was to determine if these previously observed cytotoxic 

effects could be translated to GBM with subsequent analysis of the nature of these effects. In this 

study, WA was indeed described to have an anti-proliferative effect on GBM cells with induction 

of G2/M cell cycle arrest at correspondingly low-to-moderate concentrations with a transition to 

cell death through apoptotic mechanisms at moderate-to-high doses. These findings were 

associated with changes in expression of Akt/mTOR and MAPK pathway proteins and upstream 

tyrosine kinase receptors. Notably, WA reduced activation of oncoproteins in the Akt/mTOR 

pathway but enhanced phosphorylation in MAPK proteins despite a reduction of total Raf-1. 

Simultaneously, WA produced significant cellular oxidation with induction of biomarkers 

HSP27, HSP32, and HSP70. All effects could be completely abrogated with N-acetyl-L-cysteine 

(NAC) pretreatment. 

These findings demonstrated the in vitro utility of WA against GBM and provided a 

broad and general evaluation of its utility. Notably it also expanded on the limited data available 

addressing the effects of WA on the Akt/mTOR pathway. Here, WA not only decreased total and 

phosphorylated Akt as previously described but also diminished activation of downstream 

mTOR and p70 S6K. The α-subunit of the stress-response protein AMPK and its downstream 

tumor suppressor TSC2 that ultimately signal to mTOR were also activated via phosphorylation. 

This demonstrates that WA functions, in part, to inhibit the the Akt/mTOR pathway in the 
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manifestation of its effects. This study also showed the potential utility of thiol-reactive oxidative 

agents against GBM, further enhancing the altered redox state that has been described in cancer 

cells. 

 

7.1.3 Chapter 3: Oxidative cytotoxic agent withaferin A resensitizes temozolomide-resistant 

glioblastomas via MGMT depletion and induces apoptosis through Akt/mTOR pathway 

inhibitory modulation 

 

Intrinsic or acquired therapeutic resistance to TMZ has been shown to represent a major 

problem in the treatment of GBM patients (Hansen et al., 2007; Kitange et al., 2009). With a 

poor system of pre-therapy tumor screening methods currently in place, patients frequently 

receive TMZ when it would be contraindicated either early in the treatment process or after 

multiple cycles of chemotherapy (Chamberlain, 2010; Quick et al., 2010; Zhang et al., 2012c). 

Given the in vitro success of WA in known TMZ-sensitive GBM cell lines, the aim of this 

chapter was to evaluate the potential use of WA in developed TMZ-resistant GBM as a 

monotherapy and as a potential re-sensitizer to TMZ. As a monotherapy, WA demonstrated the 

same pattern of efficacy in resistant cells as was seen in the sensitive lines but with enhanced 

potency. This was expanded to demonstrate that phosphorylation of components of the MAPK 

cascade was a compensatory activation of the pathway in response to the cytotoxicity of WA, 

identifying a potentially effective target for the use of WA in synergistic combination therapy. 

Additionally, inhibition of both the intrinsic and extrinsic apoptotic pathways resulted in reduced 

downstream cleavage of PARP and effector caspases, demonstrating the role of both pathways in 

WA-mediated apoptosis. 
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Most importantly, WA demonstrated the ability to deplete cells of O
6
-methylguanine-

DNA-methyltransferase (MGMT) which confers resistance to TMZ. This effect was associated 

with re-sensitization to TMZ and was potentiated with TMZ combination therapy. Re-

sensitization was not observed in a TMZ-resistant line with resistance through mismatch repair 

(MMR) alterations, and TMZ-sensitive lines were inconsistently further sensitized to TMZ by 

WA but never desensitized. These results demonstrate that WA, in addition to functioning as an 

effective monotherapy in a model of TMZ resistance, can be utilized to enhance the utility of 

WA in a setting where it would otherwise be contraindicated. Given that around 50% of patients 

are thought to display intrinsic characteristics for poor response to TMZ but receive TMZ 

regardless (Chamberlain, 2010; Quick et al., 2010; Zhang et al., 2012c), addition of WA to GBM 

treatment has the potential to function as 1) a cytotoxic therapeutic addition in a system that 

would otherwise be using an ineffective chemotherapeutic agent, and 2) as an agent to establish 

value with for the inclusion of TMZ. Of note, while MMR-driven resistance may not be re-

sensitized to TMZ with WA, the presence of WA potentially provides a valuable cytotoxic 

component in a system with otherwise limited efficacy beyond RT. In cases where tumors 

display TMZ sensitivity, despite the inconsistent synergistic benefit of combination therapy, the 

additive presence of two agents may still be beneficial. Overall, the addition of WA, if tolerated, 

would appear to be universally beneficial. 

 

7.1.4 Chapter 4: Withaferin A is a novel inhibitor of the Wnt/β-catenin signaling pathway in 

medulloblasoma through proteasome-mediated degradation of TCF/LEF 
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 With the effective in vitro utilization of WA against GBM and its observed inhibition of 

Akt/mTOR pathway signaling, the use of WA was expanded to a model of MB. The aim of this 

chapter was to confirm the known cytotoxicity of WA in MB and evaluate the effects of WA in 

the Wnt/β-catenin signaling pathway. Indeed, WA demonstrated the anti-proliferative, pro-

apoptotic, G2/M cell cycle arresting, and oxidative effects identified previously in GBM. Given 

the well-described cross-talk between the Akt/mTOR and Wnt/β-catenin pathways through GSK-

3β and the overactivation of Wnt signaling in a subgroup of MBs (Baryawno et al., 2010; 

Northcott et al., 2012), inhibition of Akt as previously described in GBM was expected to result 

in inhibition of Wnt signaling through diminished phosphorylation of GSK-3β and subsequent 

degradation of β-catenin. WA did in fact reduce Wnt signaling through a reporter assay. 

However, in contrast to this original expectation, WA induced significant phosphorylation of 

GSK-3β and failed to significantly alter β-catenin levels or nuclear translocation in the cells. 

Rather, WA promoted proteasomal degradation of the TCF/LEF transcription factors that 

associate with β-catenin for the transcription of Wnt target genes. 

These findings not only demonstrate the general efficacy of WA against MB but also 

identify it as a novel inhibitor of the Wnt/β-catenin signaling pathway through a unique 

mechanism. Further, WA was shown to disrupt the interaction between HSP90 and co-chaperone 

Cdc37 in MB, and inhibition of HSP90 with the established small molecule 17-AAG resulted in 

depletion of TCF/LEF proteins. Previous studies have identified the interaction of HSP90 with 

upstream components of the pathway like β-catenin and GSK-3β but have failed to conclusively 

demonstrate the role of HSP90 in their stability (inhibition of HSP90 did not consistently reduce 

levels of these proteins) (Cooper et al., 2011; Liu et al., 2012). Despite our inability to co-IP 

TCF/LEF members with HSP90 or Cdc37, these findings demonstrate a previous undescribed 
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role for HSP90 in the function of the Wnt signaling pathway which will require further 

exploration but suggests a novel role for HSP90 inhibitors against Wnt-driven malignancies like 

MB and colorectal cancer (Polakis, 2012). While WA targets this important signaling pathway 

overactivated in a subset of MB, it is also intrinsically cytotoxic through alternative pathways 

suggesting that it can be utilized against all MB subgroups without pathological pre-

identification of subgroup. Its known selectivity for cancer cells with minimal off-target toxicity 

in murine models, as currently described, could reduce quality of life issues plaguing pediatric 

MB patients with current treatments while maintaining efficacy, although more studies are 

required in regard to translational toxicity and efficacy. 

 

7.1.5 Chapter 5: Withaferin A promotes global proteasome-mediated protein degradation 

through oxidation and inhibition of the HSP90 chaperone axis and is cytotoxically potentiated by 

inhibition of the proteasome 

 

 WA has demonstrated the ability to yield diverse effects throughout the cell, frequently 

with protein depletion and modulation of multiple oncogenic signaling pathways (Vanden 

Berghe et al., 2012; Vyas and Singh, 2014). Several studies have suggested that WA alters the 

HSP90 chaperone axis and promotes cellular oxidation to promote the broad effects that are 

observed (Samadi et al., 2009; Yu et al., 2010; Wang et al., 2012). The aim of this chapter was to 

identify and explore the role of WA on cellular proteotoxicity through these mechanisms in 

GBM and the well-established HeLa cervical cancer line. WA favored a shift to HSP70 in the 

HSP90/HSP70 balance, promoting enhanced global protein ubiquitination. This was associated 

with degradation of HSP90 client proteins via the proteasome with inhibition of the HSP90 axis 
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through disruption of the HSP90/Cdc37 interaction but not direct reduction in intrinsic HSP90 

function. Cytotoxicity and oxidation events following WA exposure could be completely 

abrogated with thiol antioxidant NAC pretreatment and enhanced with reduction in cellular 

glutathione. Non-thiol antioxidant ascorbic acid reduced oxidation but failed to alter cytotoxicity. 

These findings further define the novel mechanism by which WA manifests its cytotoxic 

effects and provide details regarding both the oxidative and HSP90 inhibitory components which 

are likely not mutually exclusive. Such an effect on the HSP90 axis may predict WA utility in 

altering additional proteins and pathways critical to cancer progression subsequently revealing 

appropriate clinical uses. Future studies identifying other HSP90 inhibitory aspects given the 

depletion of non-Cdc37 proteins will be necessary. Additional experiments were completed to 

evaluate WA in combination with a proteasome inhibitor. Given that WA promotes widespread 

protein degradation via the proteasome, simultaneous inhibition of the proteasome promoted 

accumulation of ubiquitinated aberrant proteins, induced cytotoxicity with reduced cell viability, 

and ultimately potentiated the induction of apoptosis compared to either agent as a monotherapy. 

Proteasome inhibitors are currently approved for clinical use in some cancer types including 

multiple myeloma (Chauhan et al., 2005), identifying an opportunity for rapid WA translation to 

human use and establishment of proof-of-concept. This enhanced efficacy of combination with a 

proteasome inhibitor has been supported with the use of traditional HSP90 inhibitors 

(Minnnaugh et al., 2004). These data support translational utility derived from the identified 

mechanisms of WA. 

 

7.1.6 Chapter 6: Withaferin A disrupts the cellular DNA-damage response to promote 

radiosensitization 
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 RT represents a key therapeutic component in the treatment of a significant percentage of 

primary tumors including GBM and MB (Delaney et al., 2005). Therefore, efforts to enhance 

RT-induced DNA damage and limit the repair of this damage by cancer cells has been seen as 

means by which to effectively enhance cytotoxicity and efficacy of clinical RT in patients (Begg 

et al., 2011). Given that inhibition of HSP90, among other targets, can radiosensitize (Dote et al., 

2006; Kabakov et al., 2010; Ko et al., 2012; Stecklein et al., 2012), the aim of this chapter was to 

evaluate the radiosensitization properties of WA against GBM cells and the homologous 

recombination (HR)-competent HeLa cervical cancer line. Indeed, low-dose WA potentiated the 

efficacy of RT in both lines. This was associated with a reduction in cells synthesizing new DNA 

and elevation of the checkpoint inhibitors p21 and p27. Functionally, WA reduced total levels of 

key proteins involved in the recognition and repair of DNA damage through HR and non-

homologous end-joining (NHEJ) and modulated normal signaling in response to RT. This lead to 

altered recognition of the damage assessed by p-H2A.X, enhanced and sustained DNA damage 

with combination therapy, and a functional block of HR. 

 These findings further demonstrate the potential clinical application of WA. Given that 

RT is used in the treatment of an estimated 50% of cancer patients (Delaney et al., 2005), 

enhancing the efficacy of this therapeutic modality is an extremely important translational 

prospect and has been a consideration in the selection of adjuvant chemotherapy previously, 

including the addition of TMZ to RT (Chakravarti et al., 2006). The data suggests that WA is 

likely to enhance DNA damage induced by other agents and repaired through a range of 

modalities including HR, NHEJ, and MMR which identifies a potential for broad spectrum 

combination use clinically alone with the intrinsic cytotoxicity of WA as a monotherapy. 
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Because augmented DNA damage response mechanisms are known to play a key role in chemo- 

and radio-resistance, we believe that modulation and depletion of these pathways with WA may 

provide enhanced efficacy of therapeutics in refractory or resistant GBM or other cancer types. 

Indeed, we demonstrated WA’s ability to re-sensitize resistant GBM cells to TMZ through 

depletion of MGMT, showing proof-of-concept (Grogan et al., 2014). 

 

7.2 Future directions 

 

The conducted research identified, defined, and utilized the cytotoxic anti-cancer 

properties of WA in a model of high-grade brain tumors. Among the results, WA induced 

inhibitory modulation of the PI3K/Akt/mTOR and Wnt/β-catenin oncogenic signaling pathways. 

These are the first studies to thoroughly evaluate the influence of WA on both pathways in any 

cancer model and potentially define several therapeutic roles for the compound. Given the broad 

effects of WA on multiple oncogenic or otherwise cancer-promoting pathways in our studies and 

those published by others (Vanden Berghe et al., 2012; Vyas and Singh, 2014), particularly with 

noted activity against the HSP90 chaperone axis with over 400 known client or interacting 

proteins, future experiments are necessary to further expand on the effects of WA against other 

proteins that have yet to be explored and the resulting changes in signal transduction efficiency. 

Notably, there are currently no published reports on the effect of WA on the SHH pathway, 

important in a subgroup of MB. Similarly, the inhibition of the pathways identified with this 

research can be expanded to other relevant cancer models. For example, the Wnt/β-catenin 

pathway is overactivated in a significant percentage of colorectal cancers (Polakis, 2012). 

Targeting this pathway with WA along with the general cytotoxicity of the compound through 
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additional mechanisms would be thought to have great therapeutic benefits clinically by blocking 

a key driving oncogenic pathway and inducing additional anti-cancer manifestations. 

The efficacy of WA was also demonstrated to be enhanced in combination with both RT 

and a proteasome inhibitor and functioned to re-sensitize resistant GBM cells to TMZ. Previous 

studies have identified that WA synergizes with other chemotherapeutic agents such as sorafenib 

and cisplatin (Cohen et al., 2012; Kakar et al., 2012). HSP90 inhibition, a described function of 

WA, has also been shown to potentiate, enhance, or re-sensitize the activity of numerous agents 

(Lu et al., 2012). These observations suggest that WA may function well in combination with 

other therapeutic agents, particularly those inducing DNA damage, generating a large expansion 

in the potential for studying and ultimately using this compound. Additionally, because WA was 

demonstrated to promote activation of the MAPK pathway through phosphorylation of Raf-1 and 

ERK1/2, relevant inhibitors of these proteins would be expected to yield favorable efficacy in 

combination with WA. Given the apparent protective effect of GSH against WA, selective 

depletion of GSH in redox susceptible cancer cells, perhaps through inhibition of γ-

glutamylcysteine synthetase, could serve to enhance the cellular cytotoxicity to WA, although 

the potential for off-target toxicity would need to be evaluated if similar reduction in GSH was 

observed in normal tissue. These combinations also establish greater therapeutic relevance for 

WA given the problems of ineffectiveness and resistance frequently associated with 

monotherapy. Interestingly, however, our in vitro attempts to develop cell line resistance to WA 

have been largely unsuccessful and warrant further exploration. 

These findings open some additional questions regarding the role of WA in the inhibition 

of the HSP90 axis. While these results clearly indicate that WA eliminates the interaction 

between HSP90 and the co-chaperone Cdc37 at high enough concentrations and does not appear 
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to alter the intrinsic activity of HSP90 at least in regard to steroid receptor association, protein 

depletion mirrors total inhibition of HSP90 (and perhaps more) rather than a prevention of Cdc37 

function. Cdc37 primarily functions as a kinase-specific co-chaperone to promote the folding and 

maturation of these proteins through localization with HSP90 with enhanced client loading 

though modulation of HSP90 ATPase activity (Siligardi et al., 2002; Roe et al., 2004). However, 

proteins not previously known to associate with Cdc37 and non-kinase proteins such as c-myc 

and the glucocorticoid receptor were dose-dependently degraded with WA exposure. Such 

findings suggest that while the disruption of the HSP90/Cdc37 interaction was real, the effects of 

WA extend beyond that observation or the role of Cdc37 is greater than currently thought. Cdc37 

has also been shown to interact with other co-chaperone proteins, suggesting another way by 

which it can still join the HSP90 chaperone complex (Abbas-Terki et al., 2002). Given that WA 

interacts with the C-terminus of HSP90 in the location that other co-chaperones are known to 

associate, this represents a potential explanation of these expanded findings (Yu et al., 2010). 

Interestingly p23 and Hop were not dissociated from HSP90 in the presence of WA (Yu et al., 

2010), but their maintained functionality directly with HSP90 was not addressed. Clearly, further 

study of this system is required to better understand the variations observed whether due to 

additional modulation of the HSP90 axis or indirect effect from associated observations like 

cellular oxidation. 

Additionally, while alterations in the HSP90 chaperone axis have been clearly 

demonstrated to play a role in the cytotoxicity of WA, there have been arguments regarding the 

specificity of this effect. In order to determine whether the cytotoxic manifestations are primarily 

driven by its association with HSP90, it is proposed that future studies be conducted with cells in 

which endogenous HSP90 has been replaced or supplemented with HSP90 mutants retaining 
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function but lacking the appropriate WA binding site, likely through mutation of an existing C-

terminal cysteine. As such, the HSP90-independent effects of WA could be studied. Further, 

enrichment or depletion of GSH in the context of non-thiol antioxidants could further help define 

the nature of the effect as it relates to general oxidation and redox alterations. To date, few 

proteins have been shown to directly associate with WA, including via a broad spectrum analysis 

of biotinylated-WA binding, suggesting some specificity of is binding (Bargagna-Mohan et al., 

2007; Yu et al., 2010). Such studies could further demonstrate the importance of the HSP90 

target with WA treatment. 

 Studies from our group and others have evaluated novel natural and semi-synthetic 

withanolides beyond WA (Zhang et al., 2011a; Santagata et al., 2012; Zhang et al., 2012b; 

Wijeratne et al., 2014). Notably, significant cytotoxicity is lost with the elimination of the A-ring 

enone and/or the epoxide group. Our preliminary studies in triple negative breast cancer and 

several other models demonstrate that acetylation of one or more of the hydroxide groups 

enhance cytotoxic activity and anti-tumor efficacy in vivo. A recent study also identified that 

synthetic acetylation or other modifications of functional groups on WA or the withanolide 

structure can differentially alter biological cytotoxicity and/or heat shock-inducing activity 

(Wijeratne et al., 2014). It is unclear if this heat shock response is a function of HSP90 

inhibition, general oxidation, or perhaps more likely, both. Such structure-activity relationship 

(SAR) studies will be necessary going forward to identify improved therapeutic withanolides 

with better anti-cancer efficacy, more favorable pharmacokinetics for a particular malignancy 

[especially for crossing the blood-brain-barrier (BBB)], and diminished off-target toxicity. To 

date, SAR studies with withanolides have primarily been assessed in vitro. While these studies 

have yield valuable information, they have failed to address the pharmacokinetic aspect for 
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translational use. Withanolides, primarily WA, have demonstrated in vivo efficacy against a 

number of murine cancer models (Vyas and Singh, 2014) but drug absorption, distribution, and 

elimination have remained largely unexplored. 

Pharmacokinetic studies, particularly those involving the metabolism of WA and these 

other novel withanolides, will shed light on the body’s ability to activate and/or detoxify these 

compounds, thereby suggesting potential benefits or limitations to various dosing schemes. To 

date, very few studies have evaluated the metabolism of WA with the last studies emerging from 

the 1980s. Those studies, conducted in Cunninghamella elegans and Arthrobacter simplex, 

revealed that WA can be metabolized via hydroxylation, hydrogenation, and hydrolysis (Rosazza 

et al., 1978; Fuska et al., 1982; Proksa et al., 1986; Fuska et al., 1987). Because WA shares many 

structural similarities with endogenous steroids given its steroidal lactone classification, the 

study of its metabolism remains a critical element necessary for its potential use in the clinic as 

steroids are often metabolized in oxidative reactions by cytochrome P450 (CYP450) enzymes 

(Gonzalez, 1990). On top of that, an estimated minimum of 75-90% of the reactions in the 

metabolism of pharmaceutical drugs are by CYP450s, demonstrating an integral role for their 

study in the development of any compound (Guengerich, 2008; Sun and Scott, 2010). An overlap 

in the metabolic processes serving WA with other chemotherapeutic agents whose metabolism 

has been previously well-characterized could suggest successful pairing schemes on the basis of 

toxicokinetics or generating more favorable pharmacokinetic parameters (Cheng et al., 2010). 

Additionally, studies on the distribution of WA and its metabolites, particularly to the 

brain and more specifically during the diseased state of a brain tumor, have remained largely 

unpublished, although one preliminary study utilizing a murine orthotopic glioma model 

demonstrated a survival benefit with WA (Santagata et al., 2012). Given this survival benefit, it 
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is evident that the compound or an active metabolite likely reaches the site of the tumor lesion 

regardless of whether the BBB lacks integrity. What is less clear is whether WA is capable of 

crossing an intact BBB peritumorally where tumor invasion has occurred or in healthy brain 

tissue with relatively normal and maintained architecture. A recent bioinformatics study 

suggested that WA’s structure fails to violate Lipinski’s Rule of Five and has a favorable 

blood/brain partition coefficient (Vaishnavi et al., 2012), but translation to a biological system 

still needs to be examined. Other active withanolides in which polar functional groups are 

masked or simply absence may yield more favorable results if not ultimately achieved with WA, 

and indeed, preliminary studies in several non-brain tumor murine models show this. 

Encouragingly, multiple additional non-brain tumor murine models have demonstrated 

promising responses to WA treatment with multiple dosing schedules and levels (Vyas and 

Singh, 2014). One report identified a maximum plasma concentration of WA following a single 

intraperitoneal injection of the moderate dose of 4 mg/kg to be 1.8 µM, well-above typical in 

vitro IC50 values for cancer cells, with a plasma half-life of 1.3 h. Tissue distribution has not yet 

been reported. Overall, further translational studies with WA and other withanolides, particularly 

in an orthotopic brain tumor model, are necessary to evaluate both the pharmacokinetics and 

pharmacodynamics of the compound and establish maximally effective and minimally toxic 

dosing levels and schedules. Such studies can be followed up with efficacy and toxicity studies 

for combination therapy as previously discussed and utilization of NAC as a rescue agent in 

cases of toxicity or attempted high-dose regimens. 
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