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Seismic Reflection Studies in Long Valley Caldera, Califomia 
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Seismic reflection studies in Long Valley caldera, California, indicate that seismic methods may be 
successfully employed to image certain types of features in young silicic caldera environments. However, near- 
surface geological conditions within these environments severely test the seismic reflection method. Data 
quality are degraded by static, reveœt>eration, and band-limiting problems due to these near-surface conditions. 
In Long Valley, seismic reflection and refraction methods were used to image both the shallow and deep 
geothermal aquifers within the area. The deep geothermal aquifer, the welded Bishop Tuff, was imaged as a 
fairly continuous reflector across the western moat of the caldera. Near-surface refraction information indicates 
that there may be a buffed paleochannel system or horst and graben system that could control the shallow 
geothermal flow pattem. High-amplitude events observed in a wide-angle survey were offginally interpreted as 
reflections from a contemporary magma body. However, a migration of the events utilizing the new generalized 
cellular migration algorithm indicates that these events are probably reflections from the faults of the caldera 
ring fracture system. The reflections may be caused by the high acoustic impedance contrast associated with the 
juxtaposition of relatively low-velocity, low-density, caldera fill against the granite plutons and metasediments 
of the Sierran basement along this fault system. 

INTRODUCTION 

Historically, bright events on seismic reflection sections 
within active extensional areas have been interpreted as magma 
bodies within the Earth's crust. These interpretations have been 
made in both continental [Brocher, 1981; Brocher and Phinney, 
1981; deVoogd et al., 1986; Serpa and deVoogd, 1987] and oceanic 
areas [Herron et al., 1978; Hale et al., 1982; Morton and Sleep, 
1985; Detrick et al., 1987; Morton et al., 1987]. High-amplitude 
seismic reflection events observed within the upper crust beneath 
Long Valley have many features in common with events 
interpreted to be magma reflections by other investigators. 
However, because of the complicated near-surface geology within 
the area and the lack of robust methods for calibrating this class of 
crustal reflectors, such interpretations must be approached with 
care. 

Major silicic caldera complexes represent fundamental 
structural and thermal anomalies within the lithosphere. These 
features offer grave volcanic and earthquake hazards during major 
eruptive phases [Hermance, 1985]. Three silicic calderas within 
the coterminous United States appear to be young enough and 
large enough to still be potentially active. These calderas are the 
Yellowstone caldera, the Vailes caldera, and the Long Valley 
caldera [Bailey et al., 1976]. The Long Valley area has the most 
active recent volcanic eruption history of these three features 
[Hermance, 1985; Bailey et al., 1976] and a number of studies 
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[Steeples and Iyer, 1976; Bailey et al., 1976; Sanders, 1984; Hill 
et al., 1985b] have suggested the presence of a magma chamber. 
In order to further quantify this possibility the University of 
Wyoming seismic crew conducted wide-angle and vertical incidence 
seismic reflection profiling in the area over a 2 year period from 
1984 through 1985. The data from this profiling represents the 
only high quality seismic reflection data set available within any 
of the potentially active silicic caldera complexes in the 
coterminous United States. 

This study will utilize this data set to investigate the 
hypothesis that the recent reactivation of the caldera is due to the 
presence and recent movement of magma within the upper crust 
beneath Long Valley caldera. The data will additionally be used to 
demonstrate both the utility of the seismic reflection technique to 
investigations within recently active caldera systems and some of 
the difficulties encountered when trying to image features within 
the crust in areas of complex near surface geology. In the course 
of the study, a new technique for three-dimensional (3-D) prestack 
migration of poorly constrained reflection events was developed. 
This technique, termed generalized cellular migration (GCM), will 
also be introduced. 

GEOLOGICAL AND GEOPHYSICAL SETtING 

The Long Valley caldera is an elliptical depression 
approximately 32 km by 17 km in extent. The feature lies in the 
tectonic transition zone between the Basin and Range and Sierra 
Nevada tectonic provinces in eastern California (Figure 1). 

In the early 1980's, evidence for caldera reactivation became 
overwhelming and a notice of potential volcanic hazards for the 
Long Valley area was issued by the U.S. Geological Survey 
(USGS). Evidence included rapid uplift of areas studied by 
geodetic leveling, and a marked increase in earthquake swarms 
within the caldera [Savage et al., 1987]. Models for the 
mechanism causing the reactivation include caldera inflation at 
shallow crustal levels, possibly due to injection of magmatic 
material [Savage et al., 1987; Savage and Cockerham, 1984]. The 
geothermal regime within Long Valley is also of primary 
importance. It has been designated the type locality for hot water 
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the geothermal water is forced up along faults into a shallow 
aquifer at a depth of about 100 m. 

The general subsurface velocity structure beneath the area has 
been described by Steeples and lyer [1976], Hill [1976], and Hill 
et al. [1985a], utilizing teleseismic P wave delays and extensive 
seismic refraction data, respectively. Shear wave attenuation zones 
were identified in the upper 10 km of the crust by Sanders [1984] 
using S wave phases from local earthquakes. Hill et al. [ 1985a] 
interpreted a deep "magma" reflector at a depth of about 7 km near 
the northernmost of these shear wave attenuation zones (Figure 1). 
Higher resolution seismic reflection studies have concentrated their 
efforts in the areas of the caldera identified as anomalous by 
Sanders [1984] and Hill et al. [1985a]. Deemer [1985] and Berg 
[1988] utilized seismic reflection data sets to try to develop a more 
detailed interpretation of the subsurface in these anomalous areas. 
This study is an extension of the reflection work by these 
investigators. 

FIELD WORK 
Fig. 1. Location of the Long Valley study area, University of 
Wyoming seismic experiments, and subsurface features associated Field activities for the seismic reflection experiments 
with the hypothesized Long Valley magma chamber. The main discussed here were undertaken during the summer of 1984 by the 
subsurface features are the upper crustal reflector of Hill et al. University of Wyoming seismic reflection crew. The experiments 
[1985a] (black area), and the S wave attenuation zones of Sanders, consisted of several noise tests, a standard P wave common depth 
[1984] (stippled areas). The locations of public domain deep well point (CDP) profile, a wide-angle P wave expanding spread 
information (heavy dots) are also shown. survey, and limited P-SV converted wave tests. These surveys 

geothermal systems by the USGS [Muffler and Williams, 1976]. 
The geometry and extent of the hydrothermal aquifer system are 
poorly known because of the paucity of drill holes (Figure 1) 
within the caldera fill. However, the highest temperatures within 
the geothermal aquifers appear to occur within the deepest caldera 
fill beneath the western moat [Sorey, 1985, 1987]. These high 
temperatures seem to indicate that a localized body of melt or hot, 
recently crystallized rock may be present beneath the western 
moat. 

The general geological history of the area has been well 
summarized by Bailey et al. [1976] and Bailey [1987]. These 

were conducted over the area within the western moat where 

Sanders [1984] identified the northern shear wave attenuation zone 
(or magma cupola), and where Hill et al. [1985a] identified a deep 
intrabasement reflector (Figure 1). The wide-angle experiment was 
designed specifically to cover the Minaret Summit to Bald 
Mountain refraction profile conducted by Hill et al. [1985a]. 

In all experiments, four P wave vibrator trucks (two Mertz 
model 10 and two Mertz model 11 units) were used to generate the 
source wavefield. Receiver group arrays consisted of a dozen 10 hz 
Geosource model MD-81 geophones. Recording spreads consisted 
of 96 active stations. Data were digitally recorded on a standard 
96 channel Geosource MDS-10 recording system. 

The noise tests consisted of four small walkaway experiments 
testing the wave field characteristics in different surficial materials. 
Walkaway stations were spaced 3 meters apart, with offsets 

studies indicate that the caldera formed approximately 0.7 m.y. ago ranging from 21 to 1500 m. Various source and recording 
in a Plinian eruption of a silicic volcano. During this eruption configurations were tested. Due to great differences in apparent 
about 650 cubic km of rhyolitic material were ejected along the near-surface attenuation between test sites the noise tests were used 
ring fracture system from a magma chamber at depth. Volcanism to relocate the originally planned CDP line and to slightly modify 
occurred in pulses both before and after the catastrophic eruption the originally assumed CDP field parameters [Deemer, 1985]. The 
that formed the caldera. The two most recent events are less than P-SV converted mode tests yielded little information and were not 
1000 years in age. About 600 years ago, rhyolitic material was used in the remainder of the study. 
erupted from several small centers along the linear trend of the A total of about 6 km of nominally 48-fold CDP data were 
Mono-Inyo Craters chain. This group of eruptive centers extends obtained during the 1984 field season (Figure 2). CDP survey 
from the western moat of the caldera northward into the Mono station spacings and associated receiver array lengths were both 33 
Basin [Bailey et al., 1976; Fink, 1985]. As recently as 200 years m. The Vibroseis (TM) source consisted of eight 20 s sweeps 
ago there was subaqueous extrusive activity beneath Mono Lake, (10-58 hz) at each station. The vibrators pulled the spread as the 
within the Mono Basin [Hermance, 1985]. After the main survey moved from southwest to northeast. The near-offset gap 
eruption the caldera was filled with postcaldera volcanics, alluvial between source and receivers, as large as 15 stations, was varied 
and lacustrine sediments, and thin glacial deposits. during the survey to build up far-offset fold. 

The hydrologic and geothermal systems have been described Over 13 km of wide-angle coverage was obtained during the 
by Lachenbruch et al. [1976], Sorey et al. [1978], Blackwell field season. An expanding spread geometry was used in the wide- 
[1985], Sorey [1985, 1987], and Sumnicht and Varga [1987]. The angle survey. Sources and receivers were initially set up at 96 
geothermal system is basically a three-level system. In the stations 33 m apart, with offsets between 10 km and 13 km. 
western moat waters with temperatures in excess of 200øC occur After each set of 10 vibrator sweeps (8-38 hz) both sources and 
at depths of nearly a kilometer within the welded Bishop Tuff receivers were moved 100 m closer toward the midpoint of the 
aquifer. Near the western edge of the resurgent dome a portion of experiment. The source-receiver midpoints were thus concentrated 
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Fig. 2. Detailed location map for the lines used in this study. The CDP locations are shown for the areas with standard 
CDP coverage. These numbers correspond to the CDP numbers in Figures 3, 5, 7, and 8. The station numbers follow 
the wide-angie line in the south and the CDP line in the north. In the central portion the stations numbers refer to 
locations on both lines. 

in a relatively small 3 km by 2 km area over Sanders' [ 1984] by analyzing the first-break travel times on individual shot records 
northern magma cupola (Figure 1). One major advantage of this ' from the CDP survey. 
recording geometry is that the midpoints are spread out in a Hyperbolic events occur on the near-offset records of the 
regularly spaced manner allowing limited 3-D processing of the wide-angle data at approximately 0.8 to 1.2 seconds of two-way 
data. travel time. Similar events occur on the CDP records. These 

In general, the data quality was poor in comparison to events show up on the stacked section of the CDP line (Figure 3) 
reflection data gathered with the same type of equipment and field as a relatively continuous event. The reflector probably represents 
procedures in a sedimentary basin. Although the caldera is a fairly continuous geological feature across much of the western 
topographically a basin, the discontinuous nature of the fill units, moat. The processing sequence leading to the stacked section is 
the extremely variable near-surface velocity distribution, and the given in Figure 4. In Figure 3, the event at about 0.8 s near CDP 
complex structure within the caldera caused extraordinary problems location 740 is localized and discontinuous. The continuous event 
in all phases of the field program. The poor quality of the field degrades near the ends of the line due to loss of fold but also due to 
data posed great difficulty in the processing and interpretational the fact that the event amplitude is highest on individual CDP 
phases of the project. records near the center of the line. An interpreted version of the 

line (Figure 5) highlights the major events evident on the section. 
The main reflector is the interface between the Bishop Tuff, the 

PROCESSING AND INTERPRETATION 
basal caldera fill unit, and the Sierran basement rocks. The T 

The seismic reflection data from Long Valley contain several reflector may be a small intrusive unit within the section. 
reflection events. Some of these events can be identified on both Generalized lithological sections are available from several 
the wide-angle and CDP data sets and can be correlated with major deep wells in the western to central portion of the caldera (Figures 
lithological breaks observed in the sparse deep well data available. 1 and 6). Although none of these wells are coincident with the 
Other events have more uncertain origins. Velocity control seismic lines, they provide the best available structural and 
derived from the stacking velocities is relatively poor due to the stratigraphic control for the seismic data. Approximate two-way, 
discontinuous nature of most of the events. For this reason, normal incidence travel times to the top of the basement are 
extensive use was made of the refraction velocity model developed plotted in Figure 6 next to the lithologic sections. These travel 
by Hill et al. [1985a] for interpretating of the potential reflection times were calculated using appropriate velocities from the models 
events. In addition, useful near-surface information was obtained of Hill et al. [1985a]. 
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Fig. 3. Stacked section of CDP data. Main reflector is the caldera fill/basement interface. Interpretations of this section 
are shown in Figures 5 and 7. The horizontal exaggeration is approximately 2:1. 

Using the lithologies and depths observed in the well data, an then, any true reflection events seen in the seismic data at normal 
interpreted cross section was made along the CDP line (Figure 7). incidence times of greater than 1.2 s must either be true intra- 
The continuous reflector observed on the data sets apparently basement reflections, multiple reflections, P-SV converted phases 
corresponds to the interface between the caldera fill and the reflected from within the caldera fill, or out-of-the-plane, sideswipe 
precaldera crystalline basement. In this general area of the caldera, reflections. 
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Fig. 4. Processing flow used to create stacked CDP seismic 
section shown in Figure 3. 

The interface between the caldera fill and the basement is an 
extremely important unit in the western moat because it is the 
main deep geothermal aquifer in the area [Sorey, 1987]. The 
quality of the reflection image (Figure 3) of this interface indicates 
that seismic reflection surveys could be of great use in identifying 
structural controls on aquifer characteristics. The discontinuous 
event at 0.8 s has been interpreted as a possible intrafill intrusive 
sill because of its shape, small areal extent, a general velocity 
pull-up below the event, and the fact that similar intrusions are 
seen in outcrop on upfaulted blocks to the north of the line [Bailey 
et al., 1976]. In addition, the densities of caldera fill materials 
examined by Carle and Goldstein [1987] indicate that (ignoring 
intrusive momentum) silicic intrusions would naturally tend to 
pond at this level in the stratigraphic section due to buoyancy 
considerations. Blackwell [1985] emphasized that the deep 
geothermal system would have to be thermally recharged 
occasionally throughout the history of the system in order to 
maintain the elevated temperatures observed in the aquifer. The 
interpreted intrusion (Figure 7), and others like it, could have 
provided a thermal charge directly to the aquifer. 

The CDP stacked section provides no information above 
approximately 500 m in depth (Figure 3) since information from 
shallower depths must be deleted during processing of the data. 
However, a refraction statics analysis was performed on the CDP 
data set using the generalized reciprocal method [Palmer, 1981]. 
This analysis provides some limited information about the near- 
surface geology. The refraction interpretation along the CDP line 
(Figure 8) clearly shows the presence of two "bedrock" lows along 
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Fig. 5. Interpreted stacked section of CDP data. Main reflector, marked by the near-horizontal solid line, is the caldera 
fill-basement interface. Event I is the interpreted intrusion. Interpreted faults shown as near-vertical solid lines. D.F. 
marks approximate area of Discovery Fault, an hypothesized geothermal conduit. The horizontal exaggeration is 
approximately 2:1. 
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Explanation - generalized lithologies and velocity ranges (km/s) 

• Sediments (1.2- 1.8) • Landslide block ( ? ) 

• Moat basalts (1.2 - 3.2) Bishop tuff (2.8 -3.2 unwelded, 3.9 -4.4 welded) 
• Moat rhyolite and sediments (1.2 -3.2)• Tertiary dacites and andesites (3.9 - 5.6?) 
[• Glacial till ( ? ) [• Metasedimentary basement (4.9 -5.6) 

::!• Early rhyolite (2.8 - 3.2) i•'• Sierran granitic basement (4.9 -5.6) 
Fig. 6. Generalized lithologic sections from deep wells of Figure 1. Seismic P-wave velocity ranges for generalized 
lithologies taken from Hill et al. [ 1985a], Deemer [ 1985] and Black [ 1990]. Very low velocities generally indicate that 
the lithology is highly fractured or poorly lithified in the near-surface. Approximate seismic two-way travel times to 
basement noted on wells penetrating basement lithologies. 
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Fig. 7. Schematic geological cross section interpreted from near- 
vertical-incidence CDP line of Figure 3. Note absence of 
information above seismic mute zone and within basement. The 

contact between basement and caldera fill (here it is Bishop tuff) is 
fairly well defined by the continuous reflector of Figure 3. The 
intrusions are interpreted from reflection character, velocity 
considerations, magma dynamic considerations, and nearby outcrop 
information. There is no drill information to verify this 
interpretation, however. 

the line. These lows can be interpreted as either structural grabens 
or erosional features such as incised paleochannels. These lows rims 
are at the same depth as the shallow hydrothermal aquifer [Sorey, 
1985, 1987] and may represent preferential flow paths within the 
aquifer system. 

Many high amplitude events are observable on the wide-angle 
shot records with apparent two-way, normal incidence arrival times 
of greater than 1.2 seconds (Figure 9). These events were also 
observed by Deemer [1985]. She grouped all such events together 
as the "slow event" and discussed their possible origin. The 
possibilities discussed included converted P-SV phases, second- 
arriving refracted phases from volcanics within the caldera fill, 
ground roll, and sideswipe. Arguments were given to eliminate 
the possibilities of converted waves and groundroll. Other 
possible explanations for the identity of the events include that 
they are true intrabasement reflections or that they are high- 
amplitude postcritical reflections from within the caldera fill. Tirn• 

Upon examination of common-offset gathers and 3-D CDP 
gathers, the possibilities of both offset dependent phases 
(postcritical arrivals) and second arriving refractions can be 
eliminated because the high-amplitude events are not highly 
correlated with offset but rather with spatial position (3-D 
midpoint). On individual shot records (Figure 9) the "slow event" 
is actually made up of several individual events with different 
move-outs and wavelet characteristics. These individual events 
were summarized by Deemer [1985]. From her analysis the 
apparent intercept times for individual events are well below 1.2 s 
indicating that they could not be individual inline refraction events 
coming from within the caldera fill. 

Fig. 8. Near-surface interpretation of first break information from 
the CDP line. The interpreted paleochannels or graben system 
could act as conduits for exploitable hydrothermal resources. 
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Fig. 9. Wide-angle shot records showing bright reflection events. 
The remaining possible explanations for the identity of the These events are discontinuous (see time plot on Figure 13) but 

high amplitude events below 1.2 s are that they are true are the strongest events observed on any of the wide-angle records. 
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intrabasement reflections or that they are sideswipe reflections 
from features not centered near the midpoints of the wide-angle 
line. In either case, the high-amplitude events are probably 
reflections. 

The 1984 wide-angle data were collected with a recording 
geometry which forced the shot-receiver midpoints to fall within a 
rectangular area, approximately 2 km by 3 km, in the center of the 
spread (Figure 1). Because the midpoints were fairly well 
distributed within this rectangle, sorting of the data traces into 
evenly distributed midpoint or CDP gathers yielded a data set 
which could be processed as a 3oD seismic survey. A 30 by 30 
bin 3oD CDP grid (Figure 10) was defined within the rectangle. 
The data were sorted, edited, NMO corrected, corrected for static 
shifts, muted, and stacked. Stacking velocities (3 to 3.5 km/s) 
were interpreted from standard velocity panels. Three cross- 
sectional slices through the 3-D stacked data set (Figure 11), 
processed to preserve relative amplitude relationships within the 
seismic section, show that these events are indeed much higher in 
amplitude than any other energy in the section. However, a 
generalized time map for the high amplitude events (Figure 10) 
shows that none of the high amplitude events are spatially 
continuous across the entire area of CDP coverage. The apparent 
surface area over which each of the events is observed is much 

smaller than the first Fresnel zone, indicating, along with the very 
low stacking velocities, that simple CDP mapping may be an 
incorrect processing approach. However, because of the very 
lhnited 30 trace aperature of the 3-D wide-angle stack, the true 
spatial position of the bright events cannot be found by 
conventional migration techniques. 

GENERALIZED CELLULAR MIGRATION 

In order to find the true spatial position of the bright events 
observed on the wide-angle records, a new migration scheme, 
generalized cellular migration (GCM), was developed. The theory 
of the GCM technique is outlined here, but a full discussion of the 
method is presented by Black [1990]. 

3-D CDP Coverage 

1984 

Wide-angle 
midpoints 

1984 

experlm 

2-D seismic 

slices shown 

not to scale 

Explanation 

I•l Area of 3-D w•de-angle CDP b•ns 
:.::• Bins containing bright 

reflections on wide-angle 
data 

Fig. 10. Map view of three-dimensional (3-D) midpoint area 
showing distribution of CDP bins and areal extent of events in 3- 
D stacked section. Note the relatively small areas covered by the 
high-amplitude reflections. This area is less than the area of the 
first Fresnel zone for the travel times and frequencies of interest. 
The locations of the cross sections of Figure 11 are also shown. 

The GCM method is a prestack migration algorithm utilizing 
only event arrival times. The technique calculates the probability where P(cjlE) is the probability that cell j is the reflector 
that any subsurface location is a reflecting location, given the set location given the vector E of travel times for all seismic traces. 
of observed arrival times and a subsurface velocity model. The Again, this probability is highest for the cells which are flagged 
subsurface is represented by a three-dimensional grid of cells with by the most seismic traces. Equation (1) is simply Bayes 
individual seismic velocities, similar to velocity models used in Theorem, a basic theorem in probability theory [Helstrom, 1984]. 
tomographic applications. Each cell center represents a possible The term on the right-hand side of the equation is a function of a 
reflector location. The observed travel time between a given shot conditional probability and an a priori probability. In the simplest 
and receiver, picked from the shot record, is compared to a case, where no a priori information is available concerning the 
calculated travel time for each cell center. The calculated travel reflector location (the usual case), the a priori probability can be 
time represents the theoretical travel time from the shot to the cell written as 
center and back to the receiver. This travel time may be calculated P(cj)= 1/N (2) 
along a ray-traced path using an algorithm optimized for cellular 
regions, such as the algorithms ofLangan et al. [1985], or simply where N is the total number of cells in the subsurface velocity 
by applying Snell's Law at each of the cell boundaries. If the model. This is a constant for any given model and can be factored 
difference between the observed and calculated times is less than out of the denominator in equation (1). Since it occurs in both the 
some threshold value, the cell is flagged as a possible reflector numerator and denominator in that equation, it cancels out, and the 
location. final probability values are simply a function of the conditional 

Since each cell is tested as a possible reflector location for probability. The conditional probability, in this case, is the joint 
each shot-receiver pair, some cells will clearly be flagged as probability of the conditional probabilities due to each of M 
possible reflector locations many times, while some will not be seismic traces: 
flagged at all. The cell locations that are flagged the most times p(Ek:])=P(Eolcj)P(E•:j)... P(EMIc]) (3) 
are the cells which have the highest probability of being reflector 
locations [Black, 1990]. This can be stated as where: 

p(c]lE)=[P(EIcj)P(c])]/•[p(E•:i)P(ci) ] (1) p(EK•:j)=K(Ek•:])/•K(Ek•:i) (4) i=l i=1 
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the relative probability that each cell contains a reflector (scaled by 
some constant of proportionality). The convenience of 
manipulating base 10 logarithms is the main reason for preferring 
the use of a ratio of 10 in the assignment of constants in equation 
(5). The probability image generated by this type of analysis is 
equivalent to (and just as simple to interpret as) the reflectivity 
image generated by standard reflection analyses or the velocity 
image generated in tomographic applications. 

APPLICATION OF THE GCM METHOD 

In order to apply the GCM technique to the bright reflection 
events it was first necessary to develop a subsurface velocity 
model for the area near the seismic experiment. A layered one- 
dimensional (l-D) velocity model (Figure 12) was chosen based on 
a simplification of the refraction velocities of Hill et al. [ 1985a]. 
The simple 1-D structure of the model was chosen so that any 
lateral changes in reflector probability could be directly tied to the 
arrival time data and so that any areas of concentrated high 
probability could not be dismissed as artifacts of the lateral 
velocity variations in the model. In addition, the layered velocity 
structure allows a very large model to be analyzed efficiently since 
fast ray-tracing algorithms can be utilized. 

Observed travel times for the bright events (i.e., Figure 13) 
were picked by digitizing amplitude peaks on every fifth shot 
record along the wide-angle line. Sampling in this manner 

Fig. 11. Two-dimensional cross sections through three- 
dimensional (3-D) relative amplitude stack. The cross section 0 
locations are shown on Figure 10. These stacked sections show 
clearly that the bright events between about 2 and 4 s are much 
higher in amplitude than other energy in the section. However, the 
stacking velocity and 3-D event extent indicate that these events 
may actually be due to reflections from out of the midpoint 3 
region. 

VELOCITY ( k m / s ) 

0 2 4 6 

The K terms are constants defined by: 

K(E k:j)= 1.0 if cj was flagged by trace k 
K(E k:j)=0.1 if cjwas not flagged by trace k (5) 

These constants are somewhat arbitrary but reflect 
the fact that a cell center with a proper calculated travel time is 9 
much more likely to be the true reflector location than a cell center 
with a calculated travel time that differs greatly from the observed 
time on some seismic trace k. The constants shown (1.0 and 0.1) 
seismic trace k. The constants shown (1.0 and 0.1) have the nice 
property that the final probabilities found using equation (1) will 
be a simple exponential function of the number of traces which 12 
flagged the cell. This can be stated as 

log,[ P(c• IE) ]=aFj (6) 

where the base r is the ratio of flagged over unflagged 
conditional probabilities, Fj is the number of times that cell j was 15 
flagged during the analysis and a is some constant of Fig. 12. Velocity model used in Long Valley GCM analysis. 
proportionality. Thus a plot of the number of times each cell was This model was adapted from refraction results of Hill et al. 
flagged during the analysis is also an image of the logarithm of [1985a] and reflection results from the current study. 
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Fig. 13. Observed and GCM derived travel time curves for the bright reflection caldera. indicates that the reflection events probably arise from somewhere near the northwest edge of the travel time curves for reflections from depths of 2, 4, and '7 ira calculated assuming standard CMP (CDP) geometries are correct. The observed move-out curve is unlike any of the curves associated with reflections from within the midpoint rectangle, indicating that. the reflections cannot be coming from the CMP area. 
shallOW, ranging in depth from 0.3 to 1.0 krn (Figure 15). The base-10 logarithm of the probability that the reflection events arise from this general location is approximately 60 times higher than the logarittun of the probability that they arise from the CDP locations used in the more standard 3-D CDP processing utilized ß rions of this paper. are indeed coming the prevmUS sec ....... mat the reflections of the 
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is shown by the midpoints (light stiPP le) and probable true high amplitude reflector with the ring fracture Fig. 14. Location of 1984 wide-angle subsurface location of the ring fracture system stipple) determined from GCM analysis. Approximate diagonal patterned line. Geometric constraints indicate that the reflection is probably associated system. However, the highly reflective area is very close to the most recently active eruptive centers within the caldera, 

the Inio craters system. 
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Fig. 15. (a) Location of the area utilized in the GCM analysis, 
and (b)-(c) depth slices of the log-probability image produced by 
the migration. Dark areas have the highest probability of 
containing the reflector. The migration delineated the 
northwestern portion of this area (Figure 14), at depths of less 
than 1 km, as the reflector location. Because of the pseudo-three- 
dimensional nature of the wide-angle survey geometry, the 
"mirror" image often produced by the three-dimensional migration 
of two-dimensional data was greatly attenuated. 

probability of being a reflecting location, the concentration of 
high probabilities must be completely due to information 
contained in the arrival times of the bright reflectors. Subsets of 
the picks were isolated on the basis of their arrival time and each 
subgroup of time picks migrated to the same general area. 
Furthermore, the travel time curve calculated for the highest 
probability cells along the ring fracture system (Figure 13) have a 
move-out very similar to that of the observed travel time curve. 
Conversely, theoretical travel time curves for midpoint reflections 
at various depths (Figure 13) show little correspondence to the 
observed travel time curve. 

In model studies using the GCM method, mirror image 
artifacts are often observed. Such artifacts are particularly strong 
when performing a three-dimensional migration of reflection times 
arising from out of the plane of a two-dimensional line with no 
lateral control [Black, 1990]. Mirror image artifacts were 
observed in the Long Valley migration (Figure 15) but were quite 

weak. The artifacts were attenuated due to the bend in the 
recording geometry (Figure 1) and the associated pseudo-three- 
dimensional spread of the raypaths (Figure 10). 

The results of all of the migrations and ray tracing 
experiments performed for this study indicate that the high- 
amplitude events seen on the records are due to reflections from 
interfaces associated with the caldera ring fracture system at depths 
between 0.3 and 1.0 km. At these depths the faults associated 
with the ring fracture system may juxtapose relatively 
unconsolidated caldera fill ( velocity less than 3.0 km/s) against 
crystalline Sierran basement (velocity around 4.5 to 5 krn/s). A 
velocity contrast of this magnitude could easily explain the bright 
events without calling on magma bodies in the interpretation. 
The reflection coefficient associated with the ring fracture system, 
using velocities of 3.0 and 5.0 km/s and appropriate densities, 
would be approximately 0.3, similar to the apparent reflection 
coefficients calculated in previous studies of crustal "magma" 
reflectors [Brocher, 1981; Serpa and deVoogd, 1987]. It should be 
pointed out, however, that the results do not eliminate the 
possibility that the events are being caused by reflections from one 
or more melt-basement interfaces. In this unlikely scenario, 
however, the general location of the melt would be constrained to 
be within a dikelike body between 0.3 and 1.0 km in depth along 
the northwestern edge of the caldera. 

DISCUSSION AND CONCLUSIONS 

The Long Valley seismic reflection experiments have yielded 
several important results. The use of vibroseis data acquisition 
techniques within the geologically complex caldera moat yielded 
shallow crustal information in the western moat, where there is a 
strong acoustic impedence contrast associated with the caldera fill- 
basement interface. This interface shows up clearly as a 
continuous reflector on standard CDP data within the western moat 

(Figure 3). These positive results indicate that the CDP technique 
could be used for detailed mapping of the top of Sierran basement 
within most of the caldera, if such detailed information was 
deemed necessary for purposes of geothermal exploration or for 
seismic hazard accessment. 

Recent work on the hydrothermal system [Blackwell, 1985; 
Sorey, 1985, 1987] indicates that the unit immediately above the 
basement, the welded Bishop Tuff, is the key hydrothermal aquifer 
in this portion of the caldera and that faults disrupting this unit are 
probably the main geothermal conduits between the deep aquifer 
and the near-surface aquifer system. Our work shows that the 
reflection technique can certainly be used to image the structural 
features of the deep aquifer system within the environment of 
Long Valley caldera. Because most silicic calderas seem to have 
generally similar geological histories, the CDP results indicate 
that the method should also work in other silicic caldera 

environments to provide information on caldera fill geometries, 
faulting, and intrusion history. 

The refraction interpretation along the CDP line (Figure 8) 
clearly shows the presence of what can be interpreted as deeply 
incised paleochannels or a graben system. These interpreted 
features are at the same depth as the shallow hydrothermal aquifer 
[Sorey, 1985, 1987] from which an active geothermal power plant 
in the area produces its power. Although these features are farther 
west than known occurrences of the shallow hydrothermal aquifer, 
the results indicate that shallow refraction analyses associated with 
a CDPexperiment could be used to investigate the subsurface 
geological controls on the distribution of the producible 
geothermal resources. 
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The major goal of the seismic experiments was to image the 
hypothesized magma body beneath the caldera. Although the 
signal from the vibrators was clearly detectable at offsets of 13 
km, indicating that the source energy was adequate to reach 
midcrustal levels, at least three different investigators [Deemer, 
1985; Berg, 1988; and this study] have sifted through the Long 
Valley caldera seismic reflection data discussed here, and found 
little or no evidence that strong magma reflectors exist in the areas 
expected from previous studies. Even though very bright events 
exist on the wide-angle data at travel times which, at first glance, 
seem to indicate that the events could be intrabasement 

"magmatic" reflections, migration of these events shows that they 
probably do not result from reflection from intrabasement 
interfaces at the shot-receiver midpoints but from very strong 
acoustic impedance contrasts associated with an area near the 
northwestern portion of the caldera wall (Figure 14). There are 
probably large buried fault scarps associated with the ring fracture 
system in the immediate area of the preferred reflector locations 
[R.A. Bailey, personal communication, 1987]. At depths less 
than 1 km these faults juxtapose relatively low-density, low- 
velocity caldera fill against unweathered crystalline rocks. Such a 
contact could easily have an associated reflection coefficient of 0.3 
or greater. However, the large apparent reflectivity associated with 
the events could also be generated by juxtaposition of a melt 
against the crystalline country rock in the same location. 
Although the migrated reflector location is not directly along 
strike of the most recent chain of volcanic features, the Mono-Inyo 
crater system (Figure 14), it is quite close to the location where 
the buried ring fracture system probably intersects the dike which 
fed the Mono-Inyo system [Fink, 1985]. However, there is little 
chance that a small, shallow melt body associated with this dike 
system could now exist, since the main body of the larger dike has 
been shown to be completely crystallized [Fink, 1985]. 

In any continental, extensional area there are probably 
numerous range-bounding faults along which relatively 
unconsolidated sediments are juxtaposed against high-velocity 
materials. The results from Long Valley should raise a caution 
flag concerning interpretation of relatively deep "magma" reflectors 
from time ranges consistent with lateral travel times across 
extensional basins where 3-D control is unavailable. 
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