Measurement of the Shape of the Boson-Transverse Momentum Distribution
in $p\bar{p} \rightarrow Z/\gamma^* \rightarrow e^+e^- + X$ Events Produced at $\sqrt{s} = 1.96$ TeV

PRL 100, 102002 (2008)
M.-E. Pol,2 P. Polozov,37 B. G. Pope,66 A. V. Popov,39 C. Potter,8 W. L. Prado da Silva,3 H. B. Prosper,50 S. Protopopescu,74
J. Qian,65 A. Quadri,22,§ B. Quinn,67 A. Rakitine,43 M. S. Rangel,2 K. Ranjan,28 P. N. Ratoff,43 P. Renkel,80 S. Reucroft,64
P. Rich,45 M. Rijssenbeek,73 I. Ripp-Baudot,19 F. Rizatdinova,77 S. Robinson,44 R. F. Rodrigues,3 M. Rominsky,76
C. Royon,18 P. Rubinov,51 R. Ruchti,56 G. Sajot,14 A. Sa´ nchez-Herna´ ndez,33 M. P. Sanders,17 A. Santoro,3
P. Schieferdecker,25 T. Schliephake,26 C. Schwanenberger,45 A. Schwartzman,69 R. Schwienhorst,66 J. Sekaric,50
H. Severini,76 E. Shabalina,52 M. Shamim,60 V. Shary,18 A. A. Shchukin,39 R. K. Shivpuri,28 V. Simak,10
V. Sirotenko,51 P. Skubic,76 P. Slattery,72 D. Smirnov,56 J. Snow,75 G. R. Snow,68 S. Snyder,74 S. Söldner-Rembold,45
L. Sonnenschein,17 A. Socpiczak,43 M. Sosebee,9 K. Soustruznik,9 M. Souza,52 B. Spurlock,59 J. Stark,14 J. Steele,61
V. Stolin,37 D. A. Stoyanova,39 J. Strandberg,56 S. Strandberg,41 M. A. Strang,70 M. Strauss,76 E. Strauss,73 R. Ströhmer,25
D. Strom,54 L. Stutte,51 S. Sumowidagdo,50 P. Svoisky,56 A. Szajfer,43 T. Talby,15 P. Tamburello,46 A. Tanasijczuk,1
D. Tsybychev,73 B. Tuchming,18 C. Tully,69 P. M. Tuts,71 R. Unalan,66 S. Uvarov,40 L. Uvarov,40 S. Uzonian,53 B. Vachon,6
P. J. van den Berg,34 R. Van Kooten,55 W. M. van Leeuwen,34 N. Varelas,52 E. W. Varnes,46 I. A. Vasilyev,39 M. Vaupel,26
P. Verdir,20 L. S. Vertogradov,36 M. Verzocchi,51 F. Villeneuve-Seguier,44 P. Vint,44 P. Vokac,10 E. Von Toerne,60
Y. A. Yatsunenko,36 K. Yip,74 H. D. Yoo,78 S. W. Youn,54 J. Yu,79 A. Zatserklyaniy,52 C. Zeitnitz,26 T. Zhao,83 B. Zhou,65
J. Zhu,73 M. Zielinski,72 D. Zieminska,55 A. Zieminski,55,** L. Zivkovic,71 V. Zutshi,53 and E. G. Zverev38

(The D0 Collaboration)

1Universidad de Buenos Aires, Buenos Aires, Argentina
2Universidade Federal do ABC, Santo Andre´ , Brazil
3Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
4Universidade Federal do ABC, Santo Andre´ , Brazil
5Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil
6University of Alberta, Edmonton, Alberta, Canada,
7University of Science and Technology of China, Hefei, People’s Republic of China
8Univrsidad de los Andes, Bogotá, Colombia
9Center for Particle Physics, Charles University, Prague, Czech Republic
10Czech Technical University, Prague, Czech Republic
11Center for Particle Physics, Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
12Universidad San Francisco de Quito, Quito, Ecuador
13Laboratoire de Physique Corpusculaire, IN2P3-CNRS, Université Blaise Pascal, Clermont-Ferrand, France
14Laboratoire de Physique Subatomique et de Cosmologie, IN2P3-CNRS, Université de Grenoble I, Grenoble, France
15CPPM, IN2P3-CNRS, Université de la Méditerranée, Marseille, France
16Laboratoire de l’Accélérateur Linéaire, IN2P3-CNRS et Université Paris-Sud, Orsay, France
17LPNHE, IN2P3-CNRS, Universités Paris VI and VII, Paris, France
18DAPNIA/Service de Physique des Particules, CEA, Saclay, France
19IPHC, Université Louis Pasteur et Université de Haute Alsace, CNRS, IN2P3, Strasbourg, France
20IPNL, Université Lyon 1, CNRS/IN2P3, Villeurbanne, France and Université de Lyon, Lyon, France
21II. Physikalisches Institut A, RWTH Aachen, Aachen, Germany
22Physikalisches Institut, Universität Bonn, Bonn, Germany
23Physikalisches Institut, Universität Freiburg, Freiburg, Germany
24Institut für Physik, Universität Mainz, Mainz, Germany
25Ludwig-Maximilians-Universität München, München, Germany
26Fachbereich Physik, Universität Wuppertal, Wuppertal, Germany
27Panjab University, Chandigarh, India
28Delhi University, Delhi, India
29Tata Institute of Fundamental Research, Mumbai, India

102002-2
We present a measurement of the shape of the Z/γ^* boson transverse momentum (q_T) distribution in $p\bar{p} \rightarrow Z/\gamma^* \rightarrow e^+ e^- + X$ events at a center-of-mass energy of 1.96 TeV using 0.98 fb$^{-1}$ of data collected with the D0 detector at the Fermilab Tevatron collider. The data are found to be consistent with the resummation prediction at low q_T, but above the perturbative QCD calculation in the region of $q_T > 30$ GeV/c.
Using events with $q_T < 30 \text{ GeV}/c$, we extract the value of g_2, one of the nonperturbative parameters for the resummation calculation. Data at large boson rapidity y are compared with the prediction of resummation and with alternative models that employ a resummed form factor with modifications in the small Bjorken x region of the proton wave function.

A complete understanding of weak vector boson production is essential for maximizing the sensitivity to new physics at hadron colliders. Studies of the Z/γ^* boson production play a particularly valuable role in that its kinematics can be precisely determined through measurement of its leptonic decays. Throughout this Letter, we use the notation “Z boson” to mean “Z/γ^* boson,” unless specified otherwise.

Z boson production also serves as an ideal testing ground for predictions of quantum chromodynamics (QCD), since the boson’s transverse momentum, q_T, can be measured over a wide range of values and can be correlated with its rapidity. At large q_T (approximately greater than $30 \text{ GeV}/c$), the radiation of a single parton with large transverse momentum dominates the cross section, and fixed-order perturbative QCD (pQCD) calculations [1], currently available at next-to-next-to leading order (NNLO) [2], should yield reliable predictions. At lower q_T, multiple soft-gluon emission cannot be neglected, and the fixed-order perturbation calculation no longer gives accurate results. A soft-gluon resummation technique developed by Collins, Soper, and Sterman (CSS) [3] gives reliable predictions in the low-q_T region. A prescription has been proposed [4] for matching the low- and high-q_T regions in order to provide a continuous prediction for all values of q_T. The CSS resummation formalism allows the inclusion of contributions from large logarithms of the form $\ln^2(q_T^2/Q^2)$ to all orders of perturbation theory in an effective resummed form factor, where Q^2 represents the invariant mass corresponding to the four-momentum transfer. The CSS resummation can be done either in impact parameter (b) space or in transverse momentum (q_T) space. In the case of b-space resummation, this form factor can be parameterized with the following nonperturbative function first introduced by Brock, Landry, Ndolosky, and Yuan (BLNY) [5]:

$$S_{NP}(b, Q^2) = \left[g_1 + g_2 \ln\left(\frac{Q^2}{2Q_0^2}\right) + g_3 \ln(100x_1x_2) \right] b^2,$$

(1)

where x_1 and x_2 are the fractions of the incident hadron momenta carried by the colliding partons, Q_0 is a scale typical of the onset of nonperturbative effects, and g_1, g_2, and g_3 are phenomenological nonperturbative parameters that must be obtained from fits to the data. The Z boson q_T distribution at the Fermilab Tevatron is by far most sensitive to the value of g_2 and quite insensitive to the value of g_3. Thus, a measurement of the Z boson q_T spectrum can be used to test this formalism and to determine the value of g_2.

Recent studies of data from deep inelastic scattering (DIS) experiments [6,7] indicate that the resummed form factor in the above equation may need to be modified for processes involving a small-x parton in the initial state. Reference [8] indicates how such a modification would influence the q_T distributions of vector and Higgs bosons produced in hadronic collisions. A wider q_T distribution is predicted for Z bosons with large rapidity (called “small-x broadening”). Z bosons produced at the Tevatron in the rapidity range $2 < |y| < 3$ probe processes involving a parton with $0.002 < x < 0.006$, and can be used to test the modified form factor at small x.

Z boson q_T distributions have been published previously by the CDF [9] and D0 [10] collaborations using about 100 pb$^{-1}$ of data at $\sqrt{s} = 1.8$ TeV. In this Letter, we report a new measurement with larger statistics and improved precision. This measurement is also the first to present a q_T distribution for large-rapidity Z bosons.

The data sample used in this measurement was collected using a set of inclusive single-electron triggers with the D0 detector [11] at the Fermilab Tevatron collider, and the integrated luminosity is 980 ± 60 pb$^{-1}$ [12].

Our selection criteria for Z bosons require two isolated electromagnetic clusters that have a shower shape consistent with that of an electron. Electron candidates are required to have transverse momentum greater than 25 GeV/c. The electron pairs must have a reconstructed invariant mass $70 < M(\text{ee}) < 110 \text{ GeV}/c^2$. If an event has both its candidate electrons in the central calorimeter (CC events), each electron must be spatially matched to a reconstructed track. Because the tracking efficiency decreases with rapidity in the endcap region, events with one or two endcap calorimeter electron candidates (CE and EE events, respectively) are required to have at least one electron with a matching track. After these requirements, 23 959 CC, 30 344 CE, and 9598 EE events are selected; 5412 of these have a Z boson with $|y| > 2$.

Electron identification efficiencies are measured using a combination of data and a GEANT-based [13] simulation of the D0 detector. The electron identification efficiencies are measured from Z data. The dependence of the overall selection efficiency on the Z boson q_T is parameterized from the GEANT simulation. A measurement of this shape from the data agrees well with the simulation within statistical uncertainties.

The dominant backgrounds are from photon plus jet events and di-jet events, with photons and jets misidenti-
The measured spectrum is further corrected for detector resolution effects using the RUN (Regularized Unfolding) program [16] to obtain the true differential cross section. Its performance was verified by comparing the true and unfolded spectrum generated using pseudoexperiments. The measured Z qT resolution is about 2 GeV/c; the bin width we choose is 2.5 GeV/c for qT < 30 GeV/c. The typical correlation between adjacent bins is around 30%. Due to limited statistics, the chosen bin width is 10 GeV/c for 30 < qT < 100 GeV/c and 40 GeV/c for 100 < qT < 260 GeV/c.

Systematic uncertainties on the unfolded qT spectrum arise from uncertainties on the electron energy calibration, the electron energy resolution, the dependence of the overall selection efficiency on qT, and the effect of parton distribution functions (PDFs) on the acceptance. The uncertainties on the unfolded spectrum are estimated from the resulting change when the smearing parameters are varied within their uncertainties. CTEQ 6.1M is used as the default PDF. Uncertainties due to the PDFs are estimated using the procedure described in Ref. [17]. The uncertainty due to the choice of unfolding parameters in the RUN program is also estimated and included in the final systematic uncertainty.

The final results in the qT < 30 GeV/c range are shown in Fig. 1 for the inclusive sample and for the sample with |y| > 2. Each data point is plotted at the average value of the expected distribution over the bin [18]. For the theoretical calculation, we use RESBOS with published values of the nonperturbative parameters [5]. Good agreement between data and the prediction is observed for all rapidity ranges, which indicates that the BLNY parameterization works well for the low qT region.

Z boson events produced at large rapidities (|y| > 2) are also used to test the small-x prediction. We compare data with the theoretical predictions with and without the form factor as modified from studies of small-x DIS data [8]. All curves are normalized to 1 for qT < 30 GeV/c. The default values for the parameters g1, g2, and g3 [5] obtained from large-x data are used. The χ²/d.o.f. between the data and the RESBOS calculation using the default parameters is 0.8/1 for qT < 5 GeV/c and 11.1/11 for qT < 30 GeV/c, while that for the modified calculation is 5.7/1 for qT < 5 GeV/c and 31.9/11 for qT < 30 GeV/c. It remains to be seen if retuning of the nonperturbative parameters could improve the agreement for the modified calculations.

Figure 2 shows the measured differential cross section in the range qT < 260 GeV/c compared to (1) the RESBOS calculation with its default parameters [5], (2) RESBOS with a NLO to NNLO K factor by Arnold and Reno [19] incorporated into RESBOS by its authors, (3) a pQCD
The CSS model parameter most sensitive to the shape at low q_T ($q_T < 30 \text{ GeV}/c$) is g_2. In a fit, we fix other phenomenological parameters to the values obtained in Ref. [5] and only vary g_2. A minimum χ^2/d.o.f. of 9/11 between the model and the inclusive data for $q_T < 30 \text{ GeV}/c$ is found when $g_2 = 0.77 \pm 0.06 (\text{GeV}/c)^2$.

In conclusion, we have measured the normalized differential spectrum, $\frac{1}{\sigma} \frac{d\sigma}{dq_T}$, for Z boson events produced in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV with boson mass $40 < M < 200 \text{ GeV}/c^2$ and $q_T < 260 \text{ GeV}/c$. This represents the highest center-of-mass energy measurement of this quantity over the largest phase space available to date. The overall uncertainty of this measurement has been reduced compared with the previous measurements. We find that for $q_T < 30 \text{ GeV}/c$, the CSS resummation model used in RESBOS describes the data very well at all rapidities. Our data with $|y| > 2$ disfavor a variant of this model that incorporates an additional small-x form factor when g_3, g_2, and g_3 from large-x data is used. Using the BLNY parameterization for events with $q_T < 30 \text{ GeV}/c$, we obtain $g_2 = 0.77 \pm 0.06 (\text{GeV}/c)^2$, which is comparable with the current world average value [5]. We observe a disagreement between our data and NNLO calculations in the region $q_T > 30 \text{ GeV}/c$, where our distribution is higher than predicted by a factor of 1.25. However, the
NNLO calculation agrees in shape with our data when normalized at \(q_T = 30 \text{ GeV}/c \).

We thank C. Balazs, Q. H. Cao, P. Nadolsky, F. Petriello, and C. P. Yuan for many useful discussions. We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CAPES, CNPq, FAPERJ, FAPESP, and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); CONICET and UBAcYT (Argentina); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); CONICET and UBAcYT (Argentina); FOM (The Netherlands); Science and Technology Facilities Council (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC, and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China); Alexander von Humboldt Foundation; and the Marie Curie Program.

*Visitor from Augustana College, Sioux Falls, SD, USA.
†Visitor from The University of Liverpool, Liverpool, United Kingdom.
‡Visitor from ICN-UNAM, Mexico City, Mexico.
§Visitor from II. Physikalisches Institut, Georg-August-University Göttingen, Germany.
‖Visitor from Helsinki Institute of Physics, Helsinki, Finland.
¶Visitor from Universität Zürich, Zürich, Switzerland.
**Deceased.

[5] F. Landry et al., Phys. Rev. D 67, 073016 (2003). The values are \(g_1 = 0.21 \pm 0.01 \text{ (GeV}/c)^2 \), \(g_2 = 0.68 \pm 0.01 \text{ (GeV}/c)^2 \), \(g_3 = -0.6 \pm 0.05 \), \(Q_0 = 1.6 \text{ GeV}/c \).