Direct Limits on the $\boldsymbol{B}_{s}^{\mathbf{0}}$ Oscillation Frequency

V. M. Abazov, ${ }^{36}$ B. Abbott, ${ }^{76}$ M. Abolins, ${ }^{66}$ B. S. Acharya, ${ }^{29}$ M. Adams, ${ }^{52}$ T. Adams, ${ }^{50}$ M. Agelou, ${ }^{18}$ J.-L. Agram, ${ }^{19}$ S. H. Ahn,,31 M. Ahsan, ${ }^{60}$ G. D. Alexeev, ${ }^{36}$ G. Alkhazov, ${ }^{40}$ A. Alton, ${ }^{65}$ G. Alverson, ${ }^{64}$ G. A. Alves, ${ }^{2}$ M. Anastasoaie, ${ }^{35}$ T. Andeen, ${ }^{54}$ S. Anderson, ${ }^{46}$ B. Andrieu, ${ }^{17}$ M. S. Anzelc, ${ }^{54}$ Y. Arnoud, ${ }^{14}$ M. Arov, ${ }^{53}$ A. Askew, ${ }^{50}$ B. Åsman, ${ }^{41}$ A. C. S. Assis Jesus, ${ }^{3}$ O. Atramentov, ${ }^{58}$ C. Autermann, ${ }^{21}$ C. Avila, ${ }^{8}$ C. Ay, ${ }^{24}$ F. Badaud, ${ }^{13}$ A. Baden, ${ }^{62}$ L. Bagby, ${ }^{53}$ B. Baldin, ${ }^{51}$ D. V. Bandurin, ${ }^{36}$ P. Banerjee, ${ }^{29}$ S. Banerjee, ${ }^{29}$ E. Barberis, ${ }^{64}$ P. Bargassa, ${ }^{81}$ P. Baringer, ${ }^{59}$ C. Barnes, ${ }^{44}$ J. Barreto, ${ }^{2}$ J. F. Bartlett, ${ }^{51}$ U. Bassler, ${ }^{17}$ D. Bauer, ${ }^{44}$ A. Bean, ${ }^{59}$ M. Begalli, ${ }^{3}$ M. Begel, ${ }^{72}$ C. Belanger-Champagne, ${ }^{5}$ A. Bellavance, ${ }^{68}$ J. A. Benitez, ${ }^{66}$ S. B. Beri, ${ }^{27}$ G. Bernardi, ${ }^{17}$ R. Bernhard, ${ }^{42}$ L. Berntzon, ${ }^{15}$ I. Bertram, ${ }^{43}$ M. Besançon, ${ }^{18}$ R. Beuselinck, ${ }^{44}$ V. A. Bezzubov, ${ }^{39}$ P. C. Bhat, ${ }^{51}$ V. Bhatnagar, ${ }^{27}$ M. Binder, ${ }^{25}$ C. Biscarat, ${ }^{43}$ K. M. Black, ${ }^{63}$ I. Blackler, ${ }^{44}$ G. Blazey, ${ }^{53}$ F. Blekman, ${ }^{44}$ S. Blessing, ${ }^{50}$ D. Bloch, ${ }^{19} \mathrm{~K}$. Bloom, ${ }^{68}$ U. Blumenschein, ${ }^{23}$ A. Boehnlein, ${ }^{51}$ O. Boeriu, ${ }^{56}$ T. A. Bolton, ${ }^{60}$ F. Borcherding, ${ }^{51}$ G. Borissov, ${ }^{43}$ K. Bos, ${ }^{34}$ T. Bose, ${ }^{78}$ A. Brandt, ${ }^{79}$ R. Brock, ${ }^{66}$ G. Brooijmans, ${ }^{71}$ A. Bross, ${ }^{51}$ D. Brown, ${ }^{79}$ N. J. Buchanan, ${ }^{50}$ D. Buchholz, ${ }^{54}$ M. Buehler, ${ }^{82}$ V. Buescher, ${ }^{23}$ S. Burdin, ${ }^{51}$ S. Burke, ${ }^{46}$ T. H. Burnett, ${ }^{83}$ E. Busato, ${ }^{17}$ C. P. Buszello, ${ }^{44}$ J. M. Butler, ${ }^{63}$ S. Calvet, ${ }^{15}$ J. Cammin, ${ }^{72}$ S. Caron, ${ }^{34}$ W. Carvalho, ${ }^{3}$ B. C. K. Casey, ${ }^{78}$ N. M. Cason, ${ }^{56}$ H. Castilla-Valdez, ${ }^{33}$ S. Chakrabarti, ${ }^{29}$ D. Chakraborty, ${ }^{53}$ K. M. Chan, ${ }^{72}$ A. Chandra, ${ }^{49}$ D. Chapin, ${ }^{78}$ F. Charles, ${ }^{19}$ E. Cheu, ${ }^{46}$ F. Chevallier, ${ }^{14}$ D. K. Cho, ${ }^{63}$ S. Choi, ${ }^{32}$ B. Choudhary, ${ }^{28}$ L. Christofek, ${ }^{59}$ D. Claes, ${ }^{68}$ B. Clément, ${ }^{19}$ C. Clément, ${ }^{41}$ Y. Coadou, ${ }^{5}$ M. Cooke, ${ }^{81}$ W. E. Cooper, ${ }^{51}$ D. Coppage, ${ }^{59}$ M. Corcoran, ${ }^{81}$ M.-C. Cousinou, ${ }^{15}$ B. Cox, ${ }^{45}$ S. Crépé-Renaudin, ${ }^{14}$ D. Cutts, ${ }^{78}$ M. Ćwiok, ${ }^{30}$ H. da Motta, ${ }^{2}$ A. Das, ${ }^{63}$ M. Das, ${ }^{61}$ B. Davies, ${ }^{43}$ G. Davies, ${ }^{44}$ G. A. Davis, ${ }^{54}$ K. De, ${ }^{79}$ P. de Jong, ${ }^{34}$ S. J. de Jong, ${ }^{35}$ E. De La Cruz-Burelo, ${ }^{65}$ C. De Oliveira Martins, ${ }^{3}$ J. D. Degenhardt, ${ }^{65}$ F. Déliot, ${ }^{18}$ M. Demarteau, ${ }^{51}$ R. Demina, ${ }^{72}$ P. Demine, ${ }^{18}$ D. Denisov, ${ }^{51}$ S. P. Denisov, ${ }^{39}$ S. Desai, ${ }^{73}$ H. T. Diehl, ${ }^{51}$ M. Diesburg, ${ }^{51}$ M. Doidge, ${ }^{43}$ A. Dominguez, ${ }^{68}$ H. Dong, ${ }^{73}$ L. V. Dudko, ${ }^{38}$ L. Duflot, ${ }^{16}$ S. R. Dugad, ${ }^{29}$ A. Duperrin, ${ }^{15}$ J. Dyer, ${ }^{66}$ A. Dyshkant, ${ }^{53}$ M. Eads, ${ }^{68}$ D. Edmunds, ${ }^{66}$ T. Edwards, ${ }^{45}$ J. Ellison, ${ }^{49}$ J. Elmsheuser, ${ }^{25}$ V. D. Elvira, ${ }^{51}$ S. Eno, ${ }^{62}$ P. Ermolov, ${ }^{38}$ J. Estrada, ${ }^{51}$ H. Evans, ${ }^{55}$ A. Evdokimov, ${ }^{37}$ V. N. Evdokimov, ${ }^{39}$ S. N. Fatakia, ${ }^{63}$ L. Feligioni, ${ }^{63}$ A. V. Ferapontov, ${ }^{60}$ T. Ferbel, ${ }^{72}$ F. Fiedler, ${ }^{25}$ F. Filthaut, ${ }^{35}$ W. Fisher, ${ }^{51}$ H. E. Fisk, ${ }^{51}$ I. Fleck, ${ }^{23}$ M. Ford, ${ }^{45}$ M. Fortner, ${ }^{53}$ H. Fox, ${ }^{23}$ S. Fu, ${ }^{51}$ S. Fuess, ${ }^{51}$ T. Gadfort, ${ }^{83}$ C.F. Galea, ${ }^{35}$ E. Gallas, ${ }^{51}$ E. Galyaev, ${ }^{56}$ C. Garcia, ${ }^{72}$ A. Garcia-Bellido, ${ }^{83}$ J. Gardner, ${ }^{59}$ V. Gavrilov, ${ }^{37}$ A. Gay, ${ }^{19}$ P. Gay, ${ }^{13}$ D. Gelé, ${ }^{19}$ R. Gelhaus, ${ }^{49}$ C. E. Gerber, ${ }^{52}$ Y. Gershtein, ${ }^{50}$ D. Gillberg, ${ }^{5}$ G. Ginther, ${ }^{72}$ N. Gollub, ${ }^{41}$ B. Gómez, ${ }^{8}$ K. Gounder, ${ }^{51}$ A. Goussiou, ${ }^{56}$ P. D. Grannis, ${ }^{73}$ H. Greenlee, ${ }^{51}$ Z. D. Greenwood, ${ }^{61}$
E. M. Gregores, ${ }^{4}$ G. Grenier, ${ }^{20}$ Ph. Gris, ${ }^{13}$ J.-F. Grivaz, ${ }^{16}$ S. Grünendahl, ${ }^{51}$ M. W. Grünewald, ${ }^{30}$ F. Guo, ${ }^{73}$ J. Guo, ${ }^{73}$ G. Gutierrez, ${ }^{51}$ P. Gutierrez, ${ }^{76}$ A. Haas, ${ }^{71}$ N. J. Hadley, ${ }^{62}$ P. Haefner, ${ }^{25}$ S. Hagopian, ${ }^{50}$ J. Haley, ${ }^{69}$ I. Hall, ${ }^{76}$ R. E. Hall, ${ }^{48}$ L. Han, ${ }^{7}$ K. Hanagaki, ${ }^{51}$ K. Harder, ${ }^{60}$ A. Harel, ${ }^{72}$ R. Harrington, ${ }^{64}$ J. M. Hauptman, ${ }^{58}$ R. Hauser, ${ }^{66}$ J. Hays, ${ }^{54}$ T. Hebbeker, ${ }^{21}$ D. Hedin, ${ }^{53}$ J. G. Hegeman, ${ }^{34}$ J. M. Heinmiller, ${ }^{52}$ A. P. Heinson, ${ }^{49}$ U. Heintz, ${ }^{63}$ C. Hensel, ${ }^{59}$ G. Hesketh, ${ }^{64}$ M. D. Hildreth, ${ }^{56}$ R. Hirosky, ${ }^{82}$ J. D. Hobbs, ${ }^{73}$ B. Hoeneisen, ${ }^{12}$ M. Hohlfeld, ${ }^{16}$ S. J. Hong, ${ }^{31}$ R. Hooper, ${ }^{78}$ P. Houben, ${ }^{34}$ Y. Hu, ${ }^{73}$ V. Hynek, ${ }^{9}$ I. Iashvili, ${ }^{70}$ R. Illingworth, ${ }^{51}$ A. S. Ito, ${ }^{51}$ S. Jabeen, ${ }^{63}$ M. Jaffré, ${ }^{16}$ S. Jain, ${ }^{76}$ V. Jain, ${ }^{74}$ K. Jakobs, ${ }^{23}$ C. Jarvis, ${ }^{62}$ A. Jenkins, ${ }^{44}$ R. Jesik, ${ }^{44}$ K. Johns, ${ }^{46}$ C. Johnson, ${ }^{71}$ M. Johnson, ${ }^{51}$ A. Jonckheere, ${ }^{51}$ P. Jonsson, ${ }^{44}$ A. Juste, ${ }^{51}$ D. Käfer, ${ }^{21}$ S. Kahn, ${ }^{74}$ E. Kajfasz, ${ }^{15}$ A. M. Kalinin, ${ }^{36}$ J. M. Kalk, ${ }^{61}$ J. R. Kalk, ${ }^{66}$ S. Kappler, ${ }^{21}$ D. Karmanov, ${ }^{38}$ J. Kasper, ${ }^{63}$ I. Katsanos, ${ }^{71}$ D. Kau, ${ }^{50}$ R. Kaur, ${ }^{27}$ R. Kehoe, ${ }^{80}$ S. Kermiche, ${ }^{15}$ S. Kesisoglou, ${ }^{78}$ A. Khanov, ${ }^{77}$ A. Kharchilava, ${ }^{70}$ Y. M. Kharzheev, ${ }^{36}$ D. Khatidze, ${ }^{71}$ H. Kim, ${ }^{79}$ T. J. Kim, ${ }^{31}$ M. H. Kirby, ${ }^{35}$ B. Klima, ${ }^{51}$ J. M. Kohli, ${ }^{27}$ J.-P. Konrath, ${ }^{23}$ M. Kopal, ${ }^{76}$ V. M. Korablev, ${ }^{39}$ J. Kotcher, ${ }^{74}$ B. Kothari, ${ }^{71}$ A. Koubarovsky, ${ }^{38}$ A. V. Kozelov, ${ }^{39}$ J. Kozminski, ${ }^{66}$ A. Kryemadhi, ${ }^{82}$ S. Krzywdzinski, ${ }^{51}$ T. Kuhl, ${ }^{24}$ A. Kumar, ${ }^{70}$ S. Kunori, ${ }^{62}$ A. Kupco, ${ }^{11}$ T. Kurča, ${ }^{20, *}$ J. Kvita, ${ }^{9}$ S. Lager, ${ }^{41}$ S. Lammers, ${ }^{71}$ G. Landsberg, ${ }^{78}$ J. Lazoflores, ${ }^{50}$ A.-C. Le Bihan, ${ }^{19}$ P. Lebrun, ${ }^{20}$ W. M. Lee, ${ }^{53}$ A. Leflat, ${ }^{38}$ F. Lehner, ${ }^{42}$ C. Leonidopoulos, ${ }^{71}$ V. Lesne, ${ }^{13}$ J. Leveque, ${ }^{46}$ P. Lewis, ${ }^{44}$ J. Li, ${ }^{79}$ Q. Z. Li, ${ }^{51}$ J. G. R. Lima, ${ }^{53}$ D. Lincoln, ${ }^{51}$ J. Linnemann, ${ }^{66}$ V. V. Lipaev, ${ }^{39}$ R. Lipton, ${ }^{51}$ Z. Liu, ${ }^{5}$ L. Lobo, ${ }^{44}$ A. Lobodenko, ${ }^{40}$ M. Lokajicek, ${ }^{11}$ A. Lounis, ${ }^{19}$ P. Love, ${ }^{43}$ H. J. Lubatti, ${ }^{83}$ M. Lynker, ${ }^{56}$ A. L. Lyon, ${ }^{51}$ A. K. A. Maciel, ${ }^{2}$ R. J. Madaras, ${ }^{47}$ P. Mättig, ${ }^{26}$ C. Magass, ${ }^{21}$ A. Magerkurth, ${ }^{65}$ A.-M. Magnan, ${ }^{14}$ N. Makovec, ${ }^{16}$ P. K. Mal, ${ }^{56}$ H. B. Malbouisson, ${ }^{3}$ S. Malik, ${ }^{68}$ V. L. Malyshev, ${ }^{36}$ H. S. Mao, ${ }^{6}$ Y. Maravin, ${ }^{60}$ M. Martens, ${ }^{51}$
S. E. K. Mattingly, ${ }^{78}$ R. McCarthy, ${ }^{73}$ R. McCroskey, ${ }^{46}$ D. Meder, ${ }^{24}$ A. Melnitchouk, ${ }^{67}$ A. Mendes, ${ }^{15}$ L. Mendoza, ${ }^{8}$ M. Merkin, ${ }^{38}$ K. W. Merritt,,${ }^{51}$ A. Meyer, ${ }^{21}$ J. Meyer, ${ }^{22}$ M. Michaut, ${ }^{18}$ H. Miettinen, ${ }^{81}$ T. Millet, ${ }^{20}$ J. Mitrevski, ${ }^{71}$ J. Molina, ${ }^{3}$ N. K. Mondal, ${ }^{29}$ J. Monk, ${ }^{45}$ R. W. Moore, ${ }^{5}$ T. Moulik, ${ }^{59}$ G. S. Muanza, ${ }^{16}$ M. Mulders, ${ }^{51}$ M. Mulhearn, ${ }^{71}$ L. Mundim, ${ }^{3}$ Y. D. Mutaf, ${ }^{73}$ E. Nagy, ${ }^{15}$ M. Naimuddin, ${ }^{28}$ M. Narain, ${ }^{63}$ N. A. Naumann, ${ }^{35}$ H. A. Neal, ${ }^{65}$ J. P. Negret, ${ }^{8}$ S. Nelson, ${ }^{50}$ P. Neustroev, ${ }^{40}$ C. Noeding, ${ }^{23}$ A. Nomerotski, ${ }^{51}$ S. F. Novaes, ${ }^{4}$ T. Nunnemann, ${ }^{25}$ V. O’Dell, ${ }^{51}$ D. C. O'Neil, ${ }^{5}$ G. Obrant, ${ }^{40}$ V. Oguri, ${ }^{3}$ N. Oliveira, ${ }^{3}$ N. Oshima,,${ }^{51}$ R. Otec, ${ }^{10}$ G. J. Otero y Garzón, ${ }^{52}$ M. Owen,,${ }^{45}$ P. Padley, ${ }^{81}$ N. Parashar, ${ }^{57}$ S.-J. Park, ${ }^{72}$
S. K. Park, ${ }^{31}$ J. Parsons, ${ }^{71}$ R. Partridge, ${ }^{78}$ N. Parua, ${ }^{73}$ A. Patwa, ${ }^{74}$ G. Pawloski, ${ }^{81}$ P. M. Perea, ${ }^{49}$ E. Perez, ${ }^{18}$ K. Peters, ${ }^{45}$ P. Pétroff, ${ }^{16}$ M. Petteni, ${ }^{44}$ R. Piegaia, ${ }^{1}$ M.-A. Pleier, ${ }^{22}$ P. L. M. Podesta-Lerma, ${ }^{33}$ V. M. Podstavkov, ${ }^{51}$ Y. Pogorelov, ${ }^{56}$ M.-E. Pol, ${ }^{2}$ A. Pompoš, ${ }^{76}$ B. G. Pope, ${ }^{66}$ A. V. Popov, ${ }^{39}$ W. L. Prado da Silva, ${ }^{3}$ H. B. Prosper, ${ }^{50}$ S. Protopopescu, ${ }^{74}$ J. Qian, ${ }^{65}$ A. Quadt, ${ }^{22}$ B. Quinn, ${ }^{67}$ K. J. Rani, ${ }^{29}$ K. Ranjan, ${ }^{28}$ P. A. Rapidis, ${ }^{51}$ P. N. Ratoff, ${ }^{43}$ P. Renkel, ${ }^{80}$ S. Reucroft, ${ }^{64}$ M. Rijssenbeek, ${ }^{73}$ I. Ripp-Baudot, ${ }^{19}$ F. Rizatdinova, ${ }^{77}$ S. Robinson, ${ }^{44}$ R. F. Rodrigues, ${ }^{3}$ C. Royon, ${ }^{18}$ P. Rubinov, ${ }^{51}$ R. Ruchti, ${ }^{56}$ V. I. Rud, ${ }^{38}$ G. Sajot, ${ }^{14}$ A. Sánchez-Hernández, ${ }^{33}$ M. P. Sanders, ${ }^{62}$ A. Santoro, ${ }^{3}$ G. Savage, ${ }^{51}$ L. Sawyer, ${ }^{61}$ T. Scanlon, ${ }^{44}$ D. Schaile, ${ }^{25}$ R. D. Schamberger, ${ }^{73}$ Y. Scheglov, ${ }^{40}$ H. Schellman, ${ }^{54}$ P. Schieferdecker, ${ }^{25}$ C. Schmitt, ${ }^{26}$ C. Schwanenberger, ${ }^{45}$ A. Schwartzman, ${ }^{69}$ R. Schwienhorst, ${ }^{66}$ S. Sengupta, ${ }^{50}$ H. Severini, ${ }^{76}$ E. Shabalina, ${ }^{52}$ M. Shamim, ${ }^{60}$ V. Shary, ${ }^{18}$ A. A. Shchukin, ${ }^{39}$ W. D. Shephard, ${ }^{56}$ R. K. Shivpuri, ${ }^{28}$ D. Shpakov, ${ }^{64}$ V. Siccardi, ${ }^{19}$ R. A. Sidwell, ${ }^{60}$ V. Simak, ${ }^{10}$ V. Sirotenko, ${ }^{51}$ P. Skubic, ${ }^{76}$ P. Slattery, ${ }^{72}$ R. P. Smith, ${ }^{51}$ G. R. Snow, ${ }^{68}$ J. Snow, ${ }^{75}$ S. Snyder, ${ }^{74}$ S. Söldner-Rembold, ${ }^{45}$ X. Song, ${ }^{53}$ L. Sonnenschein, ${ }^{17}$ A. Sopczak, ${ }^{43}$ M. Sosebee, ${ }^{79}$ K. Soustruznik, ${ }^{9}$ M. Souza, ${ }^{2}$ B. Spurlock, ${ }^{79}$ J. Stark, ${ }^{14}$ J. Steele,,${ }^{61}$ K. Stevenson, ${ }^{55}$ V. Stolin, ${ }^{37}$ A. Stone, ${ }^{52}$ D. A. Stoyanova, ${ }^{39}$ J. Strandberg, ${ }^{41}$ M. A. Strang, ${ }^{70}$ M. Strauss, ${ }^{76}$ R. Ströhmer, ${ }^{25}$ D. Strom, ${ }^{54}$ M. Strovink, ${ }^{47}$ L. Stutte, ${ }^{51}$ S. Sumowidagdo, ${ }^{50}$ A. Sznajder, ${ }^{3}$ M. Talby, ${ }^{15}$ P. Tamburello, ${ }^{46}$ W. Taylor, ${ }^{5}$ P. Telford, ${ }^{45}$ J. Temple, ${ }^{46}$ B. Tiller, ${ }^{25}$ M. Titov, ${ }^{23}$ V. V. Tokmenin, ${ }^{36}$ M. Tomoto, ${ }^{51}$ T. Toole, ${ }^{62}$ I. Torchiani, ${ }^{23}$ S. Towers, ${ }^{43}$ T. Trefzger, ${ }^{24}$ S. Trincaz-Duvoid, ${ }^{17}$ D. Tsybychev, ${ }^{73}$ B. Tuchming, ${ }^{18}$ C. Tully, ${ }^{69}$ A. S. Turcot, ${ }^{45}$ P. M. Tuts, ${ }^{71}$ R. Unalan, ${ }^{66}$ L. Uvarov, ${ }^{40}$ S. Uvarov, ${ }^{40}$ S. Uzunyan, ${ }^{53}$ B. Vachon, ${ }^{5}$ P. J. van den Berg, ${ }^{34}$ R. Van Kooten, ${ }^{55}$ W. M. van Leeuwen, ${ }^{34}$ N. Varelas, ${ }^{52}$ E. W. Varnes, ${ }^{46}$ A. Vartapetian, ${ }^{79}$ I. A. Vasilyev, ${ }^{39}$ M. Vaupel, ${ }^{26}$ P. Verdier, ${ }^{20}$ L. S. Vertogradov, ${ }^{36}$ M. Verzocchi, ${ }^{51}$ F. Villeneuve-Seguier, ${ }^{44}$ P. Vint, ${ }^{44}$ J.-R. Vlimant, ${ }^{17}$ E. Von Toerne, ${ }^{60}$ M. Voutilainen, ${ }^{68, \dagger}$ M. Vreeswijk, ${ }^{34}$ H. D. Wahl, ${ }^{50}$ L. Wang, ${ }^{62}$ J. Warchol, ${ }^{56}$ G. Watts, ${ }^{83}$ M. Wayne, ${ }^{56}$ M. Weber, ${ }^{51}$ H. Weerts, ${ }^{66}$ N. Wermes, ${ }^{22}$ M. Wetstein, ${ }^{62}$ A. White, ${ }^{79}$ D. Wicke, ${ }^{26}$ G. W. Wilson, ${ }^{59}$ S. J. Wimpenny, ${ }^{49}$ M. Wobisch, ${ }^{51}$ J. Womersley, ${ }^{51}$ D. R. Wood, ${ }^{64}$ T. R. Wyatt, ${ }^{45}$ Y. Xie, ${ }^{78}$ N. Xuan, ${ }^{56}$ S. Yacoob, ${ }^{54}$ R. Yamada, ${ }^{51}$ M. Yan, ${ }^{62}$ T. Yasuda, ${ }^{51}$ Y. A. Yatsunenko, ${ }^{36}$ K. Yip, ${ }^{74}$ H. D. Yoo, ${ }^{78}$ S. W. Youn, ${ }^{54}$ C. Yu, ${ }^{14}$ J. Yu, ${ }^{79}$ A. Yurkewicz, ${ }^{73}$ A. Zatserklyaniy, ${ }^{53}$ C. Zeitnitz, ${ }^{26}$ D. Zhang, ${ }^{51}$ T. Zhao, ${ }^{83}$ Z. Zhao, ${ }^{65}$ B. Zhou, ${ }^{65}$ J. Zhu, ${ }^{73}$ M. Zielinski, ${ }^{72}$ D. Zieminska, ${ }^{55}$ A. Zieminski, ${ }^{55}$ V. Zutshi, ${ }^{53}$ and E. G. Zverev ${ }^{38}$

(D0 Collaboration)

${ }^{1}$ Universidad de Buenos Aires, Buenos Aires, Argentina
${ }^{2}$ LAFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
${ }^{3}$ Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
${ }^{4}$ Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo, Brazil
${ }^{5}$ University of Alberta, Edmonton, Alberta, Canada, Simon Fraser University, Burnaby, British Columbia, Canada, York University, Toronto, Ontario, Canada, and McGill University, Montreal, Quebec, Canada
${ }^{6}$ Institute of High Energy Physics, Beijing, People's Republic of China
${ }^{7}$ University of Science and Technology of China, Hefei, People's Republic of China
${ }^{8}$ Universidad de los Andes, Bogotá, Colombia
${ }^{9}$ Center for Particle Physics, Charles University, Prague, Czech Republic
${ }^{10}$ Czech Technical University, Prague, Czech Republic
${ }^{11}$ Center for Particle Physics, Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
${ }^{12}$ Universidad San Francisco de Quito, Quito, Ecuador
${ }^{13}$ Laboratoire de Physique Corpusculaire, IN2P3-CNRS, Université Blaise Pascal, Clermont-Ferrand, France
${ }^{14}$ Laboratoire de Physique Subatomique et de Cosmologie, IN2P3-CNRS, Universite de Grenoble 1, Grenoble, France
${ }^{15}$ CPPM, IN2P3-CNRS, Université de la Méditerranée, Marseille, France
${ }^{16}$ IN2P3-CNRS, Laboratoire de l'Accélérateur Linéaire, Orsay, France
${ }^{17}$ LPNHE, IN2P3-CNRS, Universités Paris VI and VII, Paris, France
${ }^{18}$ DAPNIA/Service de Physique des Particules, CEA, Saclay, France
${ }^{19}$ IReS, IN2P3-CNRS, Université Louis Pasteur, Strasbourg, France, and Université de Haute Alsace, Mulhouse, France
${ }^{20}$ Institut de Physique Nucléaire de Lyon, IN2P3-CNRS, Université Claude Bernard, Villeurbanne, France
${ }^{21}$ III. Physikalisches Institut A, RWTH Aachen, Aachen, Germany
${ }^{22}$ Physikalisches Institut, Universität Bonn, Bonn, Germany
${ }^{23}$ Physikalisches Institut, Universität Freiburg, Freiburg, Germany
${ }^{24}$ Institut für Physik, Universität Mainz, Mainz, Germany
${ }^{25}$ Ludwig-Maximilians-Universität München, München, Germany
${ }^{26}$ Fachbereich Physik, University of Wuppertal, Wuppertal, Germany
${ }^{27}$ Panjab University, Chandigarh, India

${ }^{28}$ Delhi University, Delhi, India
${ }^{29}$ Tata Institute of Fundamental Research, Mumbai, India
${ }^{30}$ University College Dublin, Dublin, Ireland
${ }^{31}$ Korea Detector Laboratory, Korea University, Seoul, Korea
${ }^{32}$ SungKyunKwan University, Suwon, Korea
${ }^{33}$ CINVESTAV, Mexico City, Mexico
${ }^{34}$ FOM-Institute NIKHEF and University of Amsterdam/NIKHEF, Amsterdam, The Netherlands
${ }^{35}$ Radboud University Nijmegen/NIKHEF, Nijmegen, The Netherlands
${ }^{36}$ Joint Institute for Nuclear Research, Dubna, Russia
${ }^{37}$ Institute for Theoretical and Experimental Physics, Moscow, Russia
${ }^{38}$ Moscow State University, Moscow, Russia
${ }^{39}$ Institute for High Energy Physics, Protvino, Russia
${ }^{40}$ Petersburg Nuclear Physics Institute, St. Petersburg, Russia
${ }^{41}$ Lund University, Lund, Sweden, Royal Institute of Technology and Stockholm University, Stockholm, Sweden, and Uppsala University, Uppsala, Sweden
${ }^{42}$ Physik Institut der Universität Zürich, Zürich, Switzerland
${ }^{43}$ Lancaster University, Lancaster, United Kingdom
${ }^{44}$ Imperial College, London, United Kingdom
${ }^{45}$ University of Manchester, Manchester, United Kingdom
${ }^{46}$ University of Arizona, Tucson, Arizona 85721, USA
${ }^{47}$ Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
and University of California, Berkeley, California 94720, USA
${ }^{48}$ California State University, Fresno, California 93740, USA
${ }^{49}$ University of California, Riverside, California 92521, USA
${ }^{50}$ Florida State University, Tallahassee, Florida 32306, USA
${ }^{51}$ Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
${ }^{52}$ University of Illinois at Chicago, Chicago, Illinois 60607, USA
${ }^{53}$ Northern Illinois University, DeKalb, Illinois 60115, USA
${ }^{54}$ Northwestern University, Evanston, Illinois 60208, USA
${ }^{55}$ Indiana University, Bloomington, Indiana 47405, USA
${ }^{56}$ University of Notre Dame, Notre Dame, Indiana 46556, USA
${ }^{57}$ Purdue University Calumet, Hammond, Indiana 46323, USA
${ }^{58}$ Iowa State University, Ames, Iowa 50011, USA
${ }^{59}$ University of Kansas, Lawrence, Kansas 66045, USA
${ }^{60}$ Kansas State University, Manhattan, Kansas 66506, USA
${ }^{61}$ Louisiana Tech University, Ruston, Louisiana 71272, USA
${ }^{62}$ University of Maryland, College Park, Maryland 20742, USA
${ }^{63}$ Boston University, Boston, Massachusetts 02215, USA
${ }^{64}$ Northeastern University, Boston, Massachusetts 02115, USA
${ }^{65}$ University of Michigan, Ann Arbor, Michigan 48109, USA
${ }^{66}$ Michigan State University, East Lansing, Michigan 48824, USA
${ }^{67}$ University of Mississippi, University, Mississippi 38677, USA
${ }^{68}$ University of Nebraska, Lincoln, Nebraska 68588, USA
${ }^{69}$ Princeton University, Princeton, New Jersey 08544, USA
${ }^{70}$ State University of New York, Buffalo, New York 14260, USA
${ }^{71}$ Columbia University, New York, New York 10027, USA
${ }^{72}$ University of Rochester, Rochester, New York 14627, USA
${ }^{73}$ State University of New York, Stony Brook, New York 11794, USA
${ }^{74}$ Brookhaven National Laboratory, Upton, New York 11973, USA
${ }^{75}$ Langston University, Langston, Oklahoma 73050, USA
${ }^{76}$ University of Oklahoma, Norman, Oklahoma 73019, USA
${ }^{77}$ Oklahoma State University, Stillwater, Oklahoma 74078, USA
${ }^{78}$ Brown University, Providence, Rhode Island 02912, USA
${ }^{79}$ University of Texas, Arlington, Texas 76019, USA
${ }^{80}$ Southern Methodist University, Dallas, Texas 75275, USA
${ }^{81}$ Rice University, Houston, Texas 77005, USA
${ }^{82}$ University of Virginia, Charlottesville, Virginia 22901, USA
${ }^{83}$ University of Washington, Seattle, Washington 98195, USA (Received 15 March 2006; published 14 July 2006)

We report results of a study of the B_{s}^{0} oscillation frequency using a large sample of B_{s}^{0} semileptonic decays corresponding to approximately $1 \mathrm{fb}^{-1}$ of integrated luminosity collected by the D 0 experiment at

Abstract

the Fermilab Tevatron Collider in 2002-2006. The amplitude method gives a lower limit on the B_{s}^{0} oscillation frequency at $14.8 \mathrm{ps}^{-1}$ at the 95% C.L. At $\Delta m_{s}=19 \mathrm{ps}^{-1}$, the amplitude deviates from the hypothesis $\mathcal{A}=0(1)$ by 2.5 (1.6) standard deviations, corresponding to a two-sided C.L. of 1% (10%). A likelihood scan over the oscillation frequency, Δm_{s}, gives a most probable value of $19 \mathrm{ps}^{-1}$ and a range of $17<\Delta m_{s}<21 \mathrm{ps}^{-1}$ at the 90% C.L., assuming Gaussian uncertainties. This is the first direct two-sided bound measured by a single experiment. If Δm_{s} lies above $22 \mathrm{ps}^{-1}$, then the probability that it would produce a likelihood minimum similar to the one observed in the interval $16-22 \mathrm{ps}^{-1}$ is $(5.0 \pm 0.3) \%$.

DOI: 10.1103/PhysRevLett.97.021802

Measurements of flavor oscillations in the B_{d}^{0} and B_{s}^{0} systems provide important constraints on the Cabibbo-Kobayashi-Maskawa (CKM) unitarity triangle and the source of $C P$ violation in the standard model (SM) [1]. The phenomenon of B_{d}^{0} oscillations is well established [2], with a precisely measured oscillation frequency Δm_{d}. In the SM , this parameter is proportional to the combination $\left|V_{\mathrm{tb}}^{*} V_{\mathrm{td}}\right|^{2}$ of CKM matrix elements. Since the matrix element V_{ts} is larger than V_{td}, the expected frequency Δm_{s} is higher. As a result, B_{s}^{0} oscillations have not been observed by any previous experiment and the current 95% C.L. lower limit on Δm_{s} is $16.6 \mathrm{ps}^{-1}$ [2]. A measurement of Δm_{s} would yield the ratio $\left|V_{\mathrm{ts}} / V_{\mathrm{td}}\right|$, which has a smaller uncertainty than $\left|V_{\mathrm{td}}\right|$ alone due to the cancellation of certain theory uncertainties. If the SM is correct, and if current limits on B_{s}^{0} oscillations are not included, then global fits to the unitarity triangle favor $\Delta m_{s}=$ $20.9_{-4.2}^{+4.5} \mathrm{ps}^{-1}$ [3] or $\Delta m_{s}=21.2 \pm 3.2 \mathrm{ps}^{-1}$ [4].

In this Letter, we present a study of $B_{s}^{0}-\bar{B}_{s}^{0}$ oscillations carried out using semileptonic $B_{s}^{0} \rightarrow \mu^{+} D_{s}^{-} X$ decays [5] collected by the D 0 experiment at Fermilab in $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$. In the $B_{s}^{0}-\bar{B}_{s}^{0}$ system there are two mass eigenstates, the heavier (lighter) one having mass M_{H} $\left(M_{L}\right)$ and decay width $\Gamma_{H}\left(\Gamma_{L}\right)$. Denoting $\Delta m_{s}=M_{H}-$ $M_{L}, \quad \Delta \Gamma_{s}=\Gamma_{L}-\Gamma_{H}, \quad \Gamma_{s}=\left(\Gamma_{L}+\Gamma_{H}\right) / 2$, the timedependent probability P that an initial B_{s}^{0} decays at time t as $B_{s}^{0} \rightarrow \mu^{+} X\left(P^{\text {nos }}\right)$ or $\bar{B}_{s}^{0} \rightarrow \mu^{-} X\left(P^{\text {osc }}\right)$ is given by $P^{\mathrm{nos} / \text { osc }}=e^{-\Gamma_{s} t}\left(1 \pm \cos \Delta m_{s} t\right) / 2$, assuming that $\Delta \Gamma_{s} / \Gamma_{s}$ is small and neglecting $C P$ violation. Flavor tagging a b (\bar{b}) on the opposite side from the signal meson establishes the signal meson as a $B_{s}^{0}\left(\bar{B}_{s}^{0}\right)$ at time $t=0$.

The D0 detector is described in detail elsewhere [6]. Charged particles are reconstructed using the central tracking system which consists of a silicon microstrip tracker (SMT) and a central fiber tracker (CFT), both located within a 2 T superconducting solenoidal magnet. Electrons are identified by the preshower and liquid-argon and uranium calorimeter. Muons are identified by the muon system which consists of a layer of tracking detectors and scintillation trigger counters in front of 1.8 T iron toroids, followed by two similar layers after the toroids [7].

No explicit trigger requirement was made, although most of the sample was collected with single muon triggers. The decay chain $B_{s}^{0} \rightarrow \mu^{+} D_{s}^{-} X, D_{s}^{-} \rightarrow \phi \pi^{-}, \phi \rightarrow$ $K^{+} K^{-}$was then reconstructed. The charged tracks were required to have signals in both the CFT and SMT. Muons were required to have transverse momentum $p_{T}\left(\mu^{+}\right)>$

PACS numbers: $14.40 . \mathrm{Nd}, 12.15 . \mathrm{Ff}, 12.15 . \mathrm{Hh}, 13.20 . \mathrm{He}$
$2 \mathrm{GeV} / c$ and momentum $p\left(\mu^{+}\right)>3 \mathrm{GeV} / c$, and to have measurements in at least two layers of the muon system. All charged tracks in the event were clustered into jets [8], and the D_{s}^{-}candidate was reconstructed from three tracks found in the same jet as the reconstructed muon. Oppositely charged particles with $p_{T}>0.7 \mathrm{GeV} / c$ were assigned the kaon mass and were required to have an invariant mass $1.004<M\left(K^{+} K^{-}\right)<1.034 \mathrm{GeV} / c^{2}$, consistent with that of a ϕ meson. The third track was required to have $p_{T}>0.5 \mathrm{GeV} / c$ and charge opposite to that of the muon charge and was assigned the pion mass. The three tracks were required to form a common D_{s}^{-}vertex using the algorithm described in Ref. [9]. To reduce combinatorial background, the D_{s}^{-}vertex was required to have a positive displacement in the transverse plane, relative to the $p \bar{p}$ collision point [or primary vertex (PV)], with at least 4σ significance. The cosine of the angle between the D_{s}^{-}momentum and the direction from the PV to the D_{s}^{-} vertex was required to be greater than 0.9. The trajectories of the muon and D_{s}^{-}candidates were required to originate from a common B_{s}^{0} vertex, and the $\mu^{+} D_{s}^{-}$system was required to have an invariant mass between 2.6 and $5.4 \mathrm{GeV} / c^{2}$.

To further improve B_{s}^{0} signal selection, a likelihood ratio method [10] was utilized. Using $M\left(K^{+} K^{-} \pi\right)$ sideband (B) and sideband-subtracted signal (S) distributions in the data, probability density functions (PDFs) were found for a number of discriminating variables: the helicity angle between the D_{s}^{-}and $K^{ \pm}$momenta in the ϕ center-of-mass frame, the isolation of the $\mu^{+} D_{s}^{-}$system, the χ^{2} of the D_{s}^{-} vertex, the invariant masses $M\left(\mu^{+} D_{s}^{-}\right)$and $M\left(K^{+} K^{-}\right)$, and $p_{T}\left(K^{+} K^{-}\right)$. The final requirement on the combined selection likelihood ratio variable, $y_{\text {sel }}$, was chosen to maximize the predicted ratio $S / \sqrt{S+B}$. The total number of D_{s}^{-}candidates after these requirements was $N_{\text {tot }}=$ 26710 ± 556 (stat), as shown in Fig. 1(a).

The performance of the opposite-side flavor tagger (OST) [11] is characterized by the efficiency $\epsilon=$ $N_{\text {tag }} / N_{\text {tot }}$, where $N_{\text {tag }}$ is the number of tagged B_{s}^{0} mesons; the purity η_{s}, defined as $\eta_{s}=N_{\text {cor }} / N_{\text {tag }}$, where $N_{\text {cor }}$ is the number of B_{s}^{0} mesons with correct flavor identification; and the dilution, related to purity as $\mathcal{D} \equiv 2 \eta_{s}-1$. Again, a likelihood ratio method was used. In the construction of the flavor discriminating variables x_{1}, \ldots, x_{n} for each event, an object, either a lepton ℓ (electron or muon) or a reconstructed secondary vertex (SV), was defined to be on the opposite side from the B_{s}^{0} meson if it satisfied

FIG. 1 (color online). $\left(K^{+} K^{-}\right) \pi^{-}$invariant mass distribution (a) for the untagged B_{s}^{0} sample, and (b) for candidates that have been flavor tagged. The left and right peaks correspond to $\mu^{+} D^{-}$ and $\mu^{+} D_{s}^{-}$candidates, respectively. The curve is a result of fitting a signal plus background model to the data.
$\cos \varphi\left(\vec{p}_{\text {eorSv }}, \vec{p}_{B}\right)<0.8$, where \vec{p}_{B} is the reconstructed three-momentum of the B_{s}^{0} meson, and φ is the azimuthal angle about the beam axis. A lepton jet charge was formed as $Q_{J}^{\ell}=\sum_{i} q^{i} p_{T}^{i} / \sum_{i} p_{T}^{i}$, where all charged particles are summed, including the lepton, inside a cone of $\Delta R=$ $\sqrt{(\Delta \varphi)^{2}+(\bar{\Delta})^{2}}<0.5$ centered on the lepton. The SV charge was defined as $Q_{\mathrm{SV}}=\sum_{i}\left(q^{i} p_{L}^{i}\right)^{0.6} / \sum_{i}\left(p_{L}^{i}\right)^{0.6}$, where all charged particles associated with the SV are summed, and p_{L}^{i} is the longitudinal momentum of track i with respect to the direction of the SV momentum. Finally, event charge is defined as $Q_{\mathrm{EV}}=\sum_{i} q^{i} p_{T}^{i} / \sum_{i} p_{T}^{i}$, where the sum is over all tracks with $p_{T}>0.5 \mathrm{GeV} / c$ outside a cone of $\Delta R>1.5$ centered on the B_{s}^{0} direction. The PDF of each discriminating variable was found for b and \bar{b} quarks using a large data sample of $B^{+} \rightarrow \mu^{+} \nu \bar{D}^{0}$ events where the initial state is known from the charge of the decay muon.
For an initial $b(\bar{b})$ quark, the PDF for a given variable x_{i} is denoted $f_{i}^{b}\left(x_{i}\right)\left[f_{i}^{\bar{b}}\left(x_{i}\right)\right]$, and the combined tagging variable is defined as $d_{\text {tag }}=(1-z) /(1+z)$, where $z=$ $\prod_{i=1}^{n}\left(f_{i}^{\bar{b}}\left(x_{i}\right) / f_{i}^{b}\left(x_{i}\right)\right)$. The variable d_{tag} varies between -1 and 1 . An event with $d_{\mathrm{tag}}>0(<0)$ is tagged as a b (\bar{b}) quark.

The OST purity was determined from large samples of $B^{+} \rightarrow \mu^{+} \bar{D}^{0} X \quad$ (nonoscillating) and $\quad B_{d}^{0} \rightarrow \mu^{+} D^{*-} X$ (slowly oscillating) semileptonic candidates. An average value of $\epsilon \mathcal{D}^{2}=\left[2.48 \pm 0.21(\text { stat })_{-0.06}^{+0.08}(\mathrm{syst})\right] \%$ was obtained [11]. The estimated event-by-event dilution as a function of $\left|d_{\text {tag }}\right|$ was determined by measuring \mathcal{D} in bins of $\left|d_{\text {tag }}\right|$ and parametrizing with a third-order polynomial for $\left|d_{\text {tag }}\right|<0.6$. For $\left|d_{\text {tag }}\right|>0.6, \mathcal{D}$ is fixed to 0.6 .

The OST was applied to the $B_{s}^{0} \rightarrow \mu^{+} D_{s}^{-} X$ data sample, yielding $N_{\text {tag }}=5601 \pm 102$ (stat) candidates having an identified initial state flavor, as shown in Fig. 1(b). The tagging efficiency was (20.9 ± 0.7) \%.

After flavor tagging, the proper decay time of candidates is needed; however, the undetected neutrino and other missing particles in the semileptonic B_{s}^{0} decay prevent a
precise determination of the meson's momentum and Lorentz boost. This represents an important contribution to the smearing of the proper decay length in semileptonic decays, in addition to the resolution effects. A correction factor K was estimated from a Monte Carlo (MC) simulation by finding the distribution of $K=p_{T}\left(\mu^{+} D_{s}^{-}\right) / p_{T}(B)$ for a given decay channel in bins of $M\left(\mu^{+} D_{s}^{-}\right)$. The proper decay length of each B_{s}^{0} meson is then $\operatorname{ct}\left(B_{s}^{0}\right)=l_{M} K$, where $l_{M}=M\left(B_{s}^{0}\right) \cdot\left(\vec{L}_{T} \cdot \vec{p}_{T}\left(\mu^{+} D_{s}^{-}\right)\right) /\left(p_{T}\left(\mu^{+} D_{s}^{-}\right)\right)^{2}$ is the measured visible proper decay length (VPDL), \vec{L}_{T} is the vector from the PV to the B_{s}^{0} decay vertex in the transverse plane and $M\left(B_{s}^{0}\right)=5.3696 \mathrm{GeV} / c^{2}[1]$.

All flavor-tagged events with $1.72<M\left(K^{+} K^{-} \pi^{-}\right)<$ $2.22 \mathrm{GeV} / c^{2}$ were used in an unbinned fitting procedure. The likelihood, \mathcal{L}, for an event to arise from a specific source in the sample depends event-by-event on l_{M}, its uncertainty $\sigma_{l_{M}}$, the invariant mass of the candidate $M\left(K^{+} K^{-} \pi^{-}\right)$, the predicted dilution $\mathcal{D}\left(d_{\mathrm{tag}}\right)$, and the selection variable $y_{\text {sel }}$. The PDFs for $\sigma_{l_{M}}, M\left(K^{+} K^{-} \pi^{-}\right)$, $\mathcal{D}\left(d_{\text {tag }}\right)$, and $y_{\text {sel }}$ were determined from data. Four sources were considered: the signal $\mu^{+} D_{s}^{-}\left(\rightarrow \phi \pi^{-}\right)$; the accompanying peak due to $\mu^{+} D^{-}\left(\rightarrow \phi \pi^{-}\right)$; a small (less than 1%) reflection due to $\mu^{+} D^{-}\left(\rightarrow K^{+} \pi^{-} \pi^{-}\right)$, where the kaon mass is misassigned to one of the pions; and combinatorial background. The total fractions of the first two categories were determined from the mass fit of Fig. 1(b).

The $\mu^{+} D_{s}^{-}$signal sample is composed mostly of B_{s}^{0} mesons with some contributions from B_{d}^{0} and B^{+}mesons. Contributions of b baryons to the sample were estimated to be small and were neglected. The data were divided into subsamples with and without oscillation as determined by the OST. The distribution of the VPDL l for nonoscillated and oscillated cases was modeled appropriately for each type of B meson, e.g., for B_{s}^{0} :

$$
\begin{align*}
p_{s}^{\mathrm{nos} / \mathrm{osc}}\left(l, K, d_{\mathrm{tag}}\right)= & \frac{K}{c \tau_{B_{s}^{0}}} \exp \left(-\frac{K l}{c \tau_{B_{s}^{0}}}\right) \\
& \times\left[1 \pm \mathcal{D}\left(d_{\mathrm{tag}}\right) \cos \left(\Delta m_{s} K l / c\right)\right] / 2 \tag{1}
\end{align*}
$$

The world averages [1] of $\tau_{B_{d}^{0}}, \tau_{B^{+}}$, and Δm_{d} were used as inputs to the fit. The lifetime, $\tau_{B_{s}^{0}}$, was allowed to float in the fit. In the amplitude and likelihood scans described below, $\tau_{B_{s}^{0}}$ was fixed to this fitted value, which agrees with expectations.

The total VPDL PDF for the $\mu^{+} D_{s}^{-}$signal is then the sum over all decay channels, including branching fractions, that yield the D_{s}^{-}mass peak. The $B_{s}^{0} \rightarrow \mu^{+} D_{s}^{-} X$ signal modes (including $D_{s}^{*-}, D_{s 0}^{*-}$, and $D_{s 1}^{\prime-}$; and μ^{+} originating from τ^{+}decay) comprise (85.6 ± 3.3) \% of our sample, as determined from a MC simulation which included the PYTHIA generator v6.2 [12] interfaced with the EVTGEN decay package [13], followed by full GEANT v3.15 [14] modeling of the detector response and event reconstruction. Other backgrounds considered were decays via
$B_{s}^{0} \rightarrow D_{(s)}^{+} D_{s}^{-} X$ and $\bar{B}_{d}^{0}, B^{-} \rightarrow D D_{s}^{-}$, followed by $D_{(s)}^{+} \rightarrow$ $\mu^{+} X$, with a real D_{s}^{-}reconstructed in the peak and an associated real μ^{+}. Another background taken into account occurs when the D_{s}^{-}meson originates from one b or c quark and the muon arises from another quark. This background peaks around the PV (peaking backgrounds). The uncertainty in each channel covers possible trigger efficiency biases. Translation from the true VPDL, l, to the measured l_{M} for a given channel, is achieved by a convolution of the VPDL detector resolution, of K factors over each normalized distribution, and by including the reconstruction efficiency as a function of VPDL. The lifetimedependent efficiency was found for each channel using MC simulations and, as a cross check, the efficiency was also determined from the data by fixing $\tau_{B_{s}^{0}}$ and fitting for the functional form of the efficiency. The shape of the VPDL distribution for peaking backgrounds was found from MC simulation, and the fraction from this source was allowed to float in the fit.

The VPDL uncertainty was determined from the vertex fit using track parameters and their uncertainties. To account for possible mismodeling of these uncertainties, resolution scale factors were introduced as determined by examining the pull distribution of the vertex positions of a sample of $J / \psi \rightarrow \mu^{+} \mu^{-}$decays. Using these scale factors, the convolving function for the VPDL resolution was the sum of two Gaussian functions with widths (fractions) of $0.998 \sigma_{l_{M}}(72 \%)$ and $1.775 \sigma_{l_{M}}(28 \%)$. A cross check was performed using a MC simulation with tracking errors tuned according to the procedure described in Ref. [15]. The 7% variation of scale factors found in this cross check was used to estimate systematic uncertainties due to decay length resolution.

Several contributions to the combinatorial backgrounds that have different VPDL distributions were considered. True prompt background was modeled with a Gaussian function with a separate scale factor on the width; background due to fake vertices around the PV was modeled with another Gaussian function; and long-lived background was modeled with an exponential function convoluted with the resolution, including a component oscillating with a frequency of Δm_{d}. The unbinned fit of the total tagged sample was used to determine the various fractions of signal and backgrounds and the background VPDL parametrizations.

Figure 2 shows the value of $-\Delta \log \mathcal{L}$ as a function of Δm_{s}, indicating a favored value of $19 \mathrm{ps}^{-1}$, while variation of $-\log \mathcal{L}$ from the minimum indicates an oscillation frequency of $17<\Delta m_{s}<21 \mathrm{ps}^{-1}$ at the 90% C.L. The uncertainties are approximately Gaussian inside this interval. The plateau of the likelihood curve shows the region where we do not have sufficient resolution to measure an oscillation, and if the true value of $\Delta m_{s}>22 \mathrm{ps}^{-1}$, our measured confidence interval does not make any statement about the frequency. Using 100 parametrized MC samples with similar statistics, VPDL resolution, overall tagging

FIG. 2 (color online). Value of $-\Delta \log \mathcal{L}$ as a function of Δm_{s}. Star symbols do not include systematic uncertainties, and the shaded band represents the envelope of all $\log \mathcal{L}$ scan curves due to different systematic uncertainties.
performance, and sample composition of the data sample, it was determined that for a true value of $\Delta m_{s}=19 \mathrm{ps}^{-1}$, the probability was 15% for measuring a value in the range $16<\Delta m_{s}<22 \mathrm{ps}^{-1}$ with a $-\Delta \log \mathcal{L}$ lower by at least 1.9 than the corresponding value at $\Delta m_{s}=25 \mathrm{ps}^{-1}$.

The amplitude method [16] was also used. Equation (1) was modified to include the oscillation amplitude \mathcal{A} as an additional coefficient on the $\cos \left(\Delta m_{s} K l / c\right)$ term. The unbinned fit was repeated for fixed input values of Δm_{s} and the fitted value of \mathcal{A} and its uncertainty $\sigma_{\mathcal{A}}$ found for each step, as shown in Fig. 3. At $\Delta m_{s}=19 \mathrm{ps}^{-1}$ the measured data point deviates from the hypothesis $\mathcal{A}=0(\mathcal{A}=1)$ by 2.5 (1.6) standard deviations, corresponding to a twosided C.L. of 1% (10%), and is in agreement with the likelihood results. In the presence of a signal, however, it is more difficult to define a confidence interval using the amplitude than by examining the $-\Delta \log \mathcal{L}$ curve. Since, on average, these two methods give the same results, we chose to quantify our Δm_{s} interval using the likelihood curve.

FIG. 3 (color online). $\quad B_{s}^{0}$ oscillation amplitude as a function of oscillation frequency, Δm_{s}. The solid line shows the $\mathcal{A}=1$ axis for reference. The dashed line shows the expected limit including both statistical and systematic uncertainties.

Systematic uncertainties were addressed by varying inputs, cut requirements, branching ratios, and PDF modeling. The branching ratios were varied within known uncertainties [1] and large variations were taken for those not yet measured. The K-factor distributions were varied within uncertainties, using measured (or smoothed) instead of generated momenta in the MC simulation. The fractions of peaking and combinatorial backgrounds were varied within uncertainties. Uncertainties in the reflection contribution were considered. The functional form to determine the dilution $\mathcal{D}\left(d_{\text {tag }}\right)$ was varied. The lifetime $\tau_{B_{s}^{0}}$ was fixed to its world average value, and $\Delta \Gamma_{s}$ was allowed to be nonzero. The scale factors on the signal and background resolutions were varied within uncertainties, and typically generated the largest systematic uncertainty in the region of interest. A separate scan of $-\Delta \log \mathcal{L}$ was taken for each variation, and the envelope of all such curves is indicated as the band in Fig. 2. The same systematic uncertainties were considered for the amplitude method using the procedure of Ref. [16], and, when added in quadrature with the statistical uncertainties, represent a small effect, as shown in Fig. 3. Taking these systematic uncertainties into account, we obtain from the amplitude method an expected limit of $14.1 \mathrm{ps}^{-1}$ and an observed lower limit of $\Delta m_{s}>$ $14.8 \mathrm{ps}^{-1}$ at the 95% C.L., consistent with the likelihood scan.

The probability that $B_{s}^{0}-\bar{B}_{s}^{0}$ oscillations with the true value of $\Delta m_{s}>22 \mathrm{ps}^{-1}$ would give a $-\Delta \log \mathcal{L}$ minimum in the range $16<\Delta m_{s}<22 \mathrm{ps}^{-1}$ with a depth of more than 1.7 with respect to the $-\Delta \log \mathcal{L}$ value at $\Delta m_{s}=$ $25 \mathrm{ps}^{-1}$, corresponding to our observation including systematic uncertainties, was found to be $(5.0 \pm 0.3) \%$. This range of Δm_{s} was chosen to encompass the world average lower limit and the edge of our sensitive region. To determine this probability, an ensemble test using the data sample was performed by randomly assigning a flavor to each candidate while retaining all its other information, effectively simulating a B_{s}^{0} oscillation with an infinite frequency. Similar probabilities were found using ensembles of parametrized MC events.

In summary, a study of $B_{s}^{0}-\bar{B}_{s}^{0}$ oscillations was performed using $B_{s}^{0} \rightarrow \mu^{+} D_{s}^{-} X$ decays, where $D_{s}^{-} \rightarrow \phi \pi^{-}$ and $\phi \rightarrow K^{+} K^{-}$, an opposite-side flavor tagging algorithm, and an unbinned likelihood fit. The amplitude method gives an expected limit of $14.1 \mathrm{ps}^{-1}$ and an observed lower limit of $\Delta m_{s}>14.8 \mathrm{ps}^{-1}$ at the 95% C.L. At $\Delta m_{s}=19 \mathrm{ps}^{-1}$, the amplitude method yields a result that deviates from the hypothesis $\mathcal{A}=0(\mathcal{A}=1)$ by 2.5 (1.6) standard deviations, corresponding to a two-sided C.L. of $1 \%(10 \%)$. The likelihood curve is well behaved near a preferred value of $19 \mathrm{ps}^{-1}$ with a 90% C.L. interval of $17<\Delta m_{s}<21 \mathrm{ps}^{-1}$, assuming Gaussian uncertainties. The lower edge of the confidence level interval is near the world average 95% C.L. lower limit $\Delta m_{s}>16.6 \mathrm{ps}^{-1}$ [2]. Ensemble tests indicate that if Δm_{s} lies above the
sensitive region, i.e., above approximately $22 \mathrm{ps}^{-1}$, there is a $(5.0 \pm 0.3) \%$ probability that it would produce a likelihood minimum similar to the one observed in the interval $16<\Delta m_{s}<22 \mathrm{ps}^{-1}$. This is the first report of a direct two-sided bound measured by a single experiment on the B_{s}^{0} oscillation frequency.

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CAPES, CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); PPARC (United Kingdom); MSMT (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); Research Corporation; Alexander von Humboldt Foundation; and the Marie Curie Program.
*On leave from IEP SAS Kosice, Slovakia.
${ }^{\dagger}$ Visiting scientist from Helsinki Institute of Physics,
Helsinki, Finland.
[1] S. Eidelman et al., Phys. Lett. B 592, 1 (2004).
[2] E. Barberio et al. (Heavy Flavor Averaging Group), hepex/0603003. Note that we take $\hbar=c=1$, hence the units on Δm_{s}.
[3] J. Charles et al. (CKMfitter Group), Eur. Phys. J. C 41, 1 (2005).
[4] M. Bona et al. (UTfit Collaboration), J. High Energy Phys. 07 (2005) 028.
[5] Charge conjugate states are assumed throughout.
[6] V. Abazov et al. (D0 Collaboration), physics/0507191 [Nucl. Instrum. Methods Phys. Res., Sect. A (to be published)].
[7] V.M. Abazov et al., Nucl. Instrum. Methods Phys. Res., Sect. A 552, 372 (2005).
[8] S. Catani et al., Phys. Lett. B 269, 432 (1991), Durham jets with the p_{T} cut-off parameter set at $15 \mathrm{GeV} / c$.
[9] J. Abdallah et al. (DELPHI Collaboration), Eur. Phys. J. C 32, 185 (2004).
[10] G. Borisov, Nucl. Instrum. Methods Phys. Res., Sect. A 417, 384 (1998).
[11] V. Abazov et al. (D0 Collaboration), Phys. Rev. D (to be published); D0 Note 5029, available from http://wwwd0.fnal.gov/Run2Physics/WWW/results/prelim/B/B32/.
[12] T. Sjöstrand et al., Comput. Phys. Commun. 135, 238 (2001).
[13] D. J. Lange, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001).
[14] R. Brun and F. Carminati, CERN Program Library Long Writeup W5013 (unpublished).
[15] G. Borisov and C. Mariotti, Nucl. Instrum. Methods Phys. Res., Sect. A 372, 181 (1996).
[16] H. G. Moser and A. Roussarie, Nucl. Instrum. Methods Phys. Res., Sect. A 384, 491 (1997).

